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1 Introduction

This paper presents algorithms that solve for optimal simple rules in rational expec-
tations models with precommitment and discretion. For the case where the central
bank can precommit we present a solution algorithm that accommodates a broad
class of simple rules. The solution for optimal simple rules with discretion is new
to the literature. Applying these solution techniques to several US models, we show
that simple rules, such as Taylor-type rules (Taylor, 1993), perform well relative to
fully optimal policy, but that this result is sensitive to whether the rule allows the
central bank to respond to current period shocks. When current period shocks are
excluded from the central bank’s information set — often necessary if a rule is to be
operational (see McCallum 1994; 1999a) — the performance of Taylor-type rules is
less impressive.

The economic environments that we consider are ones where the policymaker be-
haves optimally, subject to constraints imposed by the behavior of other economic
agents (households and firms). But as Kydland and Prescott (1977) and Calvo (1978)
showed, modeling policymakers as optimizing agents introduces complications in en-
vironments where the actions households and firms take today depend on how they
expect the policymaker to behave in the future. Formally, Kydland and Prescott
(1977) demonstrated that where private agents are forward-looking the policymaker’s
optimal policy is time-inconsistent. This time-inconsistency arises because the pol-
icymaker chooses its optimal policy today subject to constraints that, because they
contain expectations of the future, only hold ex ante. As time passes these con-
straints no longer bind. Thus, if the policymaker reoptimizes in any subsequent
period, then it will be bound by a different set of constraints and will choose not to
continue with the policy that was previously chosen to be optimal.

In response to Kydland and Prescott (1977) one approach is to assume that the
policymaker can precommit to never reoptimize and to solve for the optimal pol-
icy, building precommitment into the optimization problem.!

and Prescott (1980), several studies (Oudiz and Sachs, 1985; Backus and Driffill,

Following Kydland

! The source of the precommitment technology is invariably left unspecified. Some authors solve
for the precommitment policy as a reputational equilibrium supported by trigger-strategies (Barro
and Gordon, 1983). Alternatively, McCallum (1995) argues that recognizing the eventual futility of
trying to exploit private agents’ expectations, policymakers can “just do it.”



1986; Currie and Levine, 1985; 1993; Soderlind, 1999; and Dennis 2001, for exam-
ple) have developed algorithms that solve for fully optimal precommitment policies,
although the resulting policies are non-standard because they respond to Lagrange
multipliers in addition to state variables.” An alternative to precommitment is to
allow policymakers to reoptimize over time and to solve for the optimal discretionary
policy.  With discretion the approach is to formulate the problem as a recursive
optimization and to iterate backward through time to solve for the Markov-perfect
Nash-equilibrium; the resulting equilibrium is time-consistent (Dockner, Jgrgensen,
Van Long, and Sorger, 2000, Theorem 4.3).3

With fully optimal precommitment rules or optimal discretionary rules, policy
is implemented through a state-contingent decision rule in which all state variables
enter the rule.* Thus, discretionary policymaking is completely consistent with a
policymaker actively setting policy using a state-contingent rule (McCallum, 1999a).
A third approach is to assume that the policymaker can precommit to not reoptimize
over time, while restricting the information set, or variables, to which the policy rule
responds.” The resulting rules are termed optimal (or optimized) simple precommit-
ment rules. Optimal simple precommitment rules are attractive on several grounds,
not least because they tend to be easier to solve for than fully optimal precommitment

rules, especially in large systems.

?While the unobserved Lagrange multipliers enter the fully optimal precommitment rule they can
be substituted out in a variety of ways. One way involves eliminating the Lagrange multipliers using
their transition equation, which produces a rule that depends on the entire history of the state vector
(Currie and Levine, 1993).

3 Aside from the most basic model specifications it is usually impossible to solve for fully optimal
precommitment rules or optimal discretionary rules analytically. Numerical algorithms are available,
however, such as those described in Oudiz and Sachs (1985), Backus and Driffill (1986), Currie
and Levine (1985, 1993), McKibbin and Sachs (1991), Soderlind (1999), and Dennis (2001). An
alternative method of solving for optimal discretionary rules is illustrated through application in
Krusell, Quadrini, and Rios-Rull (1997) and Cooley and Quadrini (1999). See also Hansen, Epple,
and Roberds (1985).

*In the precommitment case, the Lagrange multipliers on the policy constraints also enter the
rule. See footnote 2.

% A further alternative, recently developed by Woodford (1999a), is to assume that the policymaker
sets policy according to a “timeless perspective.” Under the timeless perspective the policymaker
reoptimizes at each point in time, but “precommits” not to exploit private agents’ expectations.
In the resulting equilibrium the policymaker responds in each state of the world as it would have
chosen to if it had optimized once at a time infinitely far in the past. While the timeless perspective
circumvents problems associated with initial conditions, the resulting policy does not necessarily lead
to outcomes that are superior to the time-consistent policy. See Svensson and Woodford (1999) for
an in depth discussion of the timeless perspective approach to optimal policy.



A second reason why optimal simple rules are popular is that they provide a
compact representation of the policymaker’s decision rule, yet also tend to perform
well relative to more complicated policy rules and relative to the fully optimal pre-
commitment policy. In the Rudebusch and Svensson (1999) model, for example,
the minimized loss function is raised only 1.7% - 3.7% when policy is set using an
optimal Taylor-type rule instead of the fully optimal policy rule.® While the relative
efficiency of Taylor-type rules in the Rudebusch and Svensson (1999) model is un-
usually good, Levin, Wieland, and Williams (2003) find that optimal forward-looking
Taylor-type rules are about 85% as efficient as fully optimal precommitment policies,
even in models as large as FRB/US.

A third reason why simple rules are attractive is that for a policy rule to be
operational it cannot respond to information that is unavailable at the time policy
decisions are formulated. On this issue, McCallum (1994, 1999a) and McCallum and
Nelson (1999) argue that publishing lags mean that when central banks set policy they
must rely on lagged data, and form expectations of current period outcomes based on
lagged information. Orphanides’ (1998) results on the disparity between real-time
output gap estimates and final-data estimates underscore McCallum’s point. Simple
rules are a natural way to restrict the variables to which policymakers can respond.

Furthermore, Batini, Harrison, and Millard (2001) and Leitemo and Séderstrém
(2001) argue on robustness grounds that central banks should not respond to exchange
rates when setting policy (Bernanke and Gertler (1999) make a similar argument
regarding stock market indices). These studies find that where the underlying model
is mis-specified, policy rules that respond to asset prices may perform badly even
though asset prices are observed in real time and may contain information useful for
setting policy. Situations where the policymaker does not respond to asset prices
are easily examined using (optimal) simple rules.

