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Abstract

A flexible labor margin allows households to absorb shocks to asset values with
changes in hours worked as well as changes in consumption. This ability to absorb
shocks along both margins greatly alters the household’s attitudes toward risk, as
shown by Swanson (2012). The present paper extends that analysis to the case of
generalized recursive preferences, as in Epstein and Zin (1989) and Weil (1989),
including multiplier preferences, as in Hansen and Sargent (2001). Understand-
ing risk aversion for these preferences is especially important because they are
the primary mechanism being used to bring macroeconomic models into closer
agreement with asset pricing facts. Measures of risk aversion commonly used
in the literature—including traditional, fixed-labor measures and Cobb-Douglas
composite-good measures—show no stable relationship to the equity premium
in a standard macroeconomic model, while the closed-form expressions derived
in this paper match the equity premium closely. Thus, measuring risk aversion
correctly—taking into account the household’s labor margin—is necessary for
risk aversion to correspond to asset prices in the model.
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1. Introduction

A number of recent studies focus on bringing standard dynamic macroeconomic models into

closer agreement with basic asset pricing facts, such as the equity premium or the long-term bond

premium.1 In these models—indeed, in any consumption-based asset-pricing model—a crucial

parameter is risk aversion, the compensation that households require to hold a risky asset. At

the same time, a key feature of standard dynamic macroeconomic models is that households

have some ability to vary their labor supply. A fundamental difficulty with this line of research,

then, is that much of what is known about risk aversion has been derived under the assumption

that household labor is exogenously fixed. For example, Arrow (1964) and Pratt (1965) define

absolute and relative risk aversion, −u′′(c)/u′(c) and −c u′′(c)/u′(c), in a static model with a

single consumption good. Similarly, Epstein and Zin (1989) and Weil (1989) define risk aversion

for generalized recursive preferences in a dynamic model without labor (or, equivalently, in which

labor is fixed).

Swanson (2012) considers this problem when households have standard expected utility pref-

erences. The present paper extends that analysis to the case of generalized recursive preferences,

as in Epstein and Zin (1989) and Weil (1989), including multiplier preferences, as in Hansen and

Sargent (2001) and Strzalecki (2011). These preferences are of central importance to the macro-

finance literature because they are the primary mechanism being used to bring macroeconomic

models into closer agreement with asset pricing facts.2 Moreover, there is no conventional wisdom

as to what the formula for risk aversion should be for these preferences, with different authors

using different ad hoc generalizations of the traditional, fixed-labor measure. The present paper

undertakes a systematic and rigorous analysis of this important question.

Intuitively, a flexible labor margin gives households the ability to absorb shocks to asset

values with changes in hours worked as well as changes in consumption. This ability to absorb

shocks along either or both margins greatly alters the household’s attitudes toward risk. For

example, with expected utility and period utility function u(ct, lt) = c1−γ
t /(1 − γ) − ηlt, the

quantity −c u11/u1 = γ is often referred to as the household’s coefficient of relative risk aversion,

1For example, Boldrin, Christiano, and Fisher (2001), Tallarini (2000), Rudebusch and Swanson (2008, 2012),
Uhlig (2007), Van Binsbergen et al. (2012), Backus, Routledge, and Zin (2008), Gourio (2012, 2013), Palomino
(2012), Andreasen (2012, 2013), Colacito and Croce (2012), Dew-Becker (2012), and Kung (2012) all consider asset
pricing in dynamic macroeconomic models with a variable labor margin.

2The vast majority of studies cited in the previous footnote take this approach, the exceptions being Boldrin
et al. (2001), Rudebusch and Swanson (2008), and Palomino (2012). One of the main advantages of generalized
recursive preferences is that they allow risk aversion to be modeled independently from the household’s other
preference parameters, such as the intertemporal elasticity of substitution.
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but in fact the household is risk neutral with respect to gambles over asset values or wealth

(Swanson, 2012). Intuitively, the household is indifferent at the margin between using labor or

consumption to absorb a shock to asset values, and the household in this example is clearly

risk neutral with respect to gambles over hours. More generally, when u(ct, lt) = c1−γ
t /(1 −

γ) − ηl1+χ
t /(1 + χ), risk aversion equals (γ−1 + χ−1)−1, a combination of the parameters on

the household’s consumption and labor margins, reflecting the fact that the household absorbs

shocks along both margins. The present paper shows how to derive closed-form expressions for

risk aversion in dynamic equilibrium models with generalized recursive preferences and arbitrary

period utility function u, taking into account the effects of the household’s variable labor margin.

The present paper also shows that risk premia are unrelated to traditional, fixed-labor

measures of risk aversion unless labor is, in fact, fixed. In contrast, the closed-form expressions

for risk aversion derived in the present paper match risk premia in a standard (flexible-labor)

real business cycle model closely. Thus, measuring risk aversion correctly—taking into account

the household’s labor margin—is necessary for there to be a stable relationship between risk

aversion and asset prices in the model. Since many recent studies have focused on bringing

standard macroeconomic models into closer agreement with asset prices, it is surprising that so

little attention has been paid to measuring risk aversion in these models. The present paper aims

to fill that void.

In addition, the present paper demonstrates problems with applying the Epstein-Zin mea-

sure of risk aversion, which assumes labor is fixed, to a Cobb-Douglas aggregate of consumption

and leisure, as is sometimes done in the literature. Intuitively, the Cobb-Douglas composite good

interpretation is problematic if labor and consumption appear separately elsewhere in the model,

such as in the production function. Because consumption and leisure do not form a true compos-

ite good in the model, a composite-good measure of risk aversion is not necessarily appropriate,

and in fact turns out to be poorly correlated with the equity premium in a standard real business

cycle model. Instead, the coefficient of relative risk aversion Rc defined in the present paper—

which recognizes the household’s flexible labor margin but excludes the value of leisure from total

household wealth—is more closely related to the equity premium.

There are a few previous studies that extend the Arrow-Pratt definition beyond the one-

good, one-period case. Kihlstrom and Mirman (1974) provide an early example of the difficulties

involved. In a static, multiple-good setting, Stiglitz (1969) measures risk aversion using the house-

hold’s indirect utility function rather than utility itself, essentially a special case of Proposition 1

of the present paper. Constantinides (1990) measures risk aversion in a dynamic endowment
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economy (i.e., with fixed labor) using the household’s value function, another special case of

Proposition 1. Boldrin, Christiano, and Fisher (1997) apply Constantinides’ definition to some

very simple endowment economy models for which they can compute closed-form expressions for

the value function, and hence risk aversion. Uhlig (2007) points out that when households have

generalized recursive preferences, leisure affects asset prices because the value function V appears

in the household’s stochastic discount factor, and V depends on leisure. The present paper builds

on these studies by deriving closed-form solutions for risk aversion in dynamic equilibrium models

in general, demonstrating the importance of the labor margin, and showing the tight link between

risk aversion, properly defined, and asset prices in these models.

A number of empirical studies also support the view that households vary their labor supply

in response to portfolio shocks. For example, Imbens, Rubin, and Sacerdote (2001) show that

individuals who win a prize in the lottery reduce their labor supply significantly. Coile and Levine

(2009) document that older individuals are less likely to retire after the stock market performs

poorly, and Coronado and Perozek (2003) find that households retire earlier when the stock

market performs well. More generally, Pencavel (1986) surveys estimates of the wealth effect on

labor supply and finds it to be significantly negative.

The remainder of the paper proceeds as follows. Section 2 defines the dynamic equilibrium

framework used in the analysis. Section 3 derives closed-form expressions for risk aversion in the

model. Section 4 demonstrates the close connection between risk aversion and Lucas-Breeden

asset prices in the model, both theoretically and with numerical examples. Section 5 verifies

the accuracy of the closed-form expressions for risk aversion using numerical methods. Section 6

extends the results to the case of balanced growth. Section 7 provides the corresponding expres-

sions for the case of multiplier preferences. Section 8 discusses some general implications and

concludes. An Appendix provides details of proofs and numerical solutions that are outlined in

the main text.

2. Dynamic Equilibrium Framework

2.1 Generalized Recursive Preferences and Value Function

Time is discrete and continues forever. At each time t, the household receives a utility flow

u(ct, lt), where (ct, lt) ∈ Ω ⊆ R
2 denotes the household’s choice of consumption and hours worked

in period t. The period utility function u is assumed to satisfy the following regularity conditions:
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Assumption 1. The function u : Ω → R is increasing in its first argument, decreasing in its

second, twice-differentiable, and strictly concave.

The household faces a flow budget constraint in each period,

at+1 = (1 + rt)at + wtlt + dt − ct, (1)

and a no-Ponzi-scheme condition,

lim
T→∞

T∏
τ=t

(1 + rτ+1)
−1aT+1 ≥ 0, (2)

where at denotes beginning-of-period assets and wt, rt, and dt denote the real wage, real interest

rate, and net transfer payments to the household, respectively. There is a finite-dimensional

Markov state vector θt that is exogenous to the household and governs the processes for wt, rt,

and dt. Before choosing (ct, lt) in each period t, the household observes θt and hence wt, rt,

and dt. The state vector and information set of the household’s optimization problem at each

date t is thus (at; θt). Let X denote the domain of (at; θt), and Γ: X → Ω describe the set-valued

correspondence of feasible choices for (ct, lt) for each given (at; θt).

Let (ct, lt) ≡ {(cτ , lτ )}∞τ=t denote a state-contingent plan for household consumption and

labor from time t onward, where the explicit state-dependence of the plan is suppressed to reduce

notation. Following Epstein and Zin (1989) and Weil (1989), the household has preferences over

state-contingent plans ordered by the recursive functional

Ṽ (ct, lt) = u(ct, lt) + β
[
Et Ṽ (ct+1, lt+1)1−α

]1/(1−α)

, (3)

where β ∈ (0, 1), α ∈ R, Et denotes the mathematical expectation conditional on the household’s

information set at time t, and (ct+1, lt+1) denotes the state-contingent plan (ct, lt) from date

t + 1 forward.3 Note that equation (3) has the same form as expected utility preferences, but

with the expectation operator “twisted” and “untwisted” by the coefficient 1− α. When α = 0,

(3) reduces to the special case of expected utility. When α �= 0, the intertemporal elasticity of

substitution over deterministic consumption paths in (3) is the same as for expected utility, but

the household’s risk aversion with respect to gambles over future utility flows is amplified (or

attenuated) by the additional curvature parameter α.4

3The case of multiplier preferences, as in Hansen and Sargent (2001) and Strzalecki (2011), is considered
explicitly in Section 7, below. However, much of the discussion here is also relevant for that case.

4The case α = 1 is understood to correspond to Ṽ (ct, lt) = u(ct, lt) + β exp [Et log Ṽ (ct+1, lt+1)].
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The household’s “generalized value function” V : X → R is defined to be the maximized

value of (3), subject to the budget constraint (1)–(2). V satisfies the recursive equation

V (at; θt) = max
(ct,lt)∈Γ(at;θt)

u(ct, lt) + β
(
Et V (at+1; θt+1)

1−α
)1/(1−α)

, (4)

where at+1 is given by (1). Technical conditions for the existence and uniqueness of V are

discussed shortly.

Note that many authors use an alternate specification for the generalized value function,

U(at; θt) = max
(ct,lt)∈Γ(at;θt)

[
ũ(ct, lt)

ρ + β
(
Et U(at+1; θt+1)

α̃
)ρ/α̃

]1/ρ
, (5)

where ρ ∈ R, ρ < 1. This specification follows Epstein and Zin’s (1989) original definition more

closely, where those authors take ũ(ct, lt) = ct in their framework without labor. However, setting

V = Uρ, u = ũρ, and α = 1− α̃/ρ, this can be seen to correspond exactly to (4).5 Moreover, (4)

has a much clearer relationship than (5) to standard dynamic programming results, regularity

conditions, and first-order conditions: for example, (4) requires concavity of u while (5) requires

concavity of ũρ, and the Benveniste-Scheinkman equation for (4) is the usual V1 = (1 + rt)u1

rather than U1 = (1+ rt)U
(1−ρ)/ρũρ−1ũ1. That is, the marginal value of wealth in (4) is just the

usual marginal utility of consumption rather than something much more complicated.

A few technical conditions are required to ensure that (3)–(4) are well-defined. First, to

avoid complex numbers:

Assumption 2. Either u : Ω → [ 0,∞) or u : Ω → (−∞, 0 ].

