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1 Introduction

The past two decades have seen a plethora of factor models of the term
structure of interest rates. Following Vasicek (1977) and CIR(1985), nu-
merous factor models have been developed and estimated, which use the
unobservable latent factors to characterize certain aspects of the movement
of the term structure, and are applied to the valuation of bonds and various
interest rate options. A short list of the literature include Litterman and
Scheinkman (1991), Longstaff and Schwartz (1992), Chen and Scott (1993),
Duffie and Kan (1995), Dai and Singleton (1999), etc.

However, the best that the latent-factor models can do is to reveal the
statistical pattern of the latent factors implied by the data, while little light
is shed on the underlying structural sources of the movement of these factors.
This is also reflected in the terminology by which the extracted factors are
named. For example, Litterman and Scheinkman (1991) call their factors
“level, “steepness” and “curvature”. Dai and Singleton (1999) use the terms
“level”, “slope” and “butterfly”, and many other empirical studies, based
on the magnitude of the mean-reversion parameters of the latent factors,
name them as “persistent”, “less persistent” and “strong mean-reverting”,
etc. (for example, Chen and Scott (1993)). These labels describe how the
latent factors influence the yield curve rather than indicating the underlying
structural forces that drive the movement of these factors.

Understanding how the macroeconomic fundamentals are related to term
structure factors is essential to comprehending the behavior of fixed-income
securities, and is useful for valuation and arbitrage purposes. The latent-
factor models use the dynamics of underlying latent factors to describe and
formulate the expectation of the movement of instantaneous interest rates,
while in reality the federal funds rates are determined based on the macroeco-
nomic fundamentals by the Federal Reserve Board. Therefore, examining the
structural sources of the latent factors and incorporating information about
the fundamentals in making forecasts on the evolution of future term struc-
ture may bring an advantage to investment practitioners in exploiting the
arbitrage opportunities on fixed-income security market and other financial
markets.

A number of studies have addressed the question of the structural sources
of latent factors. Knez, Litterman and Scheinkman (1994) perform a factor
analysis of the money market returns in the U.S. from January 1985 to Au-
gust 1988, and suspect the “steepness” factor that they find represents the



impact of Federal Reserve policy on the yield curve. Evans and Marshall
(1998) conduct a VAR study and find that the monetary policy shocks can
explain a significant part of variability of slope of the yield curve, at least
in short horizons. Wu (2001a) establishes a general-equilibrium based term
structure model and shows that most of variability of the slope factor in his
model is driven by exogenous monetary-policy shocks.

This study aims at exploring the empirical relationship between the move-
ment of the slope factor and exogenous monetary-policy shocks in the U.S.
after 1982. Unlike Evans and Marshall (1998), which simply regress the bond
yields on a constant, bond maturity and maturity squared and take the coef-
ficient of maturity as the slope of the yield curve, my study explicitly extracts
the slope factor of the yield curve, using a two-factor Vasicek (1977) model.
In order to extract the monetary-policy shocks, I adopt two different identi-
fication strategies through an identified Vector-autoregression (VAR) model
as well as a Generalized Method of Moments (GMM) estimation model of
the “Taylor rule”. I then examine the relation between the slope factor and
each of the two series of the monetary-policy shocks. The results from the
two identification strategies are similar, which makes the paper’s subsequent
analysis more robust.

This paper is organized as follows. Section 2 lays out the estimation pro-
cedure of the two-factor term structure model. Section 3 discusses the setup
of the VAR model and as well as the GMM estimation model of the “Taylor
rule”. Section 4 describes the data. Section 5 reports the estimation results
and examines the implied relation between the slope factor and monetary
policy shocks, and Section 6 concludes.

2 A Two-factor Term Structure Model

The term structure model used to extract the slope factor is a discrete-
time version of the models established in Vasicek (1977) and Babbs and
Bowman (1999). I assume the state of the economy can be described by a
two-dimensional vector of latent variables F;, which follows a first-order VAR
process:

Ft = /,LF + \IJFthl + ZFUt (21)

where U and X are 2 X 2 matrices, and u,;’s are i.7.d. white noises: u; ~
N(0,1).