Importantly, each of these reasons for focusing on simple rules has merit inde-

pendently of whether a technology or institutional framework exists that allows the

In the Rudebusch and Svensson (1999) model private agents are not forward-looking so time-
inconsistency issues do not arise. Because of this, the fully optimal policy rule can be solved using
standard linear-quadratic dynamic programming methods. The loss function that Rudebusch and
Svensson (1999) use is a linear combination of the unconditional variances of annual inflation, the
output gap, and the change in the federal funds rate. Varying the weights on these three variances
generates the 1.7% - 3.7% range quoted in the text.



policymaker to precommit. The fact that a policymaker cannot make commitments
that are not credible does not mean that the policymaker can implement a non-
operational policy rule. Moreover, there is no fundamental incompatibility between
discretion and benevolence and thus there is no reason why a discretionary policy-
maker would not endeavor to implement a robust policy. In addition, agents and
institutions that are external to the policy process may believe that policy is set with
discretion while not having access to the same information set as the policymaker.
In this situation an optimal simple discretionary rule can be used to approximate the
policymaker’s decision rule while retaining the view that policy is set with discretion.
As such, it is just as interesting, relevant, and desirable to be able to solve for rules
that are compact, robust, and operational with discretion as it is with precommit-
ment.” In this paper, we show how to solve for optimal simple discretionary rules,
conditional upon the variables that enter the policy rule. If all state variables enter
the policy rule, then the algorithm solves for the optimal discretionary rule.

The structure of this paper is as follows. In the following section we describe the
class of models to which the algorithms we develop can be applied. We outline the
structural form used for the policy constraints and show how this form relates to the
alternative state-space form that is often employed by control methods. Section 3
shows how to solve for a wide class of optimal simple rules with the assumption that
the policymaker optimizes once while precommitting to never reoptimize. Section
4 turns to the discretionary case. The basic approach is to decouple the policy
rule to be applied today from the rule to be applied in the future, thereby building
in the condition that the coefficients chosen in today’s policy rule do not constrain
those that future policymakers may choose. The value function is expressed as a
function of both the future rule and today’s rule and is then optimized with respect
to the coefficients in today’s rule. Tterating “backward through time” we solve for

the stationary time-consistent equilibrium. In this equilibrium, the rule that is

TA further argument that is sometimes made to motivate simple rules is that they are transparent
and easily monitored, and, as such, can be used by policymakers as a vehicle to build reputation.
Often this argument associates simple rules with precommitment, with the view that the policymaker
is “precommitting to the simple rule.” However, from an optimization perspective, precommitment
refers to the idea that reoptimization does not occur in subsequent periods, i.e., the policymaker is
precommitting to not reoptimize, and does not hold any implications for the policymaker’s informa-
tion set. In fact, this reputation argument further motivates solving for optimal simple discretionary
rules; if the policymaker could precommit there would be no need to build reputation.



implemented is the same each period.

In section 5 the algorithms developed in sections 3 and 4 are applied to three
models of the US economy. The focus in section 5 is on whether the performance of
optimal Taylor-type rules, which have been shown to perform well relative to more
complicated policy rules (Levin, Wieland, and Williams, 1999; 2003), is sensitive to
the assumption that the central bank can respond to current period shocks. We
motivate this question using a popular new-Keynesian model (Clarida, Gali, and
Gertler, 1999). Solving the model for a range of optimal simple rules (with both
precommitment and discretion) we demonstrate that Taylor-type rules that do not
respond to current period shocks are highly inefficient. Moreover, we show that the
importance of being able to respond to demand shocks relative to supply shocks turns
on whether the central bank can precommit. We then solve for optimal simple rules
in Fuhrer’s (1997) version of the Fuhrer-Moore model and in the Rudebusch (2002)
model and show that allowing the central bank to respond to current period shocks
is critical for the efficiency of Taylor-type rules in the Rudebusch model, but not in

the Fuhrer-Moore model. Section 6 concludes.

2 The General Setup
2.1 Policy Constraints

To solve for optimal policy rules in rational expectations models, many solution

methods require that the optimization constraints be written in state-space form®
[P i vl ol B o O Bl B
where u; is the control vector, v¢41 is a vector of iid shocks with variance-covariance
matrix X, xj¢ is a vector of state variables, and xo; is a vector of jump variables. F;
represents the mathematical expectations operator conditional upon period ¢ infor-
mation. To write a model in state-space form requires, control variables and shocks
aside, that every variable in the system be uniquely designated as either a state vari-

able or a jump variable, making the vectors x1; and xo; mutually exclusive. A virtue

of the state-space form is that it provides a clear delineation between state variables

®Such algorithms include those described in Oudiz and Sachs (1985), Backus and Driffill (1986),
Currie and Levine (1985, 1993), and Soderlind (1999).



and jump variables in a system whose dynamics are governed by first-order difference
equations.

But the state-space form is not the only form to which control methods can be
applied, nor is it necessarily the most convenient form. Economic theories are invari-
ably developed in terms of structural equations, and the manipulations required to
transform an economic model from structural form to state-space form can be tedious
and prone to error. Fortunately, numerous rational expectations solution algorithms
exist to quickly solve first- and second-order structural forms and automated methods
are available to reduce high-order structural models down to first- or second-order
form (Binder and Pesaran, 1995). Particularly with medium- to large-scale models it
can be more convenient to work with a model in structural form than to manipulate
it into state-space form.

With these issues in mind, the solution algorithms presented in the following two

sections apply to the following second-order structural form model
Aoyi= A1y 1+AsEry 1+ Asu+vy, vy ~iid[0, X, (2)

where y; is an n x 1 vector of endogenous variables, u; is an p x 1 vector of policy
instruments, and v is an nx 1 vector of stochastic innovations with (possibly singular)
variance-covariance matrix 3. The matrices Ag, A1, Ao, and Ag contain policy-
and time-invariant coefficients, whose values are assumed to be known to all agents.
The information set available to agents in period ¢ consists of the infinite history of
the predetermined variables, the controls, and the shocks, thus F; is conditioned on
the information set I; = {{y:}! oo, {i}! o, {Vi}' oo, Ao, A1, Ag, A3, X}

Equation (2) is considerably more general than it may first appear. Systems con-
taining more general lead and lag structures in y; can be manipulated into second-
order structural form. Moreover, by redefining variables, expanding y;, and exploit-
ing the law of iterated expectations, expectations of current and/or future variables
conditional on period ¢t —s (s > 0) information are also possible (Binder and Pesaran,
1995).

The connection between the state-space form and the structural form can be seen



by writing equation (2) as

I 0 0 Vi1 0 0 0 Vi
0 1I 0 Y = 0 0 I Yi—1
0 0 —Ay Eryi+1 I Ay —Ap yi
0 Viil
vl o [+l o |. (3)
Ajg 0

Equation (3) shows that y; 1 and v; define the state of the system. If A has full
rank, then, setting x1; = [ yéfl v; ]I and xo; = [y¢], it is possible to map directly
between equations (1) and (3). When Aj is singular — a frequent occurrence —
system reduction techniques are needed to eliminate redundant variables and deflate
the system, which can then be manipulated into state-space form. One advantage of

working with systems in structural form is that these additional steps are unnecessary.

