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Abstract

We show that economic models of climate change produce climate
dynamics inconsistent with current climate science models: (i) the delay
between CO2 emissions and warming is much too long and (ii) positive
carbon cycle feedbacks are mostly absent. These inconsistencies lead
to biased economic policy advice. Controlling for how the economy
is represented, different climate models result in significantly different
optimal CO2 emissions. A long delay between emissions and warming
leads to optimal carbon prices that are too low and attaches too much
importance to the discount rate. Similarly we find that omitting posi-
tive carbon cycle feedbacks leads to optimal carbon prices that are too
low. We conclude it is important for policy purposes to bring economic
models in line with the state of the art in climate science and we make
practical suggestions for how to do so.
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1 Introduction

Climate change is arguably the quintessential dynamic problem in economics.
Carbon dioxide resides in the atmosphere for centuries after it is emitted, while
the climate system operates on timescales ranging from seconds to millennia.
Presumably climate dynamics must therefore be accurately represented in eco-
nomic models of climate change, if appropriate policy prescriptions are to be
made. But do economic models get climate dynamics right? To the extent
that they don’t, does it matter?

This paper aims to provide some answers to these two questions. First,
we draw to the attention of the economics community some key inconsisten-
cies between how leading economic models of climate change represent climate
dynamics and how the current generation of climate science models does. Sec-
ond, we explore the economic implications of these inconsistencies. Using the
economic module of Nobel laureate William Nordhaus’ DICE model as a con-
sistent representation of the economy, we quantify how different models of the
climate system affect optimal CO2 prices/taxes, CO2 emissions and tempera-
tures.

Section 2 elaborates on how the leading economic models of climate change
fail to conform to climate science models and provides an explanation of the
underlying dynamics we see in the climate science models. We select six mod-
els, which we argue are representative of the climate economics field: the
three most influential integrated assessment models or IAMs, together with
three analytical models from prominent recent papers. We test how their cli-
mate modules respond in two experiments, compared with a large sample of
256 counterpart climate science models. The first test/experiment is of how
fast and how far temperature rises in response to a CO2 emission impulse.
We show that the climate science models uniformly heat up very quickly to
a constant, steady-state level, whereas the climate modules of the economic
models heat up much more slowly and do not attain a steady-state temper-
ature within two centuries. The second test is of how absorption of CO2 by
carbon sinks changes as a function of how much CO2 these carbon sinks have

3



already absorbed cumulatively, and of temperature. In the climate science
models, carbon sinks weaken, specifically the amount of CO2 removed annu-
ally by carbon sinks falls as cumulative CO2 uptake and temperature increase.
These constitute positive feedbacks in the carbon cycle. By contrast, we show
that CO2 removal by carbon sinks strengthens in most of the economic models.

Section 3 offers a general framework to understand the models of the car-
bon cycle and warming process featured in these two experiments, both from
climate science and economics. This framework enables us to decompose the
dynamic temperature response to a CO2 emission impulse in the models into
the dynamic response of (i) the atmospheric CO2 concentration and (ii) tem-
perature. This decomposition demonstrates that the climate modules of the
economic models vary widely in how fast a CO2 emission impulse decays and
how much is removed from the atmosphere in the long run, and that the decay
behaviour generally differs from the representative climate science model. In
particular, most of the economic models remove CO2 from the atmosphere
too slowly at first. The second part of the decomposition shows that almost
all of the economic models exhibit too much temperature inertia in response
to elevated atmospheric CO2. Thus the very slow temperature response to
emissions of the economic models stems from too much inertia, rather than
too much decay.

In Section 4, we move on to exploring the economic implications of differ-
ent representations of the climate system, i.e. we turn to whether any of this
matters for climate policy. We couple various models of the climate system
with a common economic module, namely that of DICE. This is sufficient to
illustrate in controlled conditions that different climate models result in sig-
nificantly different optimal CO2 emissions, concentrations and temperatures,
both on emissions paths that maximise social welfare and on emissions paths
that minimise CO2 abatement costs subject to a 2◦C warming constraint (per
the UN Paris Agreement on Climate Change).

Since the various climate models differ in multiple ways, Section 5 isolates
the effects of (i) too long a delay between emissions and warming and (ii)
failing to simulate positive carbon cycle feedbacks. On the first, we find a
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long delay between an emission impulse and warming leads to optimal carbon
prices that are too low. It also implies optimal carbon prices are too sensitive
to the discount rate, since the costs of global warming are erroneously placed
too far in the future. On the second, failing to simulate positive carbon cycle
feedbacks also leads to optimal carbon prices that are too low. The effect is
larger when cumulative CO2 uptake and temperature are high and overall it is
of comparable size to a long delay. Lastly it is worth noting that we specifically
find DICE heats up too much in the long run and this contributes to the false
impression that it is infeasible to limit warming to 2◦C as mandated by the
UN Paris Agreement.

Section 6 concludes and offers a discussion. Climate dynamics matter.
Some other issues in climate economics still matter at least as much, such as
how to represent damages. But, unlike damages, the discrepancies between
economic models and current climate science models are easily fixed. We make
recommendations on how to do so, depending on the complexity and purpose
of those models.

2 Two key tests of climate dynamics

Perhaps contrary to popular belief, the temperature response to a CO2 emis-
sion impulse in climate science models is fast. Figure 1 shows this. Peaking
around ten years after the emission impulse, temperature is then permanently
elevated. The response of the models resembles a step function.

To produce this figure, we recreated a well-known experiment in climate
science (Ricke and Caldeira, 2014), which has also been recommended by the
US National Academy of Sciences as a key test of the consistency of economic
models of climate change with current understanding in climate science (Na-
tional Academies of Sciences, Engineering, and Medicine, 2017). We used
reduced-form representations of 16 carbon cycle models and 16 atmosphere-
ocean general circulation models to generate a set of 256 climate science mod-
els, each of which maps CO2 emissions on to global mean surface temperature.1

1Many of the underlying models are highly complex and run on super-computers. There-
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The set of models here corresponds with the so-called CMIP5 ensemble, after
the 5th Coupled Model Intercomparison Project of the World Climate Re-
search Programme. In this particular experiment, each model is subjected to
an instantaneous emission impulse of 100 gigatonnes of carbon. To put this in
context, 100GtC (≈ 367GtCO2) is equivalent to about ten years of CO2 emis-
sions from burning fossil fuels, at current levels (Le Quéré et al., 2018). This
emission impulse is released in the models when the background atmospheric
CO2 concentration is 389 parts per million, which was the level observed in
2010.2 The resulting distribution of model responses is the shaded area. Ap-
pendix A contains further details of the experiment. Dietz and Venmans (2019)
explain the underlying geophysics.

Compared with the climate science models, Figure 1 shows that the cli-
mate modules contained in leading economic models of climate change do not
exhibit the same behaviour. In particular, there is far too much delay between
the injection of CO2 and the resulting peak in warming in almost all the eco-
nomic models. Thereafter, temperature begins to decrease again in many of
the economic models, which is also contrary to the climate science models. For
this part of the figure, we gathered by far the three most influential quantita-
tive IAMs, namely DICE, FUND and PAGE.3 As an example of their policy
application, these models are used in the United States to estimate the social
cost of carbon – the marginal damage cost of CO2 – for the purposes of cost-
benefit analysis of federal regulations (Interagency Working Group on Social
Cost of Carbon, 2013). We include both the 2013 and 2016 iterations of the
DICE model due to their divergent behaviour, as the figure clearly shows. We
complement these three IAMs with three leading analytical climate-economy
models published in recent years (Golosov et al., 2014; Gerlagh and Liski, 2018;
Lemoine and Rudik, 2017). Of these, the model of Golosov et al. has been

fore a direct comparison is infeasible. However, previous research in climate science, which
we build on here, shows that the dynamics they simulate for atmospheric CO2 and global
mean surface temperature can be fit with a high degree of precision using reduced-form
models (Geoffroy et al., 2013; Joos et al., 2013; Ricke and Caldeira, 2014).

2https://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt
3We include both DICE 2013 (Nordhaus, 2014) and DICE 2016 (Nordhaus, 2017),

FUND3.11 (https://github.com/fund-model/MimiFUND.jl) and PAGE09 (Hope, 2013).
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Figure 1: Dynamic temperature response of 256 climate science models (the
CMIP5 ensemble) and six economic models to an instantaneous 100GtC emis-
sion impulse against an initial background atmospheric CO2 concentration of
389ppm. The temperature response of the economic models is much slower
than the climate science models, except Golosov et al. (2014). After 200 years,
the temperature response of the economic models is often well outside the range
of the climate science models.
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particularly widely adopted in subsequent papers.4 So, while this sample of
economic models is not exhaustive, we argue it is representative of the field
as a whole.5 We implement the same experiment, injecting 100GtC into the
models against a background atmospheric CO2 concentration of 389ppm.6 The
temperature response peaks after 55 years in DICE 2013, 68 years in PAGE
and 75 years in the model of Gerlagh and Liski (GL18). In the central case
studied by Lemoine and Rudik (LR17) it takes 92 years, in FUND it takes
128 years and in DICE 2016 it takes 180 years. The only model that does not
simulate a long delay is that of Golosov et al. (GHKT14), which assumes no
delay in the temperature response a priori. This turns out to be a reasonable
approximation.

In Figure 2, we move on to consider another key aspect of the climate
response to CO2 emissions: as the atmospheric CO2 concentration increases,
carbon sinks become less effective at removing CO2 from the atmosphere. With
increasing atmospheric CO2, the oceans, like the atmosphere, warm up. As
the oceans warm up, they keep less CO2 in solution, so more CO2 stays in the
atmosphere, further increasing temperature. CO2 also reacts with seawater to
form carbonic acid, so with increasing atmospheric CO2 there is an increase
in ocean acidity, which destroys phytoplankton and the ability of the oceans
to absorb carbon (Revelle and Suess, 1957). In addition, climate change is
expected to reduce net uptake of CO2 by terrestrial plants, and changes to the
ocean circulation could also reduce CO2 uptake (Friedlingstein et al., 2006).
These processes constitute positive feedbacks in the carbon cycle (Collins et
al., 2013).7

Most economic models of climate change do not take these feedbacks into
4633 citations according to Google Scholar as of 9 May 2020.
5A much larger set of models, sometimes known as IAMs and sometimes as energy or

energy-systems models, have been built to assess the costs of meeting pre-defined CO2
emissions budgets or targets. These models do not have climate modules.

6All climate science and economic models have an equilibrium climate sensitivity of 3.1◦C
for this experiment. See Appendix A.

7Not included here are further positive greenhouse gas feedbacks such as permafrost
thawing, which tend instead to be classed as tipping points in the climate system (Lenton
et al., 2008).
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account, however. Rather they assume that the rate of removal of a CO2 emis-
sion impulse is independent of the background concentration of atmospheric
CO2. The exceptions are FUND and PAGE, both of which incorporate feed-
backs from carbon sinks to atmospheric CO2/warming. To evaluate the six
economic models in this regard, we compare them with the FAIR (Finite Am-
plitude Impulse Response) model (Millar et al., 2017). Again, this comparison
was identified by the National Academy of Sciences as a key test of the con-
sistency of economic models with current understanding in climate science
(National Academies of Sciences, Engineering, and Medicine, 2017). FAIR
takes the same model structure contained in the 256 climate science models
used above and introduces simple feedbacks from cumulative CO2 uptake by
carbon sinks and from temperature to reduced annual uptake of atmospheric
CO2 by carbon sinks (see Section 3 for an exact description). FAIR was built
to reproduce the behaviour of complex Earth System models and was widely
used by IPCC in its recent Special Report on Global Warming of 1.5◦C (Rogelj
et al., 2018).

We calibrate the FAIR model to the mean climate science model depicted
in Figure 1. We then run FAIR under a scenario of constant 2015 greenhouse
gas emissions and plot yearly uptake of CO2 by carbon sinks as a function of
the atmospheric CO2 concentration (Appendix A contains further details of
this experiment). Without the carbon cycle feedbacks, yearly (i.e. marginal)
removal of CO2 would increase with atmospheric CO2, simply due to Henry’s
law.8 This explains why, in almost all of the economic models, there is an
increasing relationship between atmospheric CO2 and marginal CO2 removal.9

However, saturation of the ocean carbon sink, as well as other climate impacts
on the effectiveness of carbon sinks, offsets this. In FAIR, this countervailing
effect is large enough to produce a decreasing relationship between atmospheric

8The amount of dissolved gas in a liquid (i.e. the oceans) is proportional to its partial
pressure above the liquid (i.e. in the atmosphere).

