### Fiscal Stimulus and Distortionary Taxation

Harald Uhlig<sup>1</sup> Thorsten Drautzburg<sup>2</sup>

<sup>1</sup>University of Chicago Department of Economics huhlig@uchicago.edu

<sup>2</sup>tdrautzburg@uchicago.edu

June 30, 2011

#### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort. taxes and gov. capital.
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

#### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort. taxes and gov. capital
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

#### Total Gov. Spending and Receipts: in % of GDP



## Total Gov. Spending and Receipts: in % of GDP



## Total Gov. Spending and Receipts: in bill US \$.



## Federal Spending and Receipts: in bill US \$.



## State and Local Spending and Receipts: in bill US \$.



# Net "Savings": in bill US \$.



## Debt Development: in % of GDP.



Source: usgovernmentspending.com

## Debt Development: in % of GDP.



Source: usgovernmentspending.com

#### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort, taxes and gov. capital.
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

















### What the textbook says

#### Fiscal stimulus works great, if

- The central bank keeps interest rates unchanged.
- Inflation is low and stable.
- There is a lot of "slack of demand".

#### What the textbook leaves out

- Consumption and labor supply: not a mechanical rule, but forward looking.
- Government deficits create debt.
- Debt creates future taxes.
- Future taxes need to be repaid.
- That lessens the incentives to work and to invest.

## The modern approach

- Dynamic Stochastic General Equilibrium Analysis.
- New-Keynesian model with fiscal distortions.

#### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort. taxes and gov. capital.
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- 4 Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- Challenges
- Conclusion

## The Approach

- Question: what is the fiscal multiplier for the ARRA?
- ARRA has gov. purchases, gov. investment, transfers.
- "Uhlig (2010) + Cogan-Cwik-Taylor-Wieland (CCTW), 2009."
   Extend.
- Start from Smets-Wouters, AER 2007.
- Add:
  - Distortionary taxation.
  - "Rule-of-thumb" (RoT) households: consume earnings each period.
  - Baseline: 25% RoT's, receive 25% of transfers.
  - Fiscal feedback rules for taxation.
  - Government capital.
  - 3 ZLB. Benchmark 8 quarters. Consider 0, 4, 8, 12, endog.
- Fiscal multiplier at horizon s: compare NPV's.
- Estimate, provide Bayesian posteriors.
- Calculate sensitivity to key ingredients.

#### CCTW Stimulus: CCWT vs DU



Sources: CCTW (2010), Congressional Budget Office (2009).

## The Fiscal Multiplier

$$\varphi_t = \sum_{s=1}^t \left( \mu^s \prod_{j=1}^s R_j^{-1} \right) \hat{y}_s / \sum_{s=1}^t \left( \mu^s \prod_{j=1}^s R_j^{-1} \right) \hat{g}_s$$

- $\varphi_t$ : horizon-t multiplier.
- $R_{j,ARRA}$ : government bond return, from j-1 to j under ARRA.
- $\hat{y}_s$ : output change at date s due to ARRA, in % of GDP.
- $\hat{g}_s$ : ARRA spending at date s, in % of GDP.
- μ: balanced-growth factor.
- Net present value (NPV) fiscal multiplier.

## Fiscal multipliers. ZLB-target 8 qrts. Short-run ...



## Fiscal multipliers. ZLB-target 8 qrts. ... and long run



## Fiscal multipliers. ZLB-target 8 qrts.



## Smets-Wouters (2007): overview

- Elaborate New Keynesian model.
- Continuum of households. They supply household-specific labor in monopolistic competition. They set Calvo-sticky wages.
- Continuum of intermediate good firms. They supply intermediate goods in monopolistic competition. They set Calvo-sticky prices.
- Final goods use intermediate goods. Perfect competition.
- Habit formation, adjustment costs to investment, variable capital utilization.
- Monetary authority: Taylor-type rule.

#### **Modifications**

- Distortionary labor taxation, consumption taxes, capital income taxes. Steady state levels: Trabandt-Uhlig (2009).
- ZLB: hold FFR at zero for k quarters.
- "Credit-constrained" or "rule-of-thumb" consumers (25%).
- Government capital.
- Estimate. Provide Bayesian posteriors for fiscal multipliers.
- Stimulus: path per ARRA
  - ▶ 17%: Government investment. Government capital.
  - ▶ 24%: Government consumption.
  - ▶ 59%: Transfers to credit-constrained consumers.