2.2 Policy Objectives

Let z; = [ y; u; ] . We assume that the policymaker’s objective function is an

infinite horizon discounted quadratic form®”
o0
L=EY f [zt +Z.Wzm} 0<B<1, (4)
i=0

where W is a symmetric, positive semi-definite, time-invariant, matrix of known
policy weights. A quadratic objective function is highly attractive on computational
grounds because with linear constraints it leads to decision rules that feedback linearly
off the state variables. Because the instrument vector enters z; it is unnecessary to
include a separate term to penalize movements in the instrument vector, or to include
separate terms penalizing interactions between instruments and target variables; such

terms are easily accommodated within W.

3 Optimal Simple Precommitment Rules

The analysis in this section assumes that the policymaker precommits to optimize

only once (in the initial period), with the chosen decision rule then applied in the

?Oudiz and Sachs (1985), Backus and Driffill (1986), Currie and Levine (1985, 1993), Séderlind
(1999), Dennis (2001), and an enormous number of applied papers, all examine optimal policy with
the assumption that policy objectives are quadratic. Although many of the models examined in
this literature are not micro-founded, quadratic objectives can often be rationalized in terms of a
second-order approximation to a representative agents’ utility function (Woodford, 1999b).




initial period and in all subsequent periods. It is well established that where the
policymaker precommits to never reoptimize, the fully optimal precommitment pol-
icy takes the form of a feedback rule on the state vector and the vector of Lagrange
multipliers (Backus and Driffill, 1986); the latter represent the cost the policymaker
incurs by honoring commitments made in the past. The fully optimal precommit-
ment policy efficiently utilizes all available information. Simple rules, by contrast,
restrict the policymaker’s use of information and are formulated directly in terms
of feedback rules. By construction simple rules are inefficient relative to the fully
optimal precommitment policy.

With precommitment, simple rules are not limited to formulations where the pol-
icy instrument responds only to state variables.!® Because the coefficients in the
simple rule are chosen only once it is possible to analyze simple rules that “respond”
to endogenous variables. Thus, outcome-based Taylor-type rules (Taylor, 1993),
in which the policymaker sets the nominal interest rate based on current inflation
and the current output gap, can be analyzed, although such formulations are often
more accurately interpreted as equilibrium relationships between endogenous vari-
ables (Svensson, 2002) than as decisions rules. It is also possible to solve for rules
that contain expectations of the future, such as the “forward-looking” rules analyzed
in de Brouwer and O’Regan (1997), Batini and Nelson (2001), Clarida, Gali, and
Gertler (2000), and Batini, Harrison, and Millard (2001), although these too are
formulated as relationships between endogenous variables.

In this section we consider simple rules with the following general form

W= @1y 1Tyt @3 Eryir1+@aVi, (5)

for some restricted ¢4, ¢y, @3, and ¢, matrices. The restrictions imposed on these
feedback coefficient matrices arise from the question under study and are exogenous
to the algorithm.

Working with the state-space form, Currie and Levine (1985, 1993) and Séderlind

(1999) set x; = [ x’lt x'2t ]’ and define a simple rule to be one where u; = Foxy, for

00ne issue not discussed in this paper is that of solving for optimal policy rules in non-
linear models.  WinSolve, a model solution package written and published by Richard Pierse
(http://www.econ.surrey.ac.uk /rpierse/winsolve/) can solve such problems, under the assumption
that the policymaker can precommit.



some restricted Fg. Thus equation (5) is more general than Currie and Levine (1985,
1993) and Soderlind (1999) in that it also accommodates forward-looking rules. In
turn, Currie and Levine (1985, 1993) and Soderlind (1999) consider a wider class of
formulations than Oudiz and Sachs (1985). In Oudiz and Sachs (1985) simple rules
are formulated to have the instrument vector responding only to state variables, as
in u;= F1xq;, for some restricted F;.

Equation (5) is in fact closely related to the Oudiz and Sachs (1985) formula-
tion. If equation (5) leads to the system having a unique stable equilibrium, as
we will require in the sequel, then in equilibrium the endogenous variables, y;, and
expectations of future endogenous variables, FEiy:1, are uniquely related to the state
variables y;_1 and vy. In general, then, there exist multiple feedback matrices
In W= P1yi-1+9yi+¥3Eiyir1+@4ve that in equilibrium produce the same state-
contingent rule ( us= Faoy:_1+F3vy).

Let ¢ = [ Y1 Py P3 @y ], to obtain unique feedback matrices we simply
require that sufficient restrictions be placed on ¢ such that each row of ¢ contains
fewer free parameters than there are state variables in the system.!!

Augmenting equation (2) with equation (5) gives
Ay —Ajz Vi | A1 O Y1 Ay O Yit+1
= + Ey
—py 1 uy w1 0 ][ u w3 O Uy
I O V¢
Lo ollv] ®
which in obvious notation can be written as

Bozi= B1z;_1+BoEizi 1 + Bany, (7)

where 1, = [ v, 0 ]’ has variance-covariance matrix ®. Equation (7) can be
solved directly using the rational expectations (RE) solution methods described in
Anderson and Moore (1985), Binder and Pesaran (1995), McCallum (1983, 1999b),
or Uhlig (1999). Alternatively, equation (7) can be rearranged into first-order form

o [ ][ 5os [ % ][ 5 0] [5] @

' Gimilar considerations apply to the rules that Currie and Levine (1985, 1993) and Soderlind
(1999) consider, for, in equilibrium, any endogenous variables, xo¢, that enter their rules are uniquely
related to the predetermined variables, x1;.




Because Bj is singular, equation (8) cannot be solved directly using the methods
in Blanchard and Kahn (1980). However, it can be solved using many other so-
lution methods, such as those derived in Klein (2000), Sims (2002), and Christiano
(2002). Provided feedback matrices ¢, ¢4, 3, and ¢, exist such that the number of
eigenvalues in the system with modulus greater than one equals the number of jump
variables in z;, then the system has a unique stationary equilibrium. The solution to
equation (7) or (8) yields an expression describing how the predetermined variables
evolve over time and how the jump variables respond to the predetermined variables
and the shocks. These equations can be used to show that z; evolves according to the
VAR(1) process (Uhlig, 1999), where 8; and 0 embed the cross-equation restrictions

implied by rational expectations.
7= 01z 11+0:7),. (9)

Using equation (9), the value of the loss function, conditional upon a given (stable)

policy rule, is'?
()= > | P20 Weiz, + > 5t (egegjwe{eﬁ) , (10)
=0 k=j

where “tr” is the trace operator. By construction the spectral radius of 1 is less
than one and the recursive equilibrium law of motion, equation (9), is stable, which
(with 0 < # < 1) ensures that the geometric sums in equation (10) converge. Now,
let P be the fix-point of

P =W + 36,P6,, (11)

then equation (10) can be simplified to

c ! /B /
rr = z,Pz + ———tr |0,P0,®

¢ () Zy Zt+(1_6)r[2 2 }
0,P0, 0 PO,

= Lz ) gpg, 6)po,

]

+ tr [9’21392@} . (12)

B
(1-p5)
With W known, 6; and 02 known conditional on ¢, @9, ¢3, and ¢4, 0 < 8 < 1,

and the spectral radius of 87 less than one, standard fix-point solution methods can

12In terms of notation, 0{ represents the matrix product of j #; matrices.