9This is easiest to see in the case of a one-box carbon cycle, such as that of Lemoine
and Rudik (2017). Ṁ = E − δM , where E stands for the flow of emissions and δ is the
decay/removal rate. Yearly uptake δM is linearly proportional to M . In models with
multiple boxes like DICE 2016, yearly uptake tends to increase at a decreasing rate due to
the growing effect over time of the slow-decaying boxes. See Section 3 for further details.
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Figure 2: Yearly uptake of CO2 by carbon sinks as a function of atmospheric
CO2 in FAIR and six economic models under constant 2015 greenhouse gas
emissions. Each marker represents five years. FAIR shows yearly uptake
decreases, while the economic models have it increasing, except FUND.
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CO2 and marginal CO2 removal overall. The one economic model in which
this is also the case is FUND, with its substantial carbon cycle feedback.

There is reason to believe these two discrepancies between the current crop
of climate science models and the leading economic models of climate change
could matter for policy prescriptions. First, given the centrality of discounting
in climate economics (Arrow et al., 2013; Gollier, 2012; Nordhaus, 2007; Stern,
2007), the fact that economic models underestimate warming in the near future
in response to a CO2 emission impulse could significantly impact the welfare
evaluation of emissions abatement responses. According to the climate science
models, CO2 emissions elevate temperatures almost immediately. Avoiding
those emissions would therefore pay an almost immediate dividend. Second,
ignoring the diminishing marginal effectiveness of carbon sinks underestimates
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the climate response to CO2 emissions in the long run, which again impacts
the welfare evaluation of emissions abatement responses.

Some previous work has suggested that a more comprehensive study of
these issues is in order. In a comment, Mattauch et al. (2020) point out that
the LR17 model is out of line with the CMIP5 models’ temperature impulse
response, and argue that bringing it into line significantly alters the optimal
carbon price path. Dietz and Venmans (2019) note a similar discrepancy be-
tween the CMIP5 ensemble and DICE 2013. Rose et al. (2017) noted that the
temperature impulse responses of DICE, FUND and PAGE differ significantly
from each other and from one model from climate science. Earlier work by van
Vuuren et al. (2011) similarly showed wide variations in the climate dynamics
simulated by IAMs, but without exploring the economic implications. We go
beyond these studies in two ways. First, we offer a first comprehensive assess-
ment of climate dynamics in a representative sample of six leading economic
models of climate change, versus a canonical set of climate science models.
Second, we demonstrate the implications of different climate dynamics for
economic policy.

3 Models of the carbon cycle and temperature
dynamics

How do the models used in the previous section – both the climate science
models and the economic models – actually work? In this section, we offer
a general framework for understanding this. The framework enables us to
decompose the dynamic temperature response to a CO2 emission impulse in
the models into the dynamic response of (i) the atmospheric CO2 concentration
and (ii) temperature. By describing the models in more detail, we also set
the scene for our subsequent economic analysis, which is based on coupling
different climate models with the DICE economic module.
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Linear models of the carbon cycle

Element (i) of the decomposition, the response of the atmospheric CO2 concen-
tration to an emission impulse, is represented by a carbon cycle model. Most
simple models of the carbon cycle partition the system into a series of reser-
voirs or boxes, between which carbon is exchanged. The diffusion of carbon
between n different boxes (e.g. the atmosphere, biosphere, upper and lower
parts of the oceans) can be modelled by a system of n difference equations of
the form

mt = Amt−1 + bEt, (1)

where the vector mt contains the stocks of carbon in each of the n boxes at
the end of period t and the scalar Et denotes CO2 emissions during period
t. A is a matrix whose elements describe the speed of diffusion between the
boxes. The vector b contains the shares of emissions that enter each of the
boxes. As the matrix A and the vector b are constant, (1) corresponds to a
linear carbon cycle.

Define the aggregate stock of atmospheric carbon as Mt ≡ d′mt. Then

Mt = d′
(

AtM0 +
t∑

s=1
At−sbEs

)
, (2)

where M0 is the initial stock of atmospheric carbon. We use spectral decom-
position (see Appendix B) to obtain the response function

∆Mt =
t∑

s=1

n∑
i=1

ψiλ
t−s
i ∆Es, (3)

where the λi ∈ {0, 1} are the eigenvalues of A in decreasing order of magnitude
and the constants ψi > 0 are defined in Appendix B. If a proportion of
emissions stays in the atmosphere forever, λ1 = 1 for the box pertaining to
that proportion (i = 1) and the impulse response is the sum of the permanent
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and transitory components,

∆Mt

∆E1
= ψ1 +

n∑
i=2

ψiλ
t−1
i . (4)

Thus the impulse response function (4) fully determines any linear carbon
cycle model with any number of boxes, which explains why such impulse re-
sponse functions are commonly used in climate science to represent and com-
pare models of varying degrees of complexity. Table 1 summarises the carbon
cycle models, which were compared in the previous section, using this gen-
eral framework. Joos et al. (2013) is the representative climate science model,
i.e. the model used to fit the CMIP5 ensemble (see Appendix A). While the
number of boxes varies, most models are based on a structure in which there
is a permanent box, into which roughly one fifth to one sixth of a CO2 emis-
sion impulse flows, a very slowly decaying box and one or more boxes that
decay much more quickly. However, there is significant variation in both the
shares of emissions flowing into each box and the residence time (specifically
the half-life) of CO2 in each of the temporary boxes.10

What CO2 dynamics do these different representations give rise to? Figure
3 plots the CO2 impulse responses of the various models. The impulse size is
100GtC as in the experiments above. The figure shows that the differences
between the models’ structures and parameters cause significant differences in
their CO2 impulse responses. Some models such as GL18 remove CO2 very
quickly initially. Others such as PAGE remove it very slowly. Over the first 50
years, however, most economic models remove CO2 more slowly than the best
fit of the CMIP5 ensemble. After a couple of centuries, some economic models
such as LR17 remove most of the CO2 emission impulse. Others such as DICE
2016 and FUND remove relatively little. By then, there does not appear to
be a systematic bias between the economic models and the best fit of CMIP5.
Overall, few of the economic models resemble the best fit of CMIP5, however.

10The shares flowing into the three boxes of the GL18 model do not add up to one,
since only 94% of box 1 pertains to the atmosphere (the rest is assumed to be absorbed
immediately by the upper ocean). The half-life of CO2 in box 2 of DICE 2016 is much larger
than in earlier versions of DICE, or in the other models shown.
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Figure 3: Removal of a 100GtC emission impulse (47ppm CO2) on an initial
background concentration of 389ppm in climate science models and six eco-
nomic models. There are big differences between the economic models. Few
of the economic models approximate the best fit of the climate science model
distribution.
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As mentioned in Section 2, carbon sinks become decreasingly effective at
removing CO2 from the atmosphere, the more CO2 has been taken up cu-
mulatively and the higher is temperature. These positive feedbacks are not
captured by linear carbon cycles of the sort in Table 1, which is clear from
the fact that, although the CO2 impulse response in Equation (4) decays with
time, it does not depend on atmospheric CO2. The FAIR model (Millar et al.,
2017) used for the second of our experiments above was designed precisely to
simulate these positive carbon cycle feedbacks. It does so by extending the
four-box carbon cycle of Joos et al. (2013). Relegating the details to Appendix
A, in essence FAIR works by reducing the rate at which carbon is removed
from the atmosphere using a scaling factor α (i.e. replace the λi with λi/α),
which is increasing in cumulative carbon uptake and temperature. Figure 3
shows FAIR’s positive carbon cycle feedbacks in action: less CO2 is removed
from the atmosphere when the emission impulse is against a higher (year 2100)
background concentration of CO2.11

Radiative forcing and temperature dynamics

From the carbon cycle models, the change in atmospheric CO2 relative to
pre-industrial determines radiative forcing, i.e. the change in the balance be-
tween incoming solar radiation and outgoing infra-red radiation in the Earth’s
atmosphere:

Ft = Fj×CO2

(
logj

Mt

M1750

)
+ FnonCO2,t, (5)

where Ft is radiative forcing, Fj×CO2 is a parameter representing the radiative
forcing resulting from j times atmospheric CO2 and FnonCO2,t is radiative forc-
ing from greenhouse gases other than CO2, and from other forcing agents such
as aerosols. In some models such as DICE, FnonCO2,t is exogenous. In FUND
and PAGE, FnonCO2,t is determined endogenously by modelling the dynamics
of some of the other greenhouse gases, such as methane and nitrous oxide.
Either way, the contribution to total radiative forcing of gases/drivers other

11Corresponding with the year 2100 on the IPCC’s RCP4.5 scenario. RCP stands for
Representative Concentration Pathway. IPCC developed four RCP scenarios for the Fifth
Assessment Report (Moss et al., 2010).
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than CO2 is non-trivial, of the order of 25% currently (IPCC, 2013). The
concave, logarithmic relationship between radiative forcing and atmospheric
CO2 captures the fact that the absorption of radiation in CO2’s band becomes
progressively saturated.

The temperature response to forcing is modelled by up to two temporary
boxes and can be written analogously to (3) as

∆Tt =
t∑

s=1

2∑
i=1

ψTi λ
T t−s
i ∆Fs, (6)

where ψTi and λTi denote respectively the shares and eigenvalues for the tem-
perature dynamics. Table 2 summarises the dynamics of the various warming
models that map forcing into temperature. Geoffroy et al. (2013) is the repre-
sentative climate science model used to fit the CMIP5 ensemble. Both DICE
2016 and Geoffroy et al. (2013) have two boxes representing the temperature
of the atmosphere/upper oceans and the deep oceans respectively. However,
critically DICE 2016 displays a much more sluggish response of temperature
to radiative forcing than Geoffroy et al. (2013), especially as the fast box of
Geoffroy et al. has a half-life of only 3 years.

Figure 4 uses Equations (5) and (6) to plot the dynamic temperature re-
sponse of the models to a constant increase in atmospheric CO2 of 100GtC
(47ppm). This is therefore the second element of the decomposition of the
dynamic temperature response to an emission impulse. With the exception
of GHKT14, all of the economic models exhibit a more sluggish temperature
response than the best fit of the CMIP5 ensemble. The temperature response
of LR17 is particularly slow. After 200 years, temperature is higher in DICE
2013, DICE 2016 and FUND, while LR17 and PAGE are close to the best
fit of the CMIP5 ensemble at that moment. The GHKT14 model shows an
immediate, permanent increase in temperature. It over-predicts temperature
compared with the best fit of the CMIP5 ensemble.
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Table 2: Comparing linear temperature-forcing responses
Time step Box 1 Box 2
(years)

DICE 2016 5 9.9%; 25 years 0.2%; 150 years
FUND 1 100%; 31 years
PAGE varies 100%; 24 years
GHKT14 10 n.a. n.a.
GL18 10 100%; 34 years
LR17 1 100%; 50 years
Geoffroy et al. (2013) / best 1 13.5%; 3 years 0.2%; 167 years
fit CMIP5 ensemble

Key: The first figure in each cell is the weight of each mode and the second figure
the half-life for each mode. PAGE models regional temperature and calculates
global temperature as the area-weighted average. GHKT14 effectively assume that
temperature is driven by equilibrium climate sensitivity according to Arrhenius’ law
and do not have any lag between forcing and temperature.

Figure 4: Dynamic temperature response of best-fit climate model and six
economic models to a constant increase in atmospheric CO2 of 100 GtC (47ppm
CO2). The economic models respond much more slowly to elevated CO2 than
the best-fit climate model, except GHKT14.
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The overall temperature response to a CO2 emission is obtained by convo-
luting atmospheric CO2 decay/removal as plotted in Figure 3 with temperature
inertia as plotted in Figure 4. That is, using Equations (4), (5) and (6), Figure
1 plots

∆Tt
∆E1

= F2xCO2

ln 2

t∑
s=1

2∑
i=1

ψTi λ
T t−s
i

1
Ms

ψ1 +
n∑
j=2

ψjλ
s
j

 . (7)

In Figure 1, the economic models (excluding GHKT14) warm up too slowly in
response to the emission impulse. The analysis of this section shows that this
is due to too much temperature inertia in response to elevated atmospheric
CO2. If anything, the economic models have too little CO2 decay, but this
does not compensate for the inertia. In the best fit of the CMIP5 ensemble,
temperature inertia almost exactly offsets CO2 decay. As a result, the CMIP5
temperature response resembles a step function.