In the latter case, it is natural to take Ṽ ≤ 0, V ≤ 0, and interpret (3) as

Ṽ (ct, lt) = u(ct, lt)− β
[
Et(−Ṽ (ct+1, lt+1))1−α

]1/(1−α)

, (3′)

and similarly for (4). Note that (5) requires this same restriction, for the same reasons.6

Technical conditions that ensure the existence and uniqueness of V are tangential to the

main points of the present paper, so it is simply assumed that:7

5For the case ρ < 0, set V = −Uρ and u = −ũρ. The case ρ = 0 corresponds to multiplier preferences,
considered in Section 7.

6The assumption that either u ≥ 0 or u ≤ 0 is not very restrictive in practice. For example, restrictions can be
placed on Ω or Γ and a constant added to u such that u never takes on negative (or positive) values. Alternatively,
for local analysis around a steady state, the restriction is satisfied so long as u �= 0 in steady state, since then
u ≥ 0 or u ≤ 0 holds locally. Note that Assumption 2 is not required for multiplier preferences; see Section 7.

7Stokey and Lucas (1990), Alvarez and Stokey (1998), and Rincón-Zapatero and Rodŕıguez-Palmero (2003)
provide different sets of sufficient conditions that ensure Assumption 3 is satisfied for the case α = 0. Sufficient
conditions for general α have not yet been derived in the literature, but Epstein and Zin (1989) and Marinacci
and Montrucchio (2010) provide important results for the fixed-labor case.
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Assumption 3. A solution V : X → R to the household’s generalized Bellman equation (4) exists

and is unique, continuous, and concave.

The same technical conditions, plus Assumption 1, guarantee the existence of a unique

optimal choice for (ct, lt) at each point in time, given (at; θt). Let c
∗
t ≡ c∗(at; θt) and l∗t ≡ l∗(at; θt)

denote the household’s optimal choices of ct and lt as functions of the state (at; θt). Then V can

be written as

V (at; θt) = u(c∗t , l
∗
t ) + β

(
Et V (a∗t+1; θt+1)

1−α
)1/(1−α)

, (6)

where a∗t+1 ≡ (1 + rt)at + wtl
∗
t + dt − c∗t . These solutions are also assumed to be interior:

Assumption 4. For any (at; θt) ∈ X, the household’s optimal choice (c∗t , l
∗
t ) exists, is unique,

and lies in the interior of Γ(at; θt).

Intuitively, Assumption 4 requires the partial derivatives of u to grow sufficiently large toward

the boundary that only interior solutions for c∗t and l∗t are optimal for any (at; θt) ∈ X.

Assumptions 1–4 guarantee that V is continuously differentiable with respect to a and

satisfies the Benveniste-Scheinkman equation, but slightly more than this will be required below:

Assumption 5. For any (at; θt) in the interior of X, the second derivative of V with respect to

its first argument, V11(at; θt), exists.

Assumption 5 also implies differentiability of the optimal policy functions, c∗ and l∗, with respect

to at. Santos (1991) provides relatively mild sufficient conditions for this assumption to be satisfied

when α = 0; intuitively, u must be strongly concave.

2.2 Representative Household and Steady State Assumptions

Up to this point, the analysis has focused on a single household in isolation, leaving the other

households of the model and the production side of the economy unspecified. Implicitly, the other

households and production sector jointly determine the process for θt (and hence wt, rt, and dt),

and much of the analysis below does not need to be any more specific about these processes than

this. However, to move from general expressions for risk aversion to more concrete, closed-form

expressions, three standard assumptions from the macroeconomics literature are adopted:8

Assumption 6. The household is infinitesimal.

Assumption 7. The household is representative.

8Alternative assumptions about the nature of the other households in the model or the production sector may
also allow for closed-form expressions for risk aversion. However, the assumptions used here are the most standard.
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Assumption 8. The model has a nonstochastic steady state, at which xt = xt+k for all k = 1, 2,

. . . , and x ∈ {c, l, a, w, r, d, θ}.

Assumption 6 implies that an individual household’s choices for ct and lt have no effect on the

aggregate quantities wt, rt, dt, and θt. Assumption 7 implies that, when the economy is at the

nonstochastic steady state, any individual household finds it optimal to choose the steady-state

values of c and l given a and θ. Throughout the text, a variable without its time subscript t is

used to denote its steady-state value.9

It is important to note that Assumptions 7–8 do not prohibit offering an individual household

a hypothetical gamble of the type described below. The steady state of the model serves only as

a reference point around which the aggregate variables w, r, d, and θ and the other households’

choices of c, l, and a can be predicted with certainty. This reference point is important because

it is there that closed-form expressions for risk aversion can be computed.

Finally, many dynamic models do not have a steady state per se, but rather a balanced

growth path, as in King, Plosser, and Rebelo (1988). The results below carry through essentially

unchanged to the case of balanced growth. For ease of exposition, Sections 3–5 restrict attention

to the case of a steady state, while Section 6 shows the adjustments required under the more

general:

Assumption 8′. The model has a balanced growth path that can be renormalized to a non-

stochastic steady state after a suitable change of variables.

3. Risk Aversion

3.1 The Coefficient of Absolute Risk Aversion

The household’s attitudes toward risk at time t generally depend on the household’s state vector

at time t, (at; θt). Given this state, the household’s aversion to a hypothetical one-shot gamble

in period t of the form

at+1 = (1 + rt)at + wtlt + dt − ct + σεt+1 (7)

can be considered, where εt+1 is a random variable representing the gamble, with bounded support

[ε, ε], mean zero, unit variance, independent of θτ for all times τ , and independent of aτ , cτ , and lτ

9Let the exogenous state θt contain the variances of any shocks to the model, so that (a; θ) denotes the
nonstochastic steady state, with the variances of any shocks (other than the hypothetical gamble described in
the next section) set equal to zero; c(a; θ) corresponds to the household’s optimal consumption choice at the
nonstochastic steady state, etc.
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for all τ ≤ t. A few words about (7) are in order: First, the gamble is dated t+1 to clarify that its

outcome is not in the household’s information set at time t. Second, ct cannot be made the subject

of the gamble without substantial modifications to the household’s optimization problem, because

ct is a choice variable under control of the household at time t. However, (7) is clearly equivalent

to a one-shot gamble over net transfers dt or asset returns rt, both of which are exogenous to the

household.10 Indeed, thinking of the gamble as being over rt helps to illuminate the connection

between (7) and the price of risky assets, which will be discussed further in Section 4. As shown

there, the household’s aversion to the gamble in (7) is directly linked to the premium households

require to hold risky assets.

Following Arrow (1964) and Pratt (1965), one can ask what one-time fee μ the household

would be willing to pay in period t to avoid the gamble in (7):

at+1 = (1 + rt)at + wtlt + dt − ct − μ. (8)

The quantity μ that makes the household just indifferent between (7) and (8), for infinitesimal σ

and μ, is the household’s coefficient of absolute risk aversion. Formally, this corresponds to the

following definition:

Definition 1. Let (at; θt) be an interior point of X. Let V̂ (at; θt;σ) denote the value function for

the household’s optimization problem inclusive of the one-shot gamble (7), and let μ(at; θt;σ) de-

note the value of μ that satisfies V (at− μ
1+rt

; θt) = V̂ (at; θt;σ). The household’s coefficient of abso-

lute risk aversion at (at; θt), denoted R
a(at; θt), is given by Ra(at; θt) = limσ→0 μ(at; θt;σ)/(σ

2/2).

In Definition 1, μ(at; θt;σ) denotes the household’s “willingness to pay” to avoid a one-shot

gamble of size σ in (7). As in Arrow (1964) and Pratt (1965), Ra denotes the limit of the

household’s willingness to pay per unit of variance as this variance becomes small. Note that

Ra(at; θt) depends on the economic state because μ(at; θt;σ) depends on that state. Proposition 1

shows that V̂ (at; θt;σ), μ(at; θt;σ), and R
a(at; θt) in Definition 1 are well-defined and derives the

expression for Ra(at; θt):

Proposition 1. Let (at; θt) be an interior point of X. Given Assumptions 1–6, V̂ (at; θt;σ),

μ(at; θt;σ), and R
a(at; θt) exist and

Ra(at; θt) =
−Et

[
V (a∗t+1; θt+1)

−αV11(a
∗
t+1; θt+1) − αV (a∗t+1; θt+1)

−α−1V1(a
∗
t+1; θt+1)

2
]

Et V (a∗t+1; θt+1)−αV1(a∗t+1; θt+1)
, (9)

10 In this case, the realized transfer dt+σεt+1, or asset return rt+σεt+1, would not be in the household’s time-t
information set, (at; θt).
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where V1 and V11 denote the first and second partial derivatives of V with respect to its first

argument. Given Assumptions 7–8, equation (9) can be evaluated at the steady state to yield:

Ra(a; θ) =
−V11(a; θ)
V1(a; θ)

+ α
V1(a; θ)

V (a; θ)
. (10)

Proof: See Appendix.11

Note that risk aversion in the dynamic case is related to the curvature of the value function

with respect to wealth rather than the curvature of u with respect to consumption. When α = 0,

(10) reduces to −V11/V1, the standard “folk wisdom” value for risk aversion in the dynamic

expected utility framework.12 For general α, there is no folk wisdom for what the formula for

risk aversion should be, highlighting the importance of the present paper’s methods and results.

Risk aversion in (10) can be decomposed into the sum of two components: the first term on

the right-hand side is essentially intratemporal and holds no matter what the value of α, while

the second term captures the household’s additional aversion to risky utility flows in the future

and is closely related to α. For u, V ≥ 0, larger values of α imply higher levels of risk aversion.13

For u, V ≤ 0, the opposite is true: larger values of α imply lower levels of risk aversion.

A practical difficulty with Proposition 1 is that closed-form expressions for V do not exist

in general, even for the simplest dynamic models with labor. One can solve this problem by

observing that V1 and V11 often can be computed even when closed-form solutions for V cannot

be. For example, the Benveniste-Scheinkman equation,

V1(at; θt) = (1 + rt) u1(c
∗
t , l

∗
t ), (11)

states that the marginal value of a dollar of assets equals the marginal utility of consumption times

1 + rt (the interest rate appears here because beginning-of-period assets in the model generate

11When generalized recursive preferences are written in the form (5), the corresponding expressions are

Ra(at; θt) =
−Et

[
U(a∗t+1; θt+1)

α̃−1U11(a
∗
t+1; θt+1) + (α̃− 1)U(a∗t+1; θt+1)

α̃−2U1(a
∗
t+1; θt+1)

2
]

Et U(a∗t+1; θt+1)α̃−1U1(a∗t+1; θt+1)

and

Ra(a; θ) =
−U11(a; θ)

U1(a; θ)
+ (1− α̃)

U1(a; θ)

U(a; θ)
.

12See, e.g., Constantinides (1990), Farmer (1990), Campbell and Cochrane (1999), and Flavin and Nakagawa
(2008). Swanson (2012) derives this folk wisdom value rigorously using the same methods as the present paper.
13Sufficiently low or negative values of α can imply risk-loving behavior, Ra(a; θ) < 0. The parameter α also

determines the household’s preference for early vs. late resolution of uncertainty, as discussed in Kreps and Porteus
(1978) and Epstein and Zin (1989), because α determines the household’s aversion to uncertainty about future
utility flows V . For u, V ≥ 0, the household prefers early resolution of uncertainty if and only if α > 0; for u, V ≤ 0,
the household prefers early resolution if and only if α < 0. These conditions correspond to the criterion α̃ < ρ
in (5), emphasized by Epstein and Zin (1989).
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income in period t).14 In (11), u1 is a known function. Although closed-form solutions for the

functions c∗ and l∗ are not known in general, the points c∗t and l∗t often are known—for example,

when they are evaluated at the nonstochastic steady state, c and l. Thus, one can compute V1 at

the nonstochastic steady state by evaluating (11) at that point.

The second derivative V11 can be computed by noting that (11) holds for general at; hence

it can be differentiated to yield:

V11(at; θt) = (1 + rt)

[
u11(c

∗
t , l

∗
t )
∂c∗t
∂at

+ u12(c
∗
t , l

∗
t )
∂l∗t
∂at

]
. (12)

All that remains is to find the derivatives ∂c∗t /∂at and ∂l
∗
t /∂at.

