Weather, climate and the economy

Richard S.J. Tol
University of Sussex
Vrije Universiteit, Amsterdam
Tinbergen Institute
CESifo
Payne Institute
Climate matters

• Climate matters to the economy
• If not, climate change would not matter
• This is not the same as climate determinism
 • 管仲 (Guan Zhong), Hippocrates, Aristotle, Ibn Khaldun, Huntington, Diamond all argue that geography is destiny, that the character of a people, and hence its success is determined solely by the prevailing environmental conditions
Climate matters

• Mainstream economists are institutional determinists
 • The only thing that matters to humans are other humans (Easterly & Levine JME 2003; Rodrik, Subramanian & Trebbi JEG 2004)
 • Climate mattered in shaping institutions, but is no longer relevant now (Acemoglu, Johnson & Robinson AER 2001; Alsan AER 2015)
• If true, climate change is irrelevant in the long run, perhaps matters in transition
Climate matters

- Climate matters for agriculture, for energy demand, for tourism, for health, for labour productivity
- Climate explains, in part, the income distribution within countries (Nordhaus *PNAS* 2006; Henderson, Squires, Storeygard & Weil *QJE* 2018)

- Identification is problematic
 - Climate varies slowly over time, many confounders
 - Climate varies strongly over space, many confounders
Weather and economic output

- Weather is random from an economic perspective, and claims of causality are readily made

- Weather affects many economic activities that in turn affect one another
Weather and economic growth

• Weather shocks affect growth
 • More so in poor countries (Dell, Jones & Olken AER 2009, AEJ Macro 2012; Letta & Tol ERE 2018)
 • More so in hot countries (Burke, Hsiang & Miguel Nature 2015; Burke, Davis & Diffenbaugh Nature 2018)

• Cross-validation somewhat favours specifications in which weather affects the level of economic activity rather than its growth rate (Newell, Prest & Sexton RFF 2018)
Weather and economic output

• Problematic extrapolation from weather to climate (Dell et al. *JEL* 2014)
 • Climate is what you expect, weather is what you get
 • Response to weather shocks is limited: Put up an umbrella, close the flood gates
 • Adaptation to climate is extensive: Buy an umbrella, build flood gates

• Conditions for weather impacts to inform climate impacts are strict (Deryugina & Hsiang *NBER* 2017) or very strict (Lemoine *NBER* 2018)

• There are also papers that apply climate change impact functions to weather shocks (Cai & Lontzek *JPE* 2019; Caleb, Chapman, Stainforth & Watkins *Nat Comm* 2020)
Contribution

• Simultaneously model impacts of *climate* and *weather* on economic activity
• Climate impacts production potential
 • Denmark is good for Holsteiners, bad for rice
 • Thailand is good for rice, bad for Holsteiners
• Weather shocks are lost potential
 • Crop failure
 • Disruptions of production and transport
• Climate in production frontier, weather as a source of inefficiency
• Stochastic Frontier Analysis
Data

- DepVar: Output per worker (Penn World Tables 9.0)
- 1950-2014, 160 countries
- Frontier: Capital per worker (PWT 9.0), 30-year average temperature and rainfall, gridded data (University of Delaware 2014), aggregated using population weights
- Inefficiency: temperature and rainfall anomalies (absolute values of level differences from long-run averages, normalized by dividing by the long-run standard deviation)
Stochastic frontier analysis

• Production efficiency, a frontier that cannot be exceeded but is imperfectly observed
• Deviations from this extreme represent inefficiencies, inframarginal producers that would up their game or go bankrupt later
• Composite error term: two-sided idiosyncratic error plus a one-sided error that represents inefficiency
• Originally developed for cross-sectional data (Aigner, Lovell and Schmidt, 1977; Meeusen & Van den Broeck, 1977)
 • Panel data (Pitt & Lee, 1981; Battese & Coelli, 1988)
 • Time-varying inefficiency (Kumbhakar, 1990; Battese & Coelli, 1992; Greene, 2005)
 • Explanatory variables for inefficiency (Kumbhakar et al. 1991; Wang, 2002; Wang & Schmidt, 2002; Greene, 2005)
Econometrics