#### Tax rule

• Remaining deficit, prior to new debt and labor taxes ...

$$egin{array}{ll} d_t &=& {
m gov.spend.+subs.}_t + {
m old\ debt\ repaym.}_t \ &-{
m consump.tax\ rev.,cap.tax\ rev.}_t - ar{ au}^I {
m lab.income}_t \end{array}$$

... needs to be financed:

$$\tau_t^I$$
 lab.income $_t$  + new debt $_t = d_t$ 

- Balanced growth debt, taxes, deficit:  $\bar{d}_t$ .
- Tax rule:

$$( au_t^I - ar{ au}^I)$$
 lab.income $_t = \psi_ au( alde{d}_t - ar{d}_t)$ 

## Financial friction: bond premium shock.

$$1 = \beta E_{t} \left[ \frac{u_{c,t+1}}{u_{c,t}} \frac{R_{t}^{gov}}{\pi_{t+1}} \right] = \beta E_{t} \left[ \frac{u_{c,t+1}}{u_{c,t}} (1 + \omega_{t}^{gov}) \frac{R_{t}^{FFR}}{\pi_{t+1}} \right]$$
$$= \beta E_{t} \left[ \frac{u_{c,t+1}}{u_{c,t}} \left( (1 - \omega_{t}^{k}) [(1 - \tau^{k}) r_{t+1}^{k} + \delta \tau^{k}] + (1 - \delta) \frac{Q_{t+1}}{Q_{t}} \right) \right]$$

- Gov. bond shock  $\omega_t^{gov}$ : wedge between FFR and gov't bonds.

Stand-in for financial friction. With perfect foresight:

$$\frac{R_t^{FFR}}{\pi_{t+1}} = \frac{1}{(1 + \omega_t^{gov})} \Big( (1 - \omega_t^k) [r_{t+1}^k - \tau^k (r_{t+1}^k - \delta)] + (1 - \delta) \Big).$$

#### Government capital in production

Technology for intermediate goods production:

$$Y_t(i) = \tilde{\epsilon}_t^{a} \left( \frac{K_{t-1}^g}{\int_0^1 Y_t(j) dj + \Phi \mu^t} \right)^{\frac{\zeta}{1-\zeta}} K_t^s(i)^{\alpha} [\mu^t n_t(i)]^{1-\alpha} - \mu^t \Phi,$$

where  $\Phi$  are fixed costs,  $K_t^s$  are capital services.

- $\epsilon_t^a$  is TFP,  $\log \epsilon_t^a \sim AR(1)$ .
- Government capital services  $K_{t-1}^g$  subject to congestion.
- Aggregate production function:

$$Y_t = \epsilon_t^a K_{t-1}^g {}^{\zeta} K_t^{s\alpha(1-\zeta)} [\mu^t n_t]^{(1-\alpha)(1-\zeta)} - \mu^t \Phi, \quad \epsilon_t^a \equiv (\tilde{\epsilon}_t^a)^{1-\zeta}.$$

Along the balanced growth path:  $\bar{\epsilon}^a \equiv 1$ .

• Current profits:

$$P_t(i) Y_t(i) - W_t n_t(i) - R_t^k K_t^s(i)$$

## Government capital accumulation

$$k_t^g = (1 - \delta) \frac{k_{t-1}^g}{\mu} + q_t^g \left( 1 - S_g \left( \frac{x_t^g}{x_{t-1}^g} \mu \right) \right) x_t^g$$

#### where

- $S_g(\mu) = S_g'(\mu) = 0$ ,  $S_g''(\cdot) > 0$ : adjustment costs.
- $q_t^{x,g}$ : shock to the relative price of government investment.
- Constant capacity utilization.

#### ZLB

- Benchmark implementation: "Switching off":  $\hat{R}_t = (1 \mathbf{1}_{Z|B,t})\hat{R}_t^{TR} + \mathbf{1}_{Z|B,t}\hat{R}_t^{TR}$ .
- Endogenous ZLB: FFR equals max of original SW Taylor rule and approximately zero (0.25% at annual rates):

$$\hat{R}_{t} = \max\{-(1 - \bar{R}) + \frac{0.25}{400}, \hat{R}_{t}^{TR}\}, 
\hat{R}_{t}^{TR} = \psi_{1}(1 - \rho_{R})\hat{\pi}_{t} + \psi_{2}(1 - \rho_{r})(\hat{y}_{t} - \hat{y}_{t}^{f}) 
+ \psi_{3}\Delta(\hat{y}_{t} - \hat{y}_{t}^{f}) + \rho_{R}\hat{R}_{t-1}^{TR} + ms_{t}.$$