One can solve for ∂l∗t /∂at by differentiating the household’s intratemporal optimality con-

dition,

−u2(c∗t , l∗t ) = wt u1(c
∗
t , l

∗
t ), (13)

with respect to at, and rearranging terms to yield:

∂l∗t
∂at

= −λt ∂c
∗
t

∂at
, (14)

where

λt ≡ wtu11(c
∗
t , l

∗
t ) + u12(c

∗
t , l

∗
t )

u22(c∗t , l∗t ) + wtu12(c∗t , l∗t )
=

u1(c
∗
t , l

∗
t )u12(c

∗
t , l

∗
t )− u2(c

∗
t , l

∗
t )u11(c

∗
t , l

∗
t )

u1(c∗t , l∗t )u22(c∗t , l∗t )− u2(c∗t , l∗t )u12(c∗t , l∗t )
. (15)

Note that, if consumption and leisure in period t are normal goods, then λt > 0, although this

restriction is not required below. It now only remains to solve for the derivative ∂c∗t /∂at.

Intuitively, ∂c∗t /∂at should not be too difficult to compute: it is just the household’s marginal

propensity to consume today out of a change in assets, which can be deduced from the household’s

Euler equation and budget constraint:15

Lemma 2. Given Assumptions 1–8, the household’s marginal propensity to consume out of wealth

in a neighborhood of the nonstochastic steady state satisfies

∂c∗t
∂at

= Et
∂c∗t+1

∂at
= Et

∂c∗t+k

∂at
, k = 1, 2, 3, . . . , (16)

and ∂c∗t
∂at

=
r

1 + wλ
. (17)

14The Benveniste-Scheinkman equation (11) holds for generalized recursive preferences as well as expected utility.
See the proof of Proposition 1 in the Appendix.

15The notation
∂c∗t+1

∂at
is taken to mean

∂c∗t+1

∂at+1

da∗t+1

dat
=

∂c∗t+1

∂at+1

[
1 + rt+1 + wt

∂l∗t
∂at

− ∂c∗t
∂at

]
, and analogously for

∂c∗t+2

∂at
,
∂c∗t+3

∂at
, etc.
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Proof: See Appendix.

In other words, starting near the nonstochastic steady state, the household’s optimal change in

consumption today in response to an increase in assets must be the same as the expected change in

consumption tomorrow, and the expected change in consumption at each future date t+ k. Note

that this equality does not follow from the steady-state assumption—for example, in a model with

internal habits, the individual household’s optimal consumption response to a change in assets

increases gradually over time, even starting from steady state.

According to Lemma 2, the household’s optimal response to a unit increase in assets is

to raise consumption in every period by the extra asset income, r (the “golden rule”), adjusted

downward by the amount 1 + wλ, which takes into account the household’s decrease in hours

worked and labor income. Thus, Lemma 2 represents a “modified golden rule” that takes into

account the household’s labor margin.

The household’s coefficient of absolute risk aversion can now be computed. Substituting

(11), (12), (14), and (17) into (10) proves the following:

Proposition 3. Given Assumptions 1–8, the household’s coefficient of absolute risk aversion,

Ra(at; θt), evaluated at steady state, satisfies

Ra(a; θ) =
−u11 + λu12

u1

r

1 + wλ
+ α

r u1
u

, (18)

where u1, u11, and u12 denote the corresponding partial derivatives of u evaluated at the steady

state (c, l), and λ is given by (15) evaluated at steady state.

There are several features of Proposition 3 worth noting. First, when α = 0, equation (18)

reduces to the expressions derived in Swanson (2012) for the case of expected utility. When α = 0

and labor is fixed (λ = 0), risk aversion in (18) reduces further to −ru11/u1, which is just the

usual Arrow-Pratt definition multiplied by r, a scaling factor that translates between assets and

current-period consumption units.16

When u ≥ 0 everywhere, risk aversion is increasing in α, and when u ≤ 0, Ra is decreasing

in α, as observed after Proposition 1. Multiplying u by a constant has no effect on risk aversion,

but an additive translation of u does affect risk aversion if α �= 0, because it changes the “twisted”

expectation in equation (4). When α �= 0 and labor is fixed (λ = 0), equation (18) reduces to

16A gamble over a lump sum of $X is equivalent here to a gamble over an annuity of $X/r. Thus, even though
V11/V1 is different from u11/u1 by a factor of r, this difference is exactly the same as a change from lump-sum to
annuity units. Thus, the difference in scale is essentially one of units.



12

−u11
u1

+ α
u1
u
, times r, corresponding to the standard formula for absolute risk aversion in an

Epstein-Zin-Weil endowment economy (see Example 1, below).17

When λ �= 0, households can partially offset shocks to income through changes in hours

worked. Even when consumption and labor are additively separable in u (u12 = 0), c∗t and labor

supply are indirectly connected through the household’s budget constraint. When u12 �= 0, risk

aversion is further attenuated or amplified by the direct interaction between consumption and

labor in utility, u12. Note, however, that regardless of the signs of λ and u12, R
a is always reduced

when households can vary their labor supply:

Corollary 4.

Ra(a; θ) ≤ −ru11
u1

+ α
ru1
u

. (19)

Proof: Substituting in for λ and w, the first term in (18) can be written as:

−ru11
u1

u11u22 − u212

u11u22 − 2u2u1 u11u12 +
(u2
u1

)2
u211

=
−ru11
u1

1

1 +

(u2
u1
u11 − u12

)2
u11u22 − u212

. (20)

Strict concavity of u implies u11u22 − u212 > 0, hence the right-hand side of (20) is less than or

equal to −ru11/u1.

The right-hand side of (19) is the formula for risk aversion with generalized recursive preferences

when labor is exogenously fixed.

The household’s labor margin can have dramatic effects on risk aversion. Even if −u11/u1 is

very large, the first term in (20) can be arbitrarily small as the matrix discriminant, u11u22−u212,
approaches zero. In other words, the first term in (20) depends on the concavity of u in all

dimensions rather than just in one dimension. The second term in (19)–(20), αru1/u, is not

directly affected by a change from a fixed-labor to flexible-labor assumption, however.

Some examples of risk aversion calculations are provided in Section 3.3, below, after first

defining relative risk aversion.

17When generalized recursive preferences are written in the form (5), w = −ũ2/ũ1, λ =
wũ11 + ũ12

ũ22 + wũ12
, and

Ra(a; θ) =

[−ũ11 + λũ12

ũ1
+ (ρ− 1)

−ũ1 + λũ2

ũ

]
r

1 + wλ
+ (ρ− α̃)

r ũ1

ũ
.

This expression is somewhat more complicated than (18), owing to the more complicated derivatives of (5). When
λ = 0 and ũ = c, this reduces to (1− α̃)/c, the traditional fixed-labor measure of absolute risk aversion in Epstein
and Zin (1989), Weil (1989), and Example 1.
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3.2 The Coefficient of Relative Risk Aversion

The distinction between absolute and relative risk aversion lies in the size of the hypothetical

gamble faced by the household. If the household faces a one-shot gamble of size At in period t,

at+1 = (1 + rt)at + wtlt + dt − ct + Atσεt+1, (21)

or the household can pay a one-time fee Atμ in period t to avoid this gamble, then it follows from

Proposition 1 that limσ→0 2μ(σ)/σ
2 for this gamble is given by

AtR
a(at; θt). (22)

The natural definition of At, considered by Arrow (1964) and Pratt (1965), is the household’s

wealth at time t. The gamble in (21) is then over a fraction of the household’s wealth and (22)

is referred to as the household’s coefficient of relative risk aversion.

In models with labor, however, household wealth can be more difficult to define because

of the presence of human capital. There are two natural definitions of human capital in these

models, leading to two measures of household wealth At and hence two coefficients of relative risk

aversion (22). Note that the household’s financial assets at is not a good measure of wealth At,

because at for an individual household may be zero or negative at some points in time.

When the household’s time endowment is not well-defined, such as when u(ct, lt) = c1−γ
t /(1−

γ)− ηl1+χ
t and no upper bound l̄ on lt is specified, or l̄ is specified but is arbitrary, it is most nat-

ural to define human capital as the present discounted value of labor income, wtl
∗
t . Equivalently,

total household wealth At equals the present discounted value of consumption, which follows from

the budget constraint (1)–(2). This leads to the following definition:

Definition 2. Let (at; θt) be an interior point of X. The household’s consumption-wealth co-

efficient of relative risk aversion, denoted Rc(at; θt), is given by (22) with wealth At = Ac
t ≡

(1 + rt)
−1Et

∑∞
τ=tmt,τc

∗
τ , the present discounted value of household consumption, where mt,τ

denotes the stochastic discount factor
∏τ−1

s=t ms+1, and ms+1 is given by (37).

The factor (1+rt)
−1 in the definition expresses wealth Ac

t in beginning- rather than end-of-period-t

units, so that in steady state Ac = c/r and Rc(a; θ) is given by

Rc(a; θ) =
−Ac V11(a; θ)

V1(a; θ)
+ α

Ac V1(a; θ)

V (a; θ)
=

−u11 + λu12
u1

c

1 + wλ
+ α

cu1
u
. (23)

Alternatively, when the household’s time endowment l̄ is well specified, one can define hu-

man capital to be the present discounted value of the household’s time endowment, wt l̄. Equiv-

alently, total household wealth At equals the present discounted value of leisure wt(l̄ − l∗t ) plus

consumption c∗t , from (1)–(2). This corresponds to the following definition:
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Definition 3. Let (at; θt) be an interior point of X. The household’s consumption-and-leisure-

wealth coefficient of relative risk aversion, denoted Rcl(at; θt), is given by (22) with wealth At =

Acl
t ≡ (1 + rt)

−1Et

∑∞
τ=tmt,τ

(
c∗τ + wτ (l̄ − l∗τ )

)
.

In steady state, Acl =
(
c+ w(l̄− l)

)
/r, and

Rcl(a; θ) =
−u11 + λu12

u1

c+ w(l̄− l)

1 + wλ
+ α

(
c+ w(l̄− l)

)
u1

u
. (24)

Since leisure is positive, Rc(at; θt) < Rcl(at; θt) because the size of the gamble is smaller. The

closed-form expressions (23)–(24) are also closely related, differing only by the ratio of the two

gambles, (c+ w(l̄ − l))/c.18

For expositional purposes, define

Rfl(a; θ) ≡ −c u11
u1

+ α
c u1
u

, (25)

the coefficient of relative risk aversion in the corresponding model where labor is held exogenously

fixed (see Example 1, below). Rfl thus ignores or assumes away the household’s ability to offset

shocks to portfolio values by varying labor supply. By Corollary 4, Rc(a; θ) ≤ Rfl(a; θ). However,

Rcl(a; θ) may be greater or less than Rfl(a; θ), depending on the importance of leisure in the

household’s total consumption bundle.

3.3 Examples

Example 1. Following Epstein and Zin (1989) and Weil (1989), consider the case where utility

depends only on consumption,

u(ct, lt) =
c1−γ
t

1− γ
, (26)

with γ > 0, ct ≥ 0, and lt fixed exogenously at some l ∈ R for all t.19 Leisure is arbitrary in this

example—any l̄ > l is observationally equivalent—so Rcl from Definition 3 is not well-defined.

Thus, attention is restricted to Rc from Definition 2,

Rc(a; θ) =
−c u11
u1

+ α
c u1
u

= γ + α(1− γ) , (27)

which motivates the definition of Rfl given above. Note that if the household’s generalized value

function is written using specification (5) rather than (4), with ρ ≡ 1−γ, then 1− α̃ = γ+α(1−γ)
18Both Definitions 2 and 3 represent a proper generalization of the traditional definition of risk aversion in an

endowment economy. First, both definitions reduce to Rfl, defined below, when there is no labor in the model.
Second, in steady state the household consumes exactly the flow of income from its wealth, rA, consistent with
standard permanent income theory (where one must include the value of leisure w(̄l − l) as part of consumption
when the value of leisure is included in wealth).
19 In this example, Assumptions 1–8 need to be modified in a straightforward way to the one-dimensional case.
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and Rc(a; θ) = 1 − α̃. This is the usual definition of risk aversion for generalized recursive

preferences in an endowment economy.

