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Abstract

A lot, including a few things you may not expect. Previous studies …nd that
the term spread forecasts GDP but these regressions are unconstrained and do
not model regressor endogeneity. We build a dynamic model for GDP growth
and yields that completely characterizes expectations of GDP. The model does not
permit arbitrage. Contrary to previous …ndings, we predict that the short rate has
more predictive power than any term spread. We con…rm this …nding by forecasting
GDP out-of-sample. The model also recommends the use of lagged GDP and the
longest maturity yield to measure slope. Greater e¢ciency enables the yield-curve
model to produce superior out-of-sample GDP forecasts than unconstrained OLS
at all horizons.
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1 Introduction

The behavior of the yield curve changes across the business cycle. In recessions, premia
on long-term bonds tend to be high and yields on short bonds tend to be low. Recessions,
therefore, have upward sloping yield curves. Premia on long bonds are countercyclical
because investors do not like to take on risk in bad times. The lower demand for long
bonds during recessions lowers their price and increases their yield. In contrast, yields
on short bonds are procyclical because of monetary policy. The Federal Reserve lowers
short yields in recessions in an e¤ort to stimulate economic activity. For example, for
every 2 percentage point decline in GDP growth, the Fed should lower the nominal yield
by 1 percentage point according to the Taylor (1993) rule.

Inevitably, recessions are followed by expansions. During recessions, upward sloping
yield curves not only indicate bad times today, but better times tomorrow. Guided
from this intuition, many papers predict GDP growth with the slope of the yield curve
in OLS regressions.1 The higher the slope or term spread, the larger GDP growth is
expected to be in the future. The slope is usually measured as the di¤erence between
the longest yield in the dataset and the shortest maturity yield. Related work by Fama
(1990) and Mishkin (1990a and b) shows that the same measure of slope predicts real
rates. The slope is also successful at predicting recessions with discrete choice models,
where a recession is coded as a one and other times are coded as zeros (see Estrella and
Hardouvelis, 1991; and Estrella and Mishkin, 1998). Finally, the term spread is also an
important variable in the construction of Stock and Watson (1989)’s leading business
cycle indicator index. Despite some evidence that parameter instability may weaken the
performance of the yield curve in the future (see comments by Stock and Watson, 2001),
it has been amazingly successful in these applications so far. For example, every recession
after the mid-1960’s was predicted by a negative slope - an inverted yield curve - within
6 quarters of the impending recession. Moreover, there has been only one “false positive”
(an instance of an inverted yield curve that was not followed by a recession) during this
time period.

Hence, the yield curve tells us something about future economic activity. We argue
there is much more to learn from the yield curve when we impose more structure on
the model than the unrestricted OLS regression framework previously used in the liter-
ature. While OLS regressions show that the slope has predictive power for GDP, it is
only an incomplete picture of the yield curve and GDP. For example, since bond yields
are themselves dynamic, predictive regressions do not take into account the endogenous
nature of the regressor variables. We would also expect that the entire yield curve, not
just the arbitrary maturity used in the construction of the term spread, would have pre-

1See, among others, Harvey (1986, 1989 and 1993), Laurent (1988), Stock and Watson (1989), Chen
(1991), Estrella and Hardouvelis (1991 and 1997), Estrella and Mishkin (1998), and Hamilton and Kim
(2002), who regress GDP growth on term spreads on US data. Jorion and Mishkin (1991), Harvey
(1991), Estrella and Mishkin (1997), Plosser and Rouwenhorst (1994), Bernard and Gerlach (1998), and
Dotsey (1998), among others, run a predictive GDP regression on international data. Other traditional
GDP forecasting variables include Stock and Watson (1989)’s leading business cycle index and the
consumption-output ratio in Cochrane (1994).
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dictive power. Using information from the whole yield curve, rather than just the long
maturity segment, may lead to more e¢cient and more accurate forecasts of GDP. In an
OLS framework, since yields of di¤erent maturities are highly cross-correlated, it may
be di¢cult to use multiple yields as regressors because of collinearity problems. This
collinearity suggests that we may be able to condense the information contained in many
yields down to a parsimonious number of variables. We would also like a consistent way
to characterize the forecasts of GDP across di¤erent horizons to di¤erent parts of the
yield curve. With OLS, this can only be done with many sets of di¤erent regressions.
These regressions are clearly related to each other, but there is no obvious way to impose
cross-equation restrictions to gain power and e¢ciency.

Our approach in this paper is to impose the absence of arbitrage in bond markets to
model the dynamics of yields jointly with GDP growth. The assumption is reasonable
in a world of hedge funds and large investment banks. Traders in these institutions take
large bond positions that eliminate arbitrage opportunities arising from bond prices that
are inconsistent with each other in the cross-section and with their expected movements
over time. Based on the assumption of no-arbitrage, we build a model of the yield curve
in which a few yields and GDP growth are observable state variables. This helps us to
reduce the dimensionality of a large set of yields down to a a few state variables. The
dynamics of these state variables are estimated in a Vector Autoregression (VAR). Bond
premia are linear in these variables and are thus cyclical, consistent with …ndings in
Cochrane and Piazzesi (2002). Our yield-curve model leads to closed-form solutions for
yields which belong to the a¢ne class of Du¢e and Kan (1996).

The reduction in dimensionality and the cross-equation restrictions from no-arbitrage
both help us to e¢ciently extract the business-cycle information contained in the yield
curve. We …nd that a yield-curve model has four main advantages over unrestricted
speci…cations. First, the estimated yield-curve model guides us in choosing the maturity
of the yields that should be most informative about future GDP growth. Our results
show that the model recommends the use of the longest yield to measure the slope,
regardless of the forecasting horizon. Second, the model predicts that the nominal short
rate contains more information about GDP growth than any yield spread. This …nding
stands in contrast to unconstrained OLS regressions which …nd the slope to be more
important. This prediction of the model is con…rmed by forecasting GDP growth out-of-
sample. Third, the model recommends the use of lagged GDP growth as an additional
regressor. GDP growth is autocorrelated and its mean-reversion especially helps in short
(1-2 quarter horizon) forecasts of GDP. Finally, our arbitrage-free model is a better out-
of-sample predictor of GDP than unrestricted OLS. This …nding is independent of the
forecasting horizon and of the choice of regressor variables. The better out-of-sample
performance from our yield-curve model is driven by the gain in estimation e¢ciency
due to imposing the cross-equation restrictions implied by the absence of arbitrage.

The rest of this paper is organized as follows. Section 2 documents the relationship
between the yield curve, GDP growth and recessions. Section 3 describes the yield-
curve model and the estimation method. Section 4 presents the empirical results. We
begin by discussing the parameter estimates and then showing how the model completely
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characterizes the predictive regressions. We show that imposing no-arbitrage restrictions
leads to better out-of-sample forecasts of GDP than unconstrained OLS regressions or
VAR’s. Section 5 concludes. We relegate all technical issues to the Appendix.

2 Motivation

We use zero-coupon yield data for maturities 1, 4, 8, 12, 16 and 20 quarters from CRSP
spanning 1952:Q2 to 2001:Q4. The 1-quarter rate is from the CRSP Fama risk-free rate
…le. All other bond yields are from the CRSP Fama-Bliss discount bond …le. All yields
are continuously compounded and we denote the yield for maturity n in quarters as y(n):
In their appendix, Fama and Bliss (1987) comment that data on long bonds before 1964
may be unreliable because there were few traded bonds with long maturities during the
immediate post-war period 1952-1964. Fama and Bliss choose to therefore start their
sample period in 1964. We follow their lead in this paper but we discuss the di¤erences
of including data from the immediate post-war period 1952-1964.2

Economic activity can be measured in di¤erent ways. We look at two alternative
measures, real GDP growth rates and NBER recessions. Data on real GDP is seasonally
adjusted, in billions of chained 1996 dollars, from the FRED database (GDPC1). We
denote annualized log real GDP growth from t to t+ k as:

gt!t+k = 4=k ¢ (logGDPt+k ¡ logGDPt):

For the special case of 1-quarter ahead GDP growth, we denote gt!t+1 ´ gt+1: GDP
numbers are subject to many revisions. We choose to use the revised …gures rather than
a real-time data set because we are forecasting what actually happens to the economy,
not preliminary announcements of economic growth.

We graph 4-quarter GDP growth, gt¡4!t, and the 5-year term spread, y(20)t ¡ y(1)t , in
Figure 1 together with NBER recessions shown as shaded bars. In the top plot, negative
GDP growth often coincides with NBER recessions. One conventional de…nition of a
recession is two consecutive quarters of negative GDP growth, but the NBER takes into
account other factors in de…ning recessions.3 The …gure shows that periods of negative
4-quarter GDP growth were always classi…ed as recessions by the NBER, at least over
the postwar sample. The correlation between quarterly GDP growth and an indicator
variable for NBER recessions, that takes value 1 only during an NBER recession and zero
elsewhere, is 63%. Hence, there is a strong correspondence between NBER recessions and
negative economic growth. The top plot of Figure 1 shows that GDP growth has a strong

2In particular, our out-of-sample forecasting results for the term structure model are stronger when
the model is estimated using data from 1952-1964. While Fama and Bliss advocate starting analysis
with zero coupon bonds from 1964, others use all the yields available from the post-Treasury Accord
period from 1952 onwards (see, for example, Campbell and Shiller, 1991).

3The NBER Business Cycle Dating Committee actually places little weight on real GDP for recession
dating. See http://www.nber.org/cycles/recessions.html
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Figure 1: Term spread and GDP growth with shaded NBER recessions

cyclical pattern. GDP growth is signi…cantly mean-reverting; one-quarter GDP growth,
gt+1, has an autocorrelation of 30%.

In the bottom plot of Figure 1, we graph the term spread between the 5-year and
1-quarter zero-coupon bonds. The term spread averages 0.99% over the sample period,
re‡ecting the normal upward sloping pattern of the yield curve. To document the re-
lationship between the term spread and GDP growth, we focus on the behavior of the
spread before and during the periods of NBER recessions marked by shaded bars. There
are nine recessions during the post-1952 period. All except the …rst three recessions are
preceded by negative term spreads. However, the …gure shows that there is a di¤erence
in the time interval when the term spread becomes negative and when a recession is de-
clared. Moreover, there are times like 1966 where the term spread is negative but are not
followed by NBER recessions. To examine this in detail, Table 1 lists periods of negative
term spreads and recessions.