10



be applied to equation (11) to solve for P. Equation (12) can then be evaluated
and minimized with respect to the free parameters in the feedback matrices ;, o,
s, and ¢,. Computationally, we solve for optimal simple precommitment rules as

follows:

1. Choose initial values for the free parameters in ¢ = [ P11 P2 P3 Pa ]
2. Given ¢, solve for 87 and 63 using any standard RE solution method.
3. Given 07 and 05, evaluate L (o) according to equations (11) and (12).

4. Minimize LI (o) with respect to the free parameters in ¢.

In general, the term [ z;l 17:5 ] 0,P0, 6,6, [ Zi-1 } in equation (12)

0,P0, 0,P0, n;
implies that the feedback coefficients in the optimal simple precommitment rule de-

pend on the initial state of the economy (see Currie and Levine, 1993, pp155). Typ-
ically, the feedback coefficients also depend on the variance-covariance matrix of the
shocks, ® (i.e., certainty equivalence fails). The unconditional variance-covariance
matrix for z;, 2, can be obtained by applying standard fix-point solution methods
tol3

Q= 0,90,+0,80,.

An important special case to this analysis is the limiting case where 3 tends to
one. Appendix A shows that limg_,; (1 — §) L — L¥* = 7 [W]. In this limiting
case the feedback coefficients in the optimal simple precommitment rule are invariant
to the initial state, although they still depend of the variance-covariance matrix of

the shocks, @, but the latter is time-invariant.

4 Optimal Simple Discretionary Rules

In the previous section the treatment assumed that the policymaker precommits to

optimize just once. Although time passes the optimization problem is never revisited

“An analytical solution for these unconditional variances is available: vec[Q)] =
I-6® 01}_1 vec [02@0;] , where “vec” is the vector stacking operator and ® represents the Kro-

necker product. However, for large systems this analytic expression requires inverting what can
potentially be a very large matrix. An alternative to is solve for the unconditional variances numer-
ically using iterative methods such as the doubling algorithm. The doubling algorithm can also be
applied to equation (11), and to equations (17) and (18) in the following section.

11



and the feedback coefficients chosen in the initial period are employed in every period.
The fact that the optimization problem is never revisited is taken into account when
the feedback coefficients are chosen.

This section considers discretion. With discretion policymakers choose the feed-
back coefficients in the rule period-by-period while acknowledging that policymakers
in all subsequent periods behave likewise. The policymaker optimizing today recog-
nizes that the values it chooses for the feedback coefficients do not constrain those
that subsequent policymakers may choose. At the same time the policymaker appre-
ciates that the rule it chooses impacts the economy’s evolution through time. Thus
discretionary policy is not to be confused with a myopic policy in which a policymaker
only accounts for outcomes that occur during the period in which that policymaker’s
rule is applied.

The solution procedure developed below solves the asymptotic optimization prob-
lem directly (with iterations occurring in meta-time), but conceptually the approach
involves backward induction. Because backward induction is employed, and because
policymakers reoptimize each period, only state variables are permitted to enter the
rule. We assume that the variables that enter the policy rule are exogenously given,
determined by the question at hand, and seek a stationary time-consistent equilib-
rium conditional upon these variables. Thus, if one wants to assume that monetary
policy is set according to a Taylor-type rule (say), then the solution procedure allows
successive policymakers to reoptimize over the free parameters in the Taylor-type
rule, iterating “backward through time” to solve for the optimal simple Taylor-type
rule with discretion. This optimal simple discretionary rule can then be compared to
the optimal simple precommitment rule to assess how the absence of precommitment
affects economic outcomes in the context of a specific policy rule.

From the perspective of a policymaker optimizing in period ¢, the parameters
that determine how the economy evolves from z; are outside its control. Thus the

policymaker optimizing in period ¢ can assume that
thH:ﬁlth—kﬁgntHH, for all ¢ > 0 (13)
and treat f[l and ﬁ2 as parametric. Given a policy rule of the form
W= P1yi—1+YP, v, (14)

12



equations (13), (14), and (2) yield

~ 71—1
Zosi= [Co—Cng} [Cize4i 1+Camyyy] = Mhzy s 1+T0om,,,, foralli >0 (15)

Ay —Aj3 A1 O Ay O I o
WhereCO—[ 0 I ],Cl—|:'¢}1 0:|,CQ—|: 0 0:|,C4—|:¢4 0:|.
Given equation (15), the loss function, Ly = E; Y .~ Ik [z; _H.Wztﬂ}, conditional

upon Y, Yy, ﬁl, and ﬁg, can be written as

LY (¢1,¢4,ﬁ1,ﬁ2) = Z;Mzt+1—ﬂﬁtr [H;MH@}
— [ H;MH1 H;MHZ ] [ztl ]
t=1 T I,MII;  TI,MII 0,
i [HQMHQ@}, (16)
where
M = W + GII; MIL, . (17)

The policymaker chooses 1, and v, to minimize L¢ (¢1,¢4,ﬁ1,ﬁ2>, as given by
equation (16).

As it currently stands, however, in each period ¢, the feedback parameters chosen
are (in general) a function of the system’s state variables. But because the state
variables evolve over time and policymakers optimize at different points in time a
stationary time-consistent equilibrium does not generally exist. However, for all
0 < B < 1, the feedback parameters that the period t policymaker chooses to mini-
mize L¢ (@bl, Py, ﬁl, ﬁg) also minimize (1 — 3) L¢ (¢1, Py, ﬁl, ﬁg), and in the limit
as 3 — 1, (1— B) L¢ (¢1,¢4,ﬁ1,ﬁ2) — ¢ (¢1,¢4,ﬁ1,ﬁ2) = tr {HIQMHQQ} -
tr [WQ], which is invariant to the state vector.!* Thus, in this limiting case the feed-
back parameters chosen in period t are invariant to the state vector, for all . With
this source of non-stationarity removed we can solve for optimal simple discretionary

rules as follows.!?