Example 2. Following van Binsbergen et al. (2012), among others,20 a natural way to incorporate

leisure into the preferences in (26) is to let

u(ct, lt) =

(
cχt (1−lt)1−χ

)1−γ

1− γ
, (28)

where γ > 0, χ ∈ (0, 1), ct > 0, and lt ∈ (0, 1).21 In this example, the household can be regarded

as consuming a single, composite good in each period formed from the Cobb-Douglas aggregate

of consumption and leisure. A natural definition of risk aversion is thus γ + α(1 − γ) = 1 − α̃,

the coefficient of relative risk aversion from Example 1 applied to the single, composite good.

Indeed, this is the definition used by van Binsbergen et al. (2012). It is also the value implied by

Definition 3 of the present paper, which includes the value of leisure in household wealth:

Rcl(a; θ) =
−u11 + λu12

u1

c+ w(1− l)

1 + wλ
+ α

(
c+ w(1− l)

)
u1

u
= γ + α(1− γ) . (29)

The consumption-wealth coefficient of relative risk aversion from Definition 2, Rc, excludes

leisure from household wealth and thus is less than (29), corresponding to the smaller size of the

gamble:

Rc(a; θ) =
−u11 + λu12

u1

c

1 + wλ
+ α

c u1
u

= γχ+ α(1− γ)χ . (30)

In this example, the Cobb-Douglas functional form implies Rc(a; θ) = χRcl(a; θ).22 The next

section compares these two risk aversion measures to the risk premia on assets.

Note that neither (29) nor (30) corresponds to the fixed-labor measure of risk aversion,

Rfl(a; θ) =
−c u11
u1

+α
c u1
u

=
(
1−χ(1−γ))+α(1−γ), a point emphasized by Swanson (2012) for

the case of expected utility, α = 0. The fixed-labor measure Rfl ignores the household’s ability to

offset shocks to portfolio values by varying its hours of work; as a result, Rfl does not generally

correspond to the household’s willingness to hold a risky asset and thus is not closely related to

the equilbrium prices of such assets, a fact that will be verified in the next section.

Finally, several other authors consider an alternative parameterization of (28),23

u(ct, lt) =

(
ct(1−lt)ν

)1−γ

1− γ
, (31)

20See also Andreasen (2012, 2013), Gourio (2013), Colacito and Croce (2012), and Dew-Becker (2012).
21When γ < 1, then u > 0, risk aversion is increasing in α, and α > 0 corresponds to preferences that are more

risk averse than expected utility. When γ > 1, then u < 0, risk aversion is decreasing in α, and α < 0 corresponds
to preferences that are more risk averse than expected utility.
22That is, c/(c + w(1 − l)) = χ. One might be surprised that Rc(a; θ) → 0 as χ → 0. However, as χ → 0,

w/c→ ∞, so consumption becomes trivial to insure with tiny variations in labor supply.
23See Gourio (2012), Uhlig (2007), Backus, Routledge, and Zin (2008), and Kung (2012).



16

where γ > 0, ν > 0, ct > 0, lt ∈ (0, 1), and γ > ν/(1+ν) for concavity. For this parameterization,

Rfl(a; θ) = γ+α(1−γ) = 1−α̃, but Definitions 2–3 of the present paper recognize the household’s

ability to self-insure itself with variations in hours worked, and imply

Rc(a; θ) =
( ν

1 + ν
− (1−γ)ν

)
+ α(1− γ)ν (32)

and

Rcl(a; θ) =
(
1− (1−γ)(1+ν)) + α(1− γ)(1 + ν) . (33)

Example 3. Following Rudebusch and Swanson (2009), consider the additively separable period

utility function

u(ct, lt) =
c1−γ
t

1− γ
− η

l1+χ
t

1 + χ
, (34)

where χ > 0, η > 0, ct > 0, lt > 0, and γ > 1.24 Leisure is essentially arbitrary in this

example, since different assumptions regarding l̄ have essentially no effect on the equilibrium.

Thus, Rcl(a; θ) is not well-defined, and attention is restricted to Rc(a; θ) from Defintion 2,

Rc(a; θ) =
γ

1 + γ
χ

wl
c

+
α(1− γ)

1 + γ−1
1+χ

wl
c

. (35)

As in Swanson (2012), one can simplify (35) a bit further by assuming c ≈ wl, an assumption

made in this paragraph only and nowhere else in the paper.25 In this case,

Rc(a; θ) ≈ γ

1 + γ
χ

+
α(1− γ)

1 + γ−1
1+χ

. (36)

Equation (36) is less than Rfl(a; θ) = γ + α(1− γ), by an amount that can be dramatic if either

of the denominators in (36) is large. Alternatively, as χ → ∞, the household’s labor margin

becomes inflexible and Rc → Rfl.

4. Risk Aversion and Asset Pricing

As discussed above, the household’s aversion to gambles over asset values or wealth depends on its

ability to offset the outcome of those gambles with changes in hours worked. In this section, the

analysis is extended to show the relationship between risk aversion and risk premia in the Lucas-

Breeden stochastic discounting framework. Risk premia in this framework are closely related to

the definition of risk aversion in the present paper, and are generally unrelated to traditional

measures of risk aversion that hold household labor fixed.

24The last restriction ensures consistency with Assumption 2. Alternatively, one could assume restrictions on
the domain Ω such that u(·, ·) < 0 for all (ct, lt) ∈ Ω. Under either of these assumptions, u < 0, risk aversion is
decreasing in α, and α < 0 corresponds to preferences that are more risk averse than expected utility.
25 In steady state, c = ra+ wl+ d, so c = wl holds exactly if there is neither capital nor transfers in the model.

In any case, ra+ d is typically small, since r ≈ .01.
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4.1 The Stochastic Discount Factor, Risk Premia, and Risk Aversion

For generalized recursive preferences (4) with labor, Rudebusch and Swanson (2012) show that

the household’s stochastic discount factor is given by

mt+1 ≡ β
u1(c

∗
t+1, l

∗
t+1)

u1(c∗t , l∗t )
V (a∗t+1; θt+1)

−α(
EtV (a∗t+1; θt+1)1−α

)−α/(1−α)
. (37)

Let pit denote the ex-dividend time-t price of an asset i that pays stochastic dividend dit

each period. In equilibrium, pit satisfies

pit = Etmt+1(d
i
t+1 + pit+1). (38)

Let 1 + rit+1 denote the realized gross return on the asset,

1 + rit+1 ≡ dit+1 + pit+1

pit
, (39)

and define the risk premium on the asset, ψi
t, to be its expected excess return,

ψi
t ≡ Etr

i
t+1 − rft+1 , (40)

where 1 + rft+1 ≡ 1/Etmt+1 denotes the risk-free rate. Then

ψi
t =

Etmt+1Et(d
i
t+1 + pit+1)− Etmt+1(d

i
t+1 + pit+1)

pitEtmt+1

=
−Covt(mt+1, r

i
t+1)

Etmt+1
, (41)

where Covt denotes the covariance conditional on information at time t.

Intuitively, one can start to see the close relationship between the risk premium and risk

aversion as follows. Since u1(c
∗
t , l

∗
t ) = V1(at; θt)/(1 + rt),

mt+1 = β
V1(a

∗
t+1; θt+1)

V1(at; θt)

V (a∗t+1; θt+1)
−α(

EtV (a∗t+1; θt+1)1−α
)−α/(1−α)

1 + rt
1 + rt+1

. (42)

Then, to first order around the steady state, conditional on information at time t,

dmt+1 = β
V11da

∗
t+1 + V12dθt+1

V1
− αβ

V1da
∗
t+1 + V2dθt+1

V
− β

drt+1

1 + r

= −βRa(a; θ) da∗t+1 +

(
βV12
V1

− αβV2
V

)
dθt+1 − β

drt+1

1 + r
, (43)
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assuming V is differentiable with respect to θ at the steady state, and where dxt ≡ xt − x, the

time-t deviation of variable x from steady state. It follows that

ψi
t ≈ Ra(a; θ) Covt(dr

i
t+1, da

∗
t+1)

+

(−V12
V1

+ α
V2
V

)
Covt(dr

i
t+1, dθt+1) + β Covt(dr

i
t+1, drt+1) (44)

near the steady state. In (44), ψi
t increases linearly with Ra, by an amount that depends on the

covariance of the asset return with the household’s financial wealth.

However, the decomposition in (44) is problematic for several reasons. First, the covariance

involving da∗t+1 ignores the household’s nonfinancial wealth, such as the present value of future

transfers and labor income. Instead, the asset’s covariance with nonfinancial wealth is relegated

to the second term in (44), since θ determines the household’s current and future wages w and

transfers d. But this covariance is expressed in terms of the “black box” state variable θ rather

than nonfinancial wealth itself, and the coefficient
(−V12

V1
+ α

V2
V

)
on this covariance is neither

clearly related nor unrelated to risk aversion.

Thus, the following decomposition is ultimately more illuminating, at the cost of being some-

what more complicated to derive. First, the stochastic discount factor (37) can be differentiated

at steady state, conditional on information at time t, to yield

dmt+1 =
β

u1

[
u11dc

∗
t+1 + u12dl

∗
t+1] −

αβ

V
dVt+1 (45)

to first order. From the household’s intratemporal optimality condition (13),

dl∗t+1 = −λdc∗t+1 −
u1

u22 + wu12
dwt+1 (46)

to first order. Note that there is an additional term in (46) relative to (14) because θ (and hence

w, r, and d) will generally change in response to macroeconomic shocks.

The corresponding expression for dc∗t+1 is more complicated and is stated as a lemma:

Lemma 5. To first order in a neighborhood of the nonstochastic steady state,

dc∗t+1 =
r

1 + wλ

[
dat+1 + Et+1

∞∑
k=1

1

(1 + r)k
(l dwt+k + ddt+k + adrt+k)

]
(47)

+
u1u12

u11u22 − u212
dwt+1 +

−u1
u11 − λu12

Et+1

∞∑
k=1

1

(1 + r)k

(
rλ

1 + wλ
dwt+k − βdrt+k+1

)
.

Proof: The expression follows from the household’s Euler equation, budget constraint, and

equation (46). See the Appendix for details.
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Note that if w, r, and d are held constant, as in the Arrow-Pratt gamble for a single household

in Section 3, then equations (46)–(47) reduce to (14) and (17). More generally, (47) includes the

effects of changes in w, r, and d on the household’s desired consumption. The term in square

brackets in (47) describes the change in household wealth—including nonfinancial wealth—and

thus the first line of (47) describes the wealth effect on consumption. The last line of (47) describes

the substitution effect: changes in consumption due to changes in current and future wages and

interest rates.26

For notational simplicity, let dÂt+1 ≡ dat+1+Et+1

∑∞
k=1(1+r)

−k(l dwt+k+ddt+k+adrt+k),

the change in household wealth in (47). Then it is straightforward to show:

Lemma 6. To first order in a neighborhood of the nonstochastic steady state,

dVt+1 = u1(1 + r) dÂt+1. (48)

Proof: The expression follows from (6), (46), and (47). See the Appendix for details.

Lemma 6 states that the change in household welfare equals the marginal utility of consumption

times the change in household wealth. The factor 1 + r appears in (48) because a change in

beginning-of-period-t assets produces 1 + r units of extra consumption in period t.

Equations (45)–(48) then imply the following decomposition:

Proposition 7. To first order in a neighborhood of the nonstochastic steady state,

dmt+1 = −Ra(a; θ) β dÂt+1 + β dΦt+1 , (49)

where dΦt+1 ≡ Et+1

∑∞
k=1(1+r)

−k
(
βdrt+k+1− rλ

1+wλ dwt+k

)
, the intertemporal substitution term

from (47). To second order in a neighborhood of the nonstochastic steady state,

ψi
t = Ra(a; θ) Covt(dr

i
t+1, dÂt+1) − Covt(dr

i
t+1, dΦt+1) . (50)

Proof: Substituting (46)–(48) into (45) yields (49). Substituting (49) into (41) yields (50).

(Recall that V = u/(1− β) and β = Etmt+1 at steady state.) Finally, Cov(dx, dy) is accurate to

second order when dx and dy are accurate to first order.

The decomposition of the risk premium provided by equation (50) gives a more complete

description of the relationship between risk premia and risk aversion than (44). The first term

in (50) shows that ψi
t increases locally linearly with Ra, by an amount that depends on the

26The household’s intertemporal elasticity of substitution is given by −u1/(c(u11 − λu12)), so the last term in
(47) describes intertemporal substitution effects on consumption of changes in future wages and interest rates.
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covariance between the asset return and the household’s wealth, including nonfinancial wealth.

