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Abstract

This paper derives a closed-form solution for the optimal discretionary monetary policy in
a small macroeconomic model that allows for varying degrees of forward-looking behavior. We
show that a more forward-looking aggregate demand equation serves to attenuate the response
to inflation and the output gap in the optimal interest rate rule. In contrast, a more forward-
looking real interest rate equation serves to magnify the reponse to both variables. A more
forward-looking Phillips curve serves to attenuate the response to inflation but magnify the
response to the output gap.
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1 Introduction

This paper develops a simple tractable model to investigate how forward-looking behavior affects
the central bank’s response to inflation and the output gap under optimal discretionary monetary
policy. The framework for our analysis is a generalized version of the purely backward-looking model
of Svensson (1997). Our version adds three separate parameters that govern the role of forward-
looking expectations in the IS (or aggregate demand) equation, the real-interest rate equation, and
the short-run Phillips curve. Particular settings for these parameters allow our model to loosely

approximate some commonly-used specifications in the literature.

2 The Model

We generalize the model of Svensson (1997) to allow for varying degrees of forward-looking behav-

ior.! The equations that describe the model are as follows:

Y1 = By [(L=ny) ye + 1y Bryerr] — B, (p=P) + viar, v ~N(0,02), (1)
pe = (—p) @ —m) + p By (i1 — Teg1), (2)
Tt = (1 —/Lﬂ.) T + l’[/’]TEtﬂ-t—“l + ozyyt + Zt4-1, Zt+1 NN(O,UE) . (3)

Equation (1) is the IS equation, where ¥y, is the deviation of real output from trend, i.e., the
output gap, p; is the real interest rate that matters for aggregate demand, v;y; is a demand shock,
and F} is the expectation operator conditional on information available at time ¢. The parameter
ﬁy > 0 governs the sensitivity of next period’s output gap to a weighted combination of the current
gap and the expected gap, where i, € [0,1] is the weight assigned to the expected gap. The
parameter 3, > 0 governs the sensitivity of next period’s gap to the real interest rate. In steady-
state, the output gap is zero which implies that p is the steady-state real interest rate.

Equation (2) defines the real interest rate that matters for aggregate demand. The variable i,
represents the one-period nominal interest rate which is under the control of the central bank and
7 is the inflation rate. The parameter p,. € [0, 1] governs the degree to which agents’ expectations
of the future nominal interest rate influence the relevant real rate. In steady-state, equation (2)
implies the Fisher relationship: i = p + 7.

Equation (3) is the short-run Phillips curve, where 2,11 is a cost-push shock and the parameter
a, > 0 governs the slope of the curve. The parameter p € [0,1] governs the degree to which
next period’s inflation rate is influenced by current-period expectations of inflation. Equation (3)
combines elements of a backward-looking Phillips curve with an expectational timing feature that
is motivated by the “sticky information” Phillips curve described by Mankiw and Reis (2002).

Standard techniques yield the following reduced-form versions of the IS equation and the Phillips

curve:

lSvensson (1999, section 7) considers forward-looking behavior as an extension to his original model. However,
his analysis is non-quantitative and he focuses mainly on a special case where the central bank does not care about
output fluctuations.
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When p,, = gt = pt,, = 0, equations (4) and (5) are identical to those in the purely backward-
looking model of Svensson (1997).

3 Optimal Monetary Policy Under Discretion

Following Svensson (1997), we assume that the central bank’s decision problem can be written as

{Zrtmtno—EoZ(S { T —T) —I—)\y?}, (6)
subject to the structural constraints (4) and (5). The symbol T is the exogenously-specified inflation
target, 6 € (0,1) is the central bank’s subjective discount factor, and A > 0 is the subjective weight
assigned to stabilizing output fluctuations relative to stabilizing inflation fluctuations.