The one-period short rate r; is assumed to be a linear function of the
latent variables:

I assume there is no arbitrage opportunity in the equilibrium. The non-
arbitrage condition thus guarantees the existence of a risk-neutral measure
@ so that the price of any asset P/ satisfies

P = Ef{exp(—r) P} (2.3)

in which the expectation is taken under the measure ). The Radon-Nikodym
derivative (;,, converts the risk-neutral measure to a data-generating mea-
sure, and for any random variable Z;,; the following equation is true:

Ef{Z} = B{ConZun Y/ 2, (2.4)

As often in the no-arbitrage literature, ;. is assumed to follow a log-
normal process:

1
Cip1 = eXp(_§7l7 — Y Uss1) (2.5)

where v is the market price of risk associated with the source of uncertainty
u¢. The nominal pricing kernel m;; can thus be defined as

M1 = eXP(_Tt)CtH (2.6)

and can be used to price all the nominal assets in the economy:

P/ = E{mi Py (2.7)

If b;; represents the price of a j-period nominal zero-coupon bond, then
equation (2.7) implies:

bj,t = Et{mt+1bj—1,t+1} (2-8)

Substituting (2.2), (2.6) into (2.8) we have

1
bj¢ = Et{eXP(—50 - 53Ft - 57/7 - 7/ut+1)bj71,t+1} (2-9)

Equations (2.1), (2.2) and (2.5) constitute a discrete-time Vasicek (1977)
two-factor model. The logarithms of the bond prices in this model are affine
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functions of the latent variables F;. More precisely, the formulae of the loga-
rithm of the bond prices are given by

In(b;;) = 4; + B} F, (2.10)

and the coefficients A; and B; are recursively defined by

Zl = —60
B, = —&
_ _ — 1—, -
Ajpn— A = Bilpr —Xp7) + EBJ-EFEIFBJ + A
Bj.1 = VY%.B;+ By; j=1,2,...,J (2.11)

The continuously compounded yield to maturity r;; of a j-period nominal
zero-coupon bond is then given by

rie = —In(b)/j = A;j + By (2.12)

where A; = —A;/j and B; = —B,/j.

Four kinds of yields (3, 6, 12 and 60 months) are used in the estimation.
Since the underlying model is a two-factor model, at least two kinds of the
bond yields must be postulated to fit the model only with error. I assume
that the yields of 3- and 60-month bonds are observed without error because
they are more frequently traded than the other two kinds of bond on the U.S.
Treasury bond market, and the 6- and 12-month bond yields are assumed
to be measured with errors. Furthermore, I assume the measurement errors
are serially uncorrelated, and are independent across the yields. Let R, =
(T34, T60,t, T6 ¢ 7"12775)1, with rs; and rgp ¢ observed without errors. Stacking the
corresponding A; and B;’s, I can then write

where B™ is a 4 x 4 diagonal matrix with zero’s as the first two diagonal
elements and the standard deviations of the measurement errors as the re-
maining two diagonal elements . u;" is a four-dimensional Gaussian white
noise with an identity covariance matrix. I assume u;" is independent with
F;.

Equation (2.1) and (2.13) form a Kalman filtering model, with (2.1) as
the “state” or “plant” equation and (2.13) the “observation” equation. The
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Kalman filter is constructed through a recursive structure that can be briefly
described as follows: assume the distribution of F}; conditional on the infor-
mation set at t — 1 is

Ft\tfl ~ N(Fﬂtfly Qt\tfl)u (2~14)

then the distribution of R; conditional on the information set at t — 1 is

Ryt 1 ~ N(A+ BFy, 1, BQy 1B + B™"B™) (2.15)

Having observed the value of R;, one can update the inference about the
state F} as

Fye ~ N(Fy, Qye) (2.16)

Ft‘t = Ft\t—l + Qt|t_1B,(BQt‘t_1B/ + BmBm/)_l(Rt - A - Bﬁt\t—l)
Q= Q1 — U1 B' (BQyy1 B’ + B™B™) By (2.17)

and the distribution of F},;conditional on the information set at ¢ is
Ft+1\t ~ N(Ft+1|t: Qt+1\t)a

where

Fiype = pp+YeFy
Qi = ey + 2pYy (2.18)

Therefore, the conditional p.d.f. of R;|R;_1 can be recursively constructed as
follows:

frors (RilRiz1) = (2m)™?|BQy,B'+ B"B™ |7/
1 T !
X eXp{_é(Rt - A- BFt\t—l)/(BQt\t_1B/ + B™B™ )71
X(Rt - A - B?ﬂt—l)} (219)

fort=2,...,T.