1. Initialize j < 0, let € be an arbitrarily small convergence tolerance, and choose
initial values for ﬁ1 and f[g subject to the condition that ﬁ1 has spectral radius

less than one.

14 The solution for the relevant variance-covariance matrix, €2, is given by equation (18).
Y5Experience suggests that it is sometimes advisable to use dampening at step 6 of the algorithm.
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2. Given f[l and ﬁg, solve for /TI; and /TI, using equation (15).

3. Given /II; and ’II5, evaluate Eff <¢1,¢4,ﬁ1,ﬁ2) =tr [jH;Mjl'Ig'i)} using
equation (17) to solve for M.

4. Minimize E? (1,b1, Py, ﬁl, ﬁg) =1tr [jH'QMjl_ng)} with respect to the free pa-
rameters in 1, and 14, conditional on II; and II,. The solution to this mini-

mization problem yields matrices 7t1II; and /+1II,.
5. If || 7¥11I; — II; ||< €, then Stop.
6. Set TIy « 911, and TIy « J+!TI,.
7. j < 7+ 1 and return to Step 2.

As with the precommitment solution, the unconditional variance-covariance ma-

trix of z;, 2, is easily obtained by solving for the fix-point of
Q = I, QIT, + T, 11, (18)

Note that IT; = f[l in the time consistent equilibrium and that by construction the
spectral radius of IT, is less than one. Consequently, €2 can be solved from equation

(18) using standard fix-point solution methods.

5 Operational Policy Rules and the Value of New Infor-
mation

In this section the algorithms developed above are employed to investigate the per-
formance of optimal simple precommitment rules relative to fully optimal policy and
the performance of optimal simple discretionary rules relative to the optimal discre-
tionary policy. Of particular interest is McCallum’s argument that, to be operational,
a policy rule should not respond to information that is unavailable at the time policy
decisions are made. The analysis takes two quarterly macroeconometric models of
the US economy and uses these models to investigate the performance of various
optimal simple Taylor-type rules. As is standard in the literature, however, we do
not constrain the information sets that households and firms possess to be the same

as the policymaker’s.
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The basic issues that are examined in this section can be illustrated using the

following simple dynamic optimization problem

min By Y F M+ (1= Nyhy]  0<A<, (19)
j=0

subject to

ye = Oy1+ (1—0) By —lis — Eymp] + &, & ~iid [0,02]  (20)
T = ¢m 1+ (1—¢)BEm1 + ayr + e, et ~iid [0,0Z] . (21)

The constraints in this intertemporal optimization problem are taken from Clarida,
Gali, and Gertler (1999, section 6), who derive equations (20) and (21) from micro-
founded models for household and firm behavior, respectively. In terms of notation,
y; represents the output gap, m; represents inflation, and ¢; denotes a short-term
nominal interest rate, which serves as the monetary policy instrument. Demand and
supply shocks are given by €; and ¢4, respectively.

The optimization problem summarized in equations (19) - (21) is sufficiently com-
plicated that, except in special cases, neither the fully optimal precommitment rule,
nor the optimal discretionary rule can be solved analytically. Thus, to solve for
either solution we must assign values to the model’s parameters. For illustration
purposes, then, we parameterize the model to the quarterly frequency as follows:
8 =10,A=0560=05¢=05¢=08a=0.1, and 0 = 0. = 1. Beginning
with the Phillips curve, equation (21), we set § = 1.0 and ¢ = 0.5, because these
values are consistent with two-period overlapping relative real-wage contracts, and we
set a = 0.1, based on the empirical estimate in Christiano, Eichenbaum, and Evans
(2001). In the optimizing IS curve, we assume that ¢ = 0.8. Very few estimates of
0 are available in the literature, but we set 8 = 0.5, based on the estimate in Smets
(2000). For the variances of the demand and supply shocks, we set both variances
to one and note that the relative performance of optimal policy rules depends on the
ratio of these two variances rather than on the variances themselves.

The Phillips curve and the IS curve constrain the central bank’s optimization

problem. To place these constraints in structural form, we simply define y; =

R B R B e b B R |
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and As = [ _0(‘0 } . With the vectors and matrices so defined, the algorithms devel-
oped in sections 2 and 3 can be applied directly.
With the parameter values above, the fully optimal precommitment rule (PC)

and the optimal discretionary rule (D) are!S

it = 0.514m_1 + 0.625y_1 + 1.250€; + 1.029¢; — 0.0571,_, (PC)  (22)
it = 0.805m_1 + 0.625y;_1 + 1.250€; + 1.609¢;, (D) (23)

where 1, is the Lagrange multiplier on equation (21) in the precommitment formu-
lation.

Crucially, these rules contain the current period shocks, € and ;. However, as
McCallum argues, central banks do not observe economic shocks in real time, and
consequently they must rely on dated information when they set policy. In fact,
even when historical data is extensively filtered and analyzed, general agreement on
shocks in often not reached. Instead, McCallum (1995, 1999a) argues that, even if
private agents have full information, for a policy rule to be operational it should only
allow policymakers to respond to information that is available when policy decisions
are made. In the context of the optimization problem above, McCallum’s point, in
essence, implies that rather than setting interest rates according to either equation

(22) or equation (23), a more appropriate, and operational, policy rule would be

it = Q1741 + PolYt—1- (24)

Table 1 presents the optimal feedback coefficients for equation (24) with precom-
mitment and discretion, and compares them to the feedback coefficients in equations
(22) and (23). Also shown are the feedback coefficients and the minimized loss

function for rules containing the demand and/or the supply shock.

16To solve for the fully optimal precommitment rule and the optimal discretionary rule the algo-
rithms in Dennis (2001) were used.
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Table 1 |  Optimal Feedback Coefficients: A = 0.5.

Te 1 Yeo1 €t €t t—1  Loss
PC 0.514 0.625 1.250 1.029 -0.057 2.242
PC 0.514 0.338 1.250 1.029 - 2.242
D 0.805 0.625 1.250 1.609 - 3.049
PC 0.742 0.281 1.250 - - 2.597
D 0.805 0.625 1.250 - - 4.075
PC 1.215 0.895 - 0.953 - 2.980
D 0.805 0.625 - 1.609 - 3.668
PC 1.210 0.736 - - - 3.195
D 0.805 0.625 - - - 4.693

