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A Bootstrap bias correction

The bootstrap has become a common method for correcting small-sample mean bias.1 Here
we detail the steps for bias-corrected estimation of the VAR specified in the paper.

Denote the demeaned observations by X̃t = Xt − T−1
∑T

i=1Xi, and let B denote the
number of bootstrap samples. The algorithm for mean bias correction using the bootstrap is
as follows:

1. Estimate the model by OLS and save the OLS estimates θ̂ = vec(Φ̂) and the residuals.
Set b = 1.

2. Generate bootstrap sample b using the residual bootstrap: Resample the OLS residuals,
denoting the bootstrap residuals by u∗

t . Randomly choose a starting value among the T
observations. For t > 1, construct the bootstrap sample using X̃∗

t = Φ̂X̃∗

t−1 + u∗

t .

3. Calculate the OLS estimates on bootstrap sample b and denote it by θ̂∗b .

4. If b < B then increase b by one and return to step two.

5. Calculate the average over all samples as θ̄∗ = B−1
∑B

b=1 θ̂
∗

b .

6. Calculate the bootstrap bias-corrected estimate as

θ̃B = θ̂ −
[

θ̄∗ − θ̂
]

= 2θ̂ − θ̄∗.

For large B, the estimated bias θ̄∗ − θ̂ will be close to bT (θ̂). The motivation for this
approach comes from the fact that E(bT (θ̂T )) = bT (θ0) +O(T−2), thus we can reduce the bias
to order T−2 by using this bias correction (Horowitz, 2001).
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If the bias were constant in a neighborhood around θ0 that contains θ̂, this procedure would
eliminate the bias (up to simulation error), which prompted MacKinnon and Smith (1998) to
call this a “constant-bias-correcting” (CBC) estimator. In general, however, the bias function
is not constant, thus the bootstrap will systematically get the bias estimate wrong. Differently
put, this method only removes first order bias. To obtain higher accuracy and remove high-
order bias, one can use the iterated bootstrap (Hall, 1992), but the computational burden
quickly becomes prohibitively costly.

B Indirect inference bias correction

The idea of bias-correcting indirect inference estimation of θ0 is to choose that parameter
value which yields a distribution of the OLS estimator with a mean equal to the OLS estimate
in the actual data (Gourieroux et al., 2000). Define gT (θ) = Eθ(θ̂T ), the mean of the OLS
estimator if the data are generated under θ. The bias-corrected estimator of θ0 is the value of
θ that solves

gT (θ) = θ̂T . (1)

We denote this bias-corrected estimator by θ̃T . MacKinnon and Smith (1998) call this esti-
mator a “nonlinear-bias-correcting” (NBC) estimator, and point out that it is not unbiased.
We have

Eθ0(θ̃T ) = Eθ0(g
−1
T (θ̂T )) 6= g−1

T (Eθ0(θ̂T )) = g−1
T (gT (θ0)) = θ0,

except for the unlikely special case that the bias function is linear, since the expectation
operator does not go through nonlinear functions.

For identifiability, i.e., for a unique solution of 1 to exist, we need gT (·) to be uniformly
continuous and one-to-one (injective) in a neighborhood around θ0 that includes θ̂T . Since
the function gT (θ) is not known analytically, a proof that these conditions are fulfilled is not
possible. However, intuition and simulation exercises (not shown) suggest that these conditions
are likely to be satisfied in the context of a stationary VAR.

Since the function gT (θ) is not known analytically, it is evaluated by means of simulation.
We use a residual bootstrap for this purpose, so that we do not have to make distributional
assumptions about the error term of the VAR. Define R(θ) = θ̂ − gT (θ). The bias-corrected
estimates are given by the root of this function, i.e., by R(θ̃) = 0.2 Because measurements of
this function are obtained by simulation and are contaminated with noise, classical root-finding
methods are not applicable.