From (2.19) it is a simple matter to construct the sample log-likelihood
function

T
log(L(0)) = > _10g frir, 1 (Ri|Ri1) +log f(R1) (2:20)
t=2
where 0 = (A(,U,F, \I’F, EF, 60, 61), B(/LF, \IJF, ZF, 50, 51), Bm) f(Rl) is the
unconditional density function for R;, which has a normal distribution:

Ry~ N(A+B(I —Vp) pp, BU - V) 'Sp (I — W)Y B + B"B™)

Dai and Singleton (1999) discuss the identification problem of such latent-
factor model estimations in detail. In order to eliminate the observational
equivalences resulting from non-singular rotations, pp in (2.1) is assumed to
be a zero vector, and Uy a lower triangular matrix. I further restrict Up
as diagonal so that F}’s are independent with each other. This restriction is
made to keep conformity with the usual empirical estimation studies, many
of which adopt the assumption of independence among the latent factors, like
Longstaff and Schwartz (1992) and Chen and Scott (1993). Furthermore, to
eliminate the equivalences from unitary rotations, I normalize ¥ to be an
identity matrix. Thus equation (2.1) becomes

Fy = pFa+uw
re = 6+ 08,F, (2.21)

And finally the log likelihood in equation (2.20) is maximized to estimate the
parameters 0 = (A(p, 6o, 01), B(p, b0,61), B™(06,012)).

3 Monetary-policy Innovations Estimations

To investigate how the term structure reacts to the structural changes in
the macro economy over time, we need to specify the changes themselves in
the first place—here the monetary-policy innovations or “surprises” pertain.
However, such innovations or surprises are not directly observable. Each
movement of the Federal Open Market Committee (FOMC) can be decom-
posed into two parts: the part that has been expected by the public, and the
part that surprises the public. It is the latter part that drives the movement



of the yield curve in response to the Federal Reserve announcements. There-
fore, how to separate the latter part from the “expected part” of the policy
announcements is in question.

There is no consensus among the monetary economists on how the public
forms expectation on Federal Reserve policy. Vector Autoregression (VAR)
estimation models are widely used to decompose the variations of macro vari-
ables into policy and non-policy components. On the other hand, following
Taylor (1993), there has been a large literature trying to estimate a federal
funds rate response function (“Taylor rule”) as the Federal Reserve’s policy
rule. To make my results more robust, I adopt both identification strategies.

3.1 A Six-variable Identified VAR Model

In one of my earlier papers (Wu (2001b)) I use a recursive strategy to identify
the monetary-policy innovations and other kinds of macro shocks. I establish
the following identified VAR model and examine the impulse responses of the
U.S. economy to structural innovations in the macro economy:

Cﬂ/t = A(L)}/t_l + E&yyt (31)

The data vector of the macro variables is given by Y; = (IP, EM, PCE,
My, FF,PCOM)’, where IP denotes the logarithm of industrial production;
EM is the logarithm of nonagricultural payroll employment in private sector;
PCE represents the logarithm of the personal consumption expenditures price
index; M1 refers to the logarithm of the monetary aggregate M1; FF is the
federal funds rate, and PCOM represents the logarithm of spot market price
index for all commodities.

Wu (2001b) assumes that the price level and real economic activity re-
spond to monetary policy with a one-month lag, except for the commodity
prices, which are formed in auction markets, and therefore can respond to any
news contemporaneously. On the other hand, the monetary authority is only
able to observe the price level and real economic activity with a one-month
delay. This is because the measures of the price level and of real economic
activity are compiled from survey data, which takes time to collect and are
available to the monetary authority only with a delay. In accordance with
these structural assumptions, in equation (3.1) a is a lower-triangular square
matrix:



1 0 0
a91 1 0
az; azz 1

- O O
o O O O

Qg1 QAq2 Aa43
0 0 0 asg 1

g1 dg2 Qg3 deqa 0Ags

_ o O O o O

Note that in the fifth row, the first three elements are zeros, reflecting the fact
that the monetary authority is not able to observe the current month’s in-
dustrial productions, employment and the price level for consumption goods.
A(L) is a matrix polynomial in the lag operator L, and ¥ is a diagonal
matrix.

I assume that the monetary authority uses the federal funds rate F'F
as its policy instrument. Therefore, the fifth equation of the VAR system
becomes the monetary policy reaction function:

FF, = As(L)Yi 1 — asaMy 4 + 05565, (3.2)

where As(L) is the fifth row of the matrix polynomial A(L), and o055 is the
fifth diagonal element of the matrix 3. The monetary-policy shock €pp; is
the fifth element of €y, and is assumed to be orthogonal to all other right-
hand-side variables in (3.1).

Equation (3.1) is estimated over the sample period 1983:01 to 1998:12.
Twelve lagged values are estimated in each equation, with the initial lags
beginning in 1982:01. epp,’s are then calculated for each month and are
used as proxies of the Federal Reserve policy “surprises” during the sample
period.

3.2 A GMM Estimation Model of the “Taylor Rule”

Taylor (1993) advocates using one simple interest-rate response function in-
stead of a system of equations like the one in (3.1) to describe the monetary
policy rule. The federal funds rate is assumed to respond to the inflation and
the output gaps in the economy:

r{ = Q"+ BT+ Y (3.3)



where 7} is the target level of the nominal federal funds rate in period ¢. 7,
is the inflation gap and y; is the real output gap in the economy. «o* is, by
construction, the desired nominal federal funds rate when both inflation and
output are at their target levels.