This link between risk premia and risk aversion should not be too surprising: Propositions 1–2

described the risk premium for extremely simple, idiosyncratic gambles over household wealth,

while Proposition 7 shows that the same coefficient also appears in the household’s aversion to

more general financial market gambles that may be correlated with aggregate variables such as

interest rates, wages, and transfers.

The second term in (50) corresponds to Merton’s (1973) “changes in investment opportuni-

ties” in the ICAPM framework. Even if Ra = 0—that is, even if households are risk-neutral in a

cross-sectional or CAPM sense—ψi
t can be nonzero. This is because even a risk-neutral household

can benefit from an asset that pays off well when the price of the household’s total consumption

bundle is low. An asset that pays off well when current and future wages are low (and hence

leisure is cheap) or current and future interest rates are high (and hence future consumption

is cheap) is preferable to an asset that pays off poorly in those situations. Even a risk-neutral

household would be willing to pay a premium for such an asset—implying a lower ψi
t—and this

effect is captured by the second term in (50).

The fact that households in the present paper face a consumption-leisure tradeoff as well

as a current-vs.-future consumption tradeoff implies that the second term in (50) is more general

than just changes in the household’s investment opportunities. Indeed, the second term in (50) is

better described as being due to changes in purchasing opportunities. The decomposition in (50)

also suggests that ψi
t is more accurately described as an “expected excess return” rather than

a “risk premium” because only the first term in (50) represents compensation to the household

for bearing risk; the second term is not compensation for risk but rather reflects the household’s

ability to take advantage of changes in purchasing opportunities over time.

Finally, the decomposition (50) can be written in terms of relative rather than absolute risk

aversion using Definitions 2–3:27

Corollary 8. In terms of relative risk aversion, the risk premium in (50) can be written as:

ψi
t = Rc(a; θ) Covt

(
drit+1,

dÂt+1

Ac

)
− Covt(dr

i
t+1, dΦt+1) (51)

or

ψi
t = Rcl(a; θ) Covt

(
drit+1,

dÂt+1

Acl

)
− Covt(dr

i
t+1, dΦt+1) , (52)

where Ac and Acl are as in Definitions 2–3.

27Note that dÂt+1 differs slightly from dAc
t+1 and dAcl

t+1, which is why (51) and (52) are not written in terms

of d logAc
t+1 or d logAcl

t+1.
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4.2 Numerical Examples

Two numerical examples help to illustrate the relationship between risk aversion and risk premia

derived above. For simplicity, the equity premium is studied in a standard real business cycle

(RBC) framework, which provides just enough structure to create an interesting asset pricing

problem in which household labor supply can vary endogenously.

The economy consists of a unit continuum of representative households and a unit continuum

of perfectly competitive representative firms. Each household has optimization problem (1)–(4)

and period utility function to be specified shortly. Each firm has production function

yt = Ztk
1−ζ
t lζt , (53)

where yt, kt, and lt denote firm output, beginning-of-period capital, and labor input, respectively.

The productivity parameter Zt follows the exogenous process

logZt = ρz logZt−1 + εt, (54)

where εt is i.i.d. with mean zero and variance σ2
ε . Labor and capital are supplied by households

at the competitive wage and rental rates wt and r
k
t . Capital is the only asset in the economy that

is in nonzero net supply. Households accumulate capital according to

kt+1 = (1 + rt)kt + wtlt − ct, (55)

where rt ≡ rkt − δ, δ is the capital depreciation rate, and ct denotes household consumption.

An equity security is defined to be a claim on the aggregate consumption stream, where

aggregate consumption Ct = ct in equilibrium. The ex-dividend price of the equity claim, pt,

satisfies

pt = Etmt+1(Ct+1 + pt+1) (56)

in equilibrium, wheremt+1 is given by (37). The equity premium, ψt, is defined to be the expected

excess return

ψt ≡ Et(Ct+1 + pt+1)

pt
− (1 + rft ) . (57)

Following standard calibrations in the literature, a period in the model is taken to be one

quarter in the data, β is set to .99, δ to .025, ζ to .7, and σε to .01. The cases ρz < 1 and ρz = 1

are both considered in the examples below. Once the period utility function is specified, the

model is solved using perturbation methods, as in Rudebusch and Swanson (2012) and Swanson

(2012). This involves computing a nonstochastic steady state for the model (or transformed
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version of the model) and an nth-order Taylor series approximation to the true nonlinear solution

for the model’s endogenous variables around the steady state. (Results in the figures below are

for n = 5.) Additional details of the solution algorithm and computer code are provided in

the Appendix and in Swanson, Anderson, and Levin (2006). Aruoba, Fernández-Villaverde, and

Rubio-Ramı́rez (2006) solve a standard RBC model using a variety of numerical methods and

find that the fifth-order perturbation solution is among the most accurate methods globally as

well as being the fastest to compute.

Example 4. Consider the additively separable period utility function from Rudebusch and

Swanson (2009) and Example 3,

u(ct, lt) =
c1−γ
t

1− γ
− η

l1+χ
t

1 + χ
. (58)

Set ρz = 0.9, γ = 5, χ = 1.5, and α = −10 as baseline values, and consider how the equity

premium and risk aversion vary as each of γ, χ, and α are varied in turn.28 For each set of

parameter values, the model is solved as described above.

Figure 1 plots the equity premium and risk aversion as functions of χ, γ, and α. The

solid black line in each panel graphs the equity premium, ψ, against the right axis. The equity

premium in this model is very small, less than 25 basis points per year in each of the panels;

this is a manifestation of Roewenhorst’s (1995) and Lettau and Uhlig’s (2000) finding that the

equity premium is an even larger puzzle in RBC models with endogenous labor than in an endow-

ment economy, because households can endogenously smooth consumption in response to shocks.

The dashed blue line in each panel plots the coefficient of relative risk aversion, Rc(a; θ) from

equation (35), against the left axis. For comparison, the dotted red line in each panel plots the

fixed-labor measure of risk aversion for these preferences, Rfl(a; θ) = γ + α(1 − γ), also against

the left axis.

In each of the three panels in Figure 1, the equity premium tracks Rc closely, and is essen-

tially unrelated to Rfl. In the top panel, Rfl is independent of χ and thus is constant at 45, yet

the equity premium varies by a factor of four, along with Rc. In the middle panel, Rfl increases

linearly with γ, ranging from about 1 up to 1090 (values above 32 are off the chart and not

depicted), while the equity premium is a concave function of γ that corresponds closely to Rc.

In the bottom panel, the equity premium varies about linearly with α and Rc, but does not

28To allow for balanced growth or ρz = 1, the preference specification (58) would have to be modified, as in
Rudebusch and Swanson (2012). For simplicity, those modifications are not considered in this example.
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Figure 1. The equity premium and risk aversion in a real business cycle model with generalized recursive
preferences and period utility u(ct, lt) = c1−γ

t /(1 − γ) − ηl1+χ
t /(1 + χ). Solid black lines depict the equity

premium, dashed blue lines the coefficient of relative risk aversion Rc, and dotted red lines the traditional,
fixed-labor measure of risk aversion, Rfl = γ + α(1 − γ) = 1− α̃. In the top panel, χ ranges from .01 to 50
while γ is fixed at 5 and α at −10; in the middle panel, γ ranges from 1.01 to 100 while χ is fixed at 1.5 and
α at −10; in the bottom panel, α ranges from −50 to 0 while χ is fixed at 1.5 and γ at 5. In each panel, the
equity premium is closely related to Rc and is essentially unrelated to Rfl. See text for details.
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Figure 2. Impulse response functions for (a) consumption, (b) labor, and (c) the capital stock to a 1%
technology shock in the real business cycle model from Example 4 and Figure 1, with generalized recursive
preferences and period utility u(ct, lt) = c1−γ

t /(1 − γ) − ηl1+χ
t /(1 + χ). In each panel, γ = 5, α =−10, and

χ ∈ {0.1, 1.5, 5}. When χ is lower, the household varies labor supply by more to smooth consumption, even
though labor and consumption comove positively in the short run. See text for details.
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correspond to Rfl.29 Note that, in the bottom panel, more negative values of α imply greater risk

aversion because u ≤ 0; also, the equity premium does not converge to zero as Rc → 0 due to the

additional ICAPM term in (50) reflecting changes in purchasing opportunities discussed earlier.

Intuitively, lower values of χ imply a more flexible labor margin, which gives the household

more ability to insure itself from consumption fluctuations. This can be seen clearly in Figure 2,

which plots first-order impulse response functions for consumption, labor, and the capital stock

to a one percent positive shock to productivity Zt. In each panel, the solid black line depicts

the impulse response for the baseline parameterization of the model and the dashed and dotted

lines plot impulse response functions for the cases χ = 5 and χ = 0.1, respectively. For all

three parameterizations, consumption rises in response to the productivity shock, labor rises on

impact and then falls, and household savings increases (as evidenced by the rise in the capital

stock). When χ is lower, the household’s labor margin is more flexible and the household reduces

labor supply by more, on net, in response to the shock, thereby smoothing consumption. Note

how this intuition holds despite the fact that labor initially rises on impact, as a result of the

substitution effect on labor supply. Thus, the fact that the short-run correlation between labor

and consumption is positive in the model does not prevent the household from using labor supply

to smooth its consumption in response to shocks.

Example 5. Consider the Cobb-Douglas preference specification from van Binsbergen et al.

(2012) and Example 2,

u(ct, lt) =

(
cχt (1−lt)1−χ

)1−γ

1− γ
. (59)

Following Gourio (2013), set ρz = 1, γ = 0.5, χ = 0.3, and α = 19, and consider how the equity

premium and risk aversion vary as χ, γ, and α are varied in turn.30 For each set of parameter

values, the model is solved as described above.

Figure 3 plots the equity premium and risk aversion as functions of χ, γ, and α. As in

Figure 1, the solid black line in each panel depicts the equity premium, ψ, the dashed blue line

plots the consumption-wealth coefficient of relative risk aversion, Rc(a; θ), and the dotted red

29The equity premium ψ, Rc, and Rfl all vary about linearly with α, but the magnitude of Rfl does not agree
with ψ. For example, in the top panel of Figure 1, an equity premium of about 14bp corresponds to risk aversion
around 45 by either measure Rc or Rfl. In the bottom panel of Figure 1, ψ of about 15bp also corresponds to Rc

of about 45 (at α ≈ −27), but would require Rfl ≈ 100.
Results for the bond premium—the risk premium on a long-term real bond—are essentially the same as those

for the equity premium, although the model-implied bond premium is generally smaller than the equity premium
and can even be negative if interest rates tend to move countercylically, as discussed in Rudebusch and Swanson
(2012). In this and the following example, the magnitude of the bond premium tracks Rc closely and does not
correspond to Rfl or Rcl.
30Gourio sets 1− α̃ = γ + α(1− γ) = 10.
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Figure 3. The equity premium and risk aversion in an RBC model with generalized recursive preferences
and period utility u(ct, lt) = (cχt (1−lt)

1−χ)1−γ
/(1− γ). Solid black lines depict the equity premium, dashed

blue lines the coefficient of relative risk aversion Rc, dotted red lines the fixed-labor measure of risk aversion
Rfl, and dash-dot green lines the coefficient of relative risk aversion Rcl. In the top panel, χ ranges from .01
to .99 while γ is fixed at 0.5 and α at 19; in the middle panel, γ ranges from .01 to .99 while χ is fixed at 0.3
and α at 19; in the bottom panel, α ranges from 0 to 50 while χ is fixed at 0.3 and γ at 0.5. In each panel,
the equity premium is closely related to Rc and is essentially unrelated to Rfl and Rcl. See text for details.
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line graphs the traditional, fixed-labor measure, Rfl(a; θ). As in Figure 1, the equity premium

in Figure 3 tracks Rc closely, and is essentially unrelated to Rfl. In the top panel, Rfl is nearly

constant at a value of about 10, yet the equity premium varies by a factor of almost ten, along

with Rc. (The equity premium does not converge to zero along with Rc due to the additional

ICAPM term in (50) reflecting changes in purchasing opportunities.) In the middle panel, Rfl

increases linearly as γ falls, ranging from about 1 up to 19.5 (values above 12 are not depicted),

but the equity premium increases at a more moderate pace corresponding to Rc. For example,

a value of ψ = 10 bp is associated with Rc ≈ 5 in the top panel of Figure 3, while a value of

ψ = 10 bp in the middle panel requires Rc ≈ 5 vs. Rfl ≈ 16, at γ ≈ .2. In the bottom panel, the

equity premium increases about linearly with α and Rc, while Rfl again grows too quickly.