4 Economic policies with different climate mod-
els

In this and the following section, we evaluate what difference the model of the
climate system makes for economic policies. We focus on two such policies:
(i) optimal emissions that maximise social welfare and (ii) a representative
policy run in the context of the United Nations climate framework that limits
warming to 2◦C at minimum discounted abatement cost. The latter path is
sometimes described as an exercise in cost-effectiveness analysis (as opposed
to (i), which is an exercise in cost-benefit analysis) and is a core use of IAMs
by IPCC (see Clarke et al., 2014).12

To perform this evaluation, we need to make a controlled comparison, in
which the models are identical in all respects except how they represent the
dynamics of the carbon cycle and warming process. Control is achieved by
using the DICE 2016 economic and welfare modules as a common base, and

12Abatement cost minimisation subject to a temperature constraint is the same as welfare
maximisation subject to a temperature constraint and ignoring climate damages.
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coupling it with different models of the climate system (Table 3).13 We drop
the FUND and PAGE models here, due to the practical difficulties of coupling
these more complex IAMs with the DICE 2016 economy.

Table 3: List and description of models used for economic evaluation
Model Description
DICE 2016 Standard DICE 2016 economy and climate
DICE-GHKT14 DICE 2016 economy with the Golosov et al. (2014)

climate module
DICE-GL18 DICE 2016 economy with the Gerlagh and Liski (2018)

climate module
DICE-LR17 DICE 2016 economy with the Lemoine and Rudik (2017)

climate module
DICE-FAIR-Geoffroy DICE 2016 economy with the FAIR carbon cycle and

the Geoffroy et al. (2013) warming model
DICE-Joos-Geoffroy DICE 2016 economy with the Joos et al. (2013) carbon

cycle and the Geoffroy et al. (2013) warming model

Figure 5 plots welfare-maximising carbon prices, emissions and tempera-
tures (left column) from DICE 2016, DICE-FAIR-Geoffroy (i.e. the represen-
tative or benchmark climate science model, coupled with the DICE economy),
DICE-GHKT14, DICE-GL18 and DICE-LR17. It is immediately apparent
that the models differ significantly in their welfare-maximising paths. Initial
carbon prices range from $11/tCO2 in DICE-LR17 to $57 in DICE-GHKT14,
with an initial carbon price of $30 in the benchmark DICE-FAIR-Geoffroy
model, and $37 in standard DICE 2016. These differences grow over time,
such that by 2100 the range is $77-358/tCO2.

Welfare-maximising CO2 emissions and temperatures also vary widely. Ini-
tial CO2 emissions range from 33GtCO2 in DICE-GHKT14 to 40GtCO2 in
DICE-LR17, while in 2100 they range from nearly zero to 50GtCO2. Optimal
warming by the end of the century ranges from just 2.0◦C in DICE-LR17 to
4.0◦C in DICE-GHKT14. Optimal warming in the benchmark DICE-FAIR-

13Readers are referred toWilliam Nordhaus’ web resources for a comprehensive description
of the DICE 2016 economic module and, unless otherwise specified, the version we use is
unchanged. See https://sites.google.com/site/williamdnordhaus/dice-rice.
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Geoffroy model is 3.0◦C in 2100. Notice that optimal warming in 2100 is
lowest in DICE-LR17, despite this model having the lowest carbon prices and
the highest emissions. This is directly attributable to its particularly slow tem-
perature response to elevated atmospheric CO2, as shown in Figure 4. Notice
also the high initial starting temperature in DICE-GHKT14. Temperature is
only implicit in GHKT14, but can be backed out from their assumptions about
the atmospheric carbon stock and damages. Their assumption of no delay be-
tween emissions and warming, coupled with exogenous radiative forcing from
non-CO2 greenhouse gases, leads to this artefactual result.

Figure 5 also compares models on a path that limits warming to 2◦C at
minimum discounted abatement cost (right column). Note that for these runs
we substitute standard DICE 2016 exogenous emissions of CO2 from land-use
change and forestry with corresponding emissions from the IPCC’s RCP2.6
scenario14, which is consistent with limiting warming to 2◦C. We do the same
for exogenous radiative forcing from other greenhouse gases and atmospheric
agents. We provide some further analysis of this issue below.

Similar to the models’ welfare-maximising paths, we observe large differ-
ences in their 2◦C cost-minimising paths. Naturally, given the warming con-
straint, the differences are particularly evident in carbon prices and emissions.
Initial carbon prices vary from $13/tCO2 in DICE-LR17 to $143 in standard
DICE 2016. By mid-century the range of carbon prices peaks at $406/tCO2

between these models. Initial CO2 emissions range from 26GtCO2 in DICE
2016 to 40GtCO2 in DICE-LR17. Limiting warming to 2◦C is infeasible in
DICE-GHKT14, for the reasons mentioned above. In order to limit warming
to 2◦C, emissions must eventually be negative in all models, but the time at
which ‘net zero’ is crossed ranges from 2050 in DICE 2016 to just after 2100 in
DICE-LR17. Although warming is limited to 2◦C, the temperature trajectory
shows significant variation across the models, particularly in mid-century. The
range is 1.2-1.8◦C in 2050, for instance.

14Specifically when combined with the SSP1 socio-economic scenario; see Moss et al.
(2010).
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Figure 5: Welfare-maximising (left) and cost-minimising (right) paths from
different climate models coupled with the DICE 2016 economy. Top row –
carbon prices; middle row – CO2 emissions; bottom row – warming. The
models produce very different carbon price paths, resulting in very different
CO2 emissions and temperature paths.
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5 Warming delay and further economic anal-
ysis

While Figure 5 illustrates that climate dynamics matter for economic policies,
it does not fully illuminate the role of the issues identified in Section 2, namely
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the excessive delay between a CO2 emission impulse and warming, and the
omission of diminishing marginal CO2 uptake with respect to atmospheric
CO2. These issues are explored further in Tables 4 and 5.

To isolate the effect of excessive delay between a CO2 emission impulse and
warming, we construct two further artefact models, built on the DICE-Joos-
Geoffroy (and DICE 2016) structure. These two models exhibit the same long-
run temperature response to a CO2 emission impulse as DICE-Joos-Geoffroy,
but reach that long-run response at very different speeds; far too slowly in
comparison with the climate science models, more in line with the economic
models. The reason we construct these two further models is that, even with
the same equilibrium climate sensitivity, the different climate models compared
above exhibit not only different short- and medium-run temperature dynamics,
they also exhibit different long-run temperature responses (as is clear from
Figure 1), due to differences in long-run CO2 uptake (as shown in Figure 3).
The new ‘Delay 56’ model is so called, because it exhibits a delay between the
CO2 emission impulse and peak warming of 56 years, rather than c. 10 years in
DICE-Joos-Geoffroy, while exhibiting a similar integrated temperature impulse
response over the long run. The ‘Delay 112’ model exhibits a corresponding
warming delay of 112 years. As explained in Appendix B, these new models are
created by increasing the effective heat capacity of the ocean in the Geoffroy
et al. (2013) model, whilst decreasing the rate of removal of CO2 from the
three temporary boxes in the Joos et al. (2013) carbon cycle.

Using these new models, Table 4 shows that on the welfare-maximising
path an excessive delay leads to lower carbon prices throughout. The 2020
carbon price falls from $27/tCO2 for the short delay (DICE-Joos-Geoffroy) to
$23 for the 56-year delay and $18 for the 112-year delay (compare rows 2-4).
These differences grow over the course of the century. By 2100, moving from
a 10-year delay to a 112-year delay reduces the optimal carbon price by $75,
or 38%. With lower carbon prices naturally come higher CO2 emissions, but
not higher temperatures, since a longer delay means that it takes much longer
for the warming effect of these additional emissions to be realised. Table 5
shows that on the 2◦C cost-minimising path an excessive delay leads to lower
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carbon prices in 2020 and 2050. The effect is somewhat smaller than on the
optimal path, since the temperature constraint binds and leaves less room for
manoeuvre. Lower carbon prices again result in higher emissions, but the
delay means this does not translate into higher temperatures; on the contrary.

An implication of these results on excessive delay is that the optimal path
may be less sensitive to assumptions about the discount rate than previously
thought. Table 6 shows that this is indeed the case. We ran DICE-Joos-
Geoffroy and the Delay 56 and 112 variants under standard DICE assump-
tions about the primitives of the social rate of time preference (a pure rate of
time preference of 1.5% and an elasticity of marginal utility of consumption of
1.45), and assuming the social planner uses lower values (PRTP=0.1%; elas-
ticity of marginal utility of 1). We call the latter ‘public’ discounting.15 The
parameter values are the same as in the Stern Review (Stern, 2007). With
a representative initial growth rate of global average consumption per capita
of 2.5%, the standard DICE discount rate is 5.1% while the ‘public’ discount
rate is 3.5%. Table 6 shows that the increase in the 2020 optimal carbon price
brought about by switching from standard to public discounting is 68% in
Delay 112, but only 50% in DICE-Joos-Geoffroy with the short delay. In 2100
the increases are 51% and 38% respectively.

We now analyse how positive feedbacks in the carbon cycle affect model
paths, by comparing DICE-FAIR-Geoffroy and DICE-Joos-Geoffroy (rows 1
and 2). Recall the difference between these models is that DICE-FAIR-
Geoffroy modifies the four-box carbon cycle of Joos et al. (2013) to incorporate
feedbacks from both cumulative carbon uptake and temperature to the rate of
removal of atmospheric CO2 (see Section 3). So DICE-FAIR-Geoffroy includes
the feedbacks, while DICE-Joos-Geoffroy does not.

Introducing the positive feedbacks to the carbon cycle results in a higher op-
timal carbon price. In 2020, the optimal carbon price in DICE-FAIR-Geoffroy
is $29.68/tCO2, $2.70 above the optimal carbon price in DICE-Joos-Geoffroy.

15We assume private agents keep the standard DICE parameters for invest-
ment/consumption decisions, but that the social planner sets carbon prices using the lower
rate (van der Ploeg and Rezai, 2019).
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Hence the effect is not quantitatively large in the short run. However, it is
in the nature of the carbon cycle feedbacks that they have a larger effect, the
higher is the atmospheric carbon stock/temperature, so we see the gap be-
tween the models’ optimal carbon prices widening steadily until by 2100 it is
$83/tCO2. Higher optimal carbon prices result in lower emissions in DICE-
FAIR-Geoffroy and this in turn results in lower 21st-century warming.16 Re-
duced CO2 uptake by carbon sinks reduces the cumulative emissions budget for
limiting warming to 2◦C in DICE-FAIR-Geoffroy, so the 2◦C cost-minimising
carbon price is also higher, resulting in lower emissions and, at least in this
century, lower temperatures.

Tables 4 and 5 show that DICE 2016 yields higher carbon prices than the
benchmark climate science model, DICE-FAIR-Geoffroy (compare rows 1 and
5), particularly on a 2◦C cost-minimising path. This leads to lower emissions
in DICE 2016, yet temperatures end up being higher. Appendix C provides
some further analysis of what is behind the difference between standard DICE
2016 and DICE-FAIR-Geoffroy. Three factors are at play, namely differences
in: (a) temperature dynamics between standard DICE 2016 and Geoffroy et
al. (2013); (b) removal of atmospheric CO2 between the DICE 2016 and Joos
et al. (2013) carbon cycles, and; (c) assumptions about (non-)diminishing
uptake of atmospheric CO2 between DICE 2016/Joos et al. (2013) and FAIR.
In Appendix C, we apportion the difference between (a)-(c) and find that the
main driver of different temperatures is (a) the tendency of DICE 2016 to heat
up too much in the long run.

Lastly, previous work with DICE 2016 found it is infeasible to limit warm-
ing to 2◦C (Nordhaus, 2017).17 Our analysis suggests this is not the case if
the climate system is appropriately responsive to CO2 emissions. Figure 5
and Table 5 show that doing so is feasible in DICE 2016, but very expensive,
while it is also feasible in DICE-FAIR-Geoffroy, and much less expensive. An-

16Warming is higher in DICE-FAIR-Geoffroy in the longer run, due to the carbon cycle
feedbacks’ continuing effect. The crossing point is 2200 (not shown). In steady state, optimal
warming in DICE-FAIR-Geoffroy is exactly 3◦C, while in DICE-Joos-Geoffroy it peaks at
about 2.83◦C.

17Under the constraint of no negative emissions technology in the first several decades.
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other reason why limiting warming to 2◦C has been infeasible in DICE 2016 is
the assumption in previous studies of one-size-fits-all exogenous emissions of
CO2 from land-use change and forestry, and exogenous radiative forcing from
other greenhouse gases and atmospheric agents.18 If DICE 2016 is run under
standard DICE 2016 exogenous emissions/forcing, limiting warming to 2◦C is
indeed infeasible. It remains feasible in DICE-FAIR-Geoffroy, but much more
expensive than under our preferred scenario for exogenous emissions/forcing
(see Appendix C).