Following Clarida, Gali and Gertler (1998), I define the inflation and
output gaps as the gaps between the expected inflation and output levels
and their respective target levels. Thus equation (3.3) becomes

7": =aof + ﬁ(E[’]Tt7k|Qt] - 77*) + ’YE[I‘t,q|Qt] (34)

where 7, denotes the percent change in the price level from periods ¢ to
t + k (expressed in annual rates). 7* is the Federal Reserve’s target level
of inflation. z,, is a measure of the average output gap between period ¢
and t + ¢, where the output gap is defined as the percent deviation of the
actual GDP from the corresponding Federal Reserve’s target level. E is the
expectational operator, and € is the information set at the time when the
federal funds rate is set.

Equation (3.4) assumes immediate adjustment of the actual federal funds
rate once its target level changes, and thus ignores the Federal Reserve’s
tendency to smooth changes in interest rates.! Moreover, it assumes that
the Federal Reserve has perfect control over the interest rates all the time,
which is not what happens in reality.

An extension of (3.4) allows those assumptions to be relaxed. In particu-
lar, I specify the following AR(3) model for the actual monthly federal funds
rate, ry:

re = (1= py — py — p3)ri + piTe—1 + PaTie—a + Psri—s + Erre (3.5)

where ey is a zero-mean exogenous monetary-policy shock, and r} is given
by (3.4).

Combining the partial adjustment equation (3.5) with the target model
(3.4) yields the federal funds rate equation:

re = (1—py — py— p3)(@+ B +YTrg) + pr7io1 + pori—a + psri—z +vr (3.6)

1See Rudebusch (1995) for evidence on the serial correlation of interest rate changes.
Literature provides a number of explanations for this interest-rate smoothing behavior,
including fear of disruption of financial market (Goodfriend (1991)), and uncertainty about
the effects of interest rate changes (sack (1997)).
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where a = o — " and vy = —(1—py — py = p3{ B(mep — Elme o[ S0]) +7(w1,4 —
Elzy4|])} + eppe. Note that (m, — E[mi|S%]) and (24, — Elz,4|C%]) are
forecasting errors and are thus orthogonal to any variable in the information
set €.

Let z; be a vector of instruments known when r; is set, which is orthogonal
to the exogenous monetary shock epp;. Thus I have the set of orthogonality
conditions:

E{UtZt} =0 (37)
with v; derived from (3.6):

vy =11 — (1= py — py — p3)(@ + Bk +YTeg) — P17i—1 — PaTi—2 — P3Ti—3

Equation (3.7) provides the basis for the estimation of the parameter vec-
tor (v, 3,7, p1s Pa, p3) 5 using the Generalized Method of Moments (Hansen
(1982)), with an optimal weighting matrix that accounts for possible corre-
lation across elements of v;z;. After the parameters are estimated, 7, and
x4 are projected by OLS on the instrumental variables z;’s and the fitted
values are used to formulate the expected inflation and GDP gaps, E[m; x|€2]
and Elx;4|¢%]. Finally erp,’s are computed for the whole sample period as

errt = 1t~ (1=p1—=pa—p3) (Q+BE[me k| Q)+ E [0, ]) —prre-1—pare2—p3re-3
(3.8)
and are used as proxies of the monetary-policy shocks.

In the GMM estimation I set £ = 12 and ¢ = 6. That is, I assume that
the Federal Reserve Board is trying to control the inflation rate over the
next twelve months and the output growth over the next six months at their
respective target levels. This choice of policy horizons is consistent with the
Federal Reserve Board’s statements, and is also the horizons that Clarida,
Gali and Gertler (1998) choose. The inflation measure is the annualized rate
of change of the GDP deflator between two subsequent months. The output
gap is constructed as the deviation of the logarithm of real GDP from a fitted
cubic function of time. The instrumental variables in z; include current and
twelve lags of the federal funds rate, inflation and output gap, as well as the
current and twelve lags of commodity price inflation, M2 growth, and the

spread between long-term bond rate and 3-month Treasury Bill rate from
CITIBASE.
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4 Data

In estimating the term structure model I use data on nominal zero-coupon
bond yields of maturities 3, 6, 12 and 60 months, covering the period from
January 1983 to December 1998. The long-term bond yields (12, 60 months)
are taken from Fama CRSP zero-coupon bond files, and the shorter maturity
rates (3, 6 months) are taken from Fama CRSP Treasury Bill files.