We now detail our algorithm, which provides a fast and reliable way to calculate the
indirect inference estimator with low computational cost even if dim(θ) is large. Finding
the root of a function that is measured with error is a problem in the area of “stochastic
approximation” (SA), pioneered by Robbins and Monro (1951). Their crucial insight was that
for each attempted value of θ we do not need a very precise measurement of R(θ), because it is
only used to lead us in the right direction. For our application that means that a small number
of bootstrap replications is sufficient in each iteration, which greatly lowers our computational

2The conditions mentioned above for gT (·) imply that R(θ) = 0 has a unique solution.
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cost. The basic stochastic approximation algorithm is to construct a sequence according to

θ(j+1) = θ(j) + α(j)Y (j), (2)

where α(j) is a deterministic scalar sequence and Y (j) is a noisy measurement of R(θ(j)). Under
some specific conditions about α(j), the sequence will converge to θ̃. However, the sequence
of averages, θ̄(j) = j−1

∑j
i=1 θ

(i), converges even if α(j) is taken to be a constant (between
zero and one) and it does so at an optimal rate (Polyak and Juditsky, 1992). Under some
rather weak conditions on R(·), α(j) and the measurement error, we have θ̄(j) → θ̃ almost
surely,

√
-asymptotic normality, as well as optimality in the sense of a maximum rate of

convergence.3

Motivated by these results, we use the following algorithm:

1. Choose as a starting value θ(1) = θ̂. Set j = 1.

2. Using θ(j), obtain a measurement Y (j): estimate gT (θ
(j)) using a residual bootstrap with

B replications (for details, see below) and set Y (j) equal to the difference between θ̂ and
this estimate.

3. Calculate θ(j+1) using equation (2).

4. If j < N0 +N1 increase j by one and return to step 2.

5. Calculate the bias-corrected estimate as

ˆ̃
θ = N−1

1

N0+N1
∑

i=N0+1

θ(i).

In step two the approximate mean of the OLS estimator for a given θ(j), i.e., an estimate
of gT (θ

(j)), is obtained using a residual bootstrap with B replications. We randomly choose
the starting values among the T observations. For t > 1 the bootstrapped series is obtained
using X̃∗

t = Φ(j)X̃∗

t−1 + u∗

t , where u∗

t are the bootstrap residuals, and Φ(j) denotes the N ×N

matrix containing the elements of of θ(j). Importantly, the bootstrap residuals have to be
obtained for a given θ(j): One cannot resample the original VAR residuals since these do
not, together with θ(j), generate the original data. Instead one has to first obtain a series of
residuals ût = X̃t − Φ(j)X̃t−1, for t > 1, which then can be resampled in the usual way to
create the bootstrap residuals u∗

t .
4 In other words, the bootstrap residuals are draws not from

the empirical distribution of the original VAR residuals, but from the empirical distribution
of the VAR residuals that are obtained given Φ(j).

3The only assumption that needs mentioning here is that the Jacobian at the solution point needs to be
a Hurwitz matrix, i.e., the real parts of the eigenvalues of R′(θ̃) need to be strictly negative. Only if R(·) is
decreasing in this sense does it make sense to increase the value of θ(j) when we have positive measurements
(equation 2). We check this condition by estimating the Jacobian at θ̂, verifying that it is Hurwitz, and relying

on the assumption that this does not change between θ̂ and θ̃. Details on how we estimate the Jacobian in
this particular setting are available upon request.

4This notation suppresses the dependence on the bootstrap replication b and on the iteration j.
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We choose α(j) = 0.5 and B = 50, unless otherwise specified. Instead of devising a specific
exit condition which might be computationally costly to check, we simply run the algorithm for
a fixed number of iterations. We do not calculate θ̄(j) using all iterations but instead discard
the first part of the sample, corresponding to the idea of a burn-in sample in the Markov chain
Monte Carlo literature. Unless otherwise specified, we use N0 = 1000 iterations as a burn-in
sample and then take as our estimate the average of the next N1 = 5000 iterations.

To verify the convergence of the algorithm, we then check how close
ˆ̃
θ is to θ̃. This is

feasible despite θ̃ being unknown, since we can obtain a measurement of R(ˆ̃θ) with arbitrarily
small noise by using a large B, and check how close it is to zero. As the distance measure,
we take root mean-square distance, that is d(a, b) = (l−1(a− b)′(a− b))1/2 for two vectors a, b
of equal length l. We use this distance metric because it is invariant to the dimensionality of

θ. We calculate d(R(
ˆ̃
θ), 0), using a precision for the measurement of B = 100, 000, and verify

that this distance is small, e.g., on the order of less than 10−3. In short, this additional step
tells us whether we have really found a value of θ that is very close to θ̃, and yields a mean
for the OLS estimator close to θ̂. Should we have been worried about some of the required
conditions for equation (1) to have a solution and for our SA algorithm to work reliably in
finding it, this step verifies that we have found a solution.

