Virtual Seminar on Climate Economics
Federal Reserve Bank of San Francisco

Organizing Committee:
Glenn Rudebusch (Federal Reserve Bank of San Francisco)
Michael Bauer (University of Hamburg)
Stephie Fried (Federal Reserve Bank of San Francisco)
Òscar Jordà (Federal Reserve Bank of San Francisco)
Toan Phan (Federal Reserve Bank of Richmond)
Climate, technology, family size; on the crossroad between two ultimate externalities

Reyer Gerlagh

Tilburg University

VSCE 21 Oct 2021
You’re welcome to unmute and ask questions during presentation
... or use the chat box for questions/comments.
First Ultimate Externality

“[CC is] the greatest market failure the world has seen” (Stern 2006)

Key features (DICE, William Nordhaus 1993, Nobel prize 2018):

- Fossil fuels for energy \( \rightarrow \) CO\(_2\) emissions
- Atmospheric CO\(_2\) \( \rightarrow \) global warming
- Global warming \( \rightarrow \) reduced output
- Atmospheric CO\(_2\) depreciates extremely slowly \( \Rightarrow \) present individuals need to reduce fossil fuel use for the benefit of future generations around the world
Recent developments: closed-form SCC proxies.

Central variable:
Social Costs of Carbon (SCC) = NPV of damages caused by 1 tCO₂.

- **GHKT2014**: add climate to the Brock-Mirman 1972 structure ⇒ closed-form solutions for SCC.
- **most simple version**: \( SCC_t = \frac{\delta c}{\rho + \eta} Y_t \)
  \( \delta \) = relative damage per degree Celsius; \( c \) = climate sensitivity; \( \rho \) = pure impatience; \( \eta \) = CO₂ depreciation
- **vdBGL2016, RvdP2016**: GHKT2014 closed-form analytical solutions can be generalized to SCC formulas that proxy IAMs (e.g. DICE) very well

This paper builds on the BM72+GHKT2014 model.
Recent developments: global warming & economic growth

New **Empirical** Climate-Growth literature:

- The ideal temperature for the economy seems to be 14°C annual average.
- **Global warming** leads to a (permanent) reduction of economic growth (not level)
- macro-economic growth evidence: **Dell et al. 2012, Burke et al. 2015**
- micro-economic learning evidence: **Graff Zivin et al. (2018)**
- micro-macro connection: **Masters and McMillan (2001), Park et al. (2020)**

This paper **adds climate-growth-damaging mechanisms** into the BM72+GHKT2014 model.
### New Empirical Climate-Growth literature (summary)

**Table:** Dependent variable: economic growth

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0.261</td>
<td>1.27***</td>
</tr>
<tr>
<td>Temp. × Poor</td>
<td>-1.66***</td>
<td></td>
</tr>
<tr>
<td>Temp. sq.</td>
<td></td>
<td>-0.05***</td>
</tr>
<tr>
<td>Country FE</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Year FE</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4924</td>
<td>6584</td>
</tr>
</tbody>
</table>

Sources: (1) Dell, Jones & Olken, AEJmacro 2012, Table 2. (2) Burke, Hsiang & Miguel, Nature 2015, Table 1 (x100). Various controls, lags, and FE's included.

Estimate uses panel data with annual variation in weather and growth between countries. Interpreting as sensitivity to climate...
This paper contribution 1

- Build an analytic IAM (BM72-GHKT14)
- incorporate endogenous growth mechanisms
- include global warming induced growth reduction
- derive SCC analytically

Provides basis for study of second ‘Ultimate externality’
Second Ultimate Externality

- Jon Harford AER 1998: Parent’s fertility decisions are the ultimate externality [because the number of people negatively impacts on resources available per person]
- Kuznets 1960: People are the ultimate source: more people → more ideas → higher welfare per capita (also Simon 1981, Romer 1986)
  
  "[we should view] human beings not as producers of commodities and services, but as producers of new knowledge"
Finding the balance: People as source or sink of welfare?

This paper

- tractable model: BM72 + GHKT14 + Endogenous Growth + Endogenous Fertility
- support a structured discussion on (more) people as the source, or solution, for scarcity of natural resources (specifically climate change).
Research questions

1. **ETC ∈ SCC**: Climate change and endogenous growth
   - If climate change affects growth, as estimated in recent empirical literature, does that increase the social costs of carbon (carbon tax) substantially?