The macro variables I use to construct the VAR model are: IP (loga-
rithm of industrial production), EM (logarithm of nonagricultural payroll
employment in private sector), PCE (logarithm of the personal consump-
tion expenditures), M1 (logarithm of the monetary aggregate M1), FF (the
federal funds rate), and PCOM (logarithm of spot market price index for
all commodities) covering the period from January 1982 to December 1998
(including the initial twelve-month lags). All macro data are taken from
CITIBASE, and are seasonally adjusted except for FF and PCOM.

The macro variables I use in the GMM estimation of the “Taylor rule” in-
clude: federal funds rate (FYFF), GDP deflator (GDPP), real GDP (GDPQ),
Commodity price index (PSCCOM), M2, long-term bond rate (FYGL) and
the 3-month Treasury Bill rate (FYGM3) from CITIBASE, covering the pe-
riod from January 1982 to December 1998 (including the initial twelve-month
lags).

5 Estimation and Regression Results

Table 1 reports the MLE estimates of the parameters p, dg and 6; of the two-
latent-factor term structure model. All the parameter estimates are statisti-
cally significant. Consistent with the results in previous multi-factor studies
such as Chen and Scott (1993), Dai and Singleton (1999) and Babbs and
Nowman (1999), there are a persistent “level factor” and a mean-reverting
“slope factor”. The estimate of p; is 0.9986. This implies a mean half life of
approximately 41 years, and corresponds to extremely slow mean reversion
for the first factor. From the factor loadings (Figure 1) it can be seen that
one unit of shock from this factor will change the bond yields across all ma-
turities in almost the same magnitude. In other words, it will have a “level”
effect on the yield curve. The estimate of p, is 0.9306, implying a mean half
life of 10 months. One unit of shock from this factor will have a larger effect
on the short-term bond yields than on long-term bond yields, and will change
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the slope of the yield curve, which justifies the name it is given—slope factor.
Finally, 3-month and 5-year bond yields are used to compute the time series
of the unobservable level and slope factors during the sample period.

Figure 2 displays the impulse responses of the macro variables to dif-
ferent structural shocks from the macro economy. Bayesian Monte Carlo
methods are used to compute 68% confidence bands. The confidence bands
are displayed around the point estimates of the impulse responses’?. Both
the impulse responses and the confidence bands are measured in percentage
deviation from the non-stochastic steady state. Our particular interest is
in the fifth row of the graphs, which corresponds to the equation for federal
funds rate F'F; in (3.1). The estimation residual ezp,’s are calculated in each
month and used as a proxy of the Federal Reserve policy “surprises”.

The GMM estimates of the parameters of the “Taylor rule” are reported
in Table 2. Standard errors are shown in brackets and the last row reports
the x? statistics for testing the model’s over-identifying restrictions. The es-
timation results show that most of the parameter estimates are statistically
significant (with the exceptions of & and 7), and the model is not rejected at
conventional significance levels. Noticeably, the estimate of 3, the coefficient
associated with expected inflation, is greater than one during the sample
period (after 1982). This is consistent with the results of other similar stud-
ies of the inflation-control practice under Volcker-Greenspan administration.
The residual €pp,’s are calculated following the steps described in Section 3
(equation 3.8) and are used to mimic the exogenous monetary-policy shocks.

The 7 r;’s computed from VAR model has a standard deviation of 0.1705,
while it is 0.3075 for the €pp;’s calculated from GMM model. Figure 3 com-
pares these two series of €xp,’s after normalizing them with unity standard
deviations. The top panel of the figure graphs the time series plot of the
two series: in many months of the sample period the two series are similar
to each other, both in signs and in magnitudes, although in some of the
months they are significantly different (for example, around 1983:01, 1991:02
and 1995:11). The bottom panel of Figure 3 draws the scatter diagram of

2The fifth column of Figure 2 shows little effect of a monetary-policy shock on the
industrial production, PCE index or employment, while the economic intuition is that
such a shock would have contractionary effects on these variables. One interpretation of
this might be that during the sample period (after 1982), the magnitudes of monetary-
policy shocks are small, therefore there is not enough variation to get sharp estimates
of responses for those variables, although the contractionary response patterns are still
contained in the error bands.
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one series against the other. Most of the points gather around the 45° line,
suggesting a strong correlation: the computed correlation coefficient between
them is 0.5761.