#### The Stimulus

Source: Washington Post 02/01/2009, accessed 10/31/2009



# Categorizing the stimulus – Government Consumption

| Item                                                   | Amount (bn USD) | Share |
|--------------------------------------------------------|-----------------|-------|
| Dept. of Defense                                       | 4.53            | 0.59  |
| Employment and Training                                | 4.31            | 0.56  |
| Legislative Branch                                     | 0.03            | 0     |
| National Coordinator for Health Information Technology | 1.98            | 0.26  |
| National Institute of Health                           | 9.74            | 1.26  |
| Other Agriculture, Food, FDA                           | 3.94            | 0.51  |
| Other Commerce, Justice, Science                       | 5.36            | 0.69  |
| Other Dpt. of Education                                | 2.12            | 0.28  |
| Other Dpt. of Health and Human Services                | 9.81            | 1.27  |
| Other Financial Services and gen. Govt                 | 1.31            | 0.17  |
| Other Interior and Environment                         | 4.76            | 0.62  |
| Special education                                      | 12.2            | 1.58  |
| State and local law enforcement                        | 2.77            | 0.36  |
| State Fiscal Relief                                    | 90.04           | 11.68 |
| State fiscal stabilization fund                        | 53.6            | 6.95  |
| State, foreign operations, and related programs        | 0.6             | 0.08  |
| Other                                                  | 2.55            | 0.33  |
| Consumption                                            | 209.64          | 27.2  |

# Categorizing the stimulus – Government Investment

| Item                                                   | Amount (bn USD) | Share |
|--------------------------------------------------------|-----------------|-------|
| Broadband Technology opportunities program             | 4.7             | 0.61  |
| Clean Water and Drinking Water State Revolving Fund    | 5.79            | 0.75  |
| Corps of Engineers                                     | 4.6             | 0.6   |
| Distance Learning, Telemedicine, and Broadband Program | 1.93            | 0.25  |
| Energy Efficiency and Renewable Energy                 | 16.7            | 2.17  |
| Federal Buildings Fund                                 | 5.4             | 0.7   |
| Health Information Technology                          | 17.56           | 2.28  |
| Highway construction                                   | 27.5            | 3.57  |
| Innovative Technology Loan Guarantee                   | 6               | 0.78  |
| NSF                                                    | 2.99            | 0.39  |
| Other Energy                                           | 22.38           | 2.9   |
| Other transportation                                   | 20.56           | 2.67  |
| Investment                                             | 136.09          | 17.66 |
|                                                        |                 |       |

# Categorizing the stimulus – Transfers

| Item                                            | Amount (bn USD) | Share |
|-------------------------------------------------|-----------------|-------|
| Assistance for the unemployed                   | 0.88            | 0.11  |
| Economic Recovery Programs, TANF, Child support | 18.04           | 2.34  |
| Health Insurance Assistance                     | 25.07           | 3.25  |
| Health Insurance Assistance                     | -0.39           | -0.05 |
| Low Income Housing Program                      | 0.14            | 0.02  |
| Military Construction and Veteran Affairs       | 4.25            | 0.55  |
| Other housing assistance                        | 9               | 1.17  |
| Other Tax Provisions                            | 4.81            | 0.62  |
| Public housing capital fund                     | 4               | 0.52  |
| Refundable Tax Credits                          | 68.96           | 8.95  |
| Student financial assistance                    | 16.56           | 2.15  |
| Supplemental Nutrition Assistance Program       | 19.99           | 2.59  |
| Tax Provisions                                  | 214.56          | 27.84 |
| Unemployment Compensation                       | 39.23           | 5.09  |
| Transfers and Tax cuts                          | 425.09          | 55.15 |

### Which sample? Barro, Ramey.



### Postwar GDP and government spending



### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort. taxes and gov. capital.
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

#### Estimation and Calculation.

#### Shocks: AR(1).

- Technology.
- Bond shock: wedge between FFR and gov't bonds.
- Bond shock: wedge between gov't bond returns and returns on capital.
- Gov. spending plus net export. Co-varies with technology.
- Investment specific (rel. price).
- Gov. investment specific. Used with gov. investment time series only.
- Monetary policy.
- Labor tax rates.
- Mark-up: prices: ARMA(1,1).
- Mark-up: wages: ARMA(1,1).

