Discussion of Dynan, Elmendorf and Sichel

‘Financial Innovation and the Great Moderation: What do Household Data Say’

Paul Willen (with help from Kris Gerardi)

November 16, 2006
Introduction
Introduction

I am grateful to the organizers for inviting me for three reasons.
I am grateful to the organizers for inviting me for three reasons.

First, I got an excuse to read an interesting paper.
Introduction

- I am grateful to the organizers for inviting me for three reasons.
- First, I got an excuse to read an interesting paper.
Second, I got to visit this fair city.
Second, I got to visit this fair city.
Third, the conference explained my absence at...
Third, the conference explained my absence at...
Very interesting paper and relevant to almost everything I do.
Overview

- Very interesting paper and relevant to almost everything I do.
- Intellectually: Relevant to many projects I’ve worked on
Very interesting paper and relevant to almost everything I do.
Intellectually: Relevant to many projects I’ve worked on
Policy Work
Very interesting paper and relevant to almost everything I do.

Intellectually: Relevant to many projects I’ve worked on

1. Policy Work
2. Research
Overview

- Very interesting paper and relevant to almost everything I do.
- Intellectually: Relevant to many projects I’ve worked on
 1. Policy Work
 2. Research
 3. Teaching
Overview

- Very interesting paper and relevant to almost everything I do.
- Intellectually: Relevant to many projects I’ve worked on
 1. Policy Work
 2. Research
 3. Teaching
- Practically: I could re-use slides from other presentations
Authors make two points:
Authors make two points:

1. Changing joint distribution of household income.
Authors make two points:

1. Changing joint distribution of household income.
2. Consumption, income and imperfect credit markets.
Authors make two points:

1. Changing joint distribution of household income.
2. Consumption, income and imperfect credit markets.

I will devote a little time to 1 and more to 2.
Authors do a careful job exploring changes in the distribution of income in the PSID.
Authors do a careful job exploring changes in the distribution of income in the PSID. Variance of income at the *household* level has gone *up*.
Authors do a careful job exploring changes in the distribution of income in the PSID.

1. Variance of income at the household level has gone up.
2. Covariance of income across households has gone down.
Authors do a careful job exploring changes in the distribution of income in the PSID

1. Variance of income at the household level has gone up.
2. Covariance of income across households has gone down.
3. Variance of income at the aggregate level has gone down.
Authors do a careful job exploring changes in the distribution of income in the PSID

1. variance of income at the *household* level has gone *up*.
2. covariance of income across *households* has gone *down*.
3. variance of income at the *aggregate* level has gone *down*.

Essentially effect 2 more than cancels out effect 1 in the aggregate.
Authors do a careful job exploring changes in the distribution of income in the PSID

1. Variance of income at the *household* level has gone *up*.
2. Covariance of income across *households* has gone *down*.
3. Variance of income at the *aggregate* level has gone *down*.

Essentially effect 2 more than cancels out effect 1 in the aggregate.

What does this say about financial innovation?
Authors do a careful job exploring changes in the distribution of income in the PSID

1. variance of income at the *household* level has gone *up*.
2. covariance of income across *households* has gone *down*.
3. variance of income at the *aggregate* level has gone *down*.

Essentially effect 2 more than cancels out effect 1 in the aggregate.

What does this say about financial innovation?

- Nothing on the face of it.
Authors do a careful job exploring changes in the distribution of income in the PSID

1. variance of income at the household level has gone up.
2. covariance of income across households has gone down.
3. variance of income at the aggregate level has gone down.

Essentially effect 2 more than cancels out effect 1 in the aggregate.

What does this say about financial innovation?