Table 1 shows that every recession since the 1964 start date, advocated by Fama and
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Bliss (1987), has been preceded by an inverted yield curve. There is one notable inversion
from 1966:Q3-1966:Q4 which is not followed by an NBER recession, but Figure 1 shows
that it is followed by a period of relatively slower GDP growth. While all the post-1964
recessions are predicted by inverted yield curves, the initial lead time between the onset
of the inversion and the start of the NBER recession varies between 2 to 6 quarters.
Between the time that the yield curve becomes inverted, it may stay inverted or return
to its normal upward sloping shape before the onset of the recession. For example, the
yield curve became inverted in 1973:Q2 and stayed inverted before the 1973:Q4-1975:Q1
recession, while the yield curve was upward sloping when the 2001:Q1-2002:Q1 recession
began (having been downward sloping from 2000:Q3-2000:Q4).

Table 1: NBER Recession Forecasts from Term Spreads

NBER recession Inversion Lead Time
1953:Q3-1954:Q2
1957:Q3-1958:Q2
1960:Q2-1961:Q1

- - - - - - - - Fama-Bliss sample starts 1964:Q1 - - - - - - - -
1966:Q3-1966:Q4

1969:Q4-1970:Q4 1968:Q2,1968:Q4,1969:Q4 6 qtrs
1973:Q4-1975:Q1 1973:Q2-1974:Q1,1974:Q4 2 qtrs
1980:Q1-1980:Q3 1978:Q4-1980:Q1 5 qtrs
1981:Q3-1982:Q4 1980:Q3-1980:Q4,1981:Q2,1982:Q1 4 qtrs
1990:Q3-1991:Q1 1989:Q2 5 qtrs
2001:Q1-2002:Q1 2000:Q3-2000:Q4 2 qtrs

The predictive power of the yield spread for economic activity, documented in Figure
1 and Table 1, can be formalized in a predictive regression of the form:

gt!t+k = ®
(n)
k + ¯(n)k

³
y(n)t ¡ y(1)t

´
+ "(n)t+k;k; (1)

where future GDP growth for the next k quarters is regressed on the n-maturity term
spread. Numerous authors have run similar regressions, but usually involving only very
long spreads (5 or 10 years). In regression (1), the long horizons of GDP growth on the
left-hand side means that overlapping periods are used in the estimation, which induces
moving average error terms in the residual. We use Hodrick (1992) standard errors to
correct for heteroskedasticity and the moving average error terms. Ang and Bekaert
(2001) show that Hodrick (1992) standard errors have negligible size distortions, unlike
standard OLS or Newey-West (1987) standard errors. The correct choice is important,
because inappropriate standard errors can vastly overstate the predictability of GDP
growth from the term spread. Throughout this paper, we use Hodrick (1992) standard
errors for OLS regressions. Table 2 reports the results of regression (1) over 1964:Q1-
2001:Q4.
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Table 2: Forecasts of GDP Growth from Term Spreads

Term Spread Maturity
Horizon 4-qtr 8-qtr 12-qtr 16-qtr 20-qtr
k-qtrs ¯(4)k R2 ¯(8)k R2 ¯(12)k R2 ¯(16)k R2 ¯(20)k R2

1 0.31 0.00 0.78 0.03 0.72 0.04 0.66 0.04 0.65 0.04
(0.73) (0.49) (0.39) (0.33) (0.29)

4 1.18 0.06 1.23 0.16 1.06 0.18 0.90 0.17 0.89 0.20
(0.49) (0.38) (0.32) (0.28) (0.26)

8 1.06 0.10 1.04 0.20 0.91 0.25 0.78 0.24 0.73 0.24
(0.41) (0.33) (0.29) (0.26) (0.24)

12 0.56 0.05 0.67 0.16 0.59 0.19 0.53 0.20 0.48 0.20
(0.32) (0.27) (0.24) (0.21) (0.20)

NOTE: The table reports the slope ¯(n)k and R2 for equation (1). Sample period
1964:Q1-2001:Q4.

The literature concentrates on using long term spreads to predict GDP growth. Hence,
in Table 2, the last two columns under the 5–year term spread list the known result that
the long-term spread signi…cantly predicts GDP growth. Estrella and Mishkin (1996)
document that a large number of variables have some forecasting ability 1-quarter ahead,
like the Stock-Watson (1989) index. But, in predicting recessions 2 or more quarters into
the future, the term spread dominates all other variables and the dominance increases as
the forecasting horizon increases. Since yields of di¤erent maturities are highly correlated,
and movements of yields of di¤erent maturities are restricted by no-arbitrage, we would
expect that other yields might also have forecasting power.

Table 2 shows that the whole yield curve has signi…cant predictive power for long-
horizon GDP growth. In particular, the 16 and 20-quarter spreads signi…cantly predict
GDP growth 1-quarter ahead and all the term spreads signi…cantly predict GDP growth
4-quarters ahead. This predictability remains strong at 2 years out, but weakens at a 3-
year forecasting horizon. The predictive power of the yield curve for GDP growth di¤ers
across maturity. For example, while the 5-year term spread signi…cantly predicts GDP
growth at all horizons, the 1-year term spread signi…cantly forecasts only GDP growth
at 1 to 2-year horizons.

We use regression (1) as a useful starting point for showing the strong ability of the
yield curve to predict future economic growth. However, Table 2 shows that the entire
yield curve has predictive ability, but the predictive power di¤ers across maturities and
across forecasting horizons. Since yields are persistent, using the information from one
particular forecasting horizon should give us information about the predictive ability at
other forecasting horizons. Hence, we should be able to use the information from a 1-
quarter forecasting horizon regression in our estimates of the slope coe¢cients from a
12-quarter forecasting horizon regression. Regression (1) only uses one term spread of
an arbitrary maturity, but we may be able to improve forecasts by using combinations of
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spreads. However, the variation of yields relative to each other cannot be unrestricted,
otherwise arbitrage is possible. We seek to incorporate these no-arbitrage restrictions
using a yield-curve model to forecast GDP. This is a more e¢cient and powerful method
than merely examining term spreads of arbitrary maturity as regressor variables in Table
2.

3 Model

Our yield-curve model is set in discrete time. The data is quarterly, so that we interpret
one period to be one quarter. The nominal riskfree rate, y(1), is therefore the 1-quarter
rate. We use two factors from the yield curve, the short rate expressed at a quarterly
frequency, y(1)=4, to proxy for the level of the yield curve, and the 5–year term spread
expressed at a quarterly frequency,

¡
y(20) ¡ y(1)

¢
=4, to proxy for the slope of the yield

curve. We augment these yield-curve factors by including observable quarterly real GDP
growth gt=4 = logGDPt ¡ logGDPt¡1 as the last factor. The vector of state-variables

Xt = 1=4
h
y(1)t ,

³
y(20)t ¡ y(1)t

´
, gt

i>
; (2)

is thus entirely observable.

The 3 factors in Xt follow a Gaussian Vector Autoregression with one lag:

Xt = ¹+©Xt¡1 +§"t; (3)

with "t »IID N (0; I); and ¹ is a 3 £ 1 vector and © is a 3 £ 3 matrix.

Risk premia on bonds are linear in the state variables. More precisely, the pricing
kernel is conditionally log-normal,

mt+1 = exp
µ

¡y(1)t ¡ 1
2
¸>t ¸t ¡ ¸>t "t+1

¶
; (4)

where ¸t are the market prices of risk for the various shocks. The vector ¸t is a linear
function of the state variables:

¸t = ¸0 + ¸1Xt;

for a 3 £ 1 vector ¸0 and a 3 £ 3 matrix ¸1: We denote the parameters of the model by
£ = (¹;©;§; ¸0; ¸1).

Our speci…cation has several advantages. First, we use a parsimonious and ‡exible
factor model. This means that we do not need to specify a full general equilibrium
model of the economy in order to impose no-arbitrage restrictions. Structural models,
like Berardi and Torous (2001), allow the prices of risk to be interpreted as functions of
investor preferences and production technologies. While this mapping is important for
the economic interpretation of risk premia, a factor approach allows more ‡exibility in
matching the behavior of the yield curve, especially in the absence of a general workhorse
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equilibrium model for asset pricing. Second, parameterizing prices of risk to be time-
varying allows the model to match many stylized facts about yield curve dynamics. For
example, Dai and Singleton (2001) show that (4) allows the yield-curve model to match
deviations from the Expectations Hypothesis, but they do not relate yields to movements
in macro variables. Finally, we jointly model yield curve factors and economic growth.
Piazzesi (2001) and Ang and Piazzesi (2002) demonstrate that directly incorporating both
observed macro factors and traditional yield-curve factors is important for capturing the
dynamics of yields. For example, Ang and Piazzesi …nd (2002) that incorporating macro
factors allows for better out-of-sample forecasts of yields than only using yield-curve
factors.

We can solve for the price p(n)t of an n-period nominal bond at time t by recursively
solving the relation:

p(n)t = Et
³
mt+1p

(n¡1)
t+1

´
;

with the terminal condition p(0)t = 1: The resulting bond prices are exponential linear
functions of the state vector:

p(n)t = exp
¡
An +B>nXt

¢
;

for a scalar An and a 3£1 vector Bn of coe¢cients that are functions of time-to-maturity
n: The absence of arbitrage is imposed by computing these coe¢cients from the following
di¤erence equations (see Ang and Piazzesi, 2002):

An+1 = An +B>n (¹¡ §¸0) +
1
2
B>n§§

>Bn (5)

Bn+1 = (© ¡ §¸1)
>Bn ¡ e1;

where e1 = [1 0 0]>. The initial conditions are given by A1 = 0 and B1 = ¡e1. Bond
yields are then a¢ne functions of the state vector:

y(n)t = ¡ log p(n)t
n

(6)

= an + b>nXt;

for coe¢cients an = ¡An=n and bn = ¡Bn=n:
If there are no risk premia, ¸0 = 0 and ¸1 = 0; a local version of the Expectations

Hypothesis (EH) holds. In this case, yields are simply expected values of future average
short rates (apart from some Jensen’s inequality terms): From the di¤erence equations
(5), we can see that the risk premia parameter ¸0 only a¤ects the constant yield coe¢cient
an while the parameter ¸1 also a¤ects the factor loading bn: The parameter ¸0 therefore
only impacts average term spreads and average expected bond returns, while ¸1 controls
the time variation in term spreads and expected returns.