#### Observations – Time Series

- Output: Chained 2005 real GDP, growth rates.
- Consumption: Private consumption expenditure, growth rates.
- Investment: private fixed investment, growth rates.
- Government investment: growth rates.
- Hours worked: Civilian employment index × average nonfarm business weekly hours worked index. Demeaned log.
- Inflation: GDP deflator, quarterly growth rates.
- Wages: Nonfarm Business, hourly compensation index. Growth rates.
- FFR: Converted to quarterly rates.
- Corporate-Treasury bond yield spread: Moody's Baa index 10 yr Treasury bond at quarterly rates, demeaned.
- Dallas Fed gross federal debt series at par value. Demeaned log.

#### **Observations: Comments**

- Time series: Updated SW dataset, 1948:2-2009:4. Quarterly. 4 Period pre-sample.
- Sources: NIPA, FRED 2, BLS.
- Nominal series for wages, consumption, government and private investment deflated with general GDP deflator.
- Differences to Smets-Wouters dataset: Use civilian non-institutionalized population throughout, although not seasonally adjusted before 1976. Base year for real GDP: 2005 instead of 1996.
- All series but real wages have a correlation of 100% across the two datasets. For the change in real wages, the correlation is 0.9.
- No data for the Corporate-Treasury bond yield spread before 1953:1. Set to zero.
- No data on FFR before 1954:3. Use secondary market rate for 3-month TBill before.
- Dallas Fed federal debt data.

### Calibrated parameters

- Tax rates, and debt-GDP ratio from NIPA (Trabandt-Uhlig, 2009).
- Government spending components from NIPA.
- Kimball curvature parameters set to roughly match empirical frequency of price adjustment (Eichenbaum-Fisher, 2007).
- Depreciation per Cooley-Prescott (1994) based on  $\frac{\bar{x}}{k} = 0.0076$ .

|                                                    | SW Extension |           |
|----------------------------------------------------|--------------|-----------|
|                                                    | 66:1-04:4    | 48:2-08:4 |
| Depreciation $\delta$                              | 0.025        | 0.0145    |
| Wage mark-up $\lambda_{w}$                         | 0.5          | 0.5       |
| Kimball curvature goods mkt. $\hat{\eta}_p$        | 10           | 10        |
| Kimball curvature labor mkt. $\hat{\eta}_{W}$      | 10           | 10        |
| Capital tax $	au^k$                                | n/a          | 0.36      |
| Consumption tax $\tau^c$                           | n/a          | 0.05      |
| Labor tax $\tau^n$                                 | n/a          | 0.28      |
| Share credit constrained $\phi$                    | n/a          | 0.25      |
| Gov. spending, net exports-GDP $\frac{g}{\bar{v}}$ | 0.18         | 0.153     |
| Gov. investment-GDP $\frac{\bar{x}^g}{\bar{y}}$    | n/a          | 0.04      |
| Debt-GDP $\frac{ar{b}}{ar{y}}$                     | n/a          | 4× 0.63   |