2. **W(POP|CLIM, ETC)**: Reason to worry or to celebrate the future 10-12bn world population?
   - Do more people increase or reduce environmental damages and welfare?
Method

Basis: Brock Mirman model (1972): Ramsey-Cass-Koopmans with discrete time, stochastic TFP, full capital depreciation → closed-form solution for all decision variables (investment in capital).

Endogenous population extension:
- human capital
- endogenous fertility

Semi-endogenous growth extension:
- variety expansion with standing on shoulders & toes

Climate extension:
- emissions as production factor (GHKT14)
- higher temperatures decreases TFP (GHKT14)
- higher temperatures decreases innovation
Scope: limitations

- **World model**
  - no heterogeneous regions
  - no migration

- **Dynasties as units of decision making**
  - no value of individual life / optimal population size
  - externalities between dynasties (cf. aggregate versus average welfare)
  - Interpretation: Am I ok with my neighbor’s third child?

- **Undirected technical change**
  - No renewables versus fossil fuels (no fossil fuel markets)
Connecting 3 strands of literature

I borrow from
- Macro-Climate (NP 2018 Nordhaus)
- Endogenous Growth (NP 2018 Romer)
- Endogenous Fertility (NP 1992 Becker)

Intersections
- Climate-Endogenous Growth (Gradus and Smulders 1993) If pollution reduces learning abilities, environmental policy increases long-term growth.
- Macro-Climate-Population
- Unified Growth theory

Inner section
- Climate-Endogenous Growth & Population But not new growth theory.
Literature: population \( \cap \) endogenous growth \( \cap \) climate

Literature

- Schou (ITPF 2002)
- Gerlagh, Lupi, Galeotti (WP 2018, but no ETC)
- Kruse-Andersen (WP 2019)
- Bretscher (EER 2020)

This paper innovations:

- Closed-form SCC when global warming reduces growth
- Discussion on independence between policy domains (second-best)
- Connecting population externality to returns to scale
Households

Dynasties $i \in [0, 1]$ of size $n_{i,t}$ maximize (average) welfare

$$w_{i,t}(s_{i,t}, n_{i,t}, h_{i,t}) = \sum_{j=0}^{\infty} \beta^j \left[ \ln(c_{i,t+j}/n_{i,t+j}) + \gamma \ln(f_{i,t+j}) \right]$$

with consumption $c_{i,t}$, fertility $f_{i,t}$, subject to the budget constraint, labour supply, population dynamics and human capital dynamics

$$c_{i,t} + s_{i,t+1} = \sigma^y_t(w_t h_{i,t} l_{i,t} + r_t s_{i,t}) - \tau_{f,t} f_{i,t} n_{i,t} + \tau_{n,t} n_{i,t}$$

$$l_{i,t} = (1 - \phi f_{i,t} - x_{i,t} f_{i,t}) n_{i,t}$$

$$n_{i,t+1} = (1 + f_{i,t} - \delta_N) n_{i,t}$$

$$h_{i,t+1} = x_{i,t} h_{i,t}$$

where $l_{i,t}$ labour supply, $w_t$ are wages, $r_t$ returns to investments, $1 - \sigma^y_t$ income tax, $\tau_{f,t}$ fertility tax, $\tau_{n,t}$ per capita lump-sum government transfers, $\phi$ time for raising children, and $x_{i,t}$ time spent on schooling.

Symmetry → drop and reuse $i$. 

Gerlagh (TiU) | Climate, technology, family size | VSCE 2021 | 15 / 45
Final goods production

The final good is produced by use of intermediates indexed $i \in [0, A_t]$

$$Y_t = \Omega_t \left( \int_{i=0}^{A_t} \left( y_{i,t}^{\frac{\varepsilon}{\varepsilon-1}} \right)^{\frac{\varepsilon-1}{\varepsilon-1}} \right)$$

(6)

where $\Omega_t$ is climate-related productivity (Nordhaus 1993, ...).