- Nothing on the face of it.
- Financial assets intermediate between consumption and income.
Changing joint distribution of household income
Consumption, income and imperfect credit markets

(1) Youth (21-35)
- Start
 - Income: $30,000 a year
 - (H) High Income
 - Income: $100,000 a year
 - (L) Low Income
 - Income: $50,000 a year

(2) Prime Earning Years (36-65)
- (H) High Income
 - Expenses: $5,000 a year
 - (HB) Bad Health
 - Expenses: $15,000 a year
- (L) Low Income
 - Expenses: $5,000 a year
 - (LB) Bad Health
 - Expenses: $15,000 a year

(3) Retirement (66-80)
- (HG) Good Health
- (LG) Good Health
- (LB) Bad Health

Paul Willen (with help from Kris Gerardi)
Discussion of Dynan, Elmendorf and Sichel
Financial assets allow us to move consumption around
Financial assets allow us to move consumption around

1. Borrowing
Financial assets allow us to move consumption around

1. Borrowing
2. Health insurance
Financial assets allow us to move consumption around

1. Borrowing
2. Health insurance
3. “Income insurance”
Financial assets allow us to move consumption around

1. Borrowing
2. Health insurance
3. "Income insurance"

Income distribution given

Paul Willen (with help from Kris Gerardi)
Discussion of Dynan, Elmendorf and Sichel
But I’d like to argue that they may say something.
But I’d like to argue that they may say something.

Theory 1: Financial innovations led to changes in the income distribution:
But I’d like to argue that they may say something.

Theory 1: Financial innovations led to changes in the income distribution:

Because of financial innovations, households are more willing to engage is risky activities, knowing that they can smooth shocks more easily.
But I’d like to argue that they may say something.

Theory 1: Financial innovations *led* to changes in the income distribution:
- Because of financial innovations, households are more willing to engage in risky activities, knowing that they can smooth shocks more easily.

Theory 2: Changes in the income distribution *led* to the financial innovations.
But I’d like to argue that they may say something.

Theory 1: Financial innovations led to changes in the income distribution:

- Because of financial innovations, households are more willing to engage in risky activities, knowing that they can smooth shocks more easily.

Theory 2: Changes in the income distribution led to the financial innovations.

- In the “old days”, households faced relatively small but highly correlated shocks: scope for risk-sharing is limited.
But I’d like to argue that they may say something.

Theory 1: Financial innovations *led* to changes in the income distribution:

- Because of financial innovations, households are more willing to engage in risky activities, knowing that they can smooth shocks more easily.

Theory 2: Changes in the income distribution *led* to the financial innovations.

- In the “old days”, households faced relatively small but highly correlated shocks: scope for risk-sharing is limited.
- In the “new days”, households face large shocks which are uncorrelated: returns to innovations much higher.
But I’d like to argue that they may say something.

Theory 1: Financial innovations *led* to changes in the income distribution:
- Because of financial innovations, households are more willing to engage in risky activities, knowing that they can smooth shocks more easily.

Theory 2: Changes in the income distribution *led* to the financial innovations.
- In the “old days”, households faced relatively small but highly correlated shocks: scope for risk-sharing is limited.
- In the “new days”, households face large shocks which are uncorrelated: returns to innovations much higher.

Natural risk-sharing opportunity:
But I’d like to argue that they may say something.

Theory 1: Financial innovations *led* to changes in the income distribution:
- Because of financial innovations, households are more willing to engage in risky activities, knowing that they can smooth shocks more easily.

Theory 2: Changes in the income distribution *led* to the financial innovations.
- In the “old days”, households faced relatively small but highly correlated shocks: scope for risk-sharing is limited.
- In the “new days”, households face large shocks which are uncorrelated: returns to innovations much higher.

Natural risk-sharing opportunity:
- Big individual risks
But I’d like to argue that they may say something.

Theory 1: Financial innovations led to changes in the income distribution:
- Because of financial innovations, households are more willing to engage in risky activities, knowing that they can smooth shocks more easily.

Theory 2: Changes in the income distribution led to the financial innovations.
- In the “old days”, households faced relatively small but highly correlated shocks: scope for risk-sharing is limited.
- In the “new days”, households face large shocks which are uncorrelated: returns to innovations much higher.

Natural risk-sharing opportunity:
- Big individual risks
- Small community risks
Consumption, income and imperfect credit markets
Authors measure changes in the relationship between income growth and consumption growth.
Authors measure changes in the relationship between income growth and consumption growth.