### Estimates – Extended Model

|                                                             | Prior | Prior mean (s.d.) | SW Model<br>66:1-08:4 | New investment<br>66:1-08:4 | Debt & Gov. Capital<br>49:2-08:4 |
|-------------------------------------------------------------|-------|-------------------|-----------------------|-----------------------------|----------------------------------|
| Adj. cost $S''(\mu)$                                        | norm  | 4.000 (1.500)     | 5.93 (1.1)            | 5.38 (1.03)                 | 4.57 (0.82)                      |
| Risk aversion $\sigma$                                      | norm  | 1.500 (0.375)     | 1.42 (0.11)           | 1.31 (0.1)                  | 1.18 (0.07)                      |
| Habit h                                                     | beta  | 0.700 (0.100)     | 0.7 (0.04)            | 0.8 (0.03)                  | 0.85 (0.02)                      |
| Calvo wage $\zeta_W$                                        | beta  | 0.500 (0.100)     | 0.77 (0.04)           | 0.8 (0.03)                  | 0.84 (0.03)                      |
| Inv. labor sup. ela. $\nu$                                  | norm  | 2.000 (0.750)     | 1.96 (0.54)           | 2.14 (0.47)                 | 2.33 (0.56)                      |
| Calvo prices $\zeta_p$                                      | beta  | 0.500 (0.730)     | 0.69 (0.05)           | 0.73 (0.06)                 | 0.81 (0.04)                      |
| Wage indexation $\iota_W$                                   | beta  | 0.500 (0.150)     | 0.62 (0.1)            | 0.61 (0.12)                 | 0.44 (0.09)                      |
| Price indexation $\iota_{\mathcal{D}}$                      | beta  | 0.500 (0.150)     | 0.26 (0.08)           | 0.29 (0.1)                  | 0.3 (0.09)                       |
| Capacity util.                                              | beta  | 0.500 (0.150)     | 0.59 (0.1)            | 0.54 (0.1)                  | 0.45 (0.08)                      |
| $1 + \frac{\text{Fix. cost}}{V} = 1 + \lambda_p$            |       | . ,               | , ,                   | , ,                         | , ,                              |
|                                                             | norm  | 1.250 (0.125)     | 1.64 (0.08)           | 1.63 (0.08)                 | 1.93 (0.06)                      |
| Taylor rule infl. $\psi_1$                                  | norm  | 1.500 (0.250)     | 2 (0.17)              | 2.1 (0.17)                  | 1.64 (0.19)                      |
| same, smoothing $\rho_R$                                    | beta  | 0.750 (0.100)     | 0.82 (0.02)           | 0.83 (0.02)                 | 0.92 (0.01)                      |
| same, LR gap $\psi_2$                                       | norm  | 0.125 (0.050)     | 0.09 (0.02)           | 0.12 (0.03)                 | 0.13 (0.03)                      |
| same, SR gap $\psi_3$                                       | norm  | 0.125 (0.050)     | 0.24 (0.03)           | 0.26 (0.03)                 | 0.2 (0.02)                       |
| Mean inflation (data)                                       | gamm  | 0.625 (0.100)     | 0.76 (0.09)           | 0.73 (0.12)                 | 0.56 (0.08)                      |
| 100×time pref.                                              | gamm  | 0.250 (0.100)     | 0.16 (0.05)           | 0.14 (0.04)                 | 0.11 (0.04)                      |
| Mean hours (data)                                           | norm  | 0.000 (2.000)     | 1.07 (0.95)           | 1.07 (1.16)                 | -0.25 (0.67)                     |
| Trend $(\mu - 1) * 100$                                     | norm  | 0.400 (0.100)     | 0.43 (0.02)           | 0.44 (0.01)                 | 0.48 (0.01)                      |
| Capital share $\alpha$                                      | norm  | 0.300 (0.050)     | 0.19 (0.02)           | 0.21 (0.01)                 | 0.24 (0.01)                      |
| Gov. adj. cost $S_{q}^{\prime\prime}(\mu)$                  | norm  | 0.000 (0.500)     | n/a                   | n/a                         | 6.85 (1.03)                      |
| Budget bal speed $\frac{\psi_{\mathcal{T}} - 0.025}{0.175}$ | beta  | 0.30 (0.20)       | n/a                   | n/a                         | 0.07 (0.05)                      |
| Implied $\psi_{	au}$                                        | n/a   | 0.078 (0.035)     | n/a                   | n/a                         | 0.0373 (0.01)                    |
| Mean gov. debt                                              | norm  | 0.000 (0.500)     | n/a                   | n/a                         | 0 (0.49)                         |
| Mean bond spread                                            | gamm  | 0.500 (0.100)     | n/a                   | n/a                         | 0.45 (0.05)                      |

Implied government share in production:  $\zeta = 2.30\%$ .