6 Discussion

We have investigated how best to fit the dynamic evolution of atmospheric
carbon and temperature in the big Earth System models in climate science.
Closely following experimental protocols developed in climate science, we have
used reduced-form impulse response functions to emulate the behaviour of an
ensemble of highly non-linear and large-scale Earth System models. In this
sense, we have been concerned with the most appropriate model reduction
techniques. We have not been concerned with fitting our reduced-form models
to historical data. This would have been a different exercise and the resulting
model would be of limited relevance for the analysis of climate policy today.
A model calibrated on historical conditions and designed to reproduce the be-
haviour of past climates is not a reliable model of the future climate. One
important reason why is that positive feedbacks in the uptake of atmospheric
carbon, studied in some depth in this paper, kick in more strongly when cu-
mulative carbon uptake and temperature are already high (e.g. Millar et al.,
2017). This partly explains why climate scientists tend to use the dynamic
behaviour of Earth System models in simulation experiments in contemporary
and future climatic conditions as their benchmark when building reduced-form
models, not past, observed changes in atmospheric carbon and temperature.19

18One-size-fits-all in the sense of the scenario being invariant to the amount of CO2 being
abated in the model.

19That being said, Millar et al. (2017) show that the FAIR model, with its flexible repre-
sentation of positive carbon cycle feedbacks, closely tracks observed global mean temperature
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We have shown there is wide variation in the way the climate modules
of economic models simulate the evolution of the atmospheric carbon stock
and temperature. But still the most prominent IAMs, i.e. DICE, FUND and
PAGE, as well as the analytical models put forward by Gerlagh and Liski
(2018) and Lemoine and Rudik (2017), are unified in one feature. They show
too sluggish a temperature response to an impulse change in CO2 emissions
compared with the climate science models. Unique among the economic mod-
els, Golosov et al. (2014) have an instant temperature response to changes in
the atmospheric carbon stock, since they do not allow for a temperature lag
at all.

We have decomposed this sluggish temperature response into two under-
lying discrepancies between the economic models and their climate science
counterparts. First, most economic models remove CO2 from the atmosphere
too slowly initially. Second, most economic models exhibit too much temper-
ature inertia. Besides the sluggish temperature response to CO2 emissions,
economic models also imply that the marginal removal of atmospheric CO2

rises with atmospheric CO2 (except for FUND), whilst carbon cycle models
in climate science suggest that this removal decreases with atmospheric CO2

(Millar et al., 2017).
As a result, the models of the climate that prevail in the economic literature

yield misleading policy implications. Controlling for the specification of the
economy and welfare using the DICE 2016 economic module, we found that
the climate modules in economic models delivered carbon prices, emissions
and temperatures that differed significantly from the benchmark FAIR model
from climate science. We explored both welfare-maximising carbon prices
and carbon prices that ensure a 2◦C temperature target is achieved whilst
minimising the costs of abatement. Further exploring the causes of these
differences, we found that a sluggish temperature response to CO2 emissions
– excessive delay – leads to carbon prices that are too low and that are too
sensitive to the choice of discount rate, since the costs of global warming are
erroneously placed too far in the future. We also found that failing to account

when run with estimated historical greenhouse gas emissions.
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for positive feedbacks in the carbon cycle leads to carbon prices that are too
low, especially when atmospheric CO2 is high. Therefore climate dynamics
matter for economic policy prescriptions. We do not claim they matter more
than other causes célèbres in climate economics like the social discount rate
or the damage function, but matter they do. Moreover, in contrast to these
other issues, on which research is ongoing but seemingly far from a definitive
conclusion, the discrepancies we have identified between economic models and
climate science models can easily be fixed.

To do so, we recommend the climate modules in economic models be recal-
ibrated or replaced. Models of the carbon cycle need to incorporate positive
feedback effects, like FAIR does (Millar et al., 2017). Models of temperature
dynamics need to either be replaced or recalibrated so that they can reproduce
the fast temperature response of Earth System models to CO2 emissions, as
the model of Geoffroy et al. (2013) does. Appendix D provides GAMS code
for doing so in DICE. Other simple models in climate science may do the
same job. None of these changes requires significant complication of existing
economic models.

In fact, if future CO2 emissions are not too high, an even simpler model
where temperature is just a linear function of cumulative CO2 emissions has
been shown to suffice (Collins et al., 2013). Appendix E demonstrates this:
the climate science models of CMIP5 exhibit an approximately linear warming
response to cumulative CO2 emissions under various IPCC emissions scenarios.
The linear response requires a step temperature impulse response function and
positive carbon cycle feedbacks (Dietz and Venmans, 2019). Hence Appendix E
shows that the economic models covered in this paper do not generate a linear
response. The CMIP5 ensemble gives multi-model mean temperature at time
t as 1◦C plus 1.6◦C per trillion tons of cumulative emissions (TtC) from 2020
onwards (Stocker et al., 2013).20 Warming from non-CO2 greenhouse gases
needs to be added on top. The slope coefficient of 1.6◦C/TtC is known as

20Some recent studies that have used this simple relationship to derive economically opti-
mal climate policies are Allen (2016), Brock and Xepapadeas (2017), van der Ploeg (2018),
Manoussi et al. (2018) and Dietz and Venmans (2019).
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the Transient Climate Response to Cumulative Carbon Emissions (TCRE).21

However, at warming of over 4◦C, this simple relationship may no longer hold
(MacDougall, 2016) and one may need to use a more complicated model, such
as FAIR in tandem with the temperature dynamics model of Geoffroy et al.
(2013).

21The simple formula whereby warming = TCRE x cumulative emissions implies a tem-
perature response function to a CO2 emission impulse that is approximated by a step func-
tion with amplitude equal to the TCRE. The temperature response function that best
fits the CMIP5 ensemble in the experiment reported in Figure 1 has a mean amplitude
of 1.72◦C/TtC, while FAIR has a mean amplitude of 1.77◦C/TtC under 2015 conditions.
The differences between these values and the value of 1.6◦C/TtC reported above and due to
IPCC is down to the equilibrium climate sensitivity, which we harmonise to the default value
of 3.1◦C in DICE when producing Figure 1. The models synthesised for IPCC by Stocker et
al. (2013) exhibit slightly lower values. Equilibrium climate sensitivity is the largest source
of uncertainty about the TCRE. Matthews et al. (2009) found a 5-95% probability range
of 1.0-2.1◦C/TtC, Allen et al. (2009) found 1.4-2.5◦C/TtC and Gillett et al. (2013) found
0.7-2.0◦C/TtC based on the CMIP5 ensemble. Based on this and other evidence, IPCC
adopted a ‘likely’ range of 1.0-2.1◦C/TtC (Collins et al., 2013).
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Appendices for online publication

A Climate model experiments

Figure 1 plots the dynamic temperature responses of climate science models
and economic models to an instantaneous 100GtC emission of CO2. Each
model response is a convolution of the dynamic response of the atmospheric
CO2 concentration to the 100GtC emission impulse and the dynamic response
of global mean temperature to the resulting atmospheric CO2 concentration
trajectory. The former is simulated using a carbon cycle model, the latter
using a model of temperature dynamics.

The carbon-cycle response is generated by following the experimental pro-
tocol of Joos et al. (2013). The background concentration of CO2 in the atmo-
sphere is initialised on the observed 2010 level, i.e. 389ppm or 829GtC.22 We
assume a pre-industrial atmospheric CO2 concentration of 275.8ppm, resulting
in an excess concentration of 113.2ppm in 2010.

For each of the 16 carbon cycle models that formed part of the CMIP5
study, the four-box carbon cycle model of Joos et al. (2013) is used as a
reduced-form representation. Joos et al. (2013) document the fitting pro-
cedure and resulting parameter values. The initial excess atmospheric CO2

concentration of 113.2ppm relative to pre-industrial needs to be distributed
among the four boxes of the Joos et al. model. The same need arises for the
FAIR model, which shares the same four-box structure. Moreover, as the Joos
et al. model was not designed to reproduce historical removal of CO2 from the
atmosphere (Millar et al., 2017), it is the FAIR model that we use to initialise
the boxes in all of these models. To do this, we feed historical emissions into
FAIR from 1890 to 2010.23 This results in the following distribution of the
initial excess concentration between the four boxes: 52.9% in box 1; 34.3% in
box 2; 11.1% in box 3; 1.6% in box 4.

22We use a conversion rate of 100GtC = 46.9ppm throughout the paper.
23We obtain emissions between 1890 and 1990 from the EDGAR 1.4 database and between

1990 and 2010 from the SSP database.
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To keep the atmospheric CO2 concentration constant after 2010, the exper-
imental protocol of Joos et al. (2013) continues to add emissions. We compute
these emissions as follows. The Joos et al. model implies that

ṁi = ψiE − λimi, (8)

where mi is the carbon stock in each box i, ψi is the proportion of emissions
that enter each box and λi is the rate of removal of CO2 from each box by
carbon sinks. Constant atmospheric CO2 therefore requires

∑
i

ṁi = 0⇔ E =
∑
i

λimi. (9)

Substituting (9) into (8) gives a solution for decay in each box:

ṁj = ψj

[∑
i

λimi

]
− λjmj. (10)

As time goes by, carbon is transferred from the fast-decaying boxes in the
model to the permanent box and in the steady state all carbon must be in the
permanent box (i = 1). The same emissions path is used in simulations with
all the carbon cycle models considered here.

The resulting background scenario is compared to a scenario with the same
emissions path, but with an impulse of 100GtC added to the atmosphere
at time zero (the year 2010). The 100GtC is added to each carbon box in
proportion ψi.

The 16 CMIP5 carbon cycle models emulated by Joos et al. (2013) are
then combined with 16 CMIP5 temperature models (i.e. atmosphere-ocean
general circulation models), which are represented in reduced form using the
model of Geoffroy et al. (2013), as described in their paper. We set the cli-
mate sensitivity equal to 3.1◦C in all models.24 This allows us to focus on

24DICE assumes a climate sensitivity of 3.1◦C. The mean climate sensitivity in Geoffroy
et al. (2013) is between 3.05◦C and 3.25◦C, according to how models are aggregated (λ̄ ×
TCO2x2 = 3.05◦C while λ× TCO2x2 = 3.25◦C). Default FAIR uses a climate sensitivity of
2.75◦C.
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temperature inertia in the climate models. For all models, we use 0.85◦C as
initial atmospheric warming relative to pre-industrial in 2010. The initial lower
ocean temperature is 0.22◦C above pre-industrial, obtained by running FAIR
on historical emissions.

FAIR is identical to the model of Joos et al. (2013), except the residence
time of CO2 in each of the four atmospheric boxes is modified by a parameter
α representing carbon cycle feedbacks. FAIR calculates α as a function of the
integrated CO2 impulse response function (iIRF) over the first 100 years of
the model horizon. Over this period, the iIRF has a linear relationship with
both temperature and cumulative CO2 emissions absorbed by carbon sinks:

iIRF100 = rpi + rTT + rC

 t∑
s=pi

Es − (Ms −Mpi)
 (11)

where rpi = 34.4 years is the estimated pre-industrial value of iIRF100,
∑t
s=piEs

denotes cumulative CO2 emissions since pre-industrial, rT = 4.165 years/◦C
and rC = 0.019 years/GtC. The assumed relationship between α and iIRF100

in FAIR has no analytical solution, but can be well approximated by fitting
an exponential function, which results in the following solution:

α = 0.0107 exp (0.0866iIRF100) . (12)

We now turn to the economic models included in Figure 1. We take each of
these models “off the shelf”, except that, in order to be consistently compared
following the experimental protocol of Joos et al. (2013), we ensure all the
models are initialised on the same atmospheric carbon stock and temperature:

• In DICE 2016, the carbon stocks are initialised on the year 2015, when
the atmospheric CO2 concentration is assumed to be 399.4ppm. Hence
we reduce the excess carbon content of the three carbon boxes in DICE
2016 by 9.2% to obtain comparable 2010 initial conditions.25 We do not

25The CO2 impulse response function is independent of initial conditions and of the post-
2010 emissions path in all models except FAIR, because the initial conditions and post-2010
emissions affect the background scenario and the impulse scenario (+100GtC) in the same
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change the initial deep ocean temperature in DICE 2016.

• For the PAGE and FUND models, it is most convenient to adjust the
timing of the emission impulse so that the background CO2 concentration
is 389ppm – 2008 in FUND, 2009 in PAGE.