Having extracted the slope factor as well as the exogenous monetary-
policy shocks during the sample period, I go on to explore the relation be-
tween them. I regress the monetary-policy shocks on the yields of 3-month
and 5-year bonds, and construct a portfolio mimicking the monetary-policy
shocks, with the regression coefficients as the weights attached to each of
the bonds in the portfolio. The correlations of the monthly returns on this
“monetary-policy mimicking” portfolio with the two latent factors (each of
which is also computed from its respective mimicking portfolio composed of
3-month and 5-year bonds) are reported in Table 3. Column 2 of the table
shows the correlations where the monetary-policy shocks are estimated from
the VAR model, and column 3 reports the results where the monetary-policy
shocks are estimated from the GMM estimation of the “Taylor rule”. The
correlation coefficient between the level factor and the return on “monetary-
policy mimicking” portfolio where the monetary-policy shocks are estimated
from the VAR model is 0.1127 and is 0.8390 between the slope factor and
the return on “monetary-policy shock mimicking” portfolio. Using the GMM
estimation results the correlation coefficients are 0.3632 between the level
factor and the return on “monetary-policy mimicking” portfolio, and 0.6718
between the slope factor and the return on “monetary-policy mimicking”
portfolio. Both sets of results show that the monetary-policy shocks are
much more strongly correlated with the slope factor than with the level fac-
tor. In other words, the monetary policy affect the nominal term structure
mainly through its influences on the slope factor.

Next I examine to what extent the monetary-policy shocks drive the
movement of the slope factor. I regress the innovations to the level and
slope factors on a constant and contemporaneous and lagged returns on the
“monetary policy mimicking” portfolio. The innovations to the factors are
constructed through (2.21) as

U = Fyr — pFiqyr (5.1)

where FﬂT = F{Fi|Ry Rs,..., Rr} are the latent factors, and the regression
equation is
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where X; is the contemporaneous and lagged “monetary policy mimicking”
portfolio return (Rt Riupi—1; Rmp.t—25 ---s Rmpi—6)’ and ¢, is the regression
error.

The regression results are displayed in Table 4. The second column re-
ports the regression results where the monetary-policy shocks are estimated
from the VAR model, and the third column reports the results where the
monetary-policy shocks are estimated from the GMM model. The estimated
standard deviations are reported in the parentheses. All of the estimated co-
efficients in the first three rows of Table 4 are significantly different from zeros
at the 5% significance level, indicating that the monetary-policy innovations
have significant influence on both factors. In particular, in the regressions of
the changes in slope factor on the contemporaneous and lagged returns on
the “monetary policy mimicking” portfolio, the coefficients of the contempo-
raneous monetary-policy shock are 33.6008 for VAR and 62.9966 for GMM,
with a t-ratio of 52.96 and 9.54 accordingly. The adjusted R? is 0.9142 for
the regression where the monetary-policy shocks are estimated from the VAR
model, and 0.7843 for the regression where the monetary-policy shocks are
estimated from the GMM estimation. That is, monetary-policy innovations
account for a large part of the variability of the estimated “slope” factor. The
adjusted R? are only 0.3173 and 0.1552 for the regressions of the innovations
to level factor on monetary-policy shocks from the VAR and GMM estima-
tions respectively, suggesting that monetary-policy innovations account for
much less variability of the “level” factor.

Wu (2001a) establishes a general-equilibrium based term structure model,
in which the one-period interest rate is determined by a monetary policy
rule aiming at actively controlling the inflation. The results of his simulation
study shows that most of variability of the slope factor is driven by exogenous
monetary-policy shocks, while the same shocks can only explain a much less
part of variability of the level factor. The fact that the results reported in
Table 4 match those obtained from Wu (2001a) is evidence for the effects of
monetary policy predicted by his theoretical model: a monetary contraction
generates high nominal short-term interest rates, but because of the anti-
inflationary effects of the contraction, the interest rates will be lowered later.
With such an expectation of the movement of future short-term interest rates,
the current long-term interest rates decrease, and as a result the slope of the
yield curve declines as the contractionary monetary-policy shocks occur.
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6 Concluding Remarks

In this paper I examine the empirical relationship between the movement of
the slope factor in the term structure of nominal interest rates and mone-
tary policy shocks in the U.S. since 1982. I estimate a two-latent-factor term
structure model and extract the underlying slope factor. Meanwhile, T es-
tablish a six-variable VAR model as well as a GMM estimation model of the
“Taylor rule” to estimate the exogenous monetary-policy shocks in the U.S.
during the same period. The subsequent correlation and regression studies
suggest that there is strong correlation between the slope factor and exoge-
nous monetary-policy shocks. Moreover, monetary-policy shocks can explain
a large part of variability of the slope factor. This study provides strong
evidence in support of Knez, Litterman and Scheinkman (1994)’s conjecture
on the relation between the slope factor and the Federal Reserve policy, and
is also consistent with the results in Wu (2001a)’s general-equilibrium based
simulation study.

15



References

1]

[6]

7]

8]

[10]

[11]

Ang, Andrew and M. Piazzesi, 1999. “A No-Arbitrage Vector Autore-
gression of Term Structure Dynamics with Macroeconomic and Latent
Variables”, working paper, Columbia University.