Intermediates are produced by monopolists

$$\max_{k_{i,t},l_{i,t},e_{i,t}} [p_{i,t} y_{i,t} - r_t k_{i,t} - w_t h_{i,t} l_{i,t} - \tau_{z,t} z_{i,t} - \tau_{e,t} e_{i,t} - \pi_{i,t}]$$

(7)

s.t. $y_{i,t} = k_{i,t}^{\alpha} (q_t(z_{i,t}, e_{i,t}))^\kappa (h_{i,t} l_{i,t})^{1-\alpha-\kappa}$

(8)

with $\pi_{i,t}$ royalties paid to the patent owner, $e_{i,t}$ is the use of natural resources associated with greenhouse gas emissions (mostly fossil fuels), $z_{i,t}$ is the use of other natural resources in fixed supply $\int z_{i,t} = 1$ owned by government, $\tau_{e,t}$ is a carbon tax, and $q(.)$ describes renewables substitution (Gerlagh & Liski 2018).
Innovation

Varieties $i \in [0, A_t]$ are produced by innovators indexed $j$. Each innovator produces a mass $a_{j,t+1}$ of new ideas, and the current stock of knowledge is

$$A_t = \int_j a_{j,t}$$  

(9)

Innovator $j$ maximizes

$$\max_{k_{j,t}, l_{j,t}} \left[ \pi_{j,t+1} a_{j,t+1}/r_{t+1} - r_t k_{j,t} - w_t l_{j,t} - r_z t_z j, t - r_e t e_{j,t} \right]$$  

(10)

$$\text{st. } a_{j,t+1} = \zeta_t \Gamma_t x_{j,t}^a (X_t^A)^{-\psi} A_t^\phi.$$  

(11)

where $\zeta_t$ common shocks, $\Gamma_t$ is a climate factor (Dell et al.2012/Burke et al.2015), $x_{j,t}^a = k_{j,t}^\alpha f_{j,t}^\kappa (h_{l,t} l_{j,t})^{1-\alpha-\kappa}$ is individual effort, $X_t^A = \int_j x_{j,t}^a$ is the aggregate effort, $(X_t^A)^{-\psi}$ standing on toes, $A_t^\phi$ standing on shoulders.

Note: Creative destruction for compatibility with BM72: varieties complementary to capital, fully depreciate after each period.
Climate Change

Past emissions increase global temperatures:

\[ T_t = \sum_{i=1}^{\infty} \theta_i E_{t-i} \tag{12} \]

Temperature rise reduces output, a level-effect, but also hamper growth (Dell et al. 2012, Burke et al. 2015).

Borrow functional form from Golosov et al. (2014):

\[ \Omega(T_t) = e^{-\delta_Y T_t}, \tag{13} \]
\[ \Gamma(T_t) = e^{-\delta_A (\varepsilon-1) T_t}. \tag{14} \]

The term \((\varepsilon - 1)\) scales both \(\delta\) to have the same immediate effects.

Summary of agents

- **Households** choose consumption and savings \((c_t, s_t)\), human capital and fertility \((f_t, h_t)\), that maximize welfare, given wages \((w_t)\), interest \((r_t)\), lump-sum transfers \((\tau_{n,t})\), fertility taxes \((\tau_{f,t})\).
- **Final sector** produces final good \((Y_t)\) using intermediates \((y_{i,t})\), implying demand function for intermediates.
- **Intermediates sector** sets prices \((p_t)\) that maximize profits given wages \((w_t)\), interests \((r_t)\), prices for emissions and renewables \((\tau_{f,t}, \tau_{z,t})\), royalties for blueprints \((\pi_{i,t})\).
- **Innovators** produce varieties \((a_t)\), choosing capital, labor, emissions \((k_t, l_t, e_t)\) that maximize profits given royalties for blueprints \((\pi_{i,t})\), wages \((w_t)\), interests \((r_t)\), prices for emissions and renewables \((\tau_{f,t}, \tau_{z,t})\).
- **Government** may maximize welfare or use fiscal rule of thumb. Sets carbon taxes \((\tau_{e,t})\), fertility taxes \((\tau_{f,t})\), and lump-sum transfers \((\tau_{n,t})\) and maintains closed budget.
Aggregate Economy

\[ W_t = \sum_{j=0}^{\infty} \beta^j \left[ \ln \left( \frac{C_{t+j}}{N_{t+j}} \right) + \gamma \ln(f_{t+j}) \right] \]  

(15)

\[ C_t + K_{t+1} = \Omega_t(T_t)A_t^{\delta - 1}(1 - s_A)X_t(\cdot) \]  