Changes consistent with “less imperfect credit markets.”
Consumption, income and imperfect credit markets

- Authors measure changes in the relationship between income growth and consumption growth.
- Changes consistent with “less imperfect credit markets.”
- Three points:
Authors measure changes in the relationship between income growth and consumption growth.

Changes consistent with “less imperfect credit markets.”

Three points:

1. Financial innovation and the $\Delta C - \Delta Y$ relationship.
Authors measure changes in the relationship between income growth and consumption growth.

Changes consistent with “less imperfect credit markets.”

Three points:

1. Financial innovation and the $\Delta C - \Delta Y$ relationship.
2. Problem of omitted variables.
Authors measure changes in the relationship between income growth and consumption growth.

Changes consistent with “less imperfect credit markets.”

Three points:

1. Financial innovation and the $\Delta C - \Delta Y$ relationship.
2. Problem of omitted variables.
3. Splitting the sample
Marginal Rate of Substitution
Marginal Rate of Substitution

- Rate at which you would trade future for current consumption
Marginal Rate of Substitution

- Rate at which you would trade future for current consumption

\[MRS = \frac{u'(c_0)}{u'(c_1)} \]
Marginal Rate of Substitution

- Rate at which you would trade future for current consumption
 \[MRS = \frac{u'(c_0)}{u'(c_1)} \]

- Key insight: If household is unconstrained with respect to asset \(i \) then,
Marginal Rate of Substitution

- Rate at which you would trade future for current consumption

\[MRS = \frac{u'(c_0)}{u'(c_1)} \]

- Key insight: If household is unconstrained with respect to asset \(i \) then,

\[1 + r_i = MRS = (1 + \delta) \frac{c_1}{c_0} \]
Marginal Rate of Substitution

- Rate at which you would trade future for current consumption

\[MRS = \frac{u'(c_0)}{u'(c_1)} \]

- Key insight: If household is unconstrained with respect to asset \(i \) then,

\[1 + r_i = MRS = (1 + \delta) \frac{c_1}{c_0} \]

- With log utility and subjective discount rate \(\delta \):

Paul Willen (with help from Kris Gerardi) Discussion of Dynan, Elmendorf and Sichel
Marginal Rate of Substitution

- Rate at which you would trade future for current consumption

\[MRS = \frac{u'(c_0)}{u'(c_1)} \]

- Key insight: If household is unconstrained with respect to asset \(i \) then,

\[1 + r_i = MRS = (1 + \delta) \frac{c_1}{c_0} \]

- With log utility and subjective discount rate \(\delta \):

\[1 + r_i = (1 + \delta) \frac{c_1}{c_0} \]
Understanding the $\Delta C - \Delta Y$ relationship
“The portfolio stairs” (Kubler and Willen (2006))

$\Delta Y = Y_1 / Y_0$
Understanding the $\Delta C - \Delta Y$ relationship

“The portfolio stairs” (Kubler and Willen (2006))

$\Delta Y = Y_1 / Y_0$

- With no credit market imperfections
Understanding the $\Delta C - \Delta Y$ relationship

“The portfolio stairs” (Kubler and Willen (2006))

$\Delta Y = Y_1 / Y_0$

- With no credit market imperfections
- Borrower is never constrained
Understanding the $\Delta C - \Delta Y$ relationship

“The portfolio stairs” (Kubler and Willen (2006))

$\Delta Y = Y_1 / Y_0$

- With no credit market imperfections
- Borrower is never constrained
- MRS and thus consumption growth always the same.
Understanding the $\Delta C - \Delta Y$ relationship

“The portfolio stairs” (Kubler and Willen (2006))

$\Delta Y = Y_1 / Y_0$

- If we introduce a borrowing constraint

Paul Willen (with help from Kris Gerardi)

Discussion of Dynan, Elmendorf and Sichel
Understanding the ΔC-ΔY relationship

“The portfolio stairs” (Kubler and Willen (2006))

\[\Delta Y = \frac{Y_1}{Y_0} \]

- If we introduce a borrowing constraint
- For low income growth, ΔC independent of ΔY.