I = Q1T—1 + Palyt—1 + P3€t + P&t

Several results from Table 1 stand out. First, in this model the Lagrange mul-
tiplier, i, is linearly related to y;,!” which is why the fully optimal precommitment
rule leads to the same value for the minimized loss function as the optimized precom-
mitment rule containing the state variables m;_1,¥y;_1, €, and £;. Second, relative to
the fully optimal precommitment rule the optimal discretionary rule results in a 36%
increase in expected loss, which is in line with the results in Dennis and Séderstrom
(2002). Third, when the parameters in equation (24) are optimized, the minimized
loss rises 43% with precommitment and 54% with discretion; these are substantial
increases, and larger than those typically reported for other models (Rudebusch and
Svensson, 1999; Levin et al. 2003). Fourth, for the optimal simple discretionary rules
in Table 1, which contain all of the endogenous state variables in the system, cer-
tainty equivalence holds; the feedback coefficients on the endogenous state variables
are independent of the shocks. However, even when the rule contains all endogenous
state variables, certainty equivalence does not hold for the optimal simple precom-
mitment rules. As a consequence, the feedback parameters in the optimal simple
precommitment rules are sensitive to the covariance matrix of the shocks. Fifth,
with precommitment, if one had to choose between knowing the demand shock or
knowing the supply shock one would choose the demand shock; the opposite holds

18

with discretion.”® Where the central bank can precommit, not knowing the supply

'"Backus and Driffill (1986) show that a linear relationship always exists between the Lagrange
multipliers (u, here) and the state vector. In this application the linear relationship is particularly
simple, with the Lagrange multiplier depending only on the output gap.

'%In these New-Keynesian models, supply shocks produce a variance-trade-off between output and
inflation. This trade-off is worse with discretion than with precommitment (in the sense that a
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shock leads to the minimized loss increasing 16%, whereas not knowing the demand
shock raises the minimized loss 33%.

While these results are only intended to be indicative, they support McCallum’s
point and raise the possibility that the reason that simple outcome-based or simple
forward-looking policy rules — such as Taylor-type rules — perform well (relative to
the fully optimal policy) is that they allow the central bank to respond to current
period shocks. But of course, central banks, invariably, cannot respond to current
period shocks when they set policy because current period outcomes are unavailable.
In the remainder of this section we use the macroeconometric models estimated in

Fuhrer (1997) and Rudebusch (2002) to examine this issue in greater detail.

5.1 Data-Consistent Models
5.1.1 Fuhrer (1997)

Fuhrer (1997) estimates a version of the Fuhrer-Moore model. In the Fuhrer-Moore
model monetary policy operates through the term-structure. Movements in the
short-term interest rate, i, are transmitted into the long-term real interest rate, p;,
which in turn impacts the output gap, y;. Prices and wages are jointly determined,
with a proportion of workers given the opportunity to renegotiate their wage contract
each quarter. These workers and firms bargain over the nominal wage rate, wy,
that these workers will be paid during the coming year. While they bargain over
nominal wages, workers negotiate keeping in mind what that nominal wage rate
implies in terms of their real wage, w,;. Across all workers, the average real wage
received is v;.  Once agreement is reached on the contract wage rate, the level of
aggregate demand determines the number of hours worked each quarter. Because
hours worked is demand determined, if workers anticipate rising aggregate demand,
then they negotiate a higher contract wage rate. Prices, p;, are set as a constant

mark-up over costs, which are determined by the nominal wage rate paid on existing

larger inflation variance is associated with any given output variance) thus it is not surprising that
the supply shock matters more with discretion than with precommitment.
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contracts. The model (estimated on quarterly data) is

Y = ]--45yt71 - 0.47yt72 - 0.34,015,1 + €
40 1 .
Py = HEtthrl +t1 (it — Eymiin)

pr = 0.42w; + 0.31wg_1 4+ 0.19w;_9 4+ 0.08w;_3
T = 4(pr—pe1)
ve = 0.42w; + 0.31w;_1 + 0.19w;_o + 0.08w;_3
W = 0.42v; + 0.31Ewy 1 + 0.19Ewy 0 + 0.08 Eyvy g
+0.002 [0.42y: + 0.31 Evyt1 + 0.19Ey;+ 0 + 0.08 E4ys 3] + e,

€
where the shock vector v; = [ ;
t

0.36 —0.03
—-0.03 0.03

} is distributed with mean 0 and variance-covariance

matrix X = {

5.1.2 Rudebusch (2002)

Rudebusch’s (2002) model consists of three equations. The first equation is a dynamic
IS curve in which the output gap, y;: depends on two lags of itself and on the (lagged)
ex ante real interest rate. The second equation is an expectations augmented Phillips
curve for (annualized) inflation, m;. The final equation is an identity defining annual

inflation, 7;. The model (estimated on quarterly data) is

Yy = 1.15y;—1 — 0.27Ty;—o — 0.09 (it—l — Et_lft_;,_g) + €
Tt = 0-29Et717t+3 +0.71 (0.6771'15,1 — 0.].47Tt72 + 0.407”73 + 0.1371'1;,4)

+0.13y: 1 + &

_ 1
Ty = 1 (¢ +Te—1 + T2+ T—3),

where the shock vector v; = [ €t

} is distributed with mean O and variance-covariance
&t

0.69 0.00

matri > = [ 0.00 1.02

} . The monetary policy instrument is the nominal interest

rate, 4.
5.2 The Value of New Information

To assess the force of McCallum’s criticism, we analyze the performance of four

optimal simple rules as A, the weight on inflation in the loss function, varies between
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0.0 and 1.0 in the following policy objective function!?

Loss = lim (1= 8) B YA Pt +(1 - ot
§=0

= MNar(m)+1—=MNVar(y;), 0<A<L1 (25)

The four simple rules that we analyze are

it = G171+ QoY1 (lagged Taylor) (26)
it = G171+ Pyt 1+ P36t (lagged Taylor + demand) (27)
it = G171+ QoY1+ Pact (lagged Taylor + supply) (28)
it = G17e—1 + Ooyr—1 + P3€r + duer. (lagged Taylor + shocks) (29)

Equation (26) is the standard Taylor rule formulation, but with lagged inflation
and the lagged output gap entering the rule in place of contemporaneous values. The
following three equations augment the lagged Taylor rule with the demand shock, the
supply shock, and both shocks, respectively. Each rule’s relative performance allows
us to assess whether the assumption that the central bank can respond to each shock

is important for economic outcomes.?’

YA very small weight (0.01) is also placed on interest rate stabilization in order to prevent the
feedback parameters in the optimal simple rules from blowing up to enormous magnitudes in the
Fuhrer-Moore model. Aside from damping the magnitude of the feedback coefficients, this small
weight on interest rate stabilization in no way affects our findings.

