HOUSEHOLD BALANCE SHEETS AND MONETARY POLICY

Aditya Aladagady (Federal Reserve Board)

DISCUSSION

By Yuriy Gorodnichenko (UC Berkeley)
WHAT IS THE TRANSMISSION MECHANISM OF MONETARY POLICY?

• Classic question
WHAT IS THE TRANSMISSION MECHANISM OF MONETARY POLICY?

• Classic question

• Lots of channels
 o Interest rate sensitivity of durables (consumption and investment)
 o Management of expectations
 o Financial accelerator
 o Wealth/Balance sheet effects
WHAT IS THE TRANSMISSION MECHANISM OF MONETARY POLICY?

• Classic question
• Lots of channels
 o Interest rate sensitivity of durables (consumption and investment)
 o Management of expectations
 o Financial accelerator
 o Wealth/Balance sheet effects
 ▪ Merge micro (confidential CEX) and macro data
WHAT IS THE TRANSMISSION MECHANISM OF MONETARY POLICY?

• Classic question
• Lots of channels
 o Interest rate sensitivity of durables (consumption and investment)
 o Management of expectations
 o Financial accelerator
 o Wealth/Balance sheet effects
 ▪ Merge micro (confidential CEX) and macro data
• Main results:
 o Heterogonous effects of nominal shocks on house prices across MSAs.
 o Marginal propensity to consume out of housing (MPCH) is 0.06.
 o MPCH is higher for constrained households.
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING

Starting point:
Consumption: \(\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + \text{error} \)
House price: \(\Delta Q_{it} = \gamma_1 MP_t + \text{error} \)
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING

Starting point:
Consumption: \(\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + \text{error} \)
House price: \(\Delta Q_{it} = \gamma_1 MP_t + \text{error} \)

\(MP_t \uparrow Q_{it} \downarrow C_{it} \)
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING

Starting point:

Consumption: \(\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error \)

House price: \(\Delta Q_{it} = \gamma_1 M P_t + error \)

\[MP_t \rightarrow Q_{it} \rightarrow C_{it} \quad \Rightarrow \text{Under-identification} \]
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING

Starting point:

Consumption: \(\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + error \)

House price: \(\Delta Q_{it} = \gamma_1 MP_t + error \)

\[
\begin{align*}
MP_t & \overset{\text{Qit}}{\rightarrow} C_{it} \quad \Rightarrow \text{Under-identification}
\end{align*}
\]

Modified framework:

Consumption: \(\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + error \)

House price: \(\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) \times MP_t + error \)

\(Z_i \times MP_t \) is the “instrument” for \(\Delta Q_{it} \)
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING

Starting point:
Consumption: \[\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + error \]
House price: \[\Delta Q_{it} = \gamma_1 MP_t + error \]

\[MP_t \uparrow Q_{it} \downarrow C_{it} \implies \text{Under-identification} \]

Modified framework:
Consumption: \[\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + error \]
House price: \[\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) \cdot MP_t + error \]

\[Z_i \cdot MP_t \] is the “instrument” for \(\Delta Q_{it} \)

What’s \(Z_i \)?
- Availability of land (Saiz 2010)
- Index of regulations (Wharton)
Identification of Propensity to Consume out of Housing (II)

Modified framework:
- Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$
- House price: $\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) \times M P_t + error$

Restrictions and caveats:
- Z_i does not affect consumption growth (exclusion restriction)
The graph shows a positive correlation between mean D(house price) and Land-use for various cities across different states. The cities include:

- Atlanta, Georgia
- Boston, Massachusetts
- Cleveland, Ohio
- Chicago, Illinois
- Charlotte, North Carolina
- Dallas, Texas
- Detroit, Michigan
- Denver, Colorado
- Las Vegas, Nevada
- Los Angeles, California
- San Diego, California
- San Francisco, California
- Portland, Oregon
- Seattle, Washington
- Miami, Florida
- Washington D.C.
- Minneapolis, Minnesota
- Chicago, Illinois
- New York
- Phoenix, Arizona
- Nashville, Tennessee

The graph indicates that as Land-use increases, the mean D(house price) also tends to increase, suggesting a direct relationship between these two variables.
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING (II)

Modified framework:

Consumption: \(\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + error \)

House price: \(\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) \times MP_t + error \)

Restrictions and caveats:

- \(Z_i \) does not affect consumption growth (exclusion restriction)
- Heterogeneous response of \(Q_{it} \) to \(MP_t \) but uniform response of \(C_{it} \) to \(Q_{it} \) and \(MP_t \).
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING (II)

Modified framework:

Consumption: \(\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + \text{error} \)

House price: \(\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) \ast MP_t + \text{error} \)

Restrictions and caveats:

• \(Z_i \) does not affect consumption growth (exclusion restriction)
• Heterogeneous response of \(Q_{it} \) to \(MP_t \) but uniform response of \(C_{it} \) to \(Q_{it} \) and \(MP_t \).
• We cannot identify \(\gamma_1 \) and so only relative effects are identified
 - In a closed economy, shocks to asset prices can be zero-sum.
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING (II)

Modified framework:

\[\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + \text{error} \]

\[\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) \times MP_t + \text{error} \]

Restrictions and caveats:

- \(Z_i \) does not affect consumption growth (exclusion restriction)
- Heterogeneous response of \(Q_{it} \) to \(MP_t \) but uniform response of \(C_{it} \) to \(Q_{it} \) and \(MP_t \).
- We cannot identify \(\gamma_1 \) and so only relative effects are identified
 - In a closed economy, shocks to asset prices can be zero-sum.
- The shock is aggregate \(\Rightarrow \) adjust for the Moulton problem
 - cluster two-way (MSA/time) or use Driscoll & Kraay (REStat 1998)
IDENTIFICATION OF PROPENSITY TO CONSUME OUT OF HOUSING (II)

Modified framework:

Consumption: \[\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 MP_t + \text{error} \]
House price: \[\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) \times MP_t + \text{error} \]

Restrictions and caveats:

- \(Z_i \) does not affect consumption growth (exclusion restriction)
- Heterogeneous response of \(Q_{it} \) to \(MP_t \) but uniform response of \(C_{it} \) to \(Q_{it} \) and \(MP_t \).
- We cannot identify \(\gamma_1 \) and so only relative effects are identified
 - In a closed economy, shocks to asset prices can be zero-sum.
- The shock is aggregate \(\Rightarrow \) adjust for the Moulton problem
 - cluster two-way (MSA/time) or use Driscoll&Kraay (REStat 1998)
- Dynamic response: need to include lags of \(\Delta C_{it} \) and \(\Delta Q_{it} \) on RHS.
SUMMARY

- Great question

- Creative combination of micro and macro data

- Iron out a few wrinkles