Household leisure is well-defined in this example, so the consumption-and-leisure-wealth

coefficient of relative risk aversion, Rcl(a; θ) = γ+α(1−γ) = 1− α̃, is depicted in Figure 3 as the

dash-dotted green line. Perhaps surprisingly, Rcl is not closely related to the equity premium ψ.

In the top panel of Figure 3, Rcl is independent of χ and thus constant at 10, while ψ varies by

a factor of almost ten. In the middle and bottom panels, Rcl grows linearly along with Rfl at a

rate much greater than ψ. The reasons for the divergence between Rcl and the equity premium

are discussed in more detail below.

4.3 Relative Risk Aversion Rc vs. Rcl and the Equity Premium

It may seem surprising thatRcl is not more closely related to the equity premium in Figure 3, given

the composite good interpretation for consumption and leisure for those preferences. Instead, the

consumption-wealth risk aversion coefficient, Rc, provides the better measure. Looking at the

decomposition of the equity premium provided by Corollary 8, what Figure 3 is saying is that

the covariance Covt(dr
i
t+1, dÂt+1/A

c) is much closer to being invariant with respect to changes

in the household’s preference parameters than is the covariance Covt(dr
i
t+1, dÂt+1/A

cl).31 In this

section, the reasons for this result are explored and discussed.

Note first that—unlike the traditional, fixed-labor measure Rfl—both Rc and Rcl recognize

that households will vary their labor supply to insure themselves from portfolio fluctuations. The

issue here is simply whether the value of leisure should be included in household wealth when

measuring relative risk aversion, with Rcl including the value of leisure and Rc excluding it.

31As will be discussed below, the second covariance term Covt(drit+1, dΦt+1) in Corollary 8 does not vary much
with changes in the household’s preference parameters.
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In a model with two consumption goods (and no labor) and period utility u(c1t, c2t) =(
cχ1tc

1−χ
2t

)1−γ
/(1 − γ), it would seem bizarre to equate household wealth to the present value of

consumption of one of the goods, excluding the value of the other. Yet that is essentially what

the results in Figure 3 and Example 5 suggest.

The key difference in Example 5 is that consumption and leisure appear separately elsewhere

in the model (e.g., in the production function), which is inconsistent with the composite good

interpretation. In a model with two consumption goods, varying the parameter χ between 0 and

1 might change the relative sizes of the two consumption good sectors in steady state, but would

not have any aggregate general equilibrium implications. In contrast, varying the parameter χ in

Example 5 has important general equilibrium effects on steady-state capital, labor, wealth, and

other aggregate variables.32

To see the effects of χ on the steady state and the covariance term Covt(dr
i
t+1, dÂt+1) in

Example 5, start by computing the model’s steady state. The steady-state interest rate r =

(1− β)/β and marginal product of capital rk = (1− ζ)y/k, so the output-capital ratio satisfies

y

k
=

1

1− ζ

(
1− β

β
+ δ

)
. (60)

From the production function, (l/k) = (y/k)1/ζ , and the aggregate resource constraint implies

(c/k) = (y/k) + δ. Thus, the ratios y/k, l/k, and c/k are all invariant with respect to χ, and

so is the steady-state wage w = ζ
(y/k)

(l/k)
. Finally, the household’s period utility function implies

χw(1− l) = (1− χ)c, and thus

k =
w

w (l/k) +
1− χ

χ
(c/k)

. (61)

The wage w and ratios l/k and c/k are invariant with respect to χ, so the aggregate equilibrium

level of k is increasing in χ, ranging from 0 to (y/k)−1/ζ as χ ranges from 0 to 1.

Thus, varying the parameter χ in Example 5 changes not just the composition of the

consumption-leisure aggregate good, but also the equilibrium levels of k and household wealth

Ac and Acl, among other variables. This, in turn, changes the crucially important covariance

Covt(dr
i
t+1, dÂt+1) in Proposition 7. In particular, Covt(dr

i
t+1, dÂt+1) is roughly proportional

32 In partial equilibrium, the interpretation of consumption and leisure as a composite good for the household
in Example 5 is valid. The issue is that the composite good interpretation is not valid in the general equilibrium
of the model and the graphs in Figure 3 plot the general equilibrium relationship between the equity premium (or
risk aversion) and the parameters χ, γ, and α.
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to steady-state k, because dÂt+1 = dat+1 + Et+1

∑∞
k=1(1 + r)−k(l dwt+k + adrt+k) scales about

linearly with k.33

Finally, household wealth Ac is proportional to k.34 As a result, Covt(dr
i
t+1, dÂt+1/A

c) in

Corollary 8 is roughly invariant with respect to χ, implying a tight, linear relationship between

Rc(a; θ) and the equity premium ψ.35 This close relationship is clearly visible in Figure 3.

By contrast, Acl, the leisure-inclusive measure of household wealth, is not proportional

to k. The value of leisure, w(1− l), decreases with k (because w is invariant and 1− l decreases),

while nonhuman wealth increases with k. As a result, Acl has no simple relationship to k and

Covt(dr
i
t+1, dÂt+1/A

cl) varies substantially with changes in χ. Thus, there is no stable relation-

ship between Rcl and the equity premium in Corollary 8 and Example 5, as is evident in Figure 3.

Intuitively, consumption and leisure do not form a true composite good in the model because

labor appears separately in the production function. Thus, a composite-good measure of risk

aversion Rcl is not necessarily the best measure and in fact does not match the equity premium

in Figure 3. Instead, the consumption-wealth coefficient of relative risk aversion, Rc—which

recognizes the household’s flexible labor margin but excludes the value of leisure from total

household wealth—seems to be more closely related to the equity premium.

Of course, the equity premium depends not just on Rc but also on the two covariance terms

in Corollary 8—the covariance of the equity return with household wealth and with changes in

purchasing opportunities. To the extent that these covariances change as parameters of any given

model are varied, the relationship between the equity premium and Rc will be weaker. However,

for standard macroeconomic models like those considered in this section, the risk aversion measure

Rc seems to provide a good benchmark.

5. Risk Aversion Away from the Steady State

The closed-form expressions for risk aversion derived in Section 3 hold exactly only at the model’s

nonstochastic steady state. For values of (at; θt) away from steady state, these expressions are only

33Household assets a = k and the ratio l/k is constant, so a and l scale linearly with k. (Labor scales linearly
up to its maximum value l = 1, which is attained when χ = 1 and k = 1/(l/k).) In contrast, drt+1 and dwt+1

hardly change with k because the marginal products of capital and labor, (1− ζ)yt/kt and ζyt/lt, are invariant to
changes in steady-state k. The term dat+1 grows about linearly with k because technology shocks in the model

are multiplicative, so the effects of technology shocks scale. Thus, dÂt+1 scales about linearly with k. The return
rit+1 on the consumption claim hardly changes with k because both sides of the household’s Euler equation scale

linearly with k. Thus, Covt(drit+1, dÂt+1) varies roughly linearly with k.
34Because consumption and hence the present discounted value of consumption scale linearly with k.
35The second covariance term in Corollary 8, Covt(drit+1, dΦt+1), is not strictly invariant to changes in χ, but

this term is much smaller than the first and thus does not have a substantial effect on ψ in Figure 3.
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Figure 4. Coefficient of relative risk aversion Rc as a function of the state (kt;Zt) in a real business cycle
model with generalized recursive preferences and period utility u(ct, lt) = c1−γ

t /(1− γ)− ηl1+χ
t /(1 + χ).

Dashed black lines depict the closed-form, steady-state value Rc(k;Z), solid red lines the numerical
solution for Rc(kt;Zt). In the left panel, log(kt/k) ranges from −0.38 to 0.38 while logZt is fixed at 0;
in the right panel, Zt ranges from −0.23 to 0.23 while kt is fixed at k. In both panels, Rc(kt;Zt) is close
to Rc(k;Z) and never near the traditional, fixed-labor value of Rfl = 45. See text for details.

approximations. In this section, the accuracy of those approximations is evaluated by computing

risk aversion numerically away from the steady state for the standard real business cycle model

described above.

The setup and parameterization of the model are as described previously. Household prefer-

ences are assumed to have the same additively separable form as in Examples 3–4, with parameter

values γ = 5, χ = 1.5, and α = −10. The state variables of the model are kt and Zt.
36 The

household’s consumption-wealth coefficient of relative risk aversion at the steady state, Rc(k;Z),

is given by equation (35). For the parameter values above, this implies a risk aversion coefficient

of 17.76, a little more than one-third the traditional measure of 1− α̃ = γ + α(1− γ) = 45.

For values of (kt;Zt) away from the steady state, equations (9) and (11)–(15) remain valid,

and can be used to compute Rc(kt;Zt) numerically. Equations for Rc, V1, V11, λt, and ∂c
∗
t /∂at

are appended to the standard set of RBC equilibrium conditions and solved using the same fifth-

order perturbation method as in the previous section. (A complete list of equations and additional

details regarding the numerical solution algorithm are provided in the Appendix.)

Figure 4 graphs the result as a function of log(kt/k) and logZt over a wide range of values

for these variables, about ±10 standard deviations (equal to about ±38 percent and ±23 percent

36The household’s endogenous state variable is its own holdings of capital, kt. The exogenous state variables
of the model are Zt and the aggregate capital stock, Kt. Thus, the state vector of the household’s optimization
problem could be written more precisely as (kt;Zt, Kt), or even (kt;Zt, Kt, σ2

ε ), since the nonstochastic steady
state requires setting σ2

ε = 0. However, in equilibrium, kt = Kt, so for simplicity the state vector in this example
is written as (kt;Zt).
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Figure 5. Coefficient of absolute risk aversion Ra as a function of the state (kt;Zt) in a real business cycle
model with generalized recursive preferences and period utility u(ct, lt) = c1−γ

t /(1− γ)− ηl1+χ
t /(1 + χ).

Dashed black lines depict the closed-form, steady-state value Ra(k;Z), solid blue lines the numerical
solution for Ra(kt;Zt). Absolute risk aversion is decreasing with both kt and Zt. See notes to Figure 4
and text for details.

in logarithmic terms for log kt and logZt, respectively).
37 The horizontal dashed black lines in

Figure 4 report the constant, closed-form value for risk aversion at the nonstochastic steady state,

Rc(k;Z), equal to 17.76. The solid red lines in the figure plot the numerical solution for Rc(kt;Zt)

for general values of kt and Zt.
38 The key point of Figure 4 is that, even over the very wide range

of values of the state variables considered, the household’s coefficient of relative risk aversion

ranges between about 17.45 and 18, very close to Rc(k;Z), and never near the traditional, fixed-

labor value of Rfl = 45. Thus, the closed-form expressions in Section 3 seem to provide a good

approximation to household risk aversion in a standard model even far away from steady state.

It is also interesting that the household’s risk aversion is countercyclical with respect to the

state variables kt and Zt. This can be seen most clearly in Figure 5, which graphs the household’s

coefficient of absolute risk aversion, Ra(kt;Zt) over the same range of values for kt and Zt as in

Figure 4. The absolute risk aversion coefficient of .09 implies that the household is willing to pay

about 9 cents to avoid a fair gamble with a standard deviation of one dollar. This willingness to

pay varies from about 7 to 12 cents over the range of values for the state variables in Figure 5,

with higher values of the states corresponding to higher household wealth and lower risk aversion.

Looking back at Figure 4, relative risk aversion is not countercyclical in that figure with

respect to kt because household wealth—and thus the size of the hypothetical gamble faced by the

37The unconditional standard deviations of logZt and log(kt/k) are about 2.3 and 3.8 percent, respectively. The
ergodic mean of logZt is zero and that of log(kt/k) is about .006, or 0.6 percent.
38The red lines do not intersect the black lines at the vertical axis because c∗t and l∗t evaluated at kt = k

and Zt = Z do not equal the nonstochastic steady state values c and l due to the presence of uncertainty (e.g.,
precautionary savings).
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household—is increasing in kt and Zt. Indeed, for higher kt, the increase in wealth is sufficiently

large that the household’s relative risk aversion increases with kt, even though absolute risk

aversion is decreasing.