Paul Willen (with help from Kris Gerardi)

Discussion of Dynan, Elmendorf and Sichel
Understanding the $\Delta C - \Delta Y$ relationship
“The portfolio stairs” (Kubler and Willen (2006))

If we introduce a borrowing constraint
- For low income growth, ΔC independent of ΔY.
- For high income growth and for population, presto!

$\Delta Y = Y_1/Y_0$
Understanding the ΔC-ΔY relationship

“The portfolio stairs” (Kubler and Willen (2006))

- If we introduce a borrowing constraint
- For low income growth, ΔC independent of ΔY.
- For high income growth and for population, presto!

MRS

2%

4%

8%

12%

Higher income growth
Understanding the $\Delta C - \Delta Y$ relationship

“The portfolio stairs” (Kubler and Willen (2006))

- If we introduce a borrowing constraint
- For low income growth, ΔC independent of ΔY.
- For high income growth and for population, presto!

Paul Willen (with help from Kris Gerardi) Discussion of Dynan, Elmendorf and Sichel
But people can borrow:
But people can borrow:

- Mortgages.
Credit Cards
Loan sharks
○ Loan sharks
More realistic credit markets

\[\frac{Y_1}{Y_0} \]

\[\text{MRS} \]

2\%
4\%
8\%
12\%
More realistic credit markets

The portfolio stairs

Paul Willen (with help from Kris Gerardi) Discussion of Dynan, Elmendorf and Sichel
More realistic credit markets

- The portfolio stairs
- Higher income growth leads one to stop saving and...
More realistic credit markets

- The portfolio stairs
- Higher income growth leads one to stop saving and...
- Borrowing at progressively higher rates and you exhaust capacity for each type of borrowing.
More realistic credit markets

- The portfolio stairs
- Higher income growth leads one to stop saving and...
- Borrowing at progressively higher rates and you exhaust capacity for each type of borrowing.

Paul Willen (with help from Kris Gerardi)

Discussion of Dynan, Elmendorf and Sichel
More realistic credit markets

The portfolio stairs
- Higher income growth leads one to stop saving and...
- Borrowing at progressively higher rates and you exhaust capacity for each type of borrowing.

Paul Willen (with help from Kris Gerardi)
Discussion of Dynan, Elmendorf and Sichel
More realistic credit markets

![Graph showing MRS vs. \(\frac{Y_1}{Y_0}\)]
More realistic credit markets

Higher income growth leads to

Paul Willen (with help from Kris Gerardi)
More realistic credit markets

- Higher income growth leads to
- a higher MRS
Higher income growth leads to
a higher MRS
which means higher consumption growth

Paul Willen (with help from Kris Gerardi)
Discussion of Dynan, Elmendorf and Sichel
Financial innovation: Lenders improve the terms
Financial Innovation

- Financial innovation: Lenders improve the terms
 - Higher limits

Paul Willen (with help from Kris Gerardi) Discussion of Dynan, Elmendorf and Sichel
Financial Innovation

- Financial innovation: Lenders improve the terms
 - Higher limits
 - Lower interest rates
Financial Innovation

- Financial innovation: Lenders improve the terms
 - Higher limits
 - Lower interest rates
- Weaker $\Delta C - \Delta Y$ relationship.
Problem of omitted variables

\[\Delta Y = \frac{Y_1}{Y_0} \]
Problem of omitted variables

\[\Delta Y = Y_1 / Y_0 \]

- Other things shift portfolio stairs.

Paul Willen (with help from Kris Gerardi)
Discussion of Dynan, Elmendorf and Sichel
Problem of omitted variables

\[\Delta Y = Y_1 / Y_0 \]

- Other things shift portfolio stairs.
- Wealth
Problem of omitted variables

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Other things shift portfolio stairs.
- Wealth
 - higher wealth shifts stairs to the right.
Problem of omitted variables

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Other things shift portfolio stairs.
- Wealth
 - higher wealth shifts stairs to the right.
 - for given income growth, borrow less.
Problem of omitted variables

\[\Delta Y = \frac{Y_1}{Y_0} \]

Preferences
Problem of omitted variables

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Preferences
- Discount rate
Problem of omitted variables

- Preferences
- Discount rate
 - more patient shifts stairs to the right.

\[\Delta Y = \frac{Y_1}{Y_0} \]
Problem of omitted variables

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Preferences
- Discount rate
 - more patient shifts stairs to the right.
 - for given income growth, borrow less.