While the structure of our algorithm has solid theoretical foundations, our specific con-
figuration (α(j), B, number of burn-in/actual iterations) is admittedly arbitrary. We chose it
based on our own experience with the algorithm. The specifics of the problem likely would
allow us to reduce the computational cost further by choosing the configuration in some opti-
mal way. We leave this for future research. With our configuration, the computational costs
are very manageable.

C VAR Monte Carlo study

To assess the performance of our bias correction method, we present the results of a simulation
study, which considers a bivariate VAR model. To create a setting that is comparable to the
reality faced by researchers analyzing interest rates, we first estimate such a model on actual
interest rates. We use the same monthly data set as in Section 4. We extract the first two
principal components from the cross section of yields and estimate the VAR. Then we take
the OLS estimates, rounded to two decimals, as our DGP parameters:

Xt+1 =

(

.98 .01
0 .97

)

Xt + εt+1, εt
iid∼ N(0, I2).

We generate M = 2000 samples and calculate for each replication six alternative esti-
mates: OLS, analytical bias correction as in Pope (1990), bootstrap and indirect inference
bias correction. For bootstrap bias correction, we use 1,000 replications. For calculating the
indirect inference estimator, we use 1500 iterations in our algorithm, discarding the first 500,
with 5 bootstrap samples in each iteration. Estimates that imply explosive VAR dynamics
are stationarity-adjusted in the same way as in the DTSM Monte Carlo study in Section 4.4.
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Table C.1: VAR Monte Carlo simulation results

DGP OLS analytical bootstrap ind. inf.

Φ11 0.98 -0.0281 -0.0087 -0.0068 -0.0049
Φ12 0.01 0.0015 -0.0007 -0.0004 -0.0007
Φ21 0.00 -0.0028 -0.0010 -0.0011 -0.0014
Φ22 0.97 -0.0305 -0.0102 -0.0086 -0.0056
RMSB 0.0208 0.0067 0.0055 0.0038
TAB 0.0629 0.0206 0.0168 0.0126

max. eig. 0.98 -0.0154 0.0058 0.0081 0.0090
half-life 34 -14.1930 13.7945 14.3122 23.0127
IRF at h = 60 0.2976 -0.1726 0.0978 0.1433 0.1644
freq. expl. 0.25% 23.90% 35.00% 30.80%

Notes: True values and bias for parameters and persistence measures, and summary statistics
capturing total bias for the VAR Monte Carlo study. For details refer to the text.

Table C.1 shows the results of our simulations. The first four rows show for each parameter
the true value, the mean bias of OLS and the three bias-correcting estimators. The fifth and
sixth row show the “root-mean-squared bias” (RMSB), which is the square root of the mean-
squared bias across the four parameters, and the “total absolute bias” (TAB), which is the
sum of the absolute values of the bias in each parameter. The results show that bias correction
significantly reduces the small-sample parameter bias. This holds for all three bias correction
methods. The total absolute bias is reduced by about 75% using the bootstrap. The indirect
inference estimator is able to further reduce bias. It estimates most elements of Φ with less
bias, and reduces the measures of total bias.

The seventh to ninth rows show true values and the bias for three measures of persistence—
the largest eigenvalue of Φ as well as the half-life and value of the IRF at a horizon of 60 periods
for the response of the first variable to own shocks. To calculate the half-life we use the same
approach as in Kilian and Zha (2002), with a cutoff of 500 periods—the mean of the half-life
is calculated across those replications for which it is available, which consequently excludes
values for which the half-life would be larger than 500.

The downward bias in estimated persistence for the OLS estimator is sizable. The half-
life and long-horizon IRF are on average half as large as for the true DGP. Bias correction
increases the estimated persistence significantly, and the dramatic downward bias in the largest
eigenvalue disappears. Notably, in this setting the bias corrected estimates tend to be even
more persistent than the DGP. Bootstrap and indirect inference bias correction display similar
performance in terms of the implied persistence of the estimates.

The last row shows the frequency with which explosive eigenvalues occur. Evidently,
although the DGP is stationary and the estimated model is correctly specified, there is a
sizable probability that the realized value of the OLS estimator is such that bias correction
leads to explosive estimates. Consequently, in practice one will often have to perform some
type of stationarity adjustment to ensure that estimated dynamics are not explosive.