(16)

\[ A_{t+1} = \zeta_t \Gamma_t(T_t)(s_A X_t(\cdot))^{1-\psi} A_t^\rho \]  

(17)

\[ N_{t+1} = (1 + f_t - \delta_N)N_t \]  

(18)

\[ h_{t+1} = x_t^{\eta_s} h_t^{\eta_h} \]  

(19)

\[ T_t = \sum_i \theta_i E_{t-i} \]  

(20)

with \( X_t(\cdot) = K_t^\alpha \left[ q_t(E_t, Z_t) \right]^\kappa (h_t(1 - \phi f_t - x_t f_t) N_t)^{1-\alpha-\kappa} \) total effort

Control variables: investment share of output \( s_{K,t} \), share of effort into innovation \( s_{A,t} \), share of time into education \( x_t \), fertility \( f_t \), emissions \( E_t \)

Note that \( h_t \) is an intensive state variable, while \( K_t, A_t, N_t \) are aggregate stocks.
Calibration: Growth accounting

- Important for our growth calibration: how much (historic) growth is attributed to population growth?

- Jones (2002, 2014): most of post WWII growth has been transitional dynamics; only 0.4 per cent point attributable to population growth (transitional dynamics: increasing R&D intensity and schooling)
Calibration: all parameters

Table: Parameters and Macro Targets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source / Targeted Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \alpha )</td>
<td>Capital-output elasticity</td>
<td>(0.12,0.26,0.39)</td>
<td>Savings share</td>
</tr>
<tr>
<td>( \beta )</td>
<td>Pure discount</td>
<td>(0.74,0.82,0.90)</td>
<td>Return on capital</td>
</tr>
<tr>
<td>( \delta_Y )</td>
<td>Climate damage for output ([/K])</td>
<td>(0.005,0.01,0.015)</td>
<td>Hsiang et al. 2017</td>
</tr>
<tr>
<td>( \delta_A )</td>
<td>Climate damage for growth ([/K])</td>
<td>(0.01,0.03,0.05)</td>
<td>Dell et al. 2012,Burke et al. 2015</td>
</tr>
<tr>
<td>( \varepsilon )</td>
<td>Elasticity of demand</td>
<td>(3,5,7)</td>
<td>Industry mark up</td>
</tr>
<tr>
<td>( \varphi )</td>
<td>Standing on shoulders</td>
<td>(0.71,0.79,0.88)</td>
<td>Convergence of 1-3% p.y.</td>
</tr>
<tr>
<td>( \kappa )</td>
<td>Natural resource share in output</td>
<td>(0.05,0.1,0.15)</td>
<td>Resource shares</td>
</tr>
<tr>
<td>( \psi )</td>
<td>Standing on toes</td>
<td>(0.49,0.80,0.93)</td>
<td>Income growth, ( g_Y / g_L = 1.2 - 1.6 )</td>
</tr>
<tr>
<td>( \theta_i )</td>
<td>Climate sensitivity ([K/TtCO2])</td>
<td>(0.4,0.7,1.0)</td>
<td>Climate literature</td>
</tr>
</tbody>
</table>

The triples for \( \beta, \delta_Y, \delta_A, \varepsilon, \kappa, \theta \) present the lower bound, median, and upper bound for chosen uniform distributions, while the triples for \( \alpha, \varphi, \psi \) present 5,50,95 percentiles that come out of the calibration process.
I copied the **BM72 - GHKT14** trick

The BM72 and GHKT14 model structure:

- Decision domains (investment + climate policy) become separable
  - 'outcome by assumption' (SS)
  - analysis of 'first order' effects (interactions are second-order)

- Decision variables in **intensive form** become history-independent
  - BM72: investment share: $s_t = l_t / Y_t = s^*$.
  - GHKT14: Climate policies ($E_t$) are characterized through the intensive variable $g_t$, which defines carbon taxes proportional to output (cf GHKT14).

$$
g_t \equiv \frac{\partial Y_t / \partial E_t}{Y_t} \tag{21}$$

- Full (transitionary) dynamics, but with 'simple' and independent intensive control variables
BM72 - GHKT14 trick: formalization

**Definition (history-independent policies)**

A policy (or the allocation produced by the policy), is said to be in the class \( \mathcal{P}(s_K), \mathcal{P}(s_A), \mathcal{P}(g), \mathcal{P}(f), \mathcal{P}(x) \), when the corresponding policy choice variable \( s_{K,t}, s_{A,t}, g_t, f_t, x_t \) is a sequence (over time) independent of the (current) state of world \( (K_{t_0}, A_t, (E_{t-i})_{i=1}^\infty, N_t, h_t) \).