20While these four simple rules are not certainty equivalent in either of the two models, we analyze
their properties using the shock variance-covariance matrices that are estimated along with the other
model parameters. As such, the results that follow depend on all the parameters in the model,
rather than on just those parameters that effect the model’s conditional forecasts.
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Fig. 1. Rudebusch Model under Precommitment

Figure 1 shows how these four rules perform in the Rudebsuch model, assuming
that the central bank can precommit. Also shown is the performance of the fully
optimal precommitment rule. By construction, the four optimal simple rules are
inferior to the fully optimal precommitment rule, which efficiently responds to all
available information. Two results come from Figure 1. The first result is that
the two rules that contain the demand shock are nearly as efficient as the fully
optimal precommitment rule. Only when A is high, with the central bank focusing
on stabilizing inflation, does the performance of the lagged Taylor + demand rule
(Eqn. 27) become noticably inferior to the fully optimal precommitment rule. The
second, related, result, is that not responding to the demand shock, i.e., rules (26)
and (28), leads to a significant drop in performance, for all A. In situations where
A is small, not being able to respond to the current period demand shock almost
doubles the minimized loss function. Clearly, allowing the central bank to respond
to the demand shock is critical for the Taylor rule’s performance in the Rudebusch

model.
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Fig. 2. Rudebusch Model under Discretion

In the case where the central bank has discretion, Figure 2 reveals a similar
picture to the precommitment case. In Figure 2, however, the benchmark against
which the four optimal simple rules are compared is the optimal discretionary rule
(time-consistent rule), which responds to all state variables. Like the precommitment
case, knowing and responding to the demand shock is critical for performance. The
similarities between the precommitment rules and the discretionary rules can be seen
in Table 2. Table 2 shows that for a given A, the optimal simple precommitment
rules and the optimal simple discretionary rules are very similar and that the time-
inconsistency problem is miniscule. But, as expected, the minimized loss function

with discretion is larger than that with precommitment.
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Table 2 | The Optimal Feedback Coefficients
Rudebusch Model: A = 0.5.
M1 Yi—1 €t €t Loss
PC 229 129 7.11 1.91 2.622
D 2.09 1.26 7.21 2.22 2.633

PC 275 163 670 - 2.729
D 256 1.65 6.71 - 2.745
PC 296 250 @ - 1.44  3.610
D 266 246 @ - 175 3.635
PC 312 254 - - 3.695
D 2.82 252 - - 3.702

Ut = P11 + PoYi—1 + P36t + Pyey

Turning to the Fuhrer-Moore model, Figure 3 shows how these four optimal simple
(precommitment) rules perform relative to the fully optimal precommitment policy.
The main feature of Figure 3 is that all four optimal simple rules produce a numeri-
cally large efficiency loss, and that whether or not the central bank responds to the
demand shock and/or supply shock has little effect on policy efficiency. In contrast
to the Rudebusch model, therefore, setting monetary policy using the lagged Taylor
rule rather than using the lagged Taylor + shocks rule leads to very little additional

lost efficiency.
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Fig. 3. Fuhrer-Moore Model under Precommitment

In the discretionary case, three results stand out. First, similar to the precom-
mitment case, responding to the demand and/or the supply shock has very little
effect on the minimized loss function. This can be seen from the fact that the curves
generated by each policy rule largely coincide with each other. Second, not respond-
ing to the entire state vector, while inefficient, is not as inefficient with discretion as
it is with precommitment. The performance difference between the optimal simple
discretionary rules and the optimal discretionary rule (time-consistent rule) is not as
large as that between the equivalent optimal simple precommitment rules and the
fully optimal precommitment policy. Finally, the time-inconsistency problem is far
more pronounced in the Fuhrer-Moore model than it is in the Rudebusch model.
For all A, the minimized loss function is considerably higher with discretion than it

is with precommitment.
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Fig. 4. Fuhrer-Moore Model under Discretion

Table 3 presents the feedback coefficients and the minimized loss function with
Unlike the Rudebusch

model, for the Fuhrer-Moore model the feedback coefficients in the optimized policy

precommitment and discretion for the case where A = 0.5.

rule differ greatly between precommitment and discretion. With A = 0.5, the central

bank’s inability to precommit leads to the minimized loss function rising approxi-

mately 33%, whichever optimal simple rule is used.

Table 3 | The Optimal Feedback Coefficients
Fuhrer-Moore Model: A = 0.5.

-1  Y-1 €t Et Loss
PC 3.13 2.64 2.55 1.23 6.072
D 1.34 169 3.65 9.29 8.052
PC 3.13 2.63 2.46 - 6.072
D 1.34 1.70 2.97 - 8.071
PC 3.16  2.69 - -1.20  6.094
D 1.34 1.70 - 5.78 8.102
PC 3.16  2.69 - - 6.095
D 1.34 1.70 - - 8.108

it = O1Ti—1 + Ga¥Yi—1 + P3€t + d4ct

25




5.3 Discussion

McCallum’s concerns about policy rule operationally appear to apply with force to
Taylor-type rules in the Rudebusch model, but not in the Fuhrer-Moore model. In
the Rudebusch model, optimal outcome-based Taylor-type rules and optimal forecast-
based Taylor-type rules are highly efficient. However, this efficiency is achieved
through the central bank responding to current period demand and supply shocks.
Focusing on the case where A = 0.5 and where the policymaker can precommit, the
minimized loss functions under the fully optimal precommitment rule, the lagged
Taylor + shocks rule, and the lagged Taylor rule are 2.578, 2.622, and 3.695, respec-
tively. Thus the lagged Taylor + shocks rule is only 1.7% less efficient than the fully
optimal precommitment rule, while the lagged Taylor rule (without the shocks) is
40% less efficient than the fully optimal precommitment policy.?!

Very different results were obtained from the Fuhrer-Moore model. In the Fuhrer-
Moore model, the minimized loss function is largely invariant to whether the central
bank responds to the demand and/or the supply shock directly. This finding is
consistent with the results in Levin et al. (1999), although they assume interest rate
smoothing and place the lagged nominal interest rate in the policy rule.?? The lagged
Taylor-type rule’s inefficiency in the Fuhrer-Moore model arises primarily because it
excludes endogenous state variables and not because it excludes current period shocks.

The differences between the results from the Fuhrer-Moore model and those from
the Rudebusch model and the Clarida et al. (1999) model are striking, but also
intuitive. For a central bank that aims to stabilize inflation and the output gap
the advantages to knowing the demand and supply shocks come in one of two forms.
First, knowing the shocks is essential if the policymaker is to offset the shocks before
they impact the economy. Second, knowing the shocks provides the policymaker with
information that it can use to help forecast future outcomes. In the Clarida et al.

(1999) model the main advantage to knowing the shocks — particularly the demand

21With discretion, the equivalent efficiency losses are 1% for the lagged Taylor + shocks rule and
42% for the lagged Taylor rule that excludes the shocks. 1In the discretionary case the efficiency
losses are measured relative to the time-consistent, or optimal discretionary, rule.