• For Golosov et al. (2014), we assume that 51.4% of the excess emissions
in 2010 are in the permanent box and 48.6% are in the slow-decaying
box. These numbers are obtained by using the authors’ initial values in
2000 and running their model on historical emissions between 2000 and
2010.

• Gerlagh and Liski (2018) do not explicitly model temperature. CO2

emissions map on to atmospheric concentrations and these in turn map
directly on to damages. They define a common adjustment speed of
temperature and damages in a one-box model. This gives Tt+1 = Tt −
ε(ECS × log2(Mt/M1850)− T ).

• For Lemoine and Rudik (2017), we can directly impute the initial atmo-
spheric CO2 concentration and temperature.

Figure 2 is based on a different experimental protocol. It shows yearly carbon
uptake by sinks as a function of the atmospheric CO2 concentration for con-
stant emissions of 39.1GtCO2 and constant non-CO2 forcing of 0.181W/m2,
which correspond to 2015 forcing in the SSP database.26 To make the graph,
we use 2015 initial conditions, with 263GtC in the atmosphere (as in DICE)
and 0.85◦C warming (also as in DICE). For FAIR, we use the same relative
distribution among the four boxes as above and 0.28◦C deep ocean warming.

Figure 3 is generated using exactly the same procedure as Figure 1, but re-
ports the difference in atmospheric CO2 concentration instead of the difference
in temperature.

way. The post-2010 emissions path has a small effect on temperature, however, due to the
logarithmic relationship between atmospheric CO2 and radiative forcing.

26Hosted by the IIASA Energy Program at https://tntcat.iiasa.ac.at/SspDb.
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Figure 4 uses the same background scenario as Figure 1. This is compared
to a scenario with a constant CO2 concentration of 436ppm (398ppm+100GtC)
from 2010 onwards.

B Further details on carbon cycle and warm-
ing models

B.1 Linear models of the carbon cycle

The linear carbon cycle is described by n difference equations, where mt is a
vector whose elements contain the amount of carbon in each box at time t, A
is a square matrix of constants and b is a column vector. Let d be the vector
that maps the contents of the various boxes into the stock of atmospheric
carbon, i.e.

Mt ≡ d′mt = d′
[
AtM0 +

t∑
s=1

At−sbEs
]
.

Spectral decomposition yields A = VΛV−1, where the diagonal matrix con-
tains the eigenvalues in decreasing order of magnitude along its diagonal and
the columns of the n x n matrix V contain the linearly independent eigenvec-
tors (assuming all eigenvalues are distinct). Given that the columns of A must
sum to one, the first of the n eigenvalues equals 1 and the others are between
zero and one (provided the system is stable). Hence,

Mt = d′V
[
ΛtV−1M0 +

t∑
s=1

Λt−sV−1bEs
]
.

The effect of a change in the emissions path from some reference path on the
corresponding change in the stock of atmospheric carbon is independent ofM0

and given by

∆Mt = d′V
t∑

s=1
Λt−sV−1b∆Es.
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Define d̄ ≡ V′d and b̄ ≡ V−1b, so that

∆Mt =
t∑

s=1

n∑
i=1

ψiλi
t−s∆Es,

where ψi ≡ b̄id̄i are the fractions of emissions going into each of the boxes and
the λi are the eigenvalues of the matrix A. The impulse response function
shows the effects of a small impulse in the first period only and equals ∆Mt

∆E1
=

n∑
i=1

ψiλi
t−1. The first eigenvalue is 1 and captures that a proportion of emissions

ψi stays in the atmosphere forever. We thus write the impulse response as the
sum of its permanent and transitory components, i.e.

∆Mt

∆E1
= ψ1 +

n∑
i=2

ψiλi
t−1.

The FUND model

The FUND carbon cycle model, which is based on Maier-Reimer and Hassel-
mann (1987), has 5 boxes with shares of emissions flowing into each of them
equal to b = (0.13, 0.20, 0.32, 0.25, 0.1)′, d = (1, 1, 1, 1, 1)′ and A has diagonal
elements equal to exp(-1/lifetime), where the lifetimes for the 5 boxes are ∞,
363, 74, 17 and 2 years respectively. These correspond to half-lives of ∞, 252,
51, 12 and 1.4 years respectively.

The Golosov et al. (2014) carbon cycle model: 2 boxes

Golosov et al. (2014) have A =
1 0

0 1− ϕ

, b =
 θL

θ0(1− θL)

 and d =
1

1

 ,
where 0 < θL < 1 and 1 − θL are the proportions of emissions that flow into
the boxes holding the permanent and transitory components of atmospheric
carbon respectively, 0 < θ0 < 1 is the proportion of atmospheric carbon in
the transitory box that decays within the span of a unit of time (i.e. within
a decade), and ϕ > 0 denotes the speed of decay of carbon in the transitory
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box. Hence Eq. (3) becomes

Mt = m0(1) + (1− ϕ)tm0(2) +
t∑

s=1

[
θL + θ0(1− θL)(1− ϕ)t−s

]
Es,

where the term in square brackets shows how much of an emission impulse
at time s is left in the atmosphere at time t. Roughly a fifth of carbon stays
up in the atmosphere “forever”, half of an emission impulse is removed after
30 years, and the remaining carbon in the atmosphere has a mean life of 300
years. This yields θL = 0.2, θ0 = 0.393 and ϕ = 0.0228. It follows that the
half-life equals ln(0.5)/ ln(0.9772) = 30 decades. The initial values for 2010
are S0(1) = 684 GtC and S0(2) = 118GtC. Our starting date is 2015, so we
update these and use S0(1) = 712GtC and S0(2) = 159GtC instead.

The DICE 2016 carbon cycle model: 3 boxes

The DICE 2016 carbon cycle of Nordhaus (2017) has three boxes: (1) the at-
mosphere, (2) the upper oceans and biosphere, and (3) the lower/deep oceans.
The diffusion matrix is

A =


0.88 0.196 0
0.12 0.797 0.001465

0 0.007 0.998535


and b = d = (1, 0, 0)′. No carbon leaves the system, so the elements of the
columns of A sum to 1. The rate of uptake by the biosphere and oceans is
independent of the amount of carbon stored in each box, so positive feedback
between atmospheric CO2 and CO2 uptake is ruled out. There is no direct
interchange of carbon between the atmosphere and the lower/deep oceans.
The lower/deep oceans can store a large amount of carbon, but the rate of
diffusion into the lower/deep oceans is only 0.007. The eigenvalues of A are
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(0.6796, 0.9959, 1) and

V =


0.6991 0.5075 0.3173
−0.7148 0.3002 0.1942
0.0157 −0.8077 0.9282

 ,

so b̄ = (0.5283, 0.8085, 0.6946)′, d̄ = (0.6991, 0.5075, 0.3173)′ and thus the
ψi are 37%, 41% and 22%. Since no carbon leaves the boxes, one of the
eigenvalues equals 1. The smallest eigenvalue corresponds to a half-life of 9
years (5 x ln(0.5)/ ln(0.6796)) and the middle one corresponds to a half-life of
851 years.

The Gerlagh and Liski (2018) carbon cycle model: 3 boxes

Gerlagh and Liski (2018) have boxes for (i) the atmosphere and the upper
oceans, (ii) the biosphere and (iii) the lower oceans. Since within a decade
(their unit of time) carbon mixes perfectly between the atmosphere and the
upper oceans, these are combined into box one. The stock of atmospheric
carbon St is a constant share of the contents of box one, i.e. d = (0.914, 0, 0)′.
They have

A =


0.6975 0.2131 0.029
0.1961 0.7869 0
0.1063 0 0.9706


and b = (0.8809, 0.0744, 0.0447)′. The eigenvalues of A are 0.5286, 0.9264 and
1, and we calculate the corresponding ψi to be 44.5%, 18.2% and 16.2%. The
eigenvalues imply that the half-lives for the two temporary boxes are 90 and
11 years.

The Joos et al. (2013) carbon cycle model: 4 boxes

Joos et al. (2013) use a continuous-time model with one permanent and three
transitory boxes to fit impulse response functions to an ensemble of Earth
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System model simulations.27 They get

A =


1 0 0 0
0 0.9975 0 0
0 0 0.9730 0
0 0 0 0.7927

 ,

b = ψ = (0.2173, 0.2240, 0.2824, 0.2763)′ and d = (1, 1, 1, 1)′ on an annual
basis. The mean lags for the temporary boxes are 277, 25 and 3 years. Aen-
genheyster et al. (2018) also estimate a 4-box model in continuous time.

The Delay 56 and Delay 112 carbon cycle models use the same values as
Joos et al. (2013) for ψ, but multiply the mean lags by five and ten respectively.
In other words, any point on the impulse response function will be a point on
the Delay 56 (112) impact response function five (ten) years later.

The PAGE model

The PAGE09 carbon cycle model (Hope, 2006, 2011, 2013) can be approxi-
mated using three boxes with shares of emissions flowing into each of them
equal to b = (0.19, 0.43, 0.38)′ and d = (1, 1, 0)′, and A has diagonal elements
equal to exp(-1/lifetime), where the lifetimes for the 3 boxes are∞, 73.33 and
close to 0 years respectively. A feedback from temperature to carbon con-
centration is introduced in PAGE09, which scales up the concentration from
the dynamic system by a ‘gain’ factor to compute forcing in that year. The
gain factor does not, however, influence the evolution of carbon stocks. This
feedback, which models the decreasing absorptive capacity of oceans and po-
tentially that of soil, is a linear relation of temperature (with an uncertain
constant of median 9.67%/◦C). However, a maximum of 53.33% can be added
to the atmospheric carbon concentration.

27In continuous time, their model is ṁ = bE − (A− I) m.
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B.2 Temperature dynamics models

In parallel to the analysis of the carbon cycle above, let temperature be given
by Tt = d′mt, where the vector mt follows from the linear system mt =
Amt−1 + bFt. Using spectral decomposition, A = VΛV−1 and defining d̄ ≡
V′d and b̄ ≡ V′b, we can solve for

Tt = d̄
(

ΛtV−1T0 +
t∑

s=1
Λt−sb̄Fs

)
= d̄′ΛtV−1T0 +

t∑
s=1

2∑
i=1

ψTi λ
T t−s
i Fs,

where ψTi ≡ b̄id̄i, i = 1, 2. It follows that the temperature response to a step
increase in forcing, Fs = ∆F, ∀s ≥ 1, and to an increase in initial temperature
equals

∆Tt = d̄′ΛtV−1T0 +
[ 2∑
i=1

ψTi
(1− λTi )

(
1− λT ti

)]
∆F.

Note that the effects of initial temperature and a change in forcing can be
added for linear systems (called the superposition principle).

Geoffroy et al. (2013)

Geoffroy et al. (2013) have a two-box model for temperature dynamics in
continuous time,

Ṫ = 1
C

[F − λT − γ(T − TLO)]

and
ṪLO = γ

C0
(T − TLO),

where C = 7.3 W yr m-2 K-1 is the effective heat capacity of the upper/mixed
ocean layer, C 0 = 106 W yr m-2 K-1 is the effective heat capacity of the deep
oceans, λ = 1.13 W m-2 K-1 and γ = 0.73 W m-2 K-1. These are the values
that best fit the multi-model mean of the CMIP5 ensemble. There is a box
T representing the global mean surface temperature of the atmosphere, land
and upper oceans, and a box TLO representing the mean temperature of the
deep oceans. Steady-state temperature corresponding to constant forcing F
is T = TLO = F/λ, which gives an equilibrium climate sensitivity or ECS
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(i.e. the steady-state increase in temperature resulting from doubling the at-
mospheric stock of CO2 relative to pre-industrial) of F2×CO2/λ= 3.45/1.13 =
3.05 K given F2×CO2 = 3.45 W m-2. To get an ECS of 3.1, we adjust by
multiplying F2×CO2 by the factor 3.1/3.05 and modify the first equation to
Ṫ = 1

C
[(3.1/3.05)F − λT − γ(T − TLO)].

The state transition matrixA =
−(λ+ γ)/C γ/C

γ/C0 −γ/C0

, which has eigen-

values -0.2575 and -0.0041. Using d = (1, 0)′ and b = (1/C, 0)′, we obtain
ψT1 = 0.135 and ψT2 = 0.0015, which gives the following impulse response
function:

∆T (t)
∆F (s) = 0.135 exp(−0.2575(t− s)) + 0.0015 exp(−0.0041(t− s)).

Notice ψT1 is much larger than ψT2 , i.e. the system responds quickly to an
impulse of forcing. Since the lower ocean has a large heat capacity, it quickly
absorbs the extra heat in the atmosphere.