Central bank policy operates through changes in i; or Fyi;.;. The constraint (5) shows that
71y and Ky cannot be influenced by policy at time ¢ because 7, and y,; are predetermined state
variables. The other constraint (4) shows that changes in i; or Fyi;y can influence 411 which,
in turn, influences 7,10 and Iy 17ms10. Thus, the constraints imply that the central bank exerts
control over the output gap with a one-period lag and the inflation rate with a two-period lag.

We make the realistic assumption that current policymakers cannot bind future policymakers to
abide by the optimal policy rule computed today. In other words, we assume that future policymak-
ers are free to reoptimize given the state of the economy that exists at each future decision point.
Rational private-sector agents will of course anticipate these actions and adjust their behavior to
take into account the policymakers’ incentive to reoptimize. This anticipation effect influences the

nature of the policy rule that ultimately prevails in a rational expectations equilibrium.

Proposition. The central bank’s oplimal interest rale rule under discretion is given by

it = P+T+ gy (T —T) + gy,

where
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The proof of the above proposition follows the basic methodology outlined in Svensson (1997).2
Notice that all three forward-looking parameters, Hys for, and p,., can influence the magnitude of the
optimal response coeflicients. When Hy = ftr = pt, = 0, the expressions for g& and g, are identical

to those derived by Svensson (1997) for a purely backward-looking model.

An increase in the parameter #, leads to a weaker policy response, ie., 8Z’; < 0 and gii < 0.
The intuition is straightforward. An increase in the forward-looking component of the IS equation
serves to reduce the persistence of the equilibrium output gap in response to shocks. From the
reduced-form IS equation (4), we can see that an increase in ty leads to a smaller reduced-form
coefficient on the current gap ¥;. This means that the output gap can exhibit a more-pronounced
jump in response to a change in current nominal rate 4, (the central bank’s policy variable). The
enhanced impact of the policy variable allows the output gap to be brought back to zero (the central
bank’s target level) with a smaller interest rate response. Moreover, given that the central bank
exerts control over inflation via interest-rate induced changes in the output gap, improved control
over the gap allows inflation to be brought back to target with a smaller response as well.

While our results regarding f,, pertain to the optimal policy rule under discretion, Rudebusch
(2002) obtains qualitatively similar results for an optimal policy rule under commitment. In par-
ticular, he finds that an increase in #, reduces the magnitude of the response coeflicients ¢; and
g, in an optimized version of the Taylor rule.® Our results are also consistent with those of Soder-
lind, Séderstrom, and Vredin (2002) who compute the optimal policy rule under discretion. Both

4 Nevertheless, their

of these studies adopt a different timing convention for agents’ expectations.
specification and ours share the property that increasing the weight assigned to the expectational

term in the IS equation reduces the persistence of the equilibrium output gap.

An increase in the parameter p, leads to a stronger policy response, i.e., ggy > 0 and Zy > 0.
This result is consistent with the findings of Eijffinger Schaling, and Verhagen (2000) who introduce
a forward-looking term structure into the model of Svensson (1997). When g, = 1/2, equation
(2) can be viewed as an approximation to the expectations theory of the term structure where p,
corresponds to a two-period real rate.’ Eijffinger, Schaling, and Verhagen (2000) consider a more-
general term structure equation where p, = (1 — ,.) (¢; — Eymypq)+p, Eep, g and p, = D/ (14 D).

The parameter D can be interpreted as the duration of a real consol that is used to approximate

2The details of the proof are contained in the appendix.

3Compare Table 1 (g, = 0) with Table Al (i, = 0.3) in Rudebusch (2002).

4Both studies employ an IS equation of the form:

ye = By [(1 - My) yt-1 + MyEtflyH»l:I — By (tt—1 — Bt—1mt41) + vt

5The exact version of the expectations theory would imply P = % (it — Bemeg1) + %Et (Bt41 — Te42) -



a finite maturity long-term bond. In both of these setups, the central bank does not have direct
control over the “longer-term” interest rate p, because this rate is partly determined by private-
sector expectations of future short-term rates. As i, increases, the effective bond maturity lengthens
and the central bank is forced to move the current short rate more aggressively to produce the same
desired impact on p,.