We draw two conclusions from this simulation study: First, both the bootstrap and in-
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Table D.1: Maximally-flexible DTSM – summary statistics

OLS analytical BC bootstrap BC ind. inf. BC

max(eig(Φ)) 0.9678 0.9961 0.9999 0.9991
half-life 24 147 n.a. 265
IRF at 5y 0.16 0.75 0.95 0.93

σ(f47,48
t ) 1.392 1.392 1.392 1.392

σ(f̃47,48
t ) 0.388 1.206 1.431 1.635

σ(ftp47,48t ) 1.301 1.216 1.322 1.656

Notes: Summary statistics for OLS and bias-corrected estimates of the DTSM in Joslin et al.
(2011). First row: maximum eigenvalue of the estimated Φ. Second and third row: half-life and
value of the impulse response function at the five-year horizon for the response of the level factor to
a level shock. Rows six to eight show sample standard deviations of the fitted 47-to-48-month
forward rates and of the corresponding risk-neutral forward rates and forward term premia.

direct inference are useful and reliable methods to reduce the bias in OLS estimates of VAR
parameters. Second, indirect inference is a superior bias correction method compared to ana-
lytical or bootstrap correction in a setting like ours, because it reduces higher-order bias and
hence further improves the accuracy of the parameter estimates.

D Maximally-flexible DTSM: alternative bias correc-

tion methods

In the main text we present bias-corrected DTSM estimates that are obtained by applying
indirect inference bias correction. Here we compare the results for the maximally-flexible
model of Section 4 to those obtained using alternative bias correction methods.

Table D.1 shows the summary statistics for six alternative sets of estimates: OLS, analytical
bias correction, bootstrap bias correction, and indirect inference bias correction. Correcting
for bias using the bootstrap leads to explosive VAR dynamics, so we apply Kilian’s stationarity
adjustment in this case—for the resulting Φ matrix the IRF does not fall below 0.5 within 40
years, our cutoff for half-life calculation as in Kilian and Zha (2002).

There are some differences in results across bias correction methods. Analytical bias cor-
rection leads to a less persistent VAR system than indirect inference bias correction. But the
key result is robust to using these alternative approaches: The persistence is substantially
increased by bias correction, so that short rate forecasts and risk-neutral rates are much more
volatile than for OLS. In practice, a researcher will likely use that method for bias correction
that (s)he is most comfortable with on practical or theoretical grounds. For us, this is the
indirect inference method.
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Table E.1: DTSM Monte Carlo study – parameter bias

DGP Bias OLS Bias BC

1200µ -0.328 -0.232 0.074 -0.392 0.143 -0.019 -0.207 0.069 -0.016
Φ 0.999 0.000 0.472 -0.024 0.018 -0.021 -0.013 0.008 0.000

-0.002 0.993 0.347 0.006 -0.018 0.005 0.003 -0.009 0.001
0.000 0.002 0.881 -0.003 -0.003 -0.026 -0.002 -0.001 -0.009

1200rQ∞ 8.657 -1.126 -1.092
λQ 0.998 0.952 0.929 -0.001 -0.001 -0.002 -0.001 -0.001 -0.002

1200Σ 0.644 0 0 -0.018 0 0 -0.009 0 0
-0.147 0.211 0 0.003 0.014 0 0.003 0.017 0
0.063 -0.011 0.087 -0.001 0.005 0.027 -0.001 0.005 0.028

Notes: DGP parameter values and bias of OLS and BC estimates. For details refer to text.

E Parameter bias in DTSM Monte Carlo study

In Table E.1 we show the DGP parameters that are used to simulate interest rate data from
the DTSM, as well as parameter bias of the OLS and BC estimates. The bias in the estimates
of VAR parameters µ and Φ is sizable for the OLS estimates. As expected, the bias-corrected
estimates generally display reduced bias. With regard to the Q-measure parameters, the values
of λQ are estimated very accurately for all three estimators. This confirms the intuition that in
DTSM estimation, cross-sectional information helps to pin down the parameters determining
cross-sectional loadings very precisely. The risk-neutral long-run mean rQ

∞
is estimated with

a slight downward bias by all estimators because the largest root under Q is very close to
one, which naturally makes inference about the long-run mean under Q difficult. This has
motivated some researchers to restrict the largest root under Q to one and rQ

∞
to zero, in which

case the long end of the yield curve is determined by a level factor (Bauer, 2011; Christensen
et al., 2011).

In sum, bias-corrected estimation of the maximally-flexible DTSM that we consider here
reduces bias in estimates of the VAR parameters in comparison to MLE, whereas the remaining
parameters are estimated with similar accuracy.
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