By contrast, the reaction to a step increase in forcing ∆F is slower. The
temperature increase for a step increase in forcing beginning at time s, with a
steady-state temperature effect of ∆F/λ, is

∆T (t)
∆F = 1

λ
[1− 0.523 exp(−0.2575(t− s))− 0.366 exp(−0.0041(t− s))] .

This formula is based on the same eigenvalues, but the relative weight on the
slow box is much larger: ψ̂T1 = 0.523 versus ψ̂T2 = 0.366. With constant forcing,
the deep ocean reaches the same steady-state temperature as the atmosphere,
but, given the large heat capacity of the deep ocean, it takes much longer to
reach.

For the Delay 56 and Delay 112 model versions, we multiply the capacities
C and C0 by factors of 5 and 10 respectively. This does not affect the values of
ψTi . However, the Delay 56 system has eigenvalues of -0.0515 and -0.0008; the
Delay 112 system -0.0258 and -0.0004. In other words, half-lives are multiplied
by 5 and 10 for the Delay 56 and Delay 112 variants respectively.
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DICE 2016

DICE 2016 is formulated in discrete time with a time unit of 5 years and, like
the model of Geoffroy et al. (2013), has two heat boxes, one for the temperature
of the atmosphere, land and upper oceans, and one for the temperature of the
deep oceans:

Tt = Tt−1 + 1
CUP

[
Ft −

3.6813
ECS

Tt−1 − 0.088(Tt−1 − TLO,t−1)
]

and
TLO,t = TLO,t−1 + 0.088

CLO
(Tt−1 − TLO,t−1),

where CUP = 1/0.1005 W yr m-2 K-1 and CLO = 0.088/0.025 W yr m-2 K-1 are
the effective heat capacities of the upper and lower oceans respectively, and
0.088 and 0.025 are the coefficients of heat exchange between the upper and
deep oceans respectively. The steady state temperature is Tt = TLO,t =
ECS × Ft/3.6813 = 0.842Ft, where ECS is set to 3.1 K. The transient cli-

mate sensitivity is set to 1.7 K. The transition matrix A =
0.873 0.009

0.025 0.975

 ,
b = (1/CUP , 0)′ and d = (1, 0)′. This yields eigenvalues 0.871 and 0.977 with
corresponding shares ψT1 = 0.0985 and ψT2 = 0.002. Note that ψT1 + ψT2 =
1/CUP = 0.1005. The temperature response to an impulse in forcing is
∆Tt

∆F1
= 0.0985 × 0.8711t−1 + 0.0022 × 0.9771t−1. The temperature response

to a step increase in forcing at time s equals

∆Tt
∆F =

2∑
i=1

(
ψTi λ

T t
i

1− λT ti

)
= 0.0985× (1− 0.871t)

0.129 + 0.002× (1− 0.977t)
0.003 .

We find that limt→∞
∆Tt

∆F = ∑2
i=1

ψT
i

λT
i
→ 0.0985

0.129 + 0.002
0.003 = 0.8521.

Golosov et al. (2014)

Golosov et al. (2014) have no temperature lag, so they have Tt = 0.842Ft.
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Gerlagh and Liski (2018)

Gerlagh and Liski (2018) have a simple lag with partial adjustment of 0.183
per decade (or 2% per year), so they have

Tt = Tt−1 + 0.183 (0.842Ft − Tt−1).

This corresponds to a half-life of 34 years. Although this long lag is in line
with the scientific evidence of some time ago (Solomon et al., 2009), it does
not accord with more recent scientific evidence (e.g Geoffroy et al., 2013).
The resulting temperature response to an impulse in forcing is ∆Tt

∆F1
= 0.842×

0.817t−1. The corresponding response to a step increase in forcing is

∆Tt
∆F = 0.842× 1− 0.817t

0.183 .

FUND

The annual FUND model also has a simple temperature lag, but with a partial
adjustment coefficient of 0.0224 per year, corresponding to a mean lag of 44.6
years and a half-life of 30.6 years.

PAGE

Global mean temperature in PAGE09 is the weighted sum of regional tem-
peratures. Once aggregated, however, global temperature follows a median
life-time of 24 years (and mean of 50 years).

Convoluted temperature response function

Equation (9) gives the convoluted temperature response function, which is
derived from the carbon stock-emissions response function, the temperature-
forcing response function, and ∂Ts

∂Ss
= F2×CO2

ln 2
1
Ms
. The temperature response to

a small step change in the stock of atmospheric carbon, ∆Ss = ∆S, ∀S ≥ 0,
is thus ∆Tt

∆S = F2×CO2
ln 2

1
M0

∆Tt

∆F for the Geoffroy et al. (2013) model and ∆Tt

∆S =
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F2×CO2
ln 2

1
M1

∆Tt

∆F for the discrete-time models such as DICE. Note that the re-
sponse to a step increase in atmospheric carbon decreases in the values of the
atmospheric carbon stock. To calculate these convoluted step responses, we
suppose that the concentration of atmospheric carbon stays constant at its
initial value. Hence, we set Ms to 3038 GtCO2 or 389 ppmv for all s. For the
DICE model we thus get ∆Tt

∆S = F2×CO2
ln 2

1
M1

∆Tt

∆F = 0.0012585 as t → ∞. For a
small step change in atmospheric carbon of 100 GtC, the steady-state increase
in temperature would then equal 0.0012585 × 100 × 44/12 = 0.46 K, which
is consistent with the plot in Figure 4.

C Further results

DICE 2016 compared with DICE-FAIR-Geoffroy

Here we compare standard DICE 2016 (row 5) with DICE-FAIR-Geoffroy (row
1). This comparison is affected by differences in: (a) temperature dynamics
between the DICE 2016 and Geoffroy et al. (2013) models; (b) removal of
atmospheric CO2 between the DICE 2016 and Joos et al. (2013) carbon cy-
cles, and; (c) assumptions about (non-)diminishing marginal removal of atmo-
spheric CO2 between DICE 2016/Joos et al. (2013) and FAIR. Therefore this
comparison is of the combined effect of all the modifications to DICE that we
have identified, which would bring it fully into line with the climate science
models we have assembled.

The combined effect of these is a higher optimal carbon price in DICE 2016
than in DICE-FAIR-Geoffroy (see Figure 5). The 2020 optimal carbon price is
24% higher in DICE 2016. Yet it is on the 2◦C cost-minimising paths that we
see the largest price differences. The 2020 2◦C cost-minimising carbon price
is three times higher in DICE 2016 than in DICE-FAIR-Geoffroy, resulting in
a reduction in 2020 emissions of almost 9GtCO2. Yet, despite lower emissions
throughout this century on both the optimal and 2◦C cost-minimising paths,
temperatures end up being higher in DICE 2016, by more than 0.5◦C in 2100
on the optimal path. The main driver of these differences is the tendency of
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DICE 2016 to heat up too much in the long run, as the analysis just below will
show. This is particularly manifest on the 2◦C cost-minimising path, because
heating up too much in the long run makes it extremely difficult to avoid the
global mean temperature exceeding 2◦C above the pre-industrial level.

A method of apportioning the differences between DICE 2016 and DICE-
FAIR-Geoffroy to factors (a) to (c) is to plot the percentage difference in
carbon prices and temperatures – always relative to DICE-FAIR-Geoffroy –
in DICE 2016, DICE-Geoffroy (i.e. combining the DICE 2016 carbon cycle
with the Geoffroy et al. (2013) temperature dynamics model), DICE-Joos (i.e.
combining the Joos et al. (2013) carbon cycle with the DICE 2016 tempera-
ture dynamics model) and DICE-Joos-Geoffroy. Figure 6 does this.28 The way
to intuit this figure is that whichever model is closest to DICE 2016 explains
most of the difference between it and DICE-FAIR-Geoffroy. Hence the main
contributing factor to the difference in optimal carbon prices between DICE
2016 and DICE-FAIR-Geoffroy is (b) insufficient removal of atmospheric CO2

in DICE 2016 (top left panel). This is a feature shared by DICE 2016 and
DICE-Geoffroy, but not by the other models, which incorporate the four-box
carbon cycle of Joos et al. (2013). However, when it comes to the 2◦C car-
bon price, or temperature on either path, the main contributing factor to the
difference between DICE 2016 and DICE-FAIR-Geoffroy is (a) temperature
dynamics. Excessive delay, offset by excessive long-term warming, is a feature
shared by the DICE 2016 and DICE-Joos variants. Excessive delay and ex-
cessive long-term warming are responsible for the temperature trajectories in
DICE 2016 that start below DICE-FAIR-Geoffroy but end up higher, signifi-
cantly so on the optimal path. Excessive long-term warming also explains the
high 2◦C carbon price, because it significantly limits the 2◦C carbon budget.

28For this comparison we omit emissions, because when emissions approach or reach zero
the differences between the models can explode or be undefined respectively.
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Figure 6: Price and temperature paths relative to the benchmark DICE-FAIR-
Geoffroy model. Left column – welfare-maximising path; right column – cost-
effective path to limit warming to 2◦C. Top row – carbon prices; bottom row
– warming. Whichever model is closest to DICE 2016 explains most of the
difference between it and DICE-FAIR-Geoffroy.
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2◦C cost minimisation under different exogenous emissions/forcing
scenarios

Figure 7 shows using DICE-FAIR-Geoffroy that limiting warming to 2◦C is
much more costly when exogenous CO2 emissions/forcing come from standard
DICE 2016 than when they come from the IPCC’s RCP2.6 scenario. The
former scenario was designed to apply no matter the amount of CO2 emissions
abatement undertaken in the model (i.e. from the energy sector), while the
latter was designed by IPCC to imply a level of abatement outside CO2/energy
that is consistent with the 2◦C goal. Limiting warming to 2◦C is infeasible in
DICE 2016 with standard DICE 2016 exogenous emissions/forcing.
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Figure 7: 2◦C cost-minimising carbon prices in DICE-FAIR-Geoffroy using
two alternative scenarios for emissions of CO2 from land use and forestry, and
exogenous radiative forcing from other greenhouse gases and agents. Carbon
prices are much higher under the standard DICE 2016 scenario than under the
RCP2.6 scenario.
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D GAMS code for DICE 2016 with the FAIR
carbon cycle and the Geoffroy et al. (2013)
temperature model

In this section we provide GAMS code to implement the FAIR carbon cycle
in DICE 2016, as well as parameters to implement the Geoffroy et al. (2013)
warming model. This replaces the three-box model of the carbon cycle and
the two-box temperature model of standard DICE 2016.
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$ontext 

This is a modified version of DICE-2016R-091916ap.gms. 

The carbon cycle has been changed to the four box model of Joos et al. and parameters of thermal 

dynamics to match Geoffroy et al. The positive feedback from sink satiation has been added. See 

**-comments for details throughout. 

 

$title        DICE-2016R September 2016 (DICE-2016R-091216a.gms) 

$offtext 

 

set        t  Time periods (5 years per period)                    /1*100/ 

 

PARAMETERS 

** Availability of fossil fuels 

        fosslim  Maximum cumulative extraction fossil fuels (GtC)  /6000/ 

**Time Step 

        tstep    Years per Period                                  /5/ 

** If optimal control 

        ifopt    Indicator where optimized is 1 and base is 0      /0/ 

        ifmiulim Indicator where fixed miu('1') is 1 and 0 else    /1/ 

** Preferences 

        elasmu   Elasticity of marginal utility of consumption     /1.45 / 

        prstp    Initial rate of social time preference per year   /.015  / 

**new parameters for public decision making 

        elasmu_pub   Elasticity of marginal utility of consumption     /1.45 / 

        prstp_pub    Initial rate of social time preference per year   /.015  / 

 

** Population and technology 

        gama     Capital elasticity in production function        /.300    / 

        pop0     Initial world population 2015 (millions)         /7403    / 

        popadj   Growth rate to calibrate to 2050 pop projection  /0.134   / 

        popasym  Asymptotic population (millions)                 /11500   / 

        dk       Depreciation rate on capital (per year)          /.100    / 

        q0       Initial world gross output 2015 (trill 2010 USD) /105.5   / 

        k0       Initial capital value 2015 (trill 2010 USD)      /223     / 

        a0       Initial level of total factor productivity       /5.115    / 

        ga0      Initial growth rate for TFP per 5 years          /0.076   / 

        dela     Decline rate of TFP per 5 years                  /0.005   / 

** Emissions parameters 

        gsigma1  Initial growth of sigma (per year)                   /-0.0152 / 

        dsig     Decline rate of decarbonization (per period)         /-0.001  / 

        eland0   Carbon emissions from land 2015 (GtCO2 per year)     / 2.6    / 

        deland   Decline rate of land emissions (per period)          / .115   / 

        e0       Industrial emissions 2015 (GtCO2 per year)           /35.85    / 

        miu0     Initial emissions control rate for base case 2015    /.03     / 

** Carbon cycle 

** new carbon cycle replaces DICE's oceanic carbon reservoirs with four atmospheric carbon 

boxes. Transition matrix is diagonal since it is a reduced-form model. 