### Estimates – Shock processes

|                       | Prior | Prior mean (s.d.) | SW Model<br>66:1-08:4 | New investment<br>66:1-08:4 | Debt & Gov. Capital<br>49:2-08:4 |
|-----------------------|-------|-------------------|-----------------------|-----------------------------|----------------------------------|
| s.d. tech.            | invg  | 0.100 (2.000)     | 0.46 (0.03)           | 0.46 (0.03)                 | 0.46 (0.02)                      |
| AR(1) tech.           | beta  | 0.500 (0.200)     | 0.95 (0.01)           | 0.94 (0.01)                 | 0.94 (0.01)                      |
| s.d. bond             | invg  | 0.100 (2.000)     | 0.24 (0.03)           | 0.17 (0.02)                 | 0.97 (0.05)                      |
| AR(1) bond $\rho_q$   | beta  | 0.500 (0.200)     | 0.27 (0.1)            | 0.26 (0.07)                 | 0.68 (0.03)                      |
| s.d. gov't            | invg  | 0.100 (2.000)     | 0.54 (0.03)           | 0.3 (0.01)                  | 0.35 (0.02)                      |
| AR(1) gov't           | beta  | 0.500 (0.200)     | 0.98 (0.01)           | 0.99 (0.01)                 | 0.98 (0.01)                      |
| Cov(gov't, tech.)     | norm  | 0.500 (0.250)     | 0.53 (0.09)           | 0.36 (0.05)                 | 0.3 (0.05)                       |
| s.d. inv. price       | invg  | 0.100 (2.000)     | 0.43 (0.04)           | 1.17 (0.11)                 | 1.26 (0.11)                      |
| AR(1) inv. price      | beta  | 0.500 (0.200)     | 0.73 (0.06)           | 0.43 (0.07)                 | 0.55 (0.06)                      |
| s.d. mon. pol.        | invg  | 0.100 (2.000)     | 0.24 (0.02)           | 0.24 (0.01)                 | 0.23 (0.01)                      |
| AR(1) mon. pol.       | beta  | 0.500 (0.200)     | 0.16 (0.07)           | 0.14 (0.05)                 | 0.22 (0.06)                      |
| s.d. goods m-up       | invg  | 0.100 (2.000)     | 0.14 (0.01)           | 0.14 (0.01)                 | 0.31 (0.02)                      |
| AR(1) goods m-up      | beta  | 0.500 (0.200)     | 0.89 (0.04)           | 0.89 (0.05)                 | 0.91 (0.05)                      |
| MA(1) goods m-up      | beta  | 0.500 (0.200)     | 0.73 (0.08)           | 0.77 (0.07)                 | 0.96 (0.02)                      |
| s.d. wage m-up        | invg  | 0.100 (2.000)     | 0.26 (0.02)           | 0.26 (0.02)                 | 0.23 (0.02)                      |
| AR(1) wage m-up       | beta  | 0.500 (0.200)     | 0.97 (0.01)           | 0.97 (0.01)                 | 0.96 (0.02)                      |
| MA(1) wage m-up       | beta  | 0.500 (0.200)     | 0.91 (0.03)           | 0.91 (0.03)                 | 0.91 (0.04)                      |
| s.d. Tax shock        | invg  | 0.100 (2.000)     | n/a                   | n/a                         | 1.42 (0.07)                      |
| AR(1) tax shock       | beta  | 0.500 (0.200)     | n/a                   | n/a                         | 0.97 (0.01)                      |
| s.d. gov. inv. price  | invg  | 0.100 (2.000)     | n/a                   | n/a                         | 0.79 (0.09)                      |
| AR(1) gov. inv. price | beta  | 0.500 (0.200)     | n/a                   | n/a                         | 0.97 (0.01)                      |
| s.d. bond spread      | invg  | 0.100 (2.000)     | n/a                   | n/a                         | 0.08 (0)                         |
| AR(1) bond spread     | beta  | 0.500 (0.200)     | n/a                   | n/a                         | 0.91 (0.02)                      |

### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort. taxes and gov. capital.
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- 4 Results
  - Benchmark
  - Sensitivity analysis
- 5 The power of monetary policy?
- 6 Challenges
- Conclusion

## Historical Shock Decomposition: Output



Note: At posterior mean. 2007:4 is the NBER recession date.

### Historical Shock Decomposition: Interest rates



Note: At posterior mean. 2007:4 is the NBER recession date.

Decomposing the recession vs variance decomposition

| •              | 2008     | 3:4 vs. 2007:4   | Total Sample           |
|----------------|----------|------------------|------------------------|
|                | Historic | al decomposition | Variance decomposition |
| Shock          | %        | %                |                        |
| Gov. bond      | -3.75    | 81.52            | 6.50                   |
| Priv. bond     | -1.42    | 30.81            | 1.63                   |
| Technology     | 0.90     | -19.53           | 19.21                  |
| Price markup   | -0.73    | 15.86            | 8.59                   |
| Gov. spending  | 0.60     | -12.98           | 4.14                   |
| Priv. inv.     | -0.30    | 6.53             | 16.78                  |
| Labor tax      | -0.27    | 5.91             | 9.20                   |
| Monetary pol.  | 0.20     | -4.44            | 20.88                  |
| Wage Markup    | 0.15     | -3.18            | 8.16                   |
| Gov. inv.      | 0.03     | -0.73            | 4.92                   |
| Initial Values | -0.01    | 0.22             | n/a                    |
| Sum            | -4.60    | 100.00           | 100.01                 |

### Implied interest rate spread: Gov. bonds vs. FFR



Note: At posterior mean. 2007:4 is the NBER recession date.

### Government Bond Shock



Note: Response to a one standard deviation shock.

### Private-Government Bond Spread Shock



Note: Response to a one standard deviation shock.

### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- 2 Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort, taxes and gov, capital
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- 2 Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort. taxes and gov. capital
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

## ARRA impact on output: short-run ...



# ARRA impact on output: ... and long-run



## Debt: long-run



## Labor tax rates: long run



# Fiscal Multiplier: short and long run



### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort. taxes and gov. capital
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

# Lump sum vs distortionary taxation.



# Multiplier: Sensitivity Analysis



(Note: DU stimulus, posterior medians)

# Multiplier: Components



(Note: Components of DU stimulus, posterior medians, ZLB=8 qtrs.)

# One-year fiscal multipliers: sensitivity

| Scenario                              | 5 %  | 16.5 % | median | 83.5 % | 95 % |
|---------------------------------------|------|--------|--------|--------|------|
| Benchmark                             | 0.46 | 0.48   | 0.52   | 0.57   | 0.60 |
| lump-sum taxes                        | 0.55 | 0.57   | 0.61   | 0.66   | 0.70 |
| consumption taxes                     | 0.48 | 0.50   | 0.54   | 0.58   | 0.61 |
| ZLB: 0 Quart.                         | 0.17 | 0.20   | 0.23   | 0.27   | 0.30 |
| ZLB: 12 Quart.                        | 0.75 | 0.78   | 0.84   | 0.93   | 1.02 |
| ZLB: Endogenous                       | 0.51 | 0.54   | 0.60   | 0.69   | 0.78 |
| RoT=0.15                              | 0.39 | 0.42   | 0.46   | 0.49   | 0.52 |
| RoT=0.35                              | 0.47 | 0.54   | 0.59   | 0.64   | 0.69 |
| Share transfers to RoT= 0%            | 0.25 | 0.26   | 0.29   | 0.31   | 0.33 |
| Share transfers to RoT= 50%           | 0.65 | 0.69   | 0.75   | 0.81   | 0.85 |
| Share transfers to RoT= 100%          | 1.05 | 1.11   | 1.21   | 1.32   | 1.39 |
| Priv. capital share=0.35              | 0.44 | 0.47   | 0.52   | 0.57   | 0.61 |
| price/wage-stickiness=10% of estim.   | 0.05 | 0.07   | 0.11   | 0.14   | 0.16 |
| price/wage-stickiness=50% of estim.   | 0.35 | 0.38   | 0.42   | 0.47   | 0.50 |
| price/wage-stickiness=115% of estim.  | 0.44 | 0.46   | 0.50   | 0.53   | 0.56 |
| Budget balance: $\psi_{\tau} = 0.025$ | 0.48 | 0.51   | 0.54   | 0.58   | 0.61 |
| Budget balance: $\psi_{	au}=$ 0.05    | 0.43 | 0.46   | 0.49   | 0.53   | 0.56 |

# Long run fiscal multipliers as $t \to \infty$ : sensitivity

| Scenario                              | 5 %   | 16.5 % | median | 83.5 % | 95 %  |
|---------------------------------------|-------|--------|--------|--------|-------|
| Benchmark                             | -0.72 | -0.61  | -0.42  | -0.22  | -0.04 |
| lump-sum taxes                        | 0.34  | 0.44   | 0.60   | 0.78   | 0.94  |
| consumption taxes                     | -0.48 | -0.38  | -0.20  | -0.02  | 0.14  |
| ZLB: 0 Quart.                         | -1.30 | -1.18  | -1.03  | -0.87  | -0.73 |
| ZLB: 12 Quart.                        | -0.45 | -0.31  | -0.03  | 0.27   | 0.52  |
| ZLB: Endogenous                       | -0.56 | -0.43  | -0.19  | 0.14   | 0.57  |
| RoT=0.15                              | -0.91 | -0.79  | -0.63  | -0.43  | -0.26 |
| RoT=0.35                              | -0.59 | -0.44  | -0.24  | -0.04  | 0.18  |
| Share transfers to RoT= 0%            | -0.86 | -0.77  | -0.65  | -0.52  | -0.42 |
| Share transfers to RoT= 50%           | -0.64 | -0.50  | -0.24  | 0.03   | 0.29  |
| Share transfers to RoT= 100%          | -0.50 | -0.28  | 0.16   | 0.64   | 1.05  |
| Priv. capital share=0.35              | -1.13 | -0.98  | -0.76  | -0.51  | -0.27 |
| price/wage-stickiness=10% of estim.   | -0.96 | -0.87  | -0.75  | -0.62  | -0.52 |
| price/wage-stickiness=50% of estim.   | -0.78 | -0.69  | -0.58  | -0.46  | -0.37 |
| price/wage-stickiness=115% of estim.  | -0.91 | -0.76  | -0.56  | -0.33  | -0.12 |
| Budget balance: $\psi_{\tau} = 0.025$ | -0.70 | -0.58  | -0.40  | -0.21  | -0.04 |
| Budget balance: $\psi_{	au}=$ 0.05    | -0.77 | -0.66  | -0.49  | -0.30  | -0.13 |