- The definition does not require the intensive controls to be constant.
- The definition does not impose a steady state. It characterizes ‘behavior’ (intensive control variables), e.g. savings rate and innovation share, fertility, time for education, independent of income.
- we can define intersections: \( \mathcal{P}(s_K, s_A) = \mathcal{P}(s_K) \cap \mathcal{P}(s_A) \)
First formal Result 1: \( SO \in \mathcal{P}(s_K, s_A, g, f, h) \)

**Proposition (Social optimum characterization)**

\[
\begin{align*}
    s_K^* &= \alpha \beta \left[ 1 + \frac{\beta(1 - \psi)}{(\varepsilon - 1)(1 - \beta \varphi)} \right] \\
    s_A^* &= \frac{\beta(1 - \psi)}{(\varepsilon - 1)(1 - \beta \varphi) + \beta(1 - \psi)} \\
    g^* &= \left[ \delta_Y + \frac{\beta \delta_A}{1 - \beta \varphi} \right] \sum_{i=1}^{\infty} \beta^i \theta_i \\
    \frac{\phi f^* + x_t f^*}{1 - \phi f^* - s^* f^*} &= \frac{\gamma + \beta \lambda_N \tilde{f}}{(1 - \alpha - \kappa)\tilde{\lambda}'} \\
    \frac{s^* f^*}{1 - \phi f^* - s^* f^*} &= \frac{\eta_s \beta}{1 - \beta \eta_h}.
\end{align*}
\]
The BM72 - GHKT14 - GL16 feature, extended

Lemma (separable log-linear welfare)

Within the class of equilibria \( \mathcal{P}(s_K, s_A, g, f, h) \), welfare depends on the state variables log-linearly:

\[
W_t = \zeta_K \ln(K_t) + \zeta_A \ln(A_t) + \zeta_h \ln(h_t) + \zeta_N \ln(N_t) - \sum_{i=1}^{\infty} \Theta_i E_{t-i} + \bar{W}_t.
\]

(27)

The weights \( \zeta_K, \zeta_A, \zeta_h, \zeta_N \) and parameters describing the social costs of past emissions \( \Theta_i \) are constant over time, and do not depend on the the level of (past, present and future) savings rates \( s_{K,t} \), innovation shares \( s_{A,t} \), or climate policies \( g_t \), fertility decisions \( f_t \), and schooling \( x_t \). These policy choices are captured by the sequence of constants \( \bar{W}_t \).
R1(a) Broad validity of carbon pricing rule

- Social Optimum $\in \mathcal{P}^* \equiv \mathcal{P}(s_K, s_A, g, f, x)$
- BAU defined as muted climate policy, $g = g^{BAU} < g^*$ is also in $\mathcal{P}^*$
- Any Solow-type equilibrium with behavioral savings rules $s_K$, innovation investment shares $s_A$, fertility $f_t$, time for education $x_t$ are in $\mathcal{P}(s_K, s_A, f, x)$. Possible mechanisms: distortions in decision making or incomplete information about true values of parameters such as $\psi, \varphi$.

Corollary (Climate policy in second best)

*For any reference savings, innovation, fertility and education policy sequence $\mathcal{P}(s_K, t, s_A, t, f_t, x_t)$, the second-best optimal climate policy implements $g^*$.*
Stern vs Nordhaus

Corollary (Climate policy in second best)

For any reference savings, innovation, fertility and education policy sequence $\mathcal{P}(s_K, t, s_A, t, f_t, x_t)$, the second-best optimal climate policy implements $g^*$. 

Consider that one argues ethically that time preferences should be based on equal weights for the future (Broome 1994, Stern 2006), $\beta = 0.999$, and that savings etc. are set by other forces orthogonal to ethical climate change decisions …

we can use the same formula and find a very high SCC.
R1(b) Social costs of carbon has 2 parts

- Output reduction similar to previous literature (GHKT14)

\[ g^* = \left[ \delta_Y + \frac{\beta \delta_A}{1 - \beta \varphi} \right] \sum_{i=1}^{\infty} \beta^i \theta_i \quad (28) \]

- Growth reduction, which has more persistent effects

\[ g^* = \left[ \delta_Y + \frac{\beta \delta_A}{1 - \beta \varphi} \right] \sum_{i=1}^{\infty} \beta^i \theta_i \quad (29) \]

The term \(1/(1 - \beta \varphi)\) measures the persistence of a growth-reducing negative shock.
If conditional convergence is 2%/yr, and pure discounting is 2%/yr, then any growth reduction shock is valued at \(1/(0.02 + 0.02) = 25\) times the one-year damage.
First quantitative results, carbon prices

We do not need to simulate (!), but can calibrate to long-run economic behavior (population and economic growth)

Table: Outcomes for calibrated model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_K$</td>
<td>Capital Investment share</td>
<td>$(0.12, 0.24, 0.34)$</td>
</tr>
<tr>
<td>$s_A$</td>
<td>Research share</td>
<td>$(0.06, 0.11, 0.18)$</td>
</tr>
<tr>
<td>$\tau_E$</td>
<td>SCC [€/tCO2]</td>
<td>$(11, 20, 38) + (54, 144, 300)$</td>
</tr>
</tbody>
</table>

The triples present 5,50,95 percentiles. The Social Cost of Carbon is partitioned in its two components

Nordhaus 2017 finds 31 USD/tCO2, Pindyck 90 USD/tCO2 (experts view on extreme events prevention), Burke et al (2015, Fig5d) don’t state SCC but find climate damages order of magnitude larger than other IAMs.

Papers on population-climate interaction effect on welfare remain abstract: do not calculate SCC (Schou 2002, Kruse-Andersen 2019, Bretschger 2020)
1\textsuperscript{st} perspective: Welfare

\[ W_t = \zeta_K \ln(K_t) + \zeta_A \ln(A_t) + \zeta_h \ln(h_t) + \zeta_N \ln(N_t) - \sum_{i=1}^{\infty} \Theta_i E_{t-i} + \overline{W}_t. \]

\begin{table}
\begin{tabular}{ccc}
\toprule
 \((1 - \beta)\zeta_K\) & capital-permanent income elasticity & \((0.03, 0.07, 0.12)\) \\
\((1 - \beta)(1 - \psi)\zeta_A\) & technology-permanent income elasticity & \((0.02, 0.04, 0.06)\) \\
\((1 - \beta)\zeta_N\) & population-permanent income elasticity & \((-0.18, -0.05, 0.09)\) \\
\(-\beta(\zeta_K + (1 - \psi)\zeta_A + \zeta_N)\) & birth tax rate & \((-0.84, -0.25, 0.28)\) \\
\bottomrule
\end{tabular}
\end{table}

The triples present 5, 50, 95 percentiles.

- savings \(\uparrow\) 10\% \(\Rightarrow\) permanent income \(\uparrow\) 0.7\%
- R\&D \(\uparrow\) 10\% \(\Rightarrow\) permanent income \(\uparrow\) 0.4\%
- population \(\uparrow\) 10\% \(\Rightarrow\) permanent income \(\downarrow\) 0.5\%
$2^{nd}$ perspective: returns to scale

Negative welfare effect of population is short-run: fixed capital and technology.

Long-run: in any semi-endogenous growth: larger population increases long-run per capita income. Resource scarcity is too small to counter.

$$\frac{\hat{Y}}{\hat{L}} = \frac{-\kappa(\varepsilon - 1)(1 - \varphi) + (1 - \kappa)(1 - \psi)}{(1 - \alpha)(\varepsilon - 1)(1 - \varphi) - \alpha(1 - \psi)} \hat{L} = 0.22 \hat{L} \quad (30)$$
3rd perspective: birth externality

Birth externality: parents internalize the dilution of their savings with the increase in number of children. They do not internalize the other positive innovation + climate effects.

**Proposition (optimal fertility tax)**

\[ \tau_{f,t} N_{t+1} = - (\zeta_K + (1 - \psi) \zeta_A + \zeta_N) C_t \]  

- A positive birth externality \( \beta(\zeta_K + (1 - \psi) \zeta_A + \zeta_N) = 0.25 > 0 \).
- Positive innovation externality > negative climate externality
4th perspective: optimal growth

Whether population growth is optimal or not, does not depend only on returns to scale effects...

- A preference for many children γ results in optimal population growth
Population and welfare

- More children reduce capital per capita (short-run effect −)
- More children reduce natural resources per capita (permanent effect −)
- More children increase pool of ideas (long-run effect +)
- Parents internalize capital dilution effect ⇒ birth externality +
  Parents also internalize the scarce resource effect iff owned as private property.
Comparison with literature

- Schou (ITPF 2002): No endogenous TFP; small positive birth externality for new abatement technology, major negative externality for resource scarcity
- Gerlagh, Lupi, Galeotti (WP 2018): No endogenous TFP; negative birth externality for natural resource scarcity
- Kruse-Andersen (WP 2019): No optimal climate policy; more people tend to pollute more
- Bretscher (EER 2020): Resource scarcity mainly as exhaustible fossil fuels; fossil fuels markets provide key mechanisms, and do not suffer from negative externalities. Has benefits of new ideas.

Summary: outcomes depend on whether you assume climate change to be a major scarcity problem (≠ fossil fuels), and whether you assume benefit of increasing pool of ideas.

Results reflect assumptions, these reflect view of world?
Model validity

What is the empirical basis for our models?

The model produces a long-run balanced growth for population:

- increases without bound (beyond 12 billion, 100 billion,...) when calibrated to past patterns
- or collapses, when calibrated to Japan's preferences that may represent the future state of world?

The property is shared with other models, but... it is a problem.

- Such models lack validity to study long-run costs & benefits of larger population
- We need some serious negative or positive feedback from the level of population to optimal fertility.
Rebuttal I: demographic transition

We can adjust the model, but...

- SO long-run still converges to either zero population, or infinite population
Rebuttal II: more serious utility (i)

- We tend to focus on tangible economic costs and benefits. (‘love for nature’ is hard to measure, also with CV)
- Excluding intangibles, the calibration suffers from a structural measurement error.
- Disutility of more people, pollution, congestion, does not necessarily transmit through (economically measurable) output.
- Crowding in utility? People have bodies, they value and need space (e.g. land = substantial share of value of houses).

\[
    w_{i,t} = \sum_{j=0}^{\infty} \beta^j \left[ \ln(c_{i,t+j}/n_{i,t+j}) + \gamma_f \ln(f_{i,t+j}) + \nu(N_{t+j}) \right] 
\]  

(32)

add physical needs: \( \nu'(\infty) < 0 \).
Rebuttal II: more serious utility (ii)

- At the other end: we like company. People are social and like choice when making friends.

\[ w_{i,t} = \sum_{j=0}^{\infty} \beta^j \left[ \ln(c_{i,t+j}/n_{i,t+j}) + \gamma_f \ln(f_{i,t+j}) + \nu(N_{t+j}) \right] \]  \hspace{1cm} (33)

add social needs: \( \nu'(0) = \infty \)

- Negative feedback from the level of population to optimal fertility.
Optimal population II

Proposition (SO with population socializing and congestion)

The Social Optimum for the economy with a socializing and congestion effect (33) is characterized through the same policy rules as before with respect to capital investments $s_{K,t}^*$ (22), innovation efforts $s_{A,t}^*$ (23), the social costs of carbon $g^*$ (24), and education efforts $x^*$ (26).

The economy converges to a steady state with constant population. For population starting below the steady state level $N_0 < N_\infty^*$, optimal fertility $f_t^*$ strictly decreases with increasing population size $N_t$.

But no hope yet, for empirical calibration of $\nu(N_t)$. 
1 Climate change and endogenous growth

a If climate change affects growth, as estimated in recent empirical literature, does that increase the social costs of carbon (carbon tax) substantially?

After you understand the model, the results become obvious.

- Yes and substantially so, due to slow recovery of lost TFP
- Provided a simple intuitive closed-form solution
2 Reason to worry or to celebrate the future 10-12bn world population?
   a. Do more people increase or reduce environmental damages and welfare?

Social Optimum
- More people means more man-made varieties, a positive externality.
- More people means less space, less nature, a negative externality.
- In social optimum, positive exceeds negative externality, when measured in per capita consumption.

But empirically
- History shows that pollution increases with population, and space for nature decreases with population
- Policy does not adapt optimally.
- Our models structurally omit social preferences for friends & living space

12 bn people are good for economic output, but your welfare depends on your subjective individually heterogeneous preferences.
Thank You

Comments appreciated