$ontext 

* Initial Conditions 

        mat0   Initial Concentration in atmosphere 2015 (GtC)        /851    / 

        mu0    Initial Concentration in upper strata 2015 (GtC)      /460    / 

        ml0    Initial Concentration in lower strata 2015 (GtC)      /1740   / 

        mateq  Equilibrium concentration atmosphere  (GtC)           /588    / 

        mueq   Equilibrium concentration in upper strata (GtC)       /360    / 

        mleq   Equilibrium concentration in lower strata (GtC)       /1720   / 

* Flow paramaters 

        b12      Carbon cycle transition matrix                      /.12   / 

        b23      Carbon cycle transition matrix                      /0.007 / 

* These are for declaration and are defined later 

        b11      Carbon cycle transition matrix 

        b21      Carbon cycle transition matrix 

        b22      Carbon cycle transition matrix 

        b32      Carbon cycle transition matrix 

        b33      Carbon cycle transition matrix 

$offtext 

        mperm0 Initial stock in fastes carbon box (GtC)              /139.1 / 

        mslow0 Initial stock in fastes carbon box (GtC)              /90.2  / 

        mmedium0 Initial stock in fastes carbon box (GtC)            /29.2  / 

        mfast0 Initial stock in fastes carbon box (GtC)              /4.2   / 

        b10      proportion of emissions in permanent box            /.217   / 

        b11      proportion of emissions in slowes box               /.224   / 

        b12      proportion of emissions in medium box               /.282   / 

        b13      proportion of emissions in fast box                 /.276   / 

        b21      Decay speed slowest box                             /.00254 / 

        b22      Decay speed medium box                              /.0274  / 

        b23      Decay speed fast box                                /.232342 / 

** The follow three parameters are needed for positive feedback. 

        R0       pre-industrial iIRF                                 / 34.4   / 



        RC       iIRF response to CACC(GtC)                          / 0.019  / 

        RT       iIRF response to T(°C)                              / 4.165  / 

** End of changes.         

        sig0     Carbon intensity 2010 (kgCO2 per output 2005 USD 2010) 

** Climate model parameters 

        t2xco2   Equilibrium temp impact (oC per doubling CO2)    / 3.1  / 

        fex0     2015 forcings of non-CO2 GHG (Wm-2)              / 0.5  / 

        fex1     2100 forcings of non-CO2 GHG (Wm-2)              / 1.0  / 

        tocean0  Initial lower stratum temp change (C from 1900)  /.0068 / 

        tatm0    Initial atmospheric temp change (C from 1900)    /0.85  / 

        c1       Climate equation coefficient for upper level     /0.1005  / 

        c3       Transfer coefficient upper to lower stratum      /0.088   / 

        c4       Transfer coefficient for lower level             /0.025   / 

        fco22x   Forcings of equilibrium CO2 doubling (Wm-2)      /3.6813  / 

** Climate damage parameters 

        a10       Initial damage intercept                         /0       / 

        a20       Initial damage quadratic term 

        a1        Damage intercept                                 /0       / 

        a2        Damage quadratic term                            /0.00236 / 

        a3        Damage exponent                                  /2.00    / 

** Abatement cost 

        expcost2  Exponent of control cost function               / 2.6  / 

        pback     Cost of backstop 2010$ per tCO2 2015            / 550  / 

        gback     Initial cost decline backstop cost per period   / .025 / 

        limmiu    Upper limit on control rate after 2150          / 1.2 / 

        tnopol    Period before which no emissions controls base  / 45   / 

        cprice0   Initial base carbon price (2010$ per tCO2)      / 2    / 

        gcprice   Growth rate of base carbon price per year       /.02   / 

 

** Scaling and inessential parameters 

* Note that these are unnecessary for the calculations 

* They ensure that MU of first period's consumption =1 and PV cons = PV utilty 

        scale1      Multiplicative scaling coefficient           /0.0302455265681763 / 

        scale2      Additive scaling coefficient                 /-10993.704/ ; 

 

* Program control variables 

sets     tfirst(t), tlast(t), tearly(t), tlate(t); 

 

PARAMETERS 

        l(t)          Level of population and labor 

        al(t)         Level of total factor productivity 

        sigma(t)      CO2-equivalent-emissions output ratio 

        rr(t)         Average utility social discount rate 

        ga(t)         Growth rate of productivity from 

        forcoth(t)    Exogenous forcing for other greenhouse gases 

        gl(t)         Growth rate of labor 

        gcost1        Growth of cost factor 

        gsig(t)       Change in sigma (cumulative improvement of energy efficiency) 

        etree(t)      Emissions from deforestation 

        cumetree(t)   Cumulative from land 

        cost1(t)      Adjusted cost for backstop 

        lam           Climate model parameter 

        gfacpop(t)    Growth factor population 

        pbacktime(t)  Backstop price 

        optlrsav      Optimal long-run savings rate used for transversality 

        scc(t)        Social cost of carbon 

        cpricebase(t) Carbon price in base case 

        photel(t)     Carbon Price under no damages (Hotelling rent condition) 

        ppm(t)        Atmospheric concentrations parts per million 

        atfrac(t)     Atmospheric share since 1850 

        atfrac2010(t)     Atmospheric share since 2010 ; 

* Program control definitions 

        tfirst(t) = yes$(t.val eq 1); 

        tlast(t)  = yes$(t.val eq card(t)); 

* Parameters for long-run consistency of carbon cycle 

** These calculations specify DICE's transition matrix in carbon cycle. They are not needed 

anymore. 

$ontext 

        b11 = 1 - b12; 

        b21 = b12*MATEQ/MUEQ; 

        b22 = 1 - b21 - b23; 

        b32 = b23*mueq/mleq; 

        b33 = 1 - b32 ; 

$offtext 

** End of changes 

* Further definitions of parameters 

        a20 = a2; 

        sig0 = e0/(q0*(1-miu0)); 



        lam = fco22x/ t2xco2; 

        l("1") = pop0; 

        loop(t, l(t+1)=l(t);); 

        loop(t, l(t+1)=l(t)*(popasym/L(t))**popadj ;); 

 

        ga(t)=ga0*exp(-dela*5*((t.val-1))); 

        al("1") = a0; loop(t, al(t+1)=al(t)/((1-ga(t)));); 

        gsig("1")=gsigma1; loop(t,gsig(t+1)=gsig(t)*((1+dsig)**tstep) ;); 

        sigma("1")=sig0;   loop(t,sigma(t+1)=(sigma(t)*exp(gsig(t)*tstep));); 

 

        pbacktime(t)=pback*(1-gback)**(t.val-1); 

        cost1(t) = pbacktime(t)*sigma(t)/expcost2/1000; 

 

        etree(t) = eland0*(1-deland)**(t.val-1); 

        cumetree("1")= 100; loop(t,cumetree(t+1)=cumetree(t)+etree(t)*(5/3.666);); 

 

        rr(t) = 1/((1+prstp_pub)**(tstep*(t.val-1))); 

        forcoth(t) = fex0+ (1/17)*(fex1-fex0)*(t.val-1)$(t.val lt 18)+ (fex1-fex0)$(t.val ge 

18); 

        optlrsav = (dk + .004)/(dk + .004*elasmu + prstp)*gama; 

 

*Base Case Carbon Price 

        cpricebase(t)= cprice0*(1+gcprice)**(5*(t.val-1)); 

 

VARIABLES 

        MIU(t)          Emission control rate GHGs 

        FORC(t)         Increase in radiative forcing (watts per m2 from 1900) 

        TATM(t)         Increase temperature of atmosphere (degrees C from 1900) 

        TOCEAN(t)       Increase temperatureof lower oceans (degrees C from 1900) 

        MAT(t)          Carbon concentration increase in atmosphere (GtC from 1750) 

** Old variables are moved and new ones introduced below 

$ontext 

        MU(t)           Carbon concentration increase in shallow oceans (GtC from 1750) 

        ML(t)           Carbon concentration increase in lower oceans (GtC from 1750) 

$offtext 

        MPERM(t)        Carbon concentration increase in permanent box (GtC from 1750) 

        MSLOW(t)        Carbon concentration increase in slow decay box (GtC from 1750) 

        MMEDIUM(t)      Carbon concentration increase in medium decay box (GtC from 1750) 

        MFAST(t)        Carbon concentration increase in fast decay box (GtC from 1750) 

        CACC(t)         Carbon accumulated minus past satiation (GtC) 

        iIRF(T)         100-year integrated impulse response function 

        alpha(T)        time constant scaling factor (positive feed-back from emissions to 

reduced carbon decay) 

** End of changes  

        E(t)            Total CO2 emissions (GtCO2 per year) 

        EIND(t)         Industrial emissions (GtCO2 per year) 

        C(t)            Consumption (trillions 2005 US dollars per year) 

        K(t)            Capital stock (trillions 2005 US dollars) 

        CPC(t)          Per capita consumption (thousands 2005 USD per year) 

        I(t)            Investment (trillions 2005 USD per year) 

        S(t)            Gross savings rate as fraction of gross world product 

        RI(t)           Real interest rate (per annum) 

        Y(t)            Gross world product net of abatement and damages (trillions 2005 USD per 

year) 

        YGROSS(t)       Gross world product GROSS of abatement and damages (trillions 2005 USD 

per year) 

        YNET(t)         Output net of damages equation (trillions 2005 USD per year) 

        DAMAGES(t)      Damages (trillions 2005 USD per year) 

        DAMFRAC(t)      Damages as fraction of gross output 

        ABATECOST(t)    Cost of emissions reductions  (trillions 2005 USD per year) 

        MCABATE(t)      Marginal cost of abatement (2005$ per ton CO2) 

        CCA(t)          Cumulative industrial carbon emissions (GTC) 

        CCATOT(t)       Total carbon emissions (GtC) 

        PERIODU(t)      One period utility function 

        CPRICE(t)       Carbon price (2005$ per ton of CO2) 

        CEMUTOTPER(t)   Period utility 

        UTILITY         Welfare function; 

 

** Obsolete variables MU and ML have been removed in the declaration of non-negative variables 

below. Additional ones are introduced to reflect new carbon dynamics. 

* NONNEGATIVE VARIABLES  MIU, TATM, MAT, MU, ML, Y, YGROSS, C, K, I; 

NONNEGATIVE VARIABLES  MIU, TATM, MAT, Y, YGROSS, C, K, I; 

NONNEGATIVE VARIABLES  MPERM, MSLOW, MMEDIUM, MFAST, alpha; 

 

EQUATIONS 

*Emissions and Damages 

        EEQ(t)           Emissions equation 

        EINDEQ(t)        Industrial emissions 



        CCACCA(t)        Cumulative industrial carbon emissions 

        CCATOTEQ(t)        Cumulative total carbon emissions 

        FORCE(t)         Radiative forcing equation 

        DAMFRACEQ(t)     Equation for damage fraction 

        DAMEQ(t)         Damage equation 

        ABATEEQ(t)       Cost of emissions reductions equation 

        MCABATEEQ(t)     Equation for MC abatement 

        CARBPRICEEQ(t)   Carbon price equation from abatement 

 

*Climate and carbon cycle 

        MMAT(t)          Atmospheric concentration equation 

** Old carbon cycle equations are removed and new equations for carbon boxes and accounting for 

past sink satiation introduced. 