It not obvious how an increase in p,. affects the strength of the policy response because this
parameter enters the expressions for g@ and g, in a rather complicated way. We can gain some
insight by considering a special case of the model when A = 0, that is, when the central bank cares
only about minimizing deviations of inflation from target.® When A = 0, the above proposition
implies £ = 1 and we obtain %A:O < 0 and %A:O = 0. Hence, an increase in . leads, on
balance, to a weaker policy response. The increase in p1 serves to reduce the persistence of inflation
in response to shocks. From the reduced-form Phillips curve (5), we see that an increase in g,
causes next period’s inflation rate ;1 to be determined less by current inflation 7; and more by
the current output gap y;. Given that the central bank exerts control over the output gap with
only a one-period lag, an increase in g makes future inflation more responsive to the interest rate.
This, in turn, allows inflation to brought back to ™ with smaller interest rate changes. When A = 0,
the direct response to the output gap does not change with pu,_ because this special case implies
that the central bank does not care about output fluctuations. The more realistic case of A > 0 is

investigated numerically in the next section.

4 Quantitative Results

We now turn to a quantitative assessment of the optimal response coeflicients in a calibrated version
of the model. The time period is taken to be one quarter. Notice that the optimal response
coefficients do not depend on the values of T and p. For the remaining parameters, we adopt a
set of baseline values that are drawn from studies that estimate models which resemble ours. In
particular, we choose p, = pi, = . = 0.5, 3, = 1, 5, = 0.2, ay = 0.04, 6 = 0.99, and A = 1. The
basic nature of our results does not hinge on any particular calibration of the model.

For the baseline parameter settings, the optimal response coefficients take on the values g = 5.7
and g, = 5.4. These coeflicients are considerably larger in magnitude than the Taylor (1993) rule
coeflicients of g = 1.5 and g, = 0.5. Hence our baseline calibration confirms a common result in
the literature that the optimal policy rule calls for a stronger response to inflation and the output
gap than is recommended by “Taylor-type” rules estimated from macroeconomic data.”

It is worth noting that our values for ¢} and g, are also somewhat larger than those typically
reported in the literature for “optimized” Taylor rules. For example, Rudebusch and Svensson
(1999, Table 5.3) and Rudebusch (2001, Table 1) obtain g; a3 and g; = 2 using purely backward-
looking models.? Unlike our study, these authors adopt a central bank loss function that specifically
penalizes movements in the nominal interest rate. In particular, the response coeflicients cited

above correspond to a within-period loss function that takes the form L, = (m; —7)2 + )\y? +

6This case is termed “strict inflation targeting” by Svensson (1997).

"To our knowledge, this point was first made by Ball (1999).

8The results from these studies are not strictly comparable to ours because the authors compute “optimal simple
rules” that involve a restricted number of state variables.



v (i — it,1)2 with A = 1 and v = 0.5. The presence of the penalty term v (i; — it,1)2 serves to
reduce the magnitude of the optimal response coeflicients in comparison to our setup which imposes
v = 0. While the above authors do not consider the v = 0 case, they do compute the optimal
response coeflicients when the penalty-term weight is reduced to v = 0.1. In this case, Rudebusch
and Svensson (1999, Table 5.6) and Rudebusch (2001, Table 1) obtain somewhat larger response
coeflicients: gr ~2 3.5 and gy ~ 2.5. Our results for the v = 0 case suggest that the impact of the
penalty term on the magnitude of the optimal response coefficients is highly nonlinear.’