Paul Willen (with help from Kris Gerardi)
Discussion of Dynan, Elmendorf and Sichel
Problem of omitted variables

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Is this a problem?
Problem of omitted variables

Is this a problem?
Not necessarily
Problem of omitted variables

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Is this a problem?
- Not necessarily
 - If increase in wealth among high income growth types.

Paul Willen (with help from Kris Gerardi)
Discussion of Dynan, Elmendorf and Sichel
Problem of omitted variables

\[\Delta Y = Y_1 / Y_0 \]

- Is this a problem?
- Not necessarily
 - If increase in wealth among high income growth types.
 - Will reduce sensitivity of consumption to income.
Splitting the sample

\[\Delta Y = \frac{Y_1}{Y_0} \]

Paul Willen (with help from Kris Gerardi)
Discussion of Dynan, Elmendorf and Sichel
Splitting the sample

Credit constraints not only possible explanation
Splitting the sample

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Credit constraints not only possible explanation
- Myopia

Paul Willen (with help from Kris Gerardi) Discussion of Dynan, Elmendorf and Sichel
Changing joint distribution of household income
Consumption, income and imperfect credit markets

Financial innovation and the $\Delta C = \Delta Y$ relationship
Problem of omitted variables
Splitting the sample

Splitting the sample

$\Delta Y = Y_1/Y_0$

- Credit constraints not only possible explanation
- Myopia
- But credit constraints generate a non-linear relationship
Splitting the sample

\[\Delta Y = Y_1 / Y_0 \]

- Credit constraints not only possible explanation
- Myopia
- But credit constraints generate a non-linear relationship
 - Can test by splitting the sample.
Splitting the sample

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Credit constraints not only possible explanation
- Myopia
- But credit constraints generate a non-linear relationship
 - Can test by splitting the sample.
 - Typically done at \(\Delta Y = 0 \) (arbitrary)
Splitting the sample

Financial innovation implies:

Paul Willen (with help from Kris Gerardi)

Discussion of Dynan, Elmendorf and Sichel
Splitting the sample

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Financial innovation implies:
 - Bigger changes for higher growth rates.

Paul Willen (with help from Kris Gerardi)

Discussion of Dynan, Elmendorf and Sichel
Splitting the sample

Financial innovation implies:

- Bigger changes for higher growth rates.
- Bigger change $\Delta Y - \Delta C$ relationship for high growth.

$\Delta Y = Y_1/Y_0$
Splitting the sample

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Omitted variables?
Splitting the sample

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Omitted variables?
- More serious
Intro
Changing joint distribution of household income
Consumption, income and imperfect credit markets

Financial innovation and the $\Delta C = \Delta Y$ relationship
Problem of omitted variables
Splitting the sample

Splitting the sample

$\Delta Y = Y_1/Y_0$

- Omitted variables?
- More serious
- Increasing wealth, for example, implies the same thing.

Paul Willen (with help from Kris Gerardi) Discussion of Dynan, Elmendorf and Sichel
Splitting the sample

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Omitted variables?
- More serious
- Increasing wealth, for example, implies the same thing.
- Households wealthier after 1985 than before
Splitting the sample

\[\Delta Y = \frac{Y_1}{Y_0} \]

- Omitted variables?
- More serious
- Increasing wealth, for example, implies the same thing.
- Households wealthier after 1985 than before
 - 15% higher \(W/Y \) according to Flow of Funds.

Paul Willen (with help from Kris Gerardi) Discussion of Dynan, Elmendorf and Sichel
Conclusion
Paper clearly a bit rough right now.
Conclusion

- Paper clearly a bit rough right now.
- But it has the potential to illuminate both the causes and consequences of financial innovation.