$ontext 

        MMU(t)           Shallow ocean concentration 

        MML(t)           Lower ocean concentration 

$offtext 

        MMPERM(t)        Permanent carbon box 

        MMSLOW(t)        Slow decay carbon box 

        MMMEDIUM(t)      Medium decay speed carbon box 

        MMFAST(t)        Fast decay carbon box 

        CACCEQ(t)        Cumulative carbon emissions(t) 

        iIRFeq1(t)       calibraton of IRF to 100 year impulse 

        iIRFeq2(t) 

** End of changes 

        TATMEQ(t)        Temperature-climate equation for atmosphere 

        TOCEANEQ(t)      Temperature-climate equation for lower oceans 

 

*Economic variables 

        YGROSSEQ(t)      Output gross equation 

        YNETEQ(t)        Output net of damages equation 

        YY(t)            Output net equation 

        CC(t)            Consumption equation 

        CPCE(t)          Per capita consumption definition 

        SEQ(t)           Savings rate equation 

        KK(t)            Capital balance equation 

        RIEQ(t)          Interest rate equation 

 

* Utility 

        CEMUTOTPEREQ(t)  Period utility 

        PERIODUEQ(t)     Instantaneous utility function equation 

        UTIL             Objective function      ; 

 

** Equations of the model 

*Emissions and Damages 

 eeq(t)..             E(t)           =E= EIND(t) + etree(t); 

 eindeq(t)..          EIND(t)        =E= sigma(t) * YGROSS(t) * (1-(MIU(t))); 

 ccacca(t+1)..        CCA(t+1)       =E= CCA(t)+ EIND(t)*5/3.666; 

 ccatoteq(t)..        CCATOT(t)      =E= CCA(t)+cumetree(t); 

 force(t)..           FORC(t)        =E= fco22x * ((log((MAT(t)/588.000))/log(2))) + forcoth(t); 

 damfraceq(t) ..      DAMFRAC(t)     =E= (a1*TATM(t))+(a2*TATM(t)**a3) ; 

 dameq(t)..           DAMAGES(t)     =E= YGROSS(t) * DAMFRAC(t); 

 abateeq(t)..         ABATECOST(t)   =E= YGROSS(t) * cost1(t) * (MIU(t)**expcost2); 

 mcabateeq(t)..       MCABATE(t)     =E= pbacktime(t) * MIU(t)**(expcost2-1); 

 carbpriceeq(t)..     CPRICE(t)      =E= pbacktime(t) * (MIU(t))**(expcost2-1); 

 

*Climate and carbon cycle 

** New carbon cycle removes old equations and introduces new equations for carbon boxes, 

cumulative emissions, and saturation of sinks 

$ontext 

 mmat(t+1)..          MAT(t+1)       =E= MAT(t)*b11 + MU(t)*b21 + (E(t)*(5/3.666)); 

 mml(t+1)..           ML(t+1)        =E= ML(t)*b33  + MU(t)*b23; 

 mmu(t+1)..           MU(t+1)        =E= MAT(t)*b12 + MU(t)*b22 + ML(t)*b32; 

$offtext 

 mmat(t)..            MAT(t)         =E= MPERM(t) + MSLOW(t) + MMEDIUM(t) +  MFAST(t) + 588  ; 

 mmperm(t+1)..        MPERM(t+1)     =E= b10*5/3.666 * E(t) + MPERM(t) ; 

 mmslow(t+1)..        MSLOW(t+1)     =E= b11/(b21/alpha(t)) *(1-exp(-b21/alpha(t)*5))/3.666 * 

E(t) + exp(-b21/alpha(t)*5)*MSLOW(t) ; 

 mmmedium(t+1)..      MMEDIUM(t+1)   =E= b12/(b22/alpha(t)) *(1-exp(-b22/alpha(t)*5))/3.666 * 

E(t) + exp(-b22/alpha(t)*5)*MMEDIUM(t) ; 

 mmfast(t+1)..        MFAST(t+1)     =E= b13/(b23/alpha(t)) *(1-exp(-b23/alpha(t)*5))/3.666 * 

E(t) + exp(-b23/alpha(t)*5)*MFAST(t) ; 

 cacceq(t)..          CACC(t)        =E= CCA(t) + cumetree(t) - (MAT(T) - 588) ; 

 iIRFeq1(T)..         iIRF(T)        =E= R0 + RC*CACC(T) + RT*TATM(T) ; 

 iIRFeq2(T)..         iIRF(T)        =E= b10 * 100 + alpha(t) * ( 

                                         + b11 / b21 * ( 1 - exp( -100*b21/alpha(t) ) ) 

                                         + b12 / b22 * ( 1 - exp( -100*b22/alpha(t) ) ) 

                                         + b13 / b23 * ( 1 - exp( -100*b23/alpha(t) ) )   ); 



** End of changes 

 tatmeq(t+1)..        TATM(t+1)      =E= TATM(t) + c1 * ((FORC(t+1)-(fco22x/t2xco2)*TATM(t))-

(c3*(TATM(t)-TOCEAN(t)))); 

 toceaneq(t+1)..      TOCEAN(t+1)    =E= TOCEAN(t) + c4*(TATM(t)-TOCEAN(t)); 

 

*Economic variables 

 ygrosseq(t)..        YGROSS(t)      =E= (al(t)*(L(t)/1000)**(1-GAMA))*(K(t)**GAMA); 

 yneteq(t)..          YNET(t)        =E= YGROSS(t)*(1-damfrac(t)); 

 yy(t)..              Y(t)           =E= YNET(t) - ABATECOST(t); 

 cc(t)..              C(t)           =E= Y(t) - I(t); 

 cpce(t)..            CPC(t)         =E= 1000 * C(t) / L(t); 

 seq(t)..             I(t)           =E= S(t) * Y(t); 

 kk(t+1)..            K(t+1)         =L= (1-dk)**tstep * K(t) + tstep * I(t); 

 rieq(t+1)..          RI(t)          =E= (1+prstp_pub) * (CPC(t+1)/CPC(t))**(elasmu_pub/tstep) - 

1; 

 

*Utility 

 cemutotpereq(t)..    CEMUTOTPER(t)  =E= PERIODU(t) * L(t) * rr(t); 

 periodueq(t)..       PERIODU(t)     =E= ((C(T)*1000/L(T))**(1-elasmu_pub)-1)/(1-elasmu_pub)-1; 

 util..               UTILITY        =E= tstep * scale1 * sum(t,  CEMUTOTPER(t)) + scale2 ; 

 

*Resource limit 

CCA.up(t)       = fosslim; 

 

* Control rate limits 

MIU.up(t)            = limmiu; 

MIU.up(t)$(t.val<30) = 1; 

 

**  Upper and lower bounds for stability 

K.LO(t)         = 1; 

MAT.LO(t)       = 10; 

** following two bounds are obsolete 

*MU.LO(t)        = 100; 

*ML.LO(t)        = 1000; 

C.LO(t)         = 2; 

TOCEAN.UP(t)    = 20; 

TOCEAN.LO(t)    = -1; 

TATM.UP(t)      = 20; 

CPC.LO(t)       = .01; 

TATM.UP(t)      = 12; 

 

* Control variables 

set lag10(t) ; 

lag10(t) =  yes$(t.val gt card(t)-10); 

S.FX(lag10(t)) = optlrsav; 

 

* Initial conditions 

CCA.FX(tfirst)    = 400; 

K.FX(tfirst)      = k0; 

** following three initial conditions are obsolete and new ones introduced. 

*MAT.FX(tfirst)    = mat0; 

*MU.FX(tfirst)     = mu0; 

*ML.FX(tfirst)     = ml0; 

MPERM.FX(tfirst)    = MPERM0; 

MSLOW.FX(tfirst)    = MSLOW0; 

MMEDIUM.FX(tfirst)  = MMEDIUM0; 

MFAST.FX(tfirst)    = MFAST0; 

** End of Changes 

TATM.FX(tfirst)   = tatm0; 

TOCEAN.FX(tfirst) = tocean0; 

 

** Solution options 

option iterlim = 99900; 

option reslim = 99999; 

option solprint = on; 

option limrow = 0; 

option limcol = 0; 

model  CO2 /all/; 

 

** Variables changed to match thermal warming of Geoffroy et al. 

c1  = 0.386 ; 

lam = 1.13  ; 

c3  = 0.73  ; 

c4  = 0.034 ; 

fco22x = 3.503; 

alpha.lo(t) = .1; 

alpha.up(t) = 1000; 

** Exogenous forcing components (variables etree and forcoth) are adapted to SSP1 2.6. 



Parameter etree_DICE, forcoth_DICE; 

etree_DICE(T)  = etree(T); 

forcoth_DICE(T)= forcoth(T); 

Parameter etree_SSP1_26, forcoth_SSP1_26; 

 

forcoth_SSP1_26(T)              =  0.297 ; 

forcoth_SSP1_26(T)$(T.val GE 2) =  0.393 ; 

forcoth_SSP1_26(T)$(T.val GE 4) =  0.497 ; 

forcoth_SSP1_26(T)$(T.val GE 6) =  0.468 ; 

forcoth_SSP1_26(T)$(T.val GE 8) =  0.402 ; 

forcoth_SSP1_26(T)$(T.val GE 10)=  0.342 ; 

forcoth_SSP1_26(T)$(T.val GE 12)=  0.302 ; 

forcoth_SSP1_26(T)$(T.val GE 14)=  0.274 ; 

forcoth_SSP1_26(T)$(T.val GE 16)=  0.255 ; 

forcoth_SSP1_26(T)$(T.val GE 18)=  0.257 ; 

 

etree_SSP1_26(T)              =  3517.440/1000; 

etree_SSP1_26(T)$(T.val GE 2) =  3178.329/1000; 

etree_SSP1_26(T)$(T.val GE 4) =   188.063/1000; 

etree_SSP1_26(T)$(T.val GE 6) = - 387.799/1000; 

etree_SSP1_26(T)$(T.val GE 8) = -1758.623/1000; 

etree_SSP1_26(T)$(T.val GE 10)= -2586.615/1000; 

etree_SSP1_26(T)$(T.val GE 12)= -2583.968/1000; 

etree_SSP1_26(T)$(T.val GE 14)= -2436.902/1000; 

etree_SSP1_26(T)$(T.val GE 16)= -2084.681/1000; 

etree_SSP1_26(T)$(T.val GE 18)= -2899.036/1000; 

 

display etree_DICE, etree_SSP1_26, forcoth_DICE, forcoth_SSP1_26; 

etree(T) = etree_SSP1_26(T); 

forcoth(T) = forcoth_SSP1_26(T); 

** End of changes 

 

* For base run, this subroutine calculates Hotelling rents 

* Carbon price is maximum of Hotelling rent or baseline price 

* The cprice equation is different from 2013R. Not sure what went wrong. 

If (ifopt eq 0, 

       a2 = 0; 

       solve CO2 maximizing UTILITY using nlp; 

       photel(t)=cprice.l(t); 

       a2 = a20; 

); 

 

cprice.up(t)$(ifopt=0 and t.val<tnopol+1) = max(photel(t),cpricebase(t)); 

miu.fx('1')$(ifopt=1 and ifmiulim=1) = miu0; 

miu.lo('1')$(ifmiulim=0) = 0; 

miu.up('1')$(ifmiulim=0) = 1; 

 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

 

cprice.up(t) = inf; 

miu.lo(t) = 0; 

miu.up(t)            = limmiu; 

miu.up(t)$(t.val<30) = 1; 

 

** POST-SOLVE 

** Output reported has been removed. 

 

** Optimal Solution 

ifopt = 1; 

cprice.up(t)$(ifopt=0 and t.val<tnopol+1) = max(photel(t),cpricebase(t)); 

miu.fx('1')$(ifopt=1 and ifmiulim=1) = miu0; 

miu.lo('1')$(ifmiulim=0) = 0; 

miu.up('1')$(ifmiulim=0) = 1; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

cprice.up(t) = inf; 

 

** 2°C target 

TATM.up(T) = 2; 

TATM.FX(tfirst)   = tatm0; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

TATM.up(T) = 12; 

TATM.FX(tfirst)   = tatm0; 



 

** 2°C Target without any climate damage  

ifopt = 1; 

TATM.up(T) = 2; 

TATM.FX(tfirst)   = tatm0; 

a2 = 0; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

solve co2 maximizing utility using nlp; 

a2 = a20; 

TATM.up(T) = 12; 

TATM.FX(tfirst)   = tatm0; 



E Warming as a function of cumulative CO2

emissions

Here we compare the multi-model mean response of the CMIP5 climate science
models to the economic models, scrutinising the relationship between warming
and cumulative CO2 emissions. All the models are fed with emissions from
the IPCC RCP scenarios, including both CO2 and other greenhouse gases
and forcing agents. The CMIP5 multi-model mean response is obtained from
Stocker et al. (2013). The CMIP5 response is quasi-linear. By contrast, most
of the economic models produce a convex response, with warming increasing
more than proportionately as a function of cumulative CO2 emissions, except
for the high emissions RCP8.5 scenario and except for the Golosov et al. (2014)
model. FAIR is a reasonably close approximation of the complex CMIP5
models.

Figure 8: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with DICE 2016
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Figure 9: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with FUND
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Figure 10: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with PAGE
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Figure 11: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with Golosov et al. (2014)
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Figure 12: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with Gerlagh and Liski (2018)
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Figure 13: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with Lemoine and Rudik (2017)
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Figure 14: Warming in response to cumulative CO2 emissions, comparing the
CMIP5 multi-model mean with FAIR
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