Estimation of the Model

Observable yield-curve factors enable us to use a consistent two-step procedure to
estimate the model. The parameters £ can be partitioned into the parameters ¹, © and
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§ governing the factor dynamics (3) and the risk premia ¸0 and ¸1. In the …rst step, we
estimate the VAR parameters ¹, © and § using standard SUR. In the second step, we
estimate ¸0 and ¸1 given the estimates of the VAR parameters from the …rst step. This is
done by minimizing the sum of squared …tting errors of the model. We compute standard
errors for our parameter estimates using GMM, adjusting for the two-stage estimation
procedure. Details are in the Appendix.

The two-step procedure is consistent, robust and fast, because many parameters are
estimated in a VAR. Speed is crucial for out-of-sample forecasting. Moreover, the esti-
mation procedure allows us to cleanly separate several sources of improvement over OLS.
The OLS predictive regressions for GDP can be improved by moving to a dynamic system
describing the evolution yields and GDP over time. Hence, the …rst source of e¢ciency
gains over unconstrained OLS is to use information about the evolution of yields over
time. The second source of e¢ciency gain comes from moving from a large VAR with
many yields to a low-dimensional factor model. Finally, no arbitrage enables us to specify
a low-dimensional system in a consistent way. Risk-adjusted expectations of the short
rate in this system are consistent with the cross-section of yields.

Parameter estimates can be obtained with somewhat greater e¢ciency using a one-
step maximum likelihood estimation. The loss in e¢ciency of the two-step procedure has
two origins. First, the estimation of the VAR parameters ¹, © and§ only uses information
contained in the state vector X instead of the entire cross-sectional information on yields.
Second, the moment conditions are not chosen with e¢ciency in mind. This is especially
true for the moments used to estimate the risk premia parameters ¸0 and ¸1: The latter
loss in e¢ciency turns out to have negligible e¤ects for forecasting GDP growth, as we
show in the Appendix.

Forecasting GDP growth from the Model

The yield equation (6) allows the model to infer the dynamics of every yield and
term spread. Once the parameters £ are estimated, the coe¢cients an and bn are known
functions of £. All the yield dynamics are therefore known functions of X. The yield-
curve model completely characterizes the coe¢cients in the regression (1) for any spread
maturity and for any forecasting horizon. For example, the predictive coe¢cient in (1)
is given by:

¯(n)k =
cov

³
gt!t+k; y

(n)
t ¡ y(1)t

´

var
³
y(n)t ¡ y(1)t

´ :

Then we can use (6) together with the implied long-run forecast for GDP growth from
(3):

Et[gt!t+k] = c+ 4=k ¢ e>3 ©(I ¡ ©)¡1(I ¡ ©k)Xt; (7)

where c is a constant term and e3 is a 3£ 1 vector of zero’s with a 1 in the last element.
Hence, we can solve for ¯(n)k as:

¯(n)k =
4=k ¢ eT3©(I ¡ ©)¡1(I ¡ ©k)§X§>X(bn ¡ b1)

(bn ¡ b1)>§X§>X(bn ¡ b1)
; (8)
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where §X§>X is the unconditional covariance matrix of the factors X, which is given by
vec(§X§>X) = (I ¡ © ­ ©)¡1vec(§§>).

The yield-coe¢cients bn together with the VAR parameters © and § (through §X)
completely determine the predictive regression coe¢cients in (8). Only the factor loadings
bn, and not the constants an, a¤ect the slope coe¢cients. The reason is that an only
determines average term spreads and therefore is absorbed into constant term of the
forecasting regression (1). By contrast, the factor loadings bn determine the dynamic
response of yields to GDP growth and vice versa. The loadings therefore impact the
slope coe¢cient of the predictability regressions. The loadings are in turn a¤ected by
the risk premia parameter ¸1: This makes it clear that in order for a yield-curve model
to capture the forecastability inherent in the predictability regressions, we must model
time-variation in the risk premia.

The regression coe¢cients (8) allow us to characterize the relation of future GDP
growth to a term spread of any maturity n, and also characterize the response of future
GDP at any forecasting horizon k. For longer forecasting horizons k, the regression
coe¢cient (8) exploits the long-horizon forecasts of the VAR, just as in Campbell and
Shiller (1988) and Hodrick (1992).4 Our two-step estimation procedure implies that GDP
forecasts based on the n = 20 quarter term spread from the yield-curve model are simply
the ones from a VAR. For all other term spread maturities, n 6= 20; forecasts from the
yield-curve model di¤er from (unconstrained) VAR predictions. The yield-curve model
uses the same factor dynamics and no-arbitrage to compute (8). An unconstrained VAR
has to be re-estimated including these other term spreads.

We can go further than simply forecasting GDP growth with only the term spread.
Since GDP growth is autocorrelated, we can also control for the autoregressive nature
of GDP growth and augment the regression (1) by including lagged GDP growth. The
simple regression (1) also only uses one yield-curve factor (the term spread) to predict
GDP and ignores other yield-curve factors (like the …rst short rate level factor). For
example, the yield-curve model can fully characterize each predictive coe¢cient in the
regression:

gt!t+k = ®
(n)
k + ¯(n)k;1 ¢ y(1)t + ¯(n)k;2 ¢

³
y(n)t ¡ y(1)t

´
+ ¯(n)k;3 ¢ gt + "(n)t+k;k; (9)

of which (1) is a special case. In (9), the subscript k notation on each coe¢cient denotes
the dependence of the coe¢cients on the forecast horizon of GDP. The superscript (n)
notation denotes the dependence of the coe¢cients on the choice of the n quarter maturity
term spread. Our model also allows us to compute R2’s of each regression speci…cation
in closed-form. We detail the computations of predictive coe¢cients and R2’s in the
Appendix.

Choice of Factors and Caveats
4This is also convenient as many macro studies of the relationships between monetary policy, yields

and real activity work with VAR’s. See, for example, Christiano, Eichenbaum and Evans (1999) and
Clarida, Gali and Gertler (2000).
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The choice of our factors is motivated by three considerations. First, the model needs
to capture the dynamics of yields. These dynamics can be explained with a very small
number of factors, because the …rst two principal components of yields already explain
99.7% of the variation of our yield data, consistent with Knez, Litterman and Scheinkman
(1994). These two principal components have almost one to one correspondences with
the short rate and term spread. The …rst (second) principal component has a ¡95.6%
(¡86.5%) correlation with the short rate (5-year term spread). Hence, even if the …rst
two true yield-curve factors are unknown, the observable short rate and spread are good
proxies.

Most yield-curve models use unobservable factors to capture the dynamics of yields.
These factors are inferred from yield data alone. Thus, traditional latent models do not
address the forecastability of GDP growth. The Appendix discusses a model that com-
bines GDP growth with latent yield factors. The augmented latent model is equivalent to
our observable yield-curve model for a particular assumption on measurement errors. The
latent factor model augmented with GDP can be estimated in one step, using maximum
likelihood. GDP forecasts from this model are more e¢cient than from our observable
yield-curve model, but they turn out to be essentially identical, and take much longer to
compute.

A second consideration is that the model needs to accurately describe the dynamics
of GDP growth. We check whether other combinations of yields forecast GDP growth
in OLS regressions (not reported). The third principal component does not enter signif-
icantly once we control for the …rst two principal components. Similarly, we …nd that
a curvature transformation (y(1) ¡ 2y(12) + y(20)), does not enter signi…cantly, once we
control for the short rate and the 5–year term spread.5 Moreover, there is little di¤erence
in the R2 from using principal components versus our factor de…nitions.

One caveat of our approach is that yields are slightly skewed and heteroskedastic.
We assume homoskedasticity as a …rst-order modeling approach and the ease in directly
estimating (3) as a SUR system. However, we can incorporate heteroskedasticity by
making § a linear function of X along the lines of Du¢e and Kan (1996). However,
there is potentially little to be gained by modelling heteroskedasticity for the purposes
of forecasting GDP. The third principal component, or the curvature transformation, is
related to interest rate volatility which has no forecasting power for GDP. This con…rms
Hamilton and Kim (2002), who directly use interest rate volatility and …nd it has little
ability to forecast GDP growth.

Another caveat is that we assume that the factor dynamics are stable over time.
There is substantial evidence for regime shifts in the dynamics of interest rates (see Ang
and Bekaert, 2002). However, the largest di¤erence in the dynamics of yields across
regimes is time-varying volatility, which has little predictive power for GDP. Moreover,
Stock and Watson (2002) …nd that the di¤erences in coe¢cients across regimes for GDP

5Cochrane and Piazzesi (2002) …nd that higher principal components than the third enter signi…cantly
for longer forecasting horizons. These are not included in our model. Hence, our model understates the
predictability of the yield curve for GDP growth.

12



relationships with other economic time series mostly re‡ect time-varying volatility. They
…nd that the coe¢cients in the conditional mean of GDP growth are much more stable.
Hence, we might expect that regime-switching would matter little for our GDP forecasts.

4 Empirical Results

4.1 Parameter Estimates

Table 3 contains estimates of the parameters of the observable yield-curve model with
GDP growth. High short rates Granger-cause low GDP growth. The signi…cantly nega-
tive coe¢cient (¡0.269) in the last row of the © matrix is consistent with the Fed raising
(lowering) rates to cool (stimulate) economic growth. The term spread does not Granger-
cause GDP growth. This …nding already foreshadows that term spreads may behave
completely di¤erent in multivariate regressions than in the univariate regressions (equa-
tion (1)) from Table 2. GDP growth is remains signi…cantly autocorrelated (0.258), when
we control for the short rate and spreads, which are themselves highly persistent. (The
autocorrelation of the short rate is 88%). There is little evidence of Granger-causality
of GDP growth to short rates or spreads, but shocks to all three factors are signi…cantly
correlated. In particular, conditional shocks to the short rate and GDP growth are 36%
correlated, and shocks to the spread and GDP growth are ¡16% correlated. This implies
that the conditional covariance structure plays an important role in bond pricing from
(5). Simple predictive OLS regressions of future economic growth assume that the term
spread is exogenous. However, the short rate and spread processes with GDP growth are
very much jointly endogenous.