# Sensitivity to RoTs and Transfers

|                                 | one year mult. |      |      | lor   | ng-run m | ult.  |
|---------------------------------|----------------|------|------|-------|----------|-------|
| Transfers = RoT fraction =      | 0.10           | 0.25 | 0.40 | 0.10  | 0.25     | 0.40  |
| Const. transfers/household:     | 0.33           | 0.54 | 0.82 | -0.62 | -0.31    | 0.12  |
| Transfers =0.25, RoT fraction = | 0.10           | 0.25 | 0.40 | 0.10  | 0.25     | 0.40  |
| Fixed absolute transfers        | 0.45           | 0.54 | 0.66 | -0.53 | -0.31    | -0.03 |
| RoT Share =0.25, Transfers =    | 0              | 0.25 | 1.00 | 0     | 0.25     | 1.00  |
| Fixed population share          | 0.31           | 0.54 | 1.23 | -0.51 | -0.31    | 0.29  |

Note: Multiplier not discounted with historical interest rate.

# Sensitivity to RoT share of transfers



## Sensitivity to RoT share of population



# Sensitivity to capital share: 0.24 vs 0.35.





## Sensitivity to price stickiness: scaling Calvo





## Sensitivity of long-run fiscal multiplier.



Note: Multiplier not discounted with historical interest rate.

#### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort, taxes and gov. capital.
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

## The shadow Taylor rule





## Sensitivity to ZLB: 8 quart. vs endog.



## Sensitivity to length of ZLB





## Changing ZLB length from 0 to *k*. No ARRA.

|                 | Output change (in %) |        |       | Inflation change (in %) |        |
|-----------------|----------------------|--------|-------|-------------------------|--------|
| ZLB imposed for | 1 yr                 | 5 yr's | NPV   | 1 yr                    | 5 yr's |
| k = 4 quarters  | -0.52                | -0.05  | -6.54 | 0.11                    | 0.03   |
| k = 8 quarters  | -0.81                | -0.07  | -9.68 | 0.06                    | -0.05  |
| k = 12 quarters | 0.87                 | 0.26   | 26.87 | 0.03                    | -0.01  |

Note: Posterior medians.

#### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort. taxes and gov. capital
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- 5 The power of monetary policy?
- 6 Challenges
- Conclusion

#### Challenges going forward

- Ramsey-Mirrlees and New Public Finance versus Quantitative Macro Public Finance. Rules of the Game?
- How rich do the models have to be?
  - Agent heterogeneity?
  - Nonlinear tax schedules?
  - Range of public finance tools?
  - Policy feedback rules?
  - Financial sector?
- ZLB: nonlinear solution and simulation methods ("occasionally binding constraints") for stochastic models.
- VARs: identification of public finance shocks.
  - Blanchard-Perotti, Mountford-Uhlig, Ramey
  - Leeper-Yang-Walker: non-fundamental shocks!
- VARs with ZLB / 2009-2011: linear? Regime changes?
- Money-Fiscal interaction. Fiscal theory of the price level?
- Mow to get policy makers use this?

#### **Outline**

- Fiscal Stimulus 2009 and its Aftermath
- 2 Fiscal Stimulus: The Keynesian Textbook
- An NK model with distort, taxes and gov, capital
  - Estimation and Historical Shocks
  - Explaining the financial crisis
- Results
  - Benchmark
  - Sensitivity analysis
- The power of monetary policy?
- 6 Challenges
- Conclusion

#### Conclusions

- We have quantified the size, uncertainty and sensitivity of fiscal multipliers in response to the American Recovery and Reinvestment Act (ARRA) of 2009.
- Smets-Wouters meets CCWT meets Uhlig, extended.
- Long run: debt repayment, higher taxes, lower output.
- Benchmark:
  - modestly positive short-run multipliers, post. mean: 0.52.
  - modestly negative long-run multipliers, post mean: -0.42.
- Particularly sensitive to
  - fraction of transfers to RoTs.
  - ▶ Length of ZLB.
- Monetary policy is very powerful!