• True fixed-effects (TFE) model (Greene 2005): a SF approach for panel data with fixed effects – allows to disentangle time-varying inefficiency from individual unobserved heterogeneity

• Frontier

\[
\ln(y_{it}) = \beta_1 \ln(k_{it}) + \beta_2 \bar{T}_{it} + \beta_3 \bar{T}_{it}^2 + \beta_3 \bar{P}_{it} + \beta_4 \bar{P}_{it}^2 + \beta_5 t + \theta_i + \nu_{it} - u_{it}
\]

• Inefficiency

\[
\sigma_{it}^2 = \lambda_i + \lambda_1 \left[\frac{T_{it} - \bar{T}_{it}}{\tau_t} \right] + \lambda_2 \left[\frac{P_{it} - \bar{P}_{it}}{\pi_t} \right]
\]

\[
E(u_{it}) = \sigma_{it} \sqrt{2/\pi} ; \text{Var}(u_{it}) = \sigma_{it}^2 (1 - 2/\pi)
\]
Estimation

• Computationally cumbersome, issues with convergence in ML estimation
• Stata, SFMODEL (Kumbhakar et al. 2015)
 • Avoid SFCROSS and particularly SFPANEL (Belotti et al. 2013)
• Exponential as robustness
• Squared anomalies, asymmetries as robustness
• Heterogeneity in income vs climate

• Key concern: Non-stationarity
<table>
<thead>
<tr>
<th>Frontier</th>
<th>Capital</th>
<th>0.616***</th>
<th>(0.008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td>0.181***</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Temperature squared</td>
<td></td>
<td>-0.006***</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Rainfall</td>
<td></td>
<td>0.007</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Rainfall squared</td>
<td></td>
<td>-0.0005</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>Temp * poor</td>
<td></td>
<td>0.325**</td>
<td>(0.147)</td>
</tr>
<tr>
<td>Temp squared * poor</td>
<td></td>
<td>-0.005*</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Rain * poor</td>
<td></td>
<td>0.024</td>
<td>(0.036)</td>
</tr>
<tr>
<td>Rain squared * poor</td>
<td></td>
<td>0.001</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Inefficiency</td>
<td>Abs temp anomaly</td>
<td>-0.053</td>
<td>(0.036)</td>
</tr>
<tr>
<td>Abs rain anomaly</td>
<td></td>
<td>-0.086**</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Temp * poor</td>
<td></td>
<td>0.193***</td>
<td>(0.058)</td>
</tr>
<tr>
<td>Rain * poor</td>
<td></td>
<td>0.272***</td>
<td>(0.066)</td>
</tr>
</tbody>
</table>
Baseline results - Frontier

• Shallow parabola in temperature for rich countries, steep one in poor countries

• Rainfall has no effect

• Robust, except for definition of poor
Further tests

- Same qualitative results if interaction of temperature with capital per worker replaces poverty dummy
- Polity IV does not do much
<table>
<thead>
<tr>
<th></th>
<th>poor</th>
<th>v</th>
<th>hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inefficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs temp anomaly</td>
<td>-0.053</td>
<td>(0.036)</td>
<td>-0.062</td>
</tr>
<tr>
<td>Abs rain anomaly</td>
<td>-0.086**</td>
<td>(0.041)</td>
<td>-0.109**</td>
</tr>
<tr>
<td>Temp * poor</td>
<td>0.193***</td>
<td>(0.058)</td>
<td>0.183***</td>
</tr>
<tr>
<td>Rain * poor</td>
<td>0.272***</td>
<td>(0.066)</td>
<td>0.257***</td>
</tr>
<tr>
<td>Temp * hot</td>
<td></td>
<td></td>
<td>0.071</td>
</tr>
<tr>
<td>Rain * hot</td>
<td></td>
<td></td>
<td>0.098</td>
</tr>
</tbody>
</table>
Baseline results - Inefficiency