Babbs, S. H., and K. B. Nowman, 1999. “Kalman Filtering of General-
ized Vasicek Term Structure Models”, Journal of Financial and Quan-
titative Analysis, 34 (1), 115-130.

Chen, R. R., and L. Scott, 1993. “Maximum Likelihood Estimation for a
Multifactor Equilibrium Model of the Term Structure of Interest Rates”,
Journal of Fized Income, 3, September, 14-31.

Clarida, Richard, J. Gali and M. Gertler, 1998. “Monetary Policy Rules
And Macroeconomic Stability: Evidence and Some Theory”, NBER
Working Paper 6442.

Cox, J. C., J. E. Ingersoll, and S. A. Ross, 1981. “A Reexamination
of Traditional Hypotheses about the term structure of interest rates”,
Journal of Finance, 36, 769-799.

—, J. E. Ingersoll, and S. A. Ross, 1985a, “An Intertemporal General
Equilibrium Model of Asset Prices”, Fconometrica, 53, 363-384.

—, J. E. Ingersoll, and S. A. Ross, 1985b, “A theory of the term structure
of interest rates”, Fconometrica, 53, 385-407.

Dai, Q., and K. Singleton, 1999. “Specification Analysis of Affine Term
Structure Models”, Journal of Finance, to appear.

Duffie, Darrell and R. Kan, 1995. “A Yield-Factor Model of Interest
Rates”, working paper, Graduate School of Business, Stanford Univer-
sity.

Evans C. L. and D. A. Marshall, 1998. “Monetary Policy and the Term
Structure of Nominal Interest Rates: Evidence and Theory”, Carnegie-
Rochester Conference Series on Public Policy, 49, 53-111.

Goodfriend, Marvin (1991). “Interest Rates and the Conduct of Mon-
etary Policy”, Carnegie-Rochester Conference Series on Public Policy,
34, 7-30.

16



[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Hamilton, J. D., 1994. Time Series Analysis, Princeton University Press.

Hansen, Lars (1982). “Large Sample Properties of Generalized Method
of Moments Estimators”, Econometrica, 50, 1029-1054.

Harrison, J. M., and D. M. Kreps, 1979. “Martingales and Arbitrage
in Multiperiod Securities Markets”, Journal of Economic Theory, 2 (3),
381-408.

Knez, P., Litterman, R., and J. A. Scheinkman, 1994. “Explorations
into Factors Explaining Money Market Returns”, Journal of Finance,
49, 1861-1882.

Litterman, R., and J. A. Scheinkman, J., 1991. “Common Factors Af-
fecting Bond Returns”, Journal of Fixed Income, 1, 54-61.

Longstaff, F.A. and E.S. Schwartz, 1992. “Interest Rate Volatility and
the Term Structure: A Two Factor General Equilibrium Model”, Jour-
nal of Finance, 47 (4), 1252-1282.

Piazzesi, Monika, 1999. “An Econometric Model of the Yield Curve with
Macroeconomic Jump Effects”, Ph.D. dissertation, Stanford University.

Rudebusch, Glenn (1995). “Federal Reserve Interest Rate Targeting,
Rational Expectations, and the Term Structure”, Journal of Monetary
Economics, 35, 245-274.

Sack, Brian (1997). “Uncertainty and Gradual Monetary Policy”, Fed-
eral Reserve Board, mimeo.

Vasicek, O., 1977, “An Equilibrium Characterization of the Term Struc-
ture”, Journal of Financial Economics, 5, 177-188.

Wu, Tao, 2001a, “Macro Factors and the Affine Term Structure of In-
terest Rates”, Ph.D. dissertation, Yale University, 2001.

—, 2001b, “Stylized Facts on Nominal Term Structure and Business
Cycles: An Empirical VAR study”, manuscript, 2001.

17



Table 1: Term Structure Model Estimates

Short Rate Parameters

oo 0.5472 61 0.0043 by 0.0044
(0.0532) (0.0020) (0.0002)
Latent Factor Parameters
p1 0.9986 Py 0.9306
(0.0001) (0.0047)
Measurement Errors
o¢ 0.0016 o1z 0.0025
(0.0001) (0.0001)

Note: Table 1 displays the MLE estimation results of the latent-factor model using the
term structure data from the CRSP data set. The sample period is from 1983:01 to 1998:12.