6. Balanced Growth

The analysis in the previous sections has abstracted from growth for simplicity, but the results

carry through essentially unchanged to the case of balanced growth. The corresponding expres-

sions are briefly collected in this section and proved in the Appendix.

A detailed discussion of balanced growth is provided in King, Plosser, and Rebelo (1988,

2002). Along a balanced growth path, x ∈ {l, r} satisfies xt+k = xt for k = 1, 2, . . ., and the time

subscript is dropped to denote the constant steady-state value. For x ∈ {a, c, w, d}, xt+k = Gkxt

for k = 1, 2, . . ., for some G ∈ (0, 1+r), and xbgt is used to denote the balanced growth path value.

The balanced growth path value of θt is denoted by θbgt , although the elements of θ may grow at

different constant rates over time (or remain constant).

Lemma 9. Given Assumptions 1–7 and 8′, for all k = 1, 2, . . . along the balanced growth path:

i) λbgt+k = G−kλbgt , where λbgt denotes the balanced growth path value of λt, ii) ∂c∗t+k/∂at =

Gk∂c∗t /∂at, iii) ∂l
∗
t+k/∂at = ∂l∗t /∂at, and iv) ∂c∗t /∂at = (1 + r −G)/(1 + wbg

t λ
bg
t ).

Proof: See Appendix.

Note that wbg
t λ

bg
t in Lemma 9 is constant over time because w and λ grow at reciprocal rates.

The larger is G, the smaller is ∂c∗t /∂at, since the household chooses to absorb a greater fraction

of asset shocks in future periods.

Proposition 10. Given Assumptions 1–7 and 8′, absolute risk aversion, evaluated along the

balanced growth path, satisfies

Ra(abgt ; θbgt ) =
−V11(abgt+1; θ

bg
t+1)

V1(a
bg
t+1; θ

bg
t+1)

+ α
V1(a

bg
t+1; θ

bg
t+1)

V (abgt+1; θ
bg
t+1)

(62)

and

Ra(abgt ; θbgt ) =
−u11 + λbgt u12

u1

1+r
G − 1

1 + wbg
t λ

bg
t

+ α
(1 + r

G
− 1

)u1
u
, (63)

where ui and uij denote the corresponding partial derivatives of u evaluated at (cbgt , l). If u(ct, lt) =

log ct+v(l̄− lt) for some function v, then u in (63) must be interpreted to mean log ct+v(l̄ − lt)+
logG
1− G

1+r

.

Proof: See Appendix.
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Note that (63) agrees with Proposition 2 when G = 1. The larger is G, the smaller is Ra,

since larger G implies greater household wealth and ability to absorb shocks to asset values.

Corollary 11. Given Assumptions 1–7 and 8′, relative risk aversion, evaluated along the balanced

growth path, satisfies

Rc(abgt ; θbgt ) =
−u11 + λbgt u12

u1

cbgt

1 + wbg
t λ

bg
t

+ α
cbgt u1
u

(64)

and

Rcl(abgt ; θbgt ) =
−u11 + λbgt u12

u1

cbgt + wbg
t (l̄ − l)

1 + wbg
t λ

bg
t

+ α

(
cbgt + wbg

t (l̄ − l)
)
u1

u
. (65)

If u(ct, lt) = log ct + v(l̄ − lt) for some function v, then u in (64)–(65) must be interpreted to

mean log ct + v(l̄ − lt) +
logG
1− G

1+r

.

Proof: See Appendix.

Thus, the expressions for relative risk aversion are essentially unchanged by balanced growth.

7. Multiplier Preferences

Multiplier preferences are a version of generalized recursive preferences defined by Hansen and

Sargent (2001) and Strzalecki (2011). This section briefly reviews those preferences and derives

the formulas for risk aversion with labor.

Households with multiplier preferences order state-contingent consumption and labor plans

according to the recursive functional

W̃ (ct, lt) = (1− β) u(ct, lt) − βφ−1 logEt exp
(− φW̃ (ct+1, lt+1)

)
, (66)

rather than (3), where β is the household’s discount factor and φ ∈ R. The preferences (66) can

be regarded as a special case of (5), corresponding to ρ = 0. Denote the maximized value of (66),

subject to (1)–(2), by

W (at; θt) = max
(ct,lt)∈Γ(at;θt)

(1− β) u(ct, lt) − βφ−1 logEt exp
(− φW (at+1; θt+1)

)
. (67)

Hansen and Sargent (2001) show how (66)–(67) can be derived from microfoundations based on

household optimization in the presence of concerns regarding model misspecification.39 Maximiz-

ing (67) instead of expected utility ensures that the household achieves a reasonable discounted

sum of utility flows for a range of empirically plausible processes for θt.

39These microfoundations can be used to derive values of φ ≥ 0. The case φ < 0, corresponding to risk-loving
behavior, cannot be microfounded this way.
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As φ approaches 0, (67) converges to expected utility. For φ �= 0, the intertemporal elasticity

of substitution is the same as for expected utility, but the household’s risk aversion can be

amplified (or attenuated) by the additional curvature parameter φ.

From a practical perspective, an advantage of multiplier preferences is that they are well-

defined even when u takes on positive and negative values, so Assumption 2 can be dropped.

Modifying the other assumptions and definitions to correspond to W rather than V gives the

following:

Proposition 12. Let (at; θt) be an interior point of X.Given Assumptions 1 and 3–6, Ŵ (at; θt;σ),

μ(at; θt;σ), and R
a(at; θt) exist, and

Ra(at; θt) =
−Et exp

(− φW (a∗t+1; θt+1)
) [
W11(a

∗
t+1; θt+1) − φW1(a

∗
t+1; θt+1)

2
]

Et exp
(− φW (a∗t+1; θt+1)

)
W1(a∗t+1; θt+1)

. (68)

Given Assumptions 7–8, (68) can be evaluated at the steady state to yield:

Ra(a; θ) =
−W11(a; θ)

W1(a; θ)
+ φW1(a; θ) . (69)

Proof: The proof follows along exactly the same lines as Proposition 1.

Even though the preferences (67) can be derived from a concern for robustness rather

than risk, the household acts in a way that is observationally equivalent to having higher risk

aversion. That is, if one confronts a Hansen-Sargent household with the hypothetical gamble

in (7), the household’s concerns about the stochastic process {θt} manifest themselves as an

increased aversion to the gamble; as a result, the household behaves exactly as if it were certain

about the economic environment but had a higher level of risk aversion governed by φ. Higher

values of φ correspond to higher levels of risk aversion, with sufficiently negative values of φ

corresponding to risk-loving behavior.

Proposition 13. Given Assumptions 1 and 3–8, the household’s coefficient of absolute risk

aversion, Ra(at; θt), in (69) satisfies

Ra(a; θ) =
−u11 + λu12

u1

r

1 + wλ
+ φ ru1. (70)

Proof: The proof follows along the same lines as Proposition 2.

Corollary 14. Given Assumptions 1 and 3–8, relative risk aversion for multiplier preferences,

evaluated at steady state, satisfies

Rc(a; θ) =
−u11 + λu12

u1

c

1 + wλ
+ φ cu1 (71)
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and

Rcl(a; θ) =
−u11 + λu12

u1

c+ w(l̄− l)

1 + wλ
+ φ

(
c+ w(l̄ − l)

)
u1. (72)

A noteworthy feature of multiplier preferences is that additive shifts of the period utility function

u have no effect on risk aversion, while multiplicative scalings of u do affect risk aversion. (For

standard Epstein-Zin-Weil preferences, it is the other way around.) In particular, the expressions

(70)–(72) only hold when the period utility function u(ct, lt) is premultiplied by (1 − β), as in

(66) and (67); without that scaling factor, the second terms of (70)–(72) would each need to be

multiplied by (1−β)−1 =
1 + r

r
. If β ≈ .99, this would be observationally equivalent to increasing

φ by a factor of about 100, a large increase in risk aversion for what might seem like a simple

renormalization of the preference specification.

Example 6. Tallarini (2000) considers the multiplier specification (67) with period utility

u(ct, lt) =
1

1 + ξ
log ct +

ξ

1 + ξ
log(l̄ − lt), (73)

where ξ ≥ 0. The household’s consumption-wealth coefficient of relative risk aversion is given by

Rc(a; θ) =
−u11 + λu12

u1

c

1 + wλ
+ φ cu1 =

1 + φ

1 + ξ
, (74)

while including the value of leisure in household wealth gives

Rcl(a; θ) =
−u11 + λu12

u1

c+ w(l̄− l)

1 + wλ
+ φ

(
c+ w(l̄ − l)

)
u1 = 1 + φ . (75)

Neither of these equals the traditional, fixed-labor measure of risk aversion reported by Tallarini,

Rfl(a; θ) =
−cu11
u1

+ φ cu1 = 1 +
φ

1 + ξ
. (76)

This last measure ignores the fact that households will vary their labor endogenously in response

to shocks. Note that Rc ≤ Rfl, as always, although in this particular example the difference is

not very large quantitatively.

8. Discussion and Conclusions

Traditional studies of risk aversion, such as Arrow (1964), Pratt (1965), Epstein and Zin (1989),

and Weil (1989), assume that household labor supply is fixed. In standard macroeconomic mod-

els, this assumption ignores households’ ability to partially offset shocks to asset values by varying

hours of work. As a result, these fixed-labor measures of risk aversion are not representative of
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households’ aversion to holding risky assets when labor supply can vary. For reasonable parame-

terizations, traditional, fixed-labor measures of risk aversion can overstate the household’s actual

aversion to risk by a factor of as much as ten, as in Figure 3. Fixed-labor measures of risk aver-

sion are also unrelated to the equity premium in a standard RBC model, while the flexible-labor

measure Rc derived in the present paper is much more closely related.

Applying the Epstein-Zin-Weil fixed-labor measure of risk aversion to a Cobb-Douglas ag-

gregate of consumption and leisure, as is sometimes done in the literature, is also problematic.

If labor and consumption appear separately elsewhere in the model, such as in the production

function, then consumption and leisure do not form a true composite good in the model. As

a result, a composite-good measure of risk aversion is not necessarily appropriate, and in fact,

turns out to be poorly correlated with the equity premium. In contrast, the consumption-wealth

coefficient of relative risk aversion Rc defined in the present paper is more closely related. This

measure recognizes the household’s ability to partially offset portfolio shocks by varying hours

of work, but—unlike the Cobb-Douglas aggregate—excludes the value of leisure from household

wealth.

The flexible-labor risk aversion measure Rc is less than both the traditional, fixed-labor

measure, Rfl, and the Cobb-Douglas aggregate measure, Rcl, described above. As a result,

many studies in the macroeconomics, macro-finance, and international finance literatures may be

overstating the relevant degree of risk aversion in their models.

For multiplier preferences, risk aversion is sensitive to multiplicative transformations of the

period utility function u. Ignoring a scale factor of 1−β in period utility can lead to estimates of

risk aversion that are off by a factor of 100. Thus, care must be taken to account correctly for any

scale factor in utility when computing risk aversion for households with multiplier preferences.

The closed-form expressions for risk aversion derived in the present paper, and the methods

of the paper more generally, are potentially useful for asset pricing in any dynamic model with

multiple goods in the utility function. Models with home production, money in the utility func-

tion, or tradeable and nontradeable goods can imply very different household attitudes toward

risk than traditional measures of risk aversion might suggest.
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Appendix: Proofs of Propositions and Numerical Solution Details

Proof of Proposition 1

Since (at; θt) is an interior point of X, V (at+
σε

1+rt
; θt) and V (at+

σε
1+rt

; θt) exist for sufficiently small σ,

and V (at+
σε

1+rt
; θt) ≤ V̂ (at; θt;σ) ≤ V (at+

σε
1+rt

; θt), hence V̂ (at; θt;σ) exists. Moreover, since V (·; ·)
is continuous and increasing in its first argument, the intermediate value theorem implies there exists a
unique −μ(σ) ∈ [σε, σε] with V (at− μ(σ)

1+rt
; θt) = V̂ (at; θt;σ).