22For all 0 < A < 1, Levin et al. (1999) find that outcomes under the Taylor-type rules are “nearly
indistinguishable” from the rule that responds to all state variables. However, they: 1) assume
interest rate smoothing and place the lagged federal funds rate in their simple policy rule in addition
to the output gap and inflation; and 2) use an optimal rule that contains all state variables as their
benchmark, rather than the fully optimal precommitment rule.
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shock — is that monetary policy can reduce or offset their impact as they occur.
However, for the Rudebusch and Fuhrer-Moore models control lags mean that this
is infeasible. Instead, for these two models, knowing the shocks is important to the
extent that they help the policymaker to forecast current and future outcomes. In the
Fuhrer-Moore model, observing the shocks does not greatly benefit the policymaker
because the variances of the shocks are small and it is their propagation through
time that policymakers must largely contend with. For the Rudebusch model, the
variances of the shocks are larger — particularly that for the demand shock — and,
as a consequence, not observing the shocks leads to larger forecast errors and a
deterioration in policy performance.

Table 4 compares the performance of the optimal simple rules with discretion to
those with precommitment. In line with Clarida et al. (1999), economic outcomes
with discretion are consistent with output being over-stabilized and inflation being
under-stabilized relative to precommitment, which suggests that appointing a con-
servative central banker (higher A\) would improve outcomes (Jensen, 2002). This
“stabilization bias” is reflected in the unconditional variances of inflation and the out-
put gap. For the Rudebusch model, time-inconsistency and stabilization bias have
a relatively small effect on the variances of inflation and the output gap. However,
for the Fuhrer-Moore model, while discretionary policymaking lowers the variance of

the output gap the variance of inflation is raised considerably.

Table 4 | Comparing Precommitment with Discretion (A = 0.5)
Rudebusch Fuhrer-Moore
Precommitment Discretion Precommitment Discretion

Rule | Var[r] Varly] | Var[r] Varly] | Var[r] Varly] | Var[r] Varly]
Eqn. 26 | 2.93 3.61 3.24 3.42 6.56 4.80 12.10 3.70
Eqn. 27 | 2.53 1.97 2.73 1.83 6.56 4.80 12.09  3.57
Eqn. 28 | 2.81 3.63 3.06 3.49 6.55 4.75 12.04 3.72
Eqn. 29 | 2.33 1.94 2.42 1.85 6.55 4.75 12.00  3.59

Dennis and Séderstréom (2002) show that one reason why the stabilization bias is
small in the Rudebusch model is that private agents form their expectations using
period t —1 information, which affects the policymaker’s ability to influence economic

outcomes through expectations.

27



6 Conclusion

A large portion of the monetary policy rules literature examines the properties of
optimal simple rules. Where these rules have been constructed and evaluated in
forward-looking models the usual approach has been to cast the model in state-space
form and to assume that the policymaker can precommit. This paper extends the
literature on solving for optimal simple rules to the case where the policymaker cannot
precommit, and formulates the precommitment and the discretionary optimization
problems with the optimization constraints written in structural form. The structural
form can be advantageous because economic models are invariably formulated in
terms of structural equations.

In the precommitment case, a general solution algorithm was developed that can
solve for a wide class of optimal simple rules, including forward-looking rules, which
contain variables that are not predetermined. With discretion we focused on the
limiting case where the discount factor in the objective function tends to one. In
this limiting case, we showed that the optimization problem could be formulated and
solved recursively, and that the feedback coefficients in the resulting policy rule were
independent of the state vector, as is necessary for time-consistency.

Having developed the solution algorithms, section 5 applied these algorithms to
investigate whether operational Taylor-type rule, i.e., rules that preclude the central
bank from responding to current period outcomes, lead to large increases in the
value of the minimized loss function. Through analyzing the macroeconomic models
estimated in Fuhrer (1997) and Rudebusch (2002), and a calibrated version of the
Clarida et al. (1999) model, we showed that in the Rudebusch model and the Clarida
et al. (1999) model, setting policy using an operational Taylor-type rule leads to a
large increase in the value of the minimized loss function. In the benchmark case
with A = 0.5, using an operational Taylor-type rule, the minimized loss function in
the Clarida et al. (1999) model increased 43 percent with precommitment and 54
percent with discretion. In the Rudebusch model similar results were obtained with
precommitment and discretion: the minimized loss was 40 percent higher in the case
with A = 0.5, rising to around 90 percent higher as greater weight was placed on

output stabilization (smaller values for A); much of this efficiency decline occurred
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because the policymaker could not respond to current period demand shocks. Only
in the Fuhrer-Moore model did we find that the value of the minimized loss function
was largely invariant to whether an operational Taylor-type rule is used instead of
an outcome-based rule or a forward-looking rule.

Comparing precommitment with discretion, we showed that time-inconsistency
problems did not have a large impact on economic outcomes in the Rudebusch
model, but that time-inconsistency was important in the Fuhrer-Moore model. In the
Fuhrer-Moore model, discretionary policymaking lowered the variance of the output

gap, but raised the variance of inflation considerably.

A Appendix - The Limiting Form of the Policy Objec-
tive Function as § — 1

In this appendix we establish that in the limit as § — 1 equation (4), scaled by
(1 — 3) converges to tr [WE]. Recall that with precommitment the value function,
with discounting, was

Li = 7,Pz + rﬂﬂ)tr [9’21392@} , (30)

with P the solution to .
P =W+ 30,P0,. (31)

Recall also that the unconditional variance-covariance matrix of z; is the fixed
point of

Q= 0,00,+0,50,. (32)

Analogous relationships hold under discretion. Multiplying equation (31) through

by (1 — 3) gives
1-B)Le = (1—8)zPz +btr [9’21392@}
(1 - B) 2Pz + ftr [Peng;}
(1 8)z, Pz + Btr [P (Q - 9199’1)}
= (1-B)z,Pz + Btr [PQ] — Btr [Pelna’l}
(1 - 8) z, Pz + Bir [PQ] — Btr [9’113919}
(1 8)z, Pz + Btr [(P - 9'1P01) Q}
(1 - B) 2Pz + ftr KW —(1-7) 0'1P01) Q}

In the limit as 3 — 1, (1 — 3) Ly — tr [WQ], provided (1 — ) z,Pz; — 0 and
(1—-p0)tr [911P91} — 0. These two terms converge to zero provided the solution
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to equation (32) is bounded as  — 1. It is clear that the fixed-point solution
to equation (32) will be bounded when the spectral radius of 8; is less than one,
which from Hamilton (1994, pp186) amounts to the requirement that when subject
to control z; be weakly stationary and ergodic. In control theory terms, z; must be
stabilizable. But the condition that the spectral radius of @7 be less than one arises
naturally from the requirement that the model has a unique stationary equilibrium.
Consequently, the optimization problem is well defined in the limiting case where
8 — 1 and the objective function can be expressed in terms of a linear combination
of unconditional variances.

Note that the term z,Pz; in equation equation (30) describes how the feedback

coefficients in the optimal simple rule depend on the initial state vector. In the
limiting case where § — 1 the dependence of the policy rule on the initial state
vanishes.
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