• Temperature and rainfall shocks are bad for poor countries
 • Not for hot countries, poor countries
• Positive effect of unusual rain in rich countries
 • Puzzling
 • Perhaps GDP v NDP
 • Perhaps inflation
Non-stationarity

• Both the dependent variable and the variables of interest are non-stationary
• Both error terms are assumed to be stationary
• Unfortunately, there are no tests for cointegration for stochastic frontier models, let alone panel cointegration
• Stochastic frontier panels are hard to estimate, so we opted for
 • country fixed effects, a joint linear trend in the frontier
 • country fixed effects in inefficiency
residual averaged across countries
inefficiency averaged across countries
total error
Remedies

• Recast model as error-correction

• Sample split
 • Split sample by decade
 • Re-estimate model
 • Shrink decadal estimates

• If non-stationarity would influence parameter estimates, the shrunk parameters would be different
<table>
<thead>
<tr>
<th>Frontier</th>
<th>Whole sample</th>
<th>Decadal split, shrunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>0.616***</td>
<td>0.587***</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.181***</td>
<td>0.169***</td>
</tr>
<tr>
<td>Temp squared</td>
<td>-0.006***</td>
<td>-0.005***</td>
</tr>
<tr>
<td>Rainfall</td>
<td>0.007</td>
<td>0.003</td>
</tr>
<tr>
<td>Rainfall squared</td>
<td>-0.0005</td>
<td>-0.0001</td>
</tr>
<tr>
<td>Temp * poor</td>
<td>0.325**</td>
<td>0.382***</td>
</tr>
<tr>
<td>Temp sq * poor</td>
<td>-0.005*</td>
<td>-0.000</td>
</tr>
<tr>
<td>Rain * poor</td>
<td>0.024</td>
<td>-0.103*</td>
</tr>
<tr>
<td>Rain sq * poor</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Inefficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs temp</td>
<td>-0.053</td>
<td>-0.035</td>
</tr>
<tr>
<td>Abs rain</td>
<td>-0.086**</td>
<td>-0.125**</td>
</tr>
<tr>
<td>Temp * poor</td>
<td>0.193***</td>
<td>0.101*</td>
</tr>
<tr>
<td>Rain * poor</td>
<td>0.272***</td>
<td>0.429***</td>
</tr>
</tbody>
</table>
Error correction

• Climate in equilibrium, weather in growth
 \[
 \ln(y_{it}) = \beta_1 \ln(k_{it}) + \beta_2 \bar{T}_{it} + \beta_3 \bar{T}_{it}^2 + \beta_3 \bar{P}_{it} + \beta_4 \bar{P}_{it}^2 \\
 + \beta_5 t + \theta_i + \nu_{it}
 \]

\[
 \Delta \ln(y_{it}) = \lambda_1 \hat{\nu}_{it} + \lambda_2 \left| \frac{T_{it} - \bar{T}_{it}}{\tau_t} \right| + \lambda_3 \left| \frac{P_{it} - \bar{P}_{it}}{\pi_t} \right| \\
 + \lambda_4 t + \vartheta_i + \upsilon_{it}
 \]

• Long-run
 • Parabolic relationship with temperature, stronger in poor countries
 • Too much water is bad for rich countries, too little for poor countries

• Short-run
 • Rainfall shocks reduce growth in poor countries
 • No effect in rich countries
Findings

• Climate affects the production potential of economies
• Weather affects economic activity
• Stronger effects in poor countries
Implications

• Schelling Conjecture holds

• Studies that regress income on climate should account for weather-induced heteroskedasticity

• In a short panel or cross-section, there is a good chance of bias

• Studies that regress growth on weather should account for lagged variables, because if our specification is correct, economies bounce back quickly
Thank you!