For generalized recursive preferences, the household’s first-order optimality conditions for c∗t and l∗t ,

u1(c
∗
t , l

∗
t ) = β(EtV (a∗t+1; θt+1)

1−α)
α/(1−α)

EtV (a∗t+1; θt+1)
−αV1(a

∗
t+1; θt+1), (A1)

u2(c
∗
t , l

∗
t ) = −βwt(EtV (a∗t+1; θt+1)

1−α)α/(1−α)
EtV (a∗t+1; θt+1)

−αV1(a
∗
t+1; θt+1), (A2)

are slightly more complicated than the case of expected utility considered in Swanson (2012). Note that
(A1) and (A2) are related by the usual u2(c

∗
t , l

∗
t ) = −wtu1(c

∗
t ; l

∗
t ), and when α = 0, (A1) and (A2) reduce

to the standard optimality conditions for expected utility.
For an infinitesimal fee dμ in (8), the first-order change in household welfare (4) is given by

−V1(at; θt)
dμ

1 + rt
. (A3)

Differentiating (6) with respect to at yields

V1(at; θt) = u1(c
∗
t , l

∗
t )

∂c∗t
∂at

+ u2(c
∗
t , l

∗
t )

∂l∗t
∂at

(A4)

+ β(EtV (a∗t+1; θt+1)
1−α)

α/(1−α)
EtV (a∗t+1; θt+1)

−αV1(a
∗
t+1; θt+1)

[
(1 + rt)− ∂c∗t

∂at
+ wt

∂l∗t
∂at

]
.

Applying (A1)–(A2) to (A4) gives the envelope theorem,

V1(at; θt) = β(1 + rt)(EtV (a∗t+1; θt+1)
1−α)

α/(1−α)
EtV (a∗t+1; θt+1)

−αV1(a
∗
t+1; θt+1) (A5)

and the Benveniste-Scheinkman equation (11),

V1(at; θt) = (1 + rt)u1(c
∗
t , l

∗
t ) . (A6)

From (A5), (A3) equals

−β(EtV (a∗t+1; θt+1)
1−α)α/(1−α)

EtV (a∗t+1; θt+1)
−αV1(a

∗
t+1; θt+1) dμ . (A7)

Turning now to the gamble in (7), the household’s optimal choices for consumption and labor in
period t, c∗t and l∗t , will generally depend on the size of the gamble σ—for example, the household
may undertake precautionary saving when faced with this gamble. Thus, in this section we write c∗t ≡
c∗(at; θt;σ) and l∗t ≡ l∗(at; θt;σ) to emphasize this dependence on σ. The household’s value function,
inclusive of the one-shot gamble in (7), satisfies

V̂ (at; θt;σ) = u(c∗t , l
∗
t ) + βEtV (a∗t+1; θt+1), (A8)

where a∗t+1 ≡ (1 + rt)at + wtl
∗
t + dt − c∗t . Because (7) describes a one-shot gamble in period t, it affects

assets a∗t+1 in period t+1 but otherwise does not affect the household’s optimization problem from period
t+ 1 onward; as a result, the household’s value-to-go at time t+ 1 is just V (a∗

t+1; θt+1), which does not
depend on σ except through a∗t+1.

Differentiating (A8) with respect to σ, the first-order effect of the gamble on household welfare is:[
u1

∂c∗

∂σ
+ u2

∂l∗

∂σ
+ β(EtV

1−α)
α/(1−α)

EtV
−αV1 · (wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1)

]
dσ, (A9)
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where the arguments of u1, u2, V , and V1 are suppressed to simplify notation. Optimality of c∗t and
l∗t implies that the terms involving ∂c∗/∂σ and ∂l∗/∂σ cancel, as in the usual envelope theorem (these
derivatives vanish at σ = 0 anyway, for the reasons discussed below). Moreover, EtV

−αV1εt+1 = 0
because εt+1 is independent of θt+1 and a∗t+1, evaluating the latter at σ = 0. Thus, the first-order cost of
the gamble is zero, as in Arrow (1964) and Pratt (1965).

To second order, the effect of the gamble on household welfare is⎧⎨⎩u11

(
∂c∗

∂σ

)2

+ 2u12
∂c∗

∂σ

∂l∗

∂σ
+ u22

(
∂l∗

∂σ

)2

+ u1
∂2c∗

∂σ2
+ u2

∂2l∗

∂σ2

+ αβ(EtV
1−α)(2α−1)/(1−α)

[
EtV

−αV1 ·
(
wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)]2
− αβ(EtV

1−α)
α/(1−α)

EtV
−α−1

[
V1 ·

(
wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)]2

+ β(EtV
1−α)

α/(1−α)
EtV

−αV11 ·
(
wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)2

+ β(EtV
1−α)α/(1−α)

EtV
−αV1 ·

(
wt

∂2l∗

∂σ2
− ∂2c∗

∂σ2

)⎫⎬⎭ dσ2

2
. (A10)

The terms involving ∂2c∗/∂σ2 and ∂2l∗/∂σ2 cancel due to the optimality of c∗t and l∗t . The derivatives
∂c∗/∂σ and ∂l∗/∂σ vanish at σ = 0 (there are two ways to see this: first, the linearized version of the
model is certainty equivalent; alternatively, if the distribution of ε is symmetric about zero, the gamble in
(7) is isomorphic for positive and negative σ, hence c∗ and l∗ must be symmetric about σ = 0, implying
the derivatives vanish). Finally, εt+1 is independent of θt+1 and a∗t+1, evaluating the latter at σ = 0.
Since εt+1 has unit variance, (A10) reduces to

β(EtV
1−α)α/(1−α) (

EtV
−αV11 − αEtV

−α−1V 2
1

) dσ2

2
. (A11)

Equating (A7) to (A11) allows us to solve for dμ as a function of dσ2. Thus, limσ→0 2μ(σ)/σ
2 exists

and is given by
−EtV

−αV11 + αEtV
−α−1V 2

1

EtV −αV1

. (A12)

Since (A12) is already evaluated at σ = 0, to evaluate it at the nonstochastic steady state, set
at+1 = a and θt+1 = θ to get −V11(a; θ)

V1(a; θ)
+ α

V1(a; θ)

V (a; θ)
. (A13)

Proof of Lemma 2

Equations (A1), (A4), and the envelope theorem imply the household’s intertemporal optimality (Euler)
condition,

u1(c
∗
t , l

∗
t ) = β(EtV (a∗t+1; θt+1)

1−α)
α/(1−α)

EtV (a∗t+1; θt+1)
−α(1 + rt+1)u1(c

∗
t+1, l

∗
t+1). (A14)

Differentiating (A14) with respect to at at the nonstochastic steady state implies

u11

(
∂c∗t
∂at

−Et
∂c∗t+1

∂at

)
= −u12

(
∂l∗t
∂at

− Et
∂l∗t+1

∂at

)
(A15)

in a neighborhood of the steady state, where the arguments of the uij are suppressed to reduce notation.
Using (14), this implies

(u11 − λu12)

(
∂c∗t
∂at

−Et
∂c∗t+1

∂at

)
= 0 (A16)
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and thus

Et
∂c∗t+1

∂at
=

∂c∗t
∂at

. (A17)

Equations (A14)–(A17) can be iterated forward to yield

Et
∂c∗t+k

∂at
=

∂c∗t
∂at

, k = 1, 2, . . . , (A18)

whatever the initial response ∂c∗t /∂at. From (14) and (A18), it also follows that

Et
∂l∗t+k

∂at
=

∂l∗t
∂at

, k = 1, 2, . . . (A19)

It remains to solve for ∂c∗t /∂at. The household’s intertemporal budget constraint, evaluated at
steady state, implies

1 + r

r

∂c∗t
∂at

= (1 + r) + w
1 + r

r

∂l∗t
∂at

. (A20)

Substituting (14) into (A20) and solving for ∂c∗t /∂at yields

∂c∗t
∂at

=
r

1 + wλ
. (A21)

Proof of Lemma 5

Differentiating the household’s Euler equation (A14) at the nonstochastic steady state implies

u11(dc
∗
t − Etdc

∗
t+1) + u12(dl

∗
t −Etdl

∗
t+1) = βu1Etdrt+1, (A22)

which, applying (46), becomes

(u11 − λu12)(dc
∗
t −Etdc

∗
t+1)− u1u12

u22 + wu12
(dwt − Etdwt+1) = βu1Etdrt+1. (A23)

Note that (A23) implies, for each k = 1, 2, . . .,

Etdc
∗
t+k = dc∗t − u1u12

u11u22 − u2
12

(dwt − Etdwt+k)− βu1

u11 − λu12
Et

k∑
i=1

drt+i. (A24)

Combining (1)–(2), differentiating, and evaluating at the nonstochastic steady state yields

Et

∞∑
k=0

1

(1 + r)k
(dc∗t+k − wdl∗t+k − ldwt+k − ddt+k − adrt+k) = (1 + r) dat. (A25)

Substituting (46) and (A24) into (A25), and solving for dc∗t , yields

dc∗t =
r

1 + r

1

1 + wλ

[
(1 + r)dat + Et

∞∑
k=0

1

(1 + r)k
(l dwt+k + ddt+k + adrt+k)

]

+
u1u12

u11u22 − u2
12

dwt +
1

1 + r

−u1

u11 − λu12
Et

∞∑
k=0

1

(1 + r)k

[
rλ

1 + wλ
dwt+k − βdrt+k+1

]
. (A26)

Proof of Lemma 6

Differentiating equation (6) and evaluating at the nonstochastic steady state implies

dVt = u1dc
∗
t + u2dl

∗
t + βEtdVt+1. (A27)
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Solving (A27) forward and applying (46) yields

dVt =

∞∑
k=0

βku1(1 + wλ)Etdc
∗
t+k −

∞∑
k=0

βk u1u2

u22 + wu12
Etdwt+k . (A28)

Substituting (A24) into (A28) and simplifying yields

dVt =
1 + r

r
u1(1 + wλ)dc∗t − 1 + r

r

u2
1u12(1 + wλ)

u11u22 − u2
12

dwt

+
∞∑

k=0

βk u1(u1u12 − u2u11)

u11u22 − u2
12

Etdwt+k − u2
1(1 + wλ)

u11 − λu12

1

1− β

∞∑
k=1

βk+1Etdrt+k . (A29)

Substituting (A26) into (A29) and simplifying gives

dVt = u1(1 + r)dat + u1Et

∞∑
k=0

1

(1 + r)k
(ldwt+k + ddt+k + adrt+k). (A30)

Proof of Lemma 9

i) The household’s Euler equation (A14), evaluated along the (nonstochastic) balanced growth path,
implies

u1(c
bg
t , l) = β(1 + r)u1(c

bg
t+1, l) = β(1 + r)u1(Gcbgt , l). (A31)

Similarly, for labor,

u2(c
bg
t , l) = β(1 + r)

wbg
t

wbg
t+1

u2(c
bg
t+1, l) = β(1 + r)G−1u2(Gcbgt , l). (A32)

As in King, Plosser, and Rebelo (2002), assume that preferences u are consistent with balanced
growth for all initial asset stocks and wages in a neighborhood of abg

t and wbg
t , and hence for all initial

values of (ct, lt) in a neighborhood of (cbgt , l). Thus, (A31) and (A32) can be differentiated to yield:

u11(c
bg
t , l) = β(1 + r)Gu11(Gcbgt , l), (A33)

u12(c
bg
t , l) = β(1 + r)u12(Gcbgt , l), (A34)

u22(c
bg
t , l) = β(1 + r)G−1 u22(Gcbgt , l). (A35)

Substituting (A33)–(A35) into (15) gives

λbg
t+1 =

wbg
t+1u11(c

bg
t+1, l) + u12(c

bg
t+1, l)

u22(c
bg
t+1, l) + wbg

t+1u12(c
bg
t+1, l)

= G−1λbg
t , (A36)

ii) Assumptions 1–6 imply (11)–(15) in the text and the Euler equation (A14). Hence

(u11(c
bg
t , l)− λbg

t u12(c
bg
t , l))

∂c∗t
∂at

= β(1 + r) (u11(c
bg
t+1, l)− λbg

t+1u12(c
bg
t+1, l))

∂c∗t+1

∂at
. (A37)

Solving for ∂c∗t+1/∂at and using (A33)–(A36) yields ∂c∗t+1/∂at = G∂c∗t /∂at.

iii) Follows from (14), (A33)–(A36), and ii).

iv) Use the household’s budget constraint (1)–(2) and ii) to solve for ∂c∗t /∂at.

Proof of Proposition 10

Proposition 1 implies (62). Assumptions 1–6 imply (11)–(15). Substituting (11)–(14) and Lemma 9(iv)
into (62) gives

Ra(abgt ; θbgt ) =
−u11(