When p, = p. = p, = 0, our model collapses to the purely backward-looking framework of
Svensson (1997) and we obtain g; = 5.3 and g; = 5.2 (with the other parameters held constant
at the baseline values). Another interesting benchmark is #y = 0 and p;, = p, = 0.5 which can
be viewed as a simplified version of the Fuhrer and Moore (1995) model. In this case, we obtain
gr = 10.7 and g, = 10.4.

Figures 1 through 3 plot g; and g, as each forward-looking parameter is varied while holding
the remaining parameters constant at the baseline values given earlier. A vertical dashed line marks
the baseline value of each parameter.

Figure 1 shows that an increase in p,, causes both g; and g, to decline in a linear fashion. Figure
2 shows an increase in p, causes both g; and g; to rise in a nonlinear fashion. Both figures confirm
the theoretical results presented earlier.

Figure 3 shows that g7 and g, do not react very much until p reaches a value of about 0.9.
Beyond this value, the optimal response coefficients diverge, with g’ dropping sharply towards
1.0 and g, shooting up to above 10. This phenomenon can be understood from the reduced-form
Phillips curve (5). As g, increases (holding «, constant), future inflation is determined less by
current inflation and more by the current output gap. The optimal response, then, is for the central
bank to react less to inflation and more to the output gap. Recall that when A = 0, our theoretical
results showed that the optimal response is for the central bank to react less to inflation and react

the same to the output gap.

5 Concluding Remarks

This paper investigated how forward-looking behavior affects the nature of the optimal discretionary
monetary policy. We showed that a more forward-looking IS equation serves to attenuate the optimal
response to inflation and the output gap. A more forward-looking real interest rate equation serves
to magnify the optimal response to both variables. A more forward-looking Phillips curve serves
to attenuate the optimal response to inflation but magnify the optimal response to the output gap.
Our results have implications for studies that attempt to reconcile estimated versions of the central
bank’s policy rule with optimal discretionary policy. In particular, a successful reconciliation is
likely to require a different degree of forward-looking behavior in each part of the model economy.
While our analysis employed a simple stylized model to permit a closed-form solution for the optimal

policy rule, the basic intuition for our results should extend to more complicated frameworks.

9This point is supported by the analytical results of Svensson (1999, section 5).



A Appendix

A.1 Proof of Proposition 1

The state variables for the central bank’s dynamic programming problem are w; and y;. However,
following Svensson (1997), we can treat F;m:yq1 as the single state variable because Fimipq =
T+ l—f‘MLﬂ ys for all . We can also treat Fy;.1 as the single control variable. Given the central
bank’s choice for F.y.y1, the structural constraint (4) can be used to recover the interest rate rule
that implements the optimal allocations. With these formulations, the central bank’s dynamic

programming problem can be written as

. 1 _
V(Emi41) = min {5 |:(Et7rt+1 - 7T)2 +A (Etyt—kl)ﬂ + 65,V (Et+17Tt+2)} ) (A1)

Esyt+1

subject to:

«
By Tipo = Ty + <1 —yM >yt+17 (A.2)

where V (+) is the value function and equation (A.2) is obtained from the structural constraint (5)

by updating all variables by one time step and then taking expectations at time ¢ + 1.

A.1.1 The Central Bank’s Value Function

Since the central bank’s loss function is quadratic and the constraints are linear, the value function
will take the form

k
14 (EﬂrH_l) = ko+ 5 (EtTFH_l —7)2 s (A?))

where ko and k are coeflicients to be determined. The linear-quadratic nature of the optimal control
problem gives rise to the property of certainty equivalence, i.e., the solution does not depend on the
variances 02 and o2 that govern the stochastic shocks.

The first order condition of (A.1) with respect to the control variable Fyy;+1 is

ov (Et+17Tt+2) OF; 1T v
OF 12 OF i1

Ay

AEyi1 + 01, -

= AE@iy1 + 6k (Eymip —T) <

) =0, (Ad4)

where we have made use of the law of iterated mathematical expectations. The first order condition

can be rewritten as

—A
Et7Tt+2 -7 = aiEtyt—}-L (A5)
§ (17;) k
The constraint (A.2) implies
-1
o
By = <1 —yM ) (EﬂTH-z - Eﬂm—l) . (A~6)

where we have once again made use of the law of iterated mathematical expectations.
Substituting equation (A.6) into equation (A.5) to eliminate E;y;,+1 and then rearranging yields
_ A _
(Etﬁt+2 — 7T) = 2 (Etﬂt+1 — 7T) (A?)

)\+5<1—ft) 2



which shows that the central bank should adjust its policy variable to gradually close the gap
between the two-period ahead inflation forecast and the long-run inflation target. When A = O,
equation (A.7) simplifies to Fym;19 = 7. In this case, the central back should adjust its policy
variable so that the two-period ahead inflation forecast is equal to the long-run inflation target.

To determine the coefficient k, we proceed as follows. From equation (A.3), we have

oV (Etﬂt+1)

= k(B — 7). A8
BT (BT =) (A.8)

From equation (A.1) we have

oV (Etﬂt+1 )
OFTi

oV (Et+17Tt+2) OF; 142
OF; 1T v aEzt+17th+17

= (BiTesq —7) + 6B, (A.9)

= k(E¢117er2—T) =1

where the two partial derivatives on the right-hand side are computed using equations (A.3) and
(A.2), respectively.

Making use of the envelope theorem, we can equate (A.8) and (A.9) to obtain
Y

k (Etﬂt+1 —7) = (Etﬂt+1 —7) + T
A+6 (12“;; ) k

(Bymieq — ), (A.10)

where we have used equation (A.7) to substitute out (E;7; 2 — ) from equation (A.9). The above

expression implies

ONk
k=1+———5—, (A.11)
N8 ()
which can be rearranged to yield the following quadratic equation
PER Qe L) U e S (A.12)
l o(vi7) o(vi7)

Following Svensson (1997, Appendix B), equation (A.12) can be solved for the unique positive

value of k shown in the proposition.
A.1.2 The Optimal Interest Rate Rule
To solve for the optimal interest rate rule, we rearrange the first-order condition (A.5) to obtain

-5 (13”) k:(
A

By = Eymiie =),

?
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where we have used the structural constraint (5) to compute the expectations Fymyyo and Fimeyq.

Solving equation (A.13) for Fyy,.q yields

Eern = M [m . <1L> yt} . (A.14)
A8 () ~

The structural constraint (4), which is derived from the IS equation, implies

By (1= 11y ) 4Bt (T2 . _
Etyt—H = ( Ml),@y;:;( 7r>:|yt - (1*%;““9)[(1—#7“) (Zt—p—ﬂ)—(ﬂt—ﬂ)]
- (1_,5@%72) [Erign1 —P—T]. (A.15)

Following the common practice in the literature, we restrict our attention to so-called “Markov
perfect equilibria” where the policy rule is a stationary function of current state variables. We make

the conjecture that the optimal interest rate rule takes the form

iy —Pp—T = gp (T —T)+ gy, (A.16)

for all £. Conditional on this rule, private-sector agents form rational expectations such that

el
Il

Bty —p— In (Bemiey —T) + gy oyrsa,

«
= 4r [Wt —T+ <1 _yM ) yt} + 9y By (A7)

™

Substituting equations (A.16) and (A.17) into equation (A.15) and then collecting terms yields

} (re —7), (A.18)

_ B (m) B (75 ) 03— 1) -8, (- )y B.(gi—1)
By = 1B, iy + B, 1y 0% Ye — [lfﬁyuﬁ@m,«gé

By equating the coefficients on (7, — 7) and y; in the two expressions for Fy.11 given by (A.14)
and (A.18), we have two equations that can be solved for the two optimal response coeflicients ¢ and
g,- The two equations are linear so the solution is unique. After some tedious but straightforward

algebra, we obtain the solution shown in the proposition.
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