Some of the parameter estimates of the risk premiums in Table 3 have large standard
errors, as is common in many yield curve studies. Average risk premia (¸0) are estimated
imprecisely because yields are very persistent, which makes it hard to pin down uncondi-
tional means in small samples. Most of the time variation in risk premia (¸1) parameters
are, however, signi…cant. Some of this time-variation is captured by the slope of the yield
curve. Many term structure studies also …nd this e¤ect as it re‡ects the fact that term
spreads have predictive power for future holding period returns on bonds (see Fama and
Bliss, 1987). When the yield curve is upward sloping, expected returns on long bonds are
higher than on short bonds. From (5), we can see that the more negative the ¸1 terms,
the more positive the loading bn on long bonds. Hence, more negative ¸1 terms lead to
larger positive responses to conditional short rate shocks. Since the time-variation in risk
premia impacts the yield-coe¢cients bn, they therefore signi…cantly a¤ect the predictive
coe¢cients ¯(n)k in (8).

13



Table 3: Parameter estimates for Yield-Curve Model

State dynamics Xt = ¹+©Xt¡1 +§"t
¹ © §

Short Rate 0.086 0.923 0.096 0.012 0.286
(0.087) (0.044) (0.094) (0.040) (0.062)

Spread 0.025 0.026 0.768 -0.008 -0.150 0.124
(0.056) (0.029) (0.072) (0.024) (0.038) (0.009)

GDP growth 0.935 -0.269 0.320 0.258 0.177 0.147 0.773
(0.303) (0.132) (0.325) (0.090) (0.061) (0.075) (0.068)

Risk premia ¸t = ¸0 + ¸1Xt Std dev of errors ­
¸0 ¸1 1-yr yield 2-yr yield

Short Rate 0.29 -34.18 -52.61 1.60 0.336 0.234
(0.22) (0.27) (0.17) (10.88) (0.035) (0.025)

Spread 0.41 2.04 -102.90 0.85
(0.67) (0.11) (0.08) (1.64) 3-yr yield 4-yr yield

GDP Growth 6.57 2.84 -2.56 8.87 0.164 0.126
(4.89) (0.09) (0.01) (0.38) (0.049) (0.034)

NOTE: Parameters ¹, § and standard deviations of measurement errors are mul-
tiplied by 100. Sample period: 1964:Q1-2001:Q4.

Table 4: The Yield Curve Implied by the Model

Short
Rate Term Spreads GDP

Maturity 1-qtr 4-qtr 8-qtr 12-qtr 16-qtr 20-qtr growth

Model Implied Moments
Mean 6.28 0.44 0.70 0.85 0.96 1.03 3.21

(1.06) (0.07) (0.12) (0.16) (0.18) (0.20) (0.42)
Std.Dev. 2.66 0.36 0.70 0.91 1.06 1.16 3.52

(0.72) (0.15) (0.24) (0.29) (0.31) (0.33) (0.30)

Data
Mean 6.34 0.46 0.66 0.81 0.93 0.99 3.20

Std.Dev 2.61 0.50 0.74 0.93 1.06 1.15 3.54

NOTE: The table compares model-implied means and standard deviations of short
rates, term spreads and GDP growth with data. Sample period: 1964:Q1-2001:Q4.

The performance of the estimated model can be seen in Table 4, which lists means
and standard deviations of the short rate, term spreads and GDP growth implied by the
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yield-curve model, against moments computed from data. Standard errors implied by the
model are given in parentheses. All the data moments are well within one standard error
bound. This shows that our model is at least able to match the unconditional behavior
of term spreads. We now investigate the ability of our model to capture the conditional
moments implied by predictive GDP regressions using term spreads. We already know
from the outset that the model matches time-variation in conditional expected bond
premia. The reason is that the model is forced to match the short rate and 5–year yield
by construction. The model thus exactly replicates the behavior of the 5-year term spread
shown in Figure 1.

4.2 Characterizing the R2 of GDP Regressions

To characterize the explanatory power of the predictive GDP regressions, we begin by
computing theoretical R2’s implied by the model in Figure 2. The …gure shows the model
R2’s for three regressions in each panel. In the …rst panel, GDP growth is regressed on
the term spread; in the middle panel, the regressors are the term spread and lagged GDP
growth; and in the last panel, we have a trivariate regression on the short rate, term
spread and lagged GDP growth. On the x-axis, we plot the term spread maturity. For
the maturity corresponding to 1 quarter, we plot the R2 from a regression involving the
short rate as a cross. The solid lines from maturities 2 to 20 quarters are the theoretical
R2’s implied by the model. The OLS regressions can be run only for a number of selected
yields, but our model derives the predictive explanatory power for any spread. We super-
impose R2’s from OLS regressions in empty squares, with 1 OLS standard error bound
given by the black squares. While our model enables the computation of the regression
R2’s from placing any horizon GDP growth on the left-hand side, the …gure shows only a
4-quarter horizon. We view this horizon as representative; the patterns are qualitatively
the same for other horizons.

The OLS one-standard-error bounds for the OLS regression R2’s easily encompass
the R2’s implied by the yield-curve model. The OLS R2’s also lie very near the model-
implied R2’s. The model-implied R2 in the last panel is ‡at at 27%. This is because our
model has three factors (level, slope, and GDP growth), and two yields together with
GDP growth is su¢cient to capture exactly the same information as the three factors.
The remainder (73%) of the GDP forecast variance cannot be attributed to predictable
factor dynamics according to our yield-curve model. The model R2’s provide us with
a guide as to what to expect from the numerous OLS speci…cations. While running
many di¤erent OLS regressions with various term spread maturities, together with other
predictive variables, may give us some a rough picture of how the whole yield curve may
predict GDP, the OLS standard errors are large enough from Figure 2 that only loose
characterizations are possible. In contrast, our model provides very clear predictions.

First, the model-implied R2’s are highest for the short rate speci…cations. That is, we
would expect the greatest predictive power from using a short rate in the regression, and
if we were to choose between using a term spread and a short rate, we would prefer the
short rate. The theoretical R2’s do not imply that we should only use short rates instead
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Figure 2: Model and OLS R2.
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of spreads but instead suggest that we should at least augment the term spread with
the short rate for better explanatory power. This is not what Plosser and Rouwenhorst
(1994) suggest. They …nd that in multiple regressions that include the short rate and
spread, the short rate, given the spread, has little predictive ability to forecast output
for the U.S. We will examine this con‡icting …nding in detail.

Second, if we were to use a spread to forecast GDP, the theoretical R2’s give us a
guide as to which term spread we would choose. Term spreads of very long maturities
have greater predictive content for forecasting GDP in predictive regressions. The model
R2’s increase with the maturity of the term spread. We can see some OLS evidence in
Table 2, where 5–year spreads have the highest signi…cance levels. This is consistent with
the previous literature using the longest maturity spreads available, instead of spreads of
intermediate maturity bonds.

Third, controlling for lagged GDP is not as important as controlling for the short rate.
Moving from the …rst panel of Figure 2 to the second panel only slightly increases the
R2 by adding lagged GDP. This is because GDP is only slightly autocorrelated (30%),
and the autoregressive e¤ect is only important for forecasting GDP at short (1-2 quarter)
horizons. However, we obtain a large jump in the R2 moving from the second to the last
panel, where the short rate is included. In the …rst two panels, the R2 plotted as a cross
for maturity 1-quarter is also much higher than the term spread regressors.

To test these three predictions, we next compute the regression coe¢cients and then
examine the out-of-sample forecasting power of the various regression speci…cations in
Section 4.4.

4.3 GDP Regression Coe¢cients

To see how our model completely characterizes the GDP predictive regressions, we plot
the model and OLS regression coe¢cients for the regression (1) in Figure 3. Each panel
of Figure 3 shows the term spread coe¢cients for a di¤erent forecasting horizon (1, 4,
8 or 12 quarters), with the same scale. On the x-axis, we show the maturity of the
term spread from 2 to 20 quarters. The solid line plots the coe¢cients implied from the
yield-curve model. We can compute a coe¢cient for every horizon, even those spreads
not readily available from data sources. The cross corresponding to x = 1, represents
the model-implied coe¢cient for regressing GDP growth onto the 1-quarter short rate.
The OLS coe¢cients are shown in empty squares, with 2 standard error bounds denoted
by solid squares. All the model-implied coe¢cients lie within two OLS standard error
bands except for the 4-quarter spread coe¢cient in the 1-quarter GDP growth horizon
regression, which is borderline.

The model-implied term-spread coe¢cients in Figure 3 have a strong downward slop-
ing pattern, and the largest coe¢cients occur at the shortest maturity spreads (the un-
observed 2-quarter spread). The regression coe¢cients rapidly decrease and then level
o¤. The horizontal asymptote coincides almost exactly with the OLS estimates at the
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Figure 3: Model and OLS Regression Coe¢cients.
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1-quarter forecasting horizon but lie below the OLS estimates for the other horizons.
Looking only at the point estimates, the OLS coe¢cients of term spreads are slightly
biased upwards, relative to the yield-curve model coe¢cients for the 4, 8 and 12-quarter
forecasting horizons.

The di¤erence between the OLS coe¢cients and the regression coe¢cients implied
from our yield-curve model may come from two sources. The …rst source may be just
sampling error, which we can see from the large OLS standard error bounds in Figure 3.
Second, the simple regression (1) treats the spread as an exogenous variable. However,
the spread is very much an endogenous regressor and so the OLS coe¢cient su¤ers from
endogenous variable bias. We capture the dynamics of the spread, jointly with GDP
growth in the factor process (3), and model the relationship of yields to the factors
via the prices of risk. The di¤erence between OLS and our model-implied coe¢cients
can be negative (such as for the 1-quarter forecasting horizon) or positive, but for long
forecasting horizons the OLS coe¢cient for the term spread is higher than the model-
implied coe¢cient. Although this bias is not statistically signi…cant, it may impact
out-of-sample forecasting performance, which we examine below.

We focus on some selected regression coe¢cients in Table 5. Here, we list coe¢cients
for two speci…cations: the short rate alone and a trivariate regression with short rates,
term spreads and lagged GDP. We compare model-implied and OLS coe¢cients across
di¤erent forecasting horizons given in rows. While we can compute the regression coef-
…cients for any term spread, we choose the 5-year term spread to be comparable to the
literature. Note that since the 5-year term spread is an observable factor, the model-
implied coe¢cients in Table 5 are just coe¢cients implied from long-horizon VAR’s.

In Table 5, the short rate alone is always signi…cantly negative from our model at
the 5% level, and also signi…cant in OLS regressions, except at the 12-quarter horizon.
Turning to the trivariate regression, the 1-quarter forecasting horizon coe¢cients are
identical because this regression represents the last row of the © matrix in the state
dynamics (3). There is a di¤erence in the standard errors across the model-implied
and OLS columns because the model also takes into account the standard errors of all
the other parameters in computing the standard errors for the regression coe¢cients
and we use Hodrick (1992) standard errors for the OLS regressions. As the forecasting
horizon increases from 1-quarter to 12-quarters, the autocorrelation of GDP becomes less
important.

There are two major di¤erences between the model-implied coe¢cients and the OLS
coe¢cients. First, at long forecasting horizons, the point estimate of the short rate coef-
…cient implied by the model is signi…cantly negative in univariate regressions. The short
rate model-implied coe¢cient retains its magnitude and signi…cance in the trivariate re-
gression. For example, in forecasting GDP growth 12 quarters out, the model-implied
coe¢cient on y(1)t is ¡0.24 in the univariate regression and ¡0.22 in the trivariate re-
gression. Both coe¢cients are signi…cantly negative. This pattern does not occur in the
OLS results. The OLS short rate coe¢cients, like the model-implied coe¢cients, are
also signi…cantly negative when GDP is regressed solely on the short rate at forecasting
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horizons 1-8 quarters. However, at the 12-quarter horizon, the OLS coe¢cient on y(1)t
is ¡0.14 and insigni…cant in the univariate regression. The OLS short rate coe¢cient is
also small and insigni…cant (¡0.07) in the trivariate regression.

Table 5: Model-Implied and OLS Coe¢cients

Model Implied Coe¢cients OLS Coe¢cients
Horizon 5-Year GDP 5-Year GDP

qtrs Short Rate Term Spread Growth Short Rate Term Spread Growth
1 ¡0.39 ¡0.39

(0.14) (0.14)
¡0.27 0.32 0.26 ¡0.27 0.32 0.26
(0.13) (0.31) (0.09) (0.14) (0.26) (0.09)

4 ¡0.35 ¡0.42
(0.13) (0.15)
¡0.28 0.25 0.08 ¡0.28 0.60 0.11
(0.14) (0.31) (0.04) (0.15) (0.25) (0.06)

8 ¡0.28 ¡0.28
(0.11) (0.13)
¡0.25 0.14 0.04 ¡0.19 0.56 ¡0.02
(0.14) (0.25) (0.03) (0.13) (0.21) (0.03)

12 ¡0.24 ¡0.14
(0.10) (0.12)
¡0.22 0.08 0.02 ¡0.07 0.42 ¡0.02
(0.13) (0.20) (0.02) (0.11) (0.17) (0.02)

Second, the model-implied coe¢cients assign more predictive power to the short rate
than OLS does. This is consistent with the theoretical R2 patterns observed in Figure 2.
In the trivariate regressions, the model-implied coe¢cients on y(20)t ¡y(1)t are all insigni…-
cant. For the OLS regressions, it is only the 1-quarter horizon where the spread coe¢cient
is insigni…cant. At the 12-quarter forecasting horizon, the model-implied (OLS) coe¢-
cient on y(20)t ¡y(1)t is 0.08 (0.42). According to the yield-curve model, the only signi…cant
forecaster of GDP growth is the short rate, not the spread, at long horizons. Moreover,
the largest e¤ect should still come from the short rate, even after including the spread.
According to OLS, the short rate has little predictive power controlling for the spread,
in line with Plosser and Rouwenhorst (1994).

The di¤erences in the y(1)t and y(20)t ¡ y(1)t coe¢cients are, however, not statistically
signi…cant. The OLS coe¢cients in Table 5 lie within two standard error bounds of the
model-implied coe¢cients, where the standard errors are due solely to sampling error
of the OLS coe¢cients. The model-implied coe¢cients also lie within two standard
error bounds of the OLS coe¢cients, where the standard errors are computed using the
covariance matrix of the model coe¢cients. Hence, statistically there may not be much
di¤erence, but the two sets of coe¢cients have vastly di¤erent implications for the role
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of the short rate and spread in forecasting GDP growth. The model implies that the
short rate, not the spread, should be the most powerful predictor of GDP growth while
OLS implies that the spread has the highest explanatory power. Before testing these
implications with out-of-sample forecasting, we …rst try to distinguish what drives the
di¤erences in the coe¢cients.

The sources of the model-implied and OLS discrepancy are either small sample error
or endogenous regressor bias from the omission of modelling the process for the regressor
variables in the OLS regression. With endogenous regressors in univariate regressions, the
bias can be signed and the magnitude computed. The bias depends on the autocorrelation
of the regressor variable and the correlation of shocks to the regressor and regressand
(see Stambaugh, 1999). However, in a multivariate regression, characterizing the bias in
closed-form is not possible. We examine the small sample distribution of the coe¢cients
implied by the model in Table 6 for the long horizons, k = 8 and 12 quarters, where the
di¤erences between the model-implied coe¢cients and OLS coe¢cients are pronounced.

Table 6: Endogenous Regressor Bias

Model Implied Coe¢cients
Horizon 5-Year GDP
k-qtrs Short Rate Term Spread Growth

8 Model-Implied Coe¢cient ¡0.25 0.14 0.04
Small Sample Coe¢cient ¡0.25 0.10 0.02

12 Model-Implied Coe¢cient ¡0.22 0.08 0.02
Small Sample Coe¢cient ¡0.21 0.05 0.01

Table 6 repeats the model-implied coe¢cients from Table 5 for comparison. For each
forecasting horizon, we also report the small sample coe¢cient computed as follows.
From the model (3), we simulate out a small sample of exactly the same length as our
data sample 1964:Q1-2001:Q4. Then, we compute yields using (6), run the trivariate
regression (9) on the small sample, and record the coe¢cients. We repeat this 10,000
times to build a distribution of the small sample coe¢cients. The mean of this distribution
is the expected small sample coe¢cient. The small sample coe¢cients for both y(1)t and
(y(20)t ¡y(1)t ) show a slight downward bias. In contrast, the OLS coe¢cients in Table 5 are
much higher than the model-implied coe¢cients. For example, for k = 8 quarters, the
OLS coe¢cients for the short rate and spread are ¡0.19 and 0.56, respectively. Hence,
endogenous regressor bias is not the source of the discrepancies between the OLS and
model-implied coe¢cients.

The remaining explanation of the model-implied and OLS di¤erence is sampling error,
both from estimating the model and from estimating the OLS coe¢cients. When we
estimate the yield-curve model, we use information across the entire curve and impose
no-arbitrage restrictions that bring greater e¢ciency. In contrast, the OLS regressions
use only yields from particular maturities, that are treated as exogenous variables. To
gauge the model and OLS predictions, we now conduct an out-of-sample forecasting
exercise.
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4.4 Out-of-Sample Forecasts

We perform out-of-sample forecasts over the period 1990:Q1-2001:Q4. Our choice of
the out-of-sample period must balance the need for a long in-sample time-series of data
needed to estimate the yield-curve model, and a su¢ciently long out-of-sample period to
conduct the forecasting analysis. Our out-of-sample period covers 11 years and encom-
passes two recessions (one from 1990-1991 and one beginning in 2001). The forecasting
exercise we conduct is rolling. That is, we …rst estimate the model using 105 data points
from 1964:Q1 to 1990:Q1 and forecast k-quarter GDP growth from 1990:Q1 (k > 1).
Then at each later point in time t, we re-estimate the model again using 105 observations
up to time t, and forecast for horizons t+ k.

In our forecasting exercise, we run a horse race between forecasts implied by the
yield-curve model (denoted by “M”) and forecasts from simple OLS regressions (denoted
by “OLS”). We consider three regression speci…cations. First, we use only the spread as
in the standard spread regression (1) (M1 and OLS1). Second, we use both the spread
and lagged GDP growth (M2 and OLS2). Finally, we consider a trivariate regression
(9) of the short rate, spread and lagged GDP growth (M3 and OLS3). Each of these
regressions can use spreads of di¤erent maturities. We also consider the k-horizon forecast
implied from an unconstrained tri-variate VAR with 1 lag, comprising the short rate, term
spread and GDP.6 If the term spread used is the 5–year spread, then our model simpli…es
to a VAR. We do not consider predictors other than yields in this horse race because
Estrella and Mishkin (1996) document that in forecasting GDP, forecasts from the yield
curve dominate many other predictors including stock market indices, default spreads,
monetary aggregates and other macro variables.

In out-of-sample forecasts, very often it is the most parsimonious statistical models
that yield the best forecasts (see Meese and Rogo¤, 1983) even if they are not based on
economic theory. Over-parameterized models usually perform very well on in-sample tests
but perform poorly out-of-sample. Our yield-curve model has many more parameters
than an unconstrained OLS approach. This puts the performance of our model at a
potential disadvantage relative to the standard OLS regressions.

Table 7 reports the out-of-sample forecast results. We report RMSE as a percentage of
the RMSE from a benchmark AR(1) forecast (so the AR(1) forecast corresponds to 1.000).
Since GDP growth is slightly autocorrelated (30%), this is a reasonable benchmark that
is also used by Stock and Watson (2001) in the context of forecasting GDP and other
macro-series. Table 7 groups the RMSE ratios by each regression speci…cation (1, 2 and
3). The 1-quarter maturity column in Table 7 corresponds to a short rate regressor.
Hence, there are blank entries in Table 7 corresponding to MLD3 and OLS3 because this
regression speci…cation can only be performed for term spreads.7 We mark the lowest
RMSE ratios for each forecast horizon with asterisks.

6We also considered a random walk forecast, but this performs atrociously because GDP growth is
strongly mean reverting. It is beaten by an AR(1) and all the speci…cations in Table 7.

7The blank entry for the VAR line is because the special case of using the M3 speci…cation with the
5–year term spread, the yield-curve model reduces to a VAR.
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Table 7: Out-of-Sample GDP Forecasts

Term Spread Maturity
1 4 8 12 16 20 1 4 8 12 16 20

1-qtr Horizon 4-qtr Horizon
M1 1.018 1.109 1.080 1.090 1.104 1.121 0.884 1.089 1.030 1.026 1.035 1.052
OLS1 1.133 1.087 1.084 1.101 1.116 1.130 1.041 1.039 1.088 1.109 1.130 1.169
M2 0.953* 1.027 1.114 1.009 1.018 1.030 0.861* 1.048 0.991 0.986 0.993 1.007
OLS2 1.043 1.006 1.004 1.013 1.023 1.033 1.012 1.001 1.050 1.066 1.083 1.121
M3 ¡ 0.975 0.973 0.982 0.990 1.000 ¡ 0.925 0.912 0.918 0.927 0.941
OLS3 ¡ 1.080 1.044 1.048 1.054 1.059 ¡ 0.997 1.060 1.091 1.117 1.151
VAR 1.043 1.080 1.044 1.048 1.054 ¡ 0.984 1.017 0.990 0.993 1.000 ¡

8-qtr Horizon 12-qtr Horizon
M1 0.776* 0.973 0.936 0.934 0.953 0.977 0.722 0.802 0.781 0.798 0.818 0.842
OLS1 0.851 0.970 1.068 1.099 1.143 1.190 0.742 0.841 0.869 0.893 0.927 0.955
M2 0.777 0.963 0.924 0.919 0.935 0.956 0.715* 0.780 0.762 0.777 0.795 0.817
OLS2 0.880 0.983 1.086 1.122 1.170 1.225 0.762 0.859 0.894 0.924 0.966 1.002
M3 ¡ 0.843 0.840 0.844 0.857 0.871 ¡ 0.723 0.729 0.743 0.755 0.768
OLS3 ¡ 0.908 1.079 1.148 1.212 1.281 ¡ 0.797 0.918 0.991 1.048 1.116
VAR 0.849 0.877 0.843 0.849 0.865 ¡ 0.745 0.779 0.729 0.732 0.741 ¡

NOTE: Table entries are RMSE ratios relative to an AR(1). The out-of-sample
period is 1990:Q1-2001:Q4 and we start the estimation in 1964:Q1. We mark the
lowest RMSE ratios for each horizon with asterisks.

The …rst striking result in Table 7 is that the best performing models use short rates
rather than term spreads. This is in line with the theoretical R2 results in Section
4.2, which advocate using short rates as predictors. Holding the regression speci…cation
constant, the model RMSE ratios for the short rate (term spread = 1 column) are always
lower than the RMSE ratios in the other term spread columns. This result is also repeated
for the OLS RMSE ratios, with an exception for OLS1 and OLS2 at the 1-quarter horizon.
At the other longer horizons, both the OLS1 and OLS2 speci…cations with the short rate
beat the forecasts using any term spread. While the OLS in-sample results (Table 5)
advocate the use of the term spread to forecast GDP, the out-of-sample results con…rm
the predictions from the yield-curve model that stress the use of the short rate.

Second, the out-of-sample forecasts implied by the yield-curve model are generally
better than the corresponding OLS forecasts. In particular, for the trivariate speci-
…cations, M3 always beats its OLS counterpart, OLS3, at every horizon. In the other
regression speci…cations using less information, such as the basic spread regression (equa-
tion (1)), the results are more mixed. For the …rst and second regression speci…cations
there is no clear winner. Nevertheless, the advantages of the model can be seen when all
three factors are used to predict GDP since the M3 RMSE ratios are among the lowest
numbers in the table. This result is not unexpected, since the yield-curve model is able
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to incorporate information from the whole curve more e¢ciently than OLS, where the
regressors are exogenous. This demonstrates that adding no-arbitrage restrictions can
improve forecasts of GDP.

Third, incorporating lagged GDP and the short rate together with the term spread
produces superior forecasts than just using the term spread. The theoretical R2 results
were slightly higher for including all three factors and this is con…rmed by looking at the
RMSE ratios for the trivariate speci…cation implied by the model (M3). When including
the spread, M3 outperforms both the M1 and M2 speci…cations that omit lagged GDP
and the short rate, and the short rate only, respectively. However, the better forecasts
obtained by using short rates, lagged GDP and term spreads are not shared by the OLS
regressions. For example, at the 12-quarter horizon, using all three variables in OLS3
produces worse forecasts than using only the spread (OLS1) for spread maturities greater
than 8 quarters. This is consistent with the in-sample OLS evidence in Table 5, where the
short rate coe¢cient is not signi…cant when placed together with the spread. It is only
by imposing no-arbitrage restrictions that we obtain superior forecasts by using short
rates and term spreads together, and the bene…t, at long horizons, comes mainly from
the inclusion of the short rate.

Finally, unconstrained long-horizon VAR forecasts are beaten by M3 forecasts (except
for using the 12 and 16-quarter spreads at the 12-quarter forecasting horizon). The VAR
forecasts are obtained by using a trivariate speci…cation of the short rate, term spread
and GDP growth. A di¤erent VAR is estimated for each di¤erent term spread and we
compute the long-horizon forecast implied by the unconstrained VAR. For the case of the
1-quarter maturity, we …t a bivariate VAR. While the forecasts from the yield-curve model
can also be interpreted as using a VAR to infer long-horizon coe¢cients (equation (7)),
our model additionally imposes restrictions from the absence of arbitrage. The e¢ciency
gains from the no-arbitrage restrictions do lead to better out-of-sample performance.
However, the main advantage of the model comes from using the VAR factor dynamics
(equation (3)).

The superior model forecasting results relative to OLS come mainly from the fact
that the model-implied regressor coe¢cients place more weight on the short rate and less
weight on the spread than OLS (see Table 5), especially at long horizons. In particular,
the model allows the short rate to have greater impact (with a negative sign) on future
GDP and about a third of the weight as an unconstrained OLS regression for the term
spread coe¢cient. At a 3-year horizon, the model places almost zero weight on the term
spread. The better performance of the model is not due to the lack of inverted yield
curves during the sample: the yield curve was inverted before both the 1991 and 2001
recessions for substantial periods of time (see Figure 1 and Table 1).

Our forecasting results are subject to a number of important quali…cations. For exam-
ple, the out-of-sample period covers only two recessions and during the mid-1990’s, there
was a large decline in interest rates. While the full sample shows strong predictability
(see Tables 2 and 5), there may be issues of structural stability of these relations, partic-
ularly since monetary policy has undergone several di¤erent regimes. Another concern is
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that the superior forecasting ability of adding short rates or using a yield-curve model is
small. None of the forecasts from the yield-curve model are strongly signi…cant relative
to their OLS counterparts using Diebold and Mariano (1995) tests. However, the number
of observations in the out-sample is small and out-of-sample forecasting tests have very
low power in these cases. Another observation is that there is one prediction from the
model R2’s that is not borne out in the out-of-sample forecasting. The model predicts
that greater explanatory power should come from longer term spreads. In Table 7, RMSE
ratios for longer term spread maturities should be lower, but they are not.

While we have presented results for beginning the estimation in 1964:Q1, we stress
that if we start the estimation in 1952:Q2 and use the same out-of-sample period, the
results are even more favorable to the yield-curve model. We report these results in
Table 8, which repeats all the major …ndings of Table 7, except, the performance of the
yield-curve model is even better. The yield-curve model is a better predictor than OLS
for every regression speci…cation and the model always outperforms an unconstrained
VAR speci…cation.

Table 8: Out-of-Sample GDP Forecasts Starting 1952:2

Term Spread Maturity
1 4 8 12 16 20 1 4 8 12 16 20

1-qtr Horizon 4-qtr Horizon
M1 1.007 1.027 1.034 1.052 1.064 1.073 0.822 0.942 0.920 0.926 0.933 0.942
OLS1 1.109 1.093 1.089 1.113 1.129 1.143 0.933 0.974 1.020 1.059 1.087 1.124
M2 0.946 0.978 0.978 0.987 0.993 0.998 0.810* 0.924 0.899 0.900 0.905 0.911
OLS2 1.009 1.007 1.006 1.020 1.031 1.040 0.909 0.948 0.998 1.034 1.058 1.094
M3 ¡ 0.942* 0.943 0.951 0.957 0.961 ¡ 0.824 0.816 0.820 0.824 0.830
OLS3 ¡ 1.032 1.021 1.034 1.044 1.051 ¡ 0.908 0.978 1.016 1.043 1.075
VAR 1.009 1.032 1.021 1.034 1.044 ¡ 0.899 0.908 0.922 0.939 0.951 ¡

8-qtr Horizon 12-qtr Horizon
M1 0.831* 0.963 0.962 0.968 0.985 1.002 0.809 0.835 0.847 0.868 0.886 0.902
OLS1 0.927 0.984 1.114 1.193 1.258 1.306 0.844 0.853 0.907 0.978 1.041 1.068
M2 0.836 0.970 0.963 0.964 0.978 0.992 0.807 0.835 0.843 0.861 0.876 0.890
OLS2 0.937 0.995 1.128 1.210 1.277 1.326 0.853 0.862 0.921 0.994 1.059 1.088
M3 ¡ 0.855 0.858 0.862 0.870 0.877 ¡ 0.795* 0.808 0.819 0.828 0.835
OLS3 ¡ 0.959 1.127 1.202 1.269 1.309 ¡ 0.836 0.922 0.996 1.063 1.086
VAR 0.902 0.904 0.924 0.947 0.966 ¡ 0.833 0.853 0.845 0.862 0.878 ¡

NOTE: The estimation starts in 1952:Q2 as opposed to 1964:Q1, as in Table 7.

In summary, while the point estimates of the predictive coe¢cients in the various
regression speci…cations are well within OLS con…dence bounds (see Table 5 and Figure
3), the magnitudes of the model-implied coe¢cients are quite di¤erent from the OLS
estimates. In out-of-sample forecasting, this di¤erence becomes important, particularly
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for the weight assigned to the short rate. By imposing no-arbitrage restrictions, our
estimates are more e¢cient than unrestricted OLS estimates. The stark implications of
the superior forecasting power from short rates in the model versus term spreads in OLS
show that these e¢ciency gains matter.

4.5 What is Driving the Short Rate Predictability?

Are the 1990’s Special?

The high predictability of GDP growth by the short rate during the out-of-sample
forecasting exercise may be due to the 1990’s. The best performing models in the out-of-
sample forecasting exercise used short rates. Over the out-sample (1990:Q1 to 2001:Q4),
this particular sample may favor the short rate over the spread. In Figure 4, we plot
four-quarter GDP growth shown with 20-quarter term spreads and 1-quarter short rates
lagged four quarters. For example, in 1990, we plot GDP growth from 1989-1990 together
with the term spread and short rate at 1989.

Figure 4 shows that during the 1990’s, particularly, post 1994, the lagged term spread,
if anything, is slightly negatively correlated with GDP growth. In contrast, the short rate
moves clearly in the opposite direction to future GDP growth. Hence, the 1990’s does
seem to be a period where the spread does not seem to positively predict GDP growth
but high short rates forecast negative GDP growth. However, the top panel of Figure
4 shows that prior to 1970, the term spread is almost ‡at and has little to do with
GDP ‡uctuations. It is only between 1970 and 1990 that the lagged spread is positively
correlated with GDP growth. In contrast, in the bottom panel of Figure 4, lagged short
rates and GDP are negatively correlated throughout the whole sample period. Table 9
makes this clear.

Table 9 reports unconstrained OLS coe¢cients on the short rate, 5–year term spread
and lagged GDP growth, forecasting future GDP growth k-quarters ahead across various
sample periods. Over the out-of-sample period, post-1990, the OLS regressions place little
weight on the spread but signi…cantly large negative weights on the short rate. Prior to
1970, we see that the 5-year spread is also insigni…cant (but also has negative point
estimates) and the coe¢cients on short rates are large in magnitude, highly statistically
signi…cant, and negative. It is only from 1971-1989 that the term spread signi…cantly
predicts future GDP growth with a positive sign and drives out the predictive power of
the short rate. It is this period that dominates in the unconstrained OLS regressions
over the full sample (listed in Table 5). Hence, although the 1990’s favor the short rate,
this period is by no means special. OLS over the full sample favors the term spread
rather than the short rate. In contrast, the forecasting coe¢cients implied by our term
structure model always favor the short rate instead of the term spread.
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Figure 4: Four-quarter GDP growth, with 20-quarter term spreads and 1-quarter short
rates lagged four quarters.

Table 9: Forecasting GDP Growth
1964:Q1 - 1970:Q4 1971:Q1 - 1989:Q4 1990:Q1 - 2001:Q4

Horizon Short 5-year GDP Short 5-year GDP Short 5-year GDP
k-qtrs Rate Spread Growth Rate Spread Growth Rate Spread Growth

1 -1.37 -2.35 0.04 -0.27 0.53 0.25 -0.75 -0.27 0.34
(0.56) (1.48) (0.22) (0.21) (0.39) (0.11) (0.14) (0.41) (0.12)

4 -1.69 -0.05 -0.01 -0.22 0.93 0.06 -1.00 -0.43 0.08
(0.64) (1.23) (0.12) (0.22) (0.40) (0.07) (0.30) (0.33) (0.07)

8 -2.16 -0.94 -0.07 -0.06 0.97 -0.06 -0.55 -0.51 -0.02
(0.45) (0.73) (0.04) (0.19) (0.35) (0.04) (0.13) (0.28) (0.03)

12 -1.56 -1.42 0.03 0.11 0.83 -0.05 -0.25 -0.12 0.03
(0.23) (0.54) (0.02) (0.17) (0.29) (0.03) (0.09) (0.19) (0.04)

NOTE: Unconstrained OLS predictive regressions over various sample periods.
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Is it In‡ation or the Real Rate?

To better understand why the nominal short rate predicts GDP growth, we decompose
the nominal rate into the real rate and in‡ation. The actual real rate is unobservable,
so we use an ex-post real rate that we construct by using the nominal short rate less
realized CPI in‡ation over the last quarter. Since we use the ex-post real rate, the two
sum up to the nominal short rate. To decompose the e¤ect of the nominal rate into the
real rate and in‡ation, we …t a 4-variable VAR of in‡ation, the real rate, the 5-year term
spread and GDP. We compute long-horizon coe¢cients of each variable for forecasting
in‡ation k-quarters out.

Table 10 reports the GDP forecasting coe¢cients where we distinguish between the
real rate and in‡ation. We compare the 4-variable in‡ation-real rate system with the last
3 columns, which report the results from the yield-curve model based on the nominal
rate. We can see that the forecasting power from the nominal rate is mostly due to
in‡ation. While both in‡ation and the real rate have negative coe¢cients, the in‡ation
coe¢cients are larger in magnitude than the real rate coe¢cients. Moreover, the real
rate coe¢cients are all insigni…cant while the in‡ation coe¢cients are all signi…cant at
the 5% level. The magnitude of the in‡ation coe¢cient is also roughly comparable to
the coe¢cient on the nominal rate in the yield-curve model. We can conclude that it is
the in‡ation content of the nominal rate that has predictive power for future economic
growth. These results are consistent with Stock and Watson (1999a), who …nd that
the nominal rate is a leading business-cycle indicator, while the ex-post real rate is less
cyclical.8 Bernanke and Blinder (1992) argue that the forecasting power of the nominal
rate may be due to monetary policy.

Table 10: Forecasting GDP

Horizon VAR with In‡ation and Real Rate Yield-Curve Model
k-qtrs In‡ation Real Rate Spread GDP Nom. rate Spread GDP

1 -0.33 -0.17 0.21 0.24 -0.27 0.32 0.26
(0.14) (0.15) (0.34) (0.08) (0.13) (0.33) (0.09)

4 -0.32 -0.20 0.24 0.07 -0.28 0.25 0.08
(0.13) (0.15) (0.29) (0.04) (0.14) (0.31) (0.04)

8 -0.26 -0.18 0.18 0.03 -0.25 0.14 0.04
(0.12) (0.13) (0.22) (0.02) (0.13) (0.24) (0.03)

12 -0.21 -0.16 0.13 0.02 -0.22 0.08 0.02
(0.11) (0.12) (0.18) (0.02) (0.12) (0.19) (0.02)

NOTE: Sample Period 1964:Q1 to 2001:Q4.

8GDP growth also has predictive power for in‡ation, as Stock and Watson (1999b) and others …nd.

28



4.6 Forecasting Recessions

Up to now we have considered only forecasting GDP growth. We now shift our attention
to forecasting recessions, which are dummy variables. We consider two de…nitions of
recessions. In Table 11, the ‘NBER recessions’ refer to a dummy variable which is 1 if
the NBER declared a recession for that quarter and 0 otherwise. ‘Actual’ refers to a
dummy variable which is 1 if GDP growth is negative in that quarter and 0 otherwise.
The correlation between these two variables is 69%, as indicated in the second column of
Table 11. To assess how well various models can forecast these recessions, we compute
the correlation between the model forecast and these dummy variables. We concentrate
on two sets of right-hand side variables. The …rst set, M1 and OLS1 use only the spread,
and is the set-up of Estrella and Hardouvelis (1991). The second set, M3 and OLS3, is
the full trivariate speci…cation (the short rate, spread and lagged GDP growth) implied
by the yield-curve model.

Table 11: Recession forecasts

NBER recessions Actual Negative GDP Growth
Spread Actual M1 OLS1 M3 OLS3 M1 OLS1 M3 OLS3

1 0.689 0.378 0.378 ¡ ¡ 0.266 0.266 ¡ ¡
4 0.689 0.218 0.160 0.586 0.623 0.165 0.146 0.360 0.373
8 0.689 0.233 0.226 0.616 0.622 0.191 0.190 0.380 0.383
12 0.689 0.254 0.251 0.620 0.624 0.187 0.190 0.378 0.380
16 0.689 0.251 0.250 0.622 0.624 0.191 0.191 0.380 0.382
20 0.689 0.275 0.274 0.626 0.626 0.192 0.192 0.380 0.380

NOTE: Table entries are correlations between in-sample forecast and recession
dummies computed over the sample 1964:Q1 to 2001:Q4.

At each point in time, we compute the probability of negative GDP growth implied
by the model and OLS for the various regressor speci…cations. That is, using the model-
implied or OLS coe¢cients, we can compute the probability that GDP growth next
quarter will be negative, since this probability is a function of the conditional mean and
volatility. We compare di¤erent term spreads as regressors. In Table 10, ‘spread’ refers
to the maturity of the spread used in the speci…cation, ranging from 4 to 20 quarters.
The row corresponding to ‘1’ refers to the 1-quarter yield itself.

The exercise we conduct in Table 11 is in-sample. It is very hard to run an out-of-
sample exercise for forecasting recessions, rather than GDP growth as in the previous
section, because the frequency of recessions is very low. This is especially true over the
1990’s, which experienced mostly one large economic expansion, that would comprise the
majority part of any out-of-sample period. Even for the in-sample exercise, we note that
there are only 7 recessions during the 1964:Q1-2001:Q4 period, so we must interpret this
exercise with caution.
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The yield-curve model does slightly better at forecasting NBER recessions than the
unrestricted OLS regression, when only the term spread is used. When we compare
columns M1 and OLS1 in the NBER recession panel, we see that this is true for all
spread maturities. When we include all right-hand side variables in the M3 and OLS3
columns, the yield-curve model does worse when the 4-quarter spread is used and is
comparable to OLS for the other spread maturities. When we forecast actual quarters of
negative GDP growth in the “Actual Negative GDP Growth” panel, our model and OLS
have roughly the same performance. Overall, our model does slightly better when we
forecast NBER recessions than actual negative periods of GDP growth. The reason may
be that NBER recessions represent more dramatic economic downturns than quarters of
negative GDP growth and thus are more likely to show up in the yield curve.

5 Conclusion

Imposing restrictions from theory usually only helps in extracting information from data
when the theory is right. The absence of arbitrage in bond markets is an assumption
which is extremely reasonable. We present a ‡exible arbitrage-free model of yields and
GDP growth that can be easily estimated and gives us a number of advantages to fore-
casting future economic growth. First, the yield-curve model guides us in choosing the
right spread maturity in forecasting GDP growth. We …nd that the maximal maturity
di¤erence is the best measure of slope in this context. Second, the nominal short rate
dominates the slope of the yield curve in and out of sample in forecasting GDP growth.
This …nding is robust to the maturity of the yields used to compute the slope. Third,
lagged GDP growth is informative about the future economic activity, and should not
be omitted from the predictive regression speci…cations, especially for short forecasting
horizons. Finally, imposing no-arbitrage restrictions allows us to predict GDP out-of-
sample better than OLS. This …nding is independent of the forecasting horizon and the
combination of right-hand side variables used. While our model does not take a stance
on the equilibrium structure of the economy, we can certainly improve upon unrestricted
forecasts by imposing no-arbitrage restrictions.
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Appendix

Estimation procedure

We use a two-step procedure to estimate the model. The parameters £ can be partitioned
into the parameters ¹, © and § governing the factor dynamics (3) and the risk premia
¸0 and ¸1. In the …rst step, we estimate the VAR parameters ¹, © and § using standard
SUR. In the second step, we estimate ¸0 and ¸1 given the estimates of the parameters ¹,
© and § estimated in the …rst step. This is done by minimizing the sum of squared …tting
errors of the model. More precisely, we compute model-implied yields ŷ(n)t = an + b>nXt
for given values of the state vector at time t and then solve:

min
f¸0;¸1g

TX

t=1

NX

n=1

³
ŷ(n)t ¡ y(n)t

´2
(10)

for the N yields used to estimate the model.

The observed factors, the short rate and spread, make direct use of the yields y(1)t and
y(20)t . Hence these are yields to be considered to be measured without any observation
error. The other yields (with maturities 4, 8, 12 and 16 quarters) are then functions
of y(1)t and y(20)t ¡ y(1)t and GDP growth, according to the model pricing equation (6).
Naturally, this stochastic singularity means that the model generates yields ŷ(n)t slightly
di¤erent from the observed yields for the intermediate maturities. We therefore place a
small sampling error on these yields not included as factors. We assume that the sampling
errors have mean zero and estimate their standard deviation ­ in the second stage.

We compute standard errors for our parameter estimates using GMM, with moments
from each stage of our two-step procedure. The moments are the …rst order conditions
of ordinary least squares for ¹ and ©; the covariance conditions of §, and the …rst-order
conditions of ¸0 and ¸1 to satisfy (10). The standard errors we compute adjust for the
two-stage estimation process. This is done as follows.

Let µ1 = f¹;©;§g and µ2 = f¸0; ¸1;­g be the partitioned parameter space and
denote the corresponding sample estimates by overlined letters. We estimate £ = fµ1; µ2g
following a consistent two-step procedure. In the …rst step, we …t a Gaussian-VAR(1)
process to the observed state variable series and estimate µ1 by solving the system of
equations: p

Tg1
¡
µ1

¢
= 0; (11)

where the function g1 (:) represents the usual SUR moment conditions.

In the second step we choose µ2 so as to minimize the sum of squared …tting errors
of the yields:

min
µ2

1
2
g2

¡
µ2; µ1

¢>
g2

¡
µ2; µ1

¢
;

where g2
¡
µ2; µ1

¢
=

n
ŷ(n)t ¡ y(n)t

oN
n=1

is a column vector of …tting errors of the yields
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evaluated at any given µ2 and a …xed µ1 from the …rst step. The …rst-order conditions
for this minimization problem are:

G
0
2;2

p
Tg2

¡
µ2; µ1

¢
= 0; (12)

where Gi;j = @gi=@µ
0
j, i; j = 1; 2.

We can expand the function g1 and g2 around the true parameter values using the
…rst-order Taylor’s approximation:

p
Tg1

¡
µ1

¢
=

p
Tg1 (µ1) +G1;1

p
T

¡
µ1 ¡ µ1

¢
;p

Tg2
¡
µ2; µ1

¢
=

p
Tg2 (µ2; µ1) +G2;1

p
T

¡
µ1 ¡ µ1

¢
+G2;2

p
T

¡
µ2 ¡ µ2

¢
;

which can then be substituted back into the moment conditions (11) and (12) to yield:
·
0
0

¸
=

·
¡

p
Tg1 (µ1)

¡G0
2;2

p
Tg2 (µ2; µ1)

¸
¡

·
G1;1 0
G0

2;2G2;1 G
0
2;2G2;2

¸ · p
T

¡
µ1 ¡ µ1

¢
p
T

¡
µ2 ¡ µ2

¢
¸

(13)

Invoking the rule of partitioned matrix inversion we obtain:
·
G1;1 0
G0

2;2G2;1 G
0
2;2G2;2

¸¡1
=

·
G¡11;1 0

¡
¡
G0

2;2G2;2
¢¡1 ¡

G0
2;2G2;1

¢
G¡11;1

¡
G0

2;2G2;2
¢¡1

¸
;

which allows us to rewrite (13) as:
· p
T

¡
µ1 ¡ µ1

¢
p
T

¡
µ2 ¡ µ2

¢
¸
=

·
G1;1 0
G0
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0
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¡

p
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2;2G2;2
¢¡1 ¡

G0
2;2G2;1

¢
G¡11;1

¡
G0

2;2G2;2
¢¡1G0

2;2

¸ ·
¡

p
Tg1 (µ1)

¡
p
Tg2 (µ2; µ1)

¸
:

The asymptotic variances of the parameter estimates are thus:
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where ­ =
·
­11 ­12

­21 ­22

¸
is the variance of sample mean of the moment conditions

fg1; g2g.

Computation of Regression Coe¢cients

In this section we detail the computation of the regression coe¢cients ¯(n)k;i and the R2

statistic for the most general regression (9), which regresses the k-quarter GDP growth
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gt!t+k onto the short rate, n-qtr term spread and the current-quarter GDP growth. For
2 yield-curve factors and a GDP factor ordered last, gt!t+k = 4

ke
T
3

Pk
i=1Xt+i.

Under the factor dynamics speci…ed in Section 3, k-quarter GDP growth, gt!t+k, can
be decomposed into the part that is in the time-t information set and future shocks:

gt!t+k =
4
k
eT3

kX

i=1

Xt+i

=
4
k
eT3

kX

i=1

Ã
i¡1X

j=0

©j¹+©iXt +
iX

j=1

©i¡j§"t+j

!

= c + 4eT3©e©kXt +
4
k
eT3

kX

i=1

iX

j=1

©i¡j§"t+j (14)

where ei is a column vector that picks the i-th VAR variable,

e©i =
1
k

i¡1X

j=0

©j =
1
k
(I ¡ ©)¡1

¡
I ¡ ©i

¢
;

and

c = 4eT3
kX

i=1

e©i¹ = 4eT3 (I ¡ ©)¡1
³
I ¡ ©e©k

´
¹

is a constant. Hence the time-t expectation of the regressor is:

Et [gt!t+k] = c+ 4eT3©e©kXt:

The regressors in regression (9) are also linear combinations of the state variables and
can be represented as 4 (A+BXt) withA =

£
0 an ¡ a1 0

¤T andB =
£
e1 bn ¡ b1 e3

¤T
where an and bn are the yield coe¢cients de…ned in equation (6).

The regression coe¢cients ¯(n)k = [¯(n)k;1 ; ¯
(n)
k;2 ; ¯

(n)
k;3 ]

> implied by the model can then be
computed as:

¯(n)k =
¡
A§xAT

¢¡1 h
A§xe©Tk©T e3

i
,

where §X is the unconditional covariance matrix of the factors Xt with vec(§X) =
(I ¡ © ­ ©)¡1vec(§).
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Computation of R2

By switching the order of summation, the last term in (14) can be rewritten as:

4
k
eT3

kX

j=1

kX

i=j

©i¡j§"t+j =
4
k
eT3

kX

j=1

k¡jX

i=0

©i§"t+j

=
4
k
eT3

kX

j=1

j¡1X

i=0

©i§"t+k¡j+1

= 4eT3
kX

j=1

e©j§"t+k¡j+1 (15)

Combining (14) and (15) we can compute the unconditional variance of the k-quarter
GDP growth

var (gt!t+k) = 42eT3©e©k(§X§>X)e©Tk©T e3 + 42eT3
kX

j=1

e©j§§T e©Tj e3

and the R2 statistic

R2 =
1
42

³
¯(n)k

´T
A(§X§>X)AT¯

(n)
k

eT3©e©k(§X§>X)e©Tk©T e3 + eT3
Pk¡1
j=0

e©j(§§T )e©Tj e3
:

We compute the standard errors for ¯(n)k and R2 using the delta method.

Comparison with a Latent Factor Model

To compare the performance of our model with a more traditional model with unobserv-
able factors, we estimate a system with 2 latent yield curve factors and GDP. Latent
factors leads to identi…cation issues of parameters, as rotations and linear transforma-
tions can be applied to the latent factors that result in observationally equivalent systems
(see Dai and Singleton, 2000). We estimate the most general identi…ed model.9 We use
maximum likelihood following Chen and Scott (1993) by inverting the latent factors from
the 1 and 20-quarter yields.

While the estimation of the observable yield-curve model is not as e¢cient as the
2-step estimation of the latent yield-curve model, the results from the two approaches
are almost identical. The extracted latent factors are almost exact transformations of

9The …rst two elements of ¹ are set to zero, © is lower triangular, § can be partitioned into as
§ =

h 1 0 0
0 1 0

§31 §32 §33

i
. The short rate is rt = ±0 + ±>

1 X for a scalar ±0 and a 3-dimensional vector ±1: The
…rst element in ¸0 is constrained to be zero.
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the …rst two principal components, or level and slope. The …rst latent factor has a 97%
correlation with the …rst principal component and a ¡100% correlation with the short
rate level. The second latent factor has a 98% correlation with the second principal
component and a ¡99% correlation with the 20-quarter term spread. The correlations
of the two latent factors with any other principal components are very small.

The second, more convincing, evidence is that the latent and observable models have
near-identical implications for forecasting GDP. Figure 5 graphs the implied coe¢cients
from a predictive GDP regression with short rate, term spread and lagged GDP regressors,
as given by equation (9). In the left (right) hand column we show the coe¢cients for
a forecast horizon of k = 1 quarter (4 quarters). In each plot, the x-axis denotes the
maturity of the term spread used in the regression. For example, the coe¢cients ¯(10)1;1

for the short rate, ¯(10)1;2 for the 10-quarter term spread and ¯(10)1;3 for GDP shown in the
top, middle and bottom panels on the left column, respectively, correspond to using a
term spread maturity of n = 10 quarters for a forecasting horizon of k = 1 quarter. The
thin solid line in Figure 5 represents the implied predictive coe¢cients from the latent
yield-curve model. The implied coe¢cients from the observable yield-curve model are
shown as diamonds. The two lines are almost identical. The dotted lines represent two
standard deviation bounds computed using the delta-method from the latent yield-curve
model. Figure 5 clearly shows that the predictive implications for forecasting GDP from
the latent and observable yield-curve models are the same. Hence, we focus on the more
easily interpretable observable yield-curve model that is more tractable, especially for
out-of-sample forecasting.
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Figure 5: Latent and Observable Yield Curve Model Predictive Coe¢cients
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