The standard deviations of the parameter estimates are reported in the parentheses. The

6-month and 12-month bond yields are assumed to be measured with errors.
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Table 2: GMM Estimation Results of the “Taylor Rule”

a A gl p1 Ps Ps
009 162 026 077 017 0.06
(0.34) (0.21) (0.18) (0.07) (0.04) (0.01)
2(72): 15.82

Note: Table 2 displays the GMM estimation results of the “Taylor rule” (equation
(3.5)) using the data from CITIBASE. The sample period is from 1983:01 to 1998:12,
with the initial lags starting from 1982:01. The standard deviations of the parameter
estimates are reported in the parentheses. X2 statistics is formulated to test the model’s

overidentifying restrictions.
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Table 3: Correlations Between the Latent Factors and the
“Monetary Policy Mimicking” Portfolio

| VAR | GMM
“level” | 0.1127 | 0.3632
“slope” | 0.8390 | 0.6718

Note: Table 3 displays the correlation coefficient between the latent factors and the
returns on the portfolios mimicking the monetary-policy shocks. The first column reports
the results using the exogenous monetary-policy shocks obtained from the VAR estima-
tions, and the second column reports the results using the monetary-policy shocks obtained
from the GMM estimation of the “Taylor rule”.
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Table 4: Regression Results of Equation (5.2)

| VAR | GMM
uy¢ (innovations s, (innovations | w7, (innovations uy; (innovations
to level factor)  to slope factor) | to level factor)  to slope factor)
Constant | -0.2250 -0.1949 -0.1537 -0.3488
(0.0045) (0.0005) (0.0132) (0.0030)
Ropt -21.8777 33.6008 -32.7762 62.9966
(5.6746) (0.6344) (28.8643 ) (6.6030 )
Rypi—1 22.3945 -31.7462 34.0375 -60.2365
(13.3765) (1.4964) (70.0156) (16.0167)
Rypi—o | -2.1646 0.6368 -3.8390 1.6098
(13.9637) (1.5610) (73.1072) (16.7239)
Rppis | 0.4749 -0.1671 1.2422 -0.6496
(14.0127) (1.5665) (72.4355) (16.5702)
Rypi—a | -0.1143 -0.0390 -1.1740 0.3373
(13.7225) (1.5341) (69.8248) (15.9730)
Roupes | 3.5608 -1.0641 7.2028 -3.0341
(13.1448) (1.4695) (66.4610) (15.2035)
Rupec | -2.9627 0.6643 5.9917 1.8160
(5.6413) (0.6307) (27.9588) (6.3958)
Adj. R? |0.3173 0.9142 | 0.1552 0.7843

Note: Table 4 reports the regression results of equation (5.2): u; = a + X;b +
Cy- @ and @ are innovations to the level and slope factors respectively. X; =
(Rmp,ta Rmp,tfla ey Rmp,t,g)' where Rmp,t is the return on “monetary policy mimick-
ing” portfolio, and (; is the regression error. Columns 2 and 3 report the estimates of @
and b, with monetary-policy shocks calculated from the VAR estimation. Columns 4 and
5 report the estimates of @ and b, with monetary-policy shocks calculated from the GMM
estimation.
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Figure 1: Factor Loadings of the Term Structure Model

55

251

151

Note: Figure 1 displays the factor loadings from the estimation of a two-latent-factor
model using the data on nominal bond yields from the CRSP data set. The yields of 3,
6, 12 and 60-month nominal zero-coupon bonds are used in the estimation. The yields
of 3 and 60-month bonds are used to invert the latent variables, and the yields of 6 and
12-month bonds are assumed to be measured with errors.The maturity of the bonds is
on the z-axis in months, and the y-axis shows factor loadings in annualized percentage
points.
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Figure 2: Impulse Responses from the VAR Estimation
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Note: Figure 2 displays the impulse responses of macro variables to one-standard-
deviation macro shocks in the identified VAR study. IP, EM and PCE denote the loga-
rithms of industrial production, nonagricultural payroll employment and the PCE deflator,
respectively. M1 represents the logarithm of the monetary aggregate, FF is the federal
funds rate, and PCOM stands for the smoothed change in index of sensitive materials
prices. Data period is 1983:01-1998:12, with the initial lags starting from 1982:01. For IP,
EM, PCE, M1 and PCOM, the impulse responses are in units of percentage deviations
from the steady state. For the federal funds rate FF, the units are basis points per annum.
The solid lines plot the point estimates for the impulse responses, and the dashdot lines
give 68% confidence bands obtained from Bayesian Monte Carlo method.
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Figure 3: Graphs of the Monetary-policy Shocks
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Note: The top panel of Figure 3 graphs the time series plot of the monetary-policy
shocks Eﬁt’s computed from the VAR and GMM models (the solid line is the series from
VAR estimation, and the dotted line is the series from GMM eestimation). The sample
period is from 1983:01 to 1997:12 (180 months). The bottom panel draws the scatter
diagram of one series against the other. Both series are normalized to unity standard

deviations. The correlation coefficient between the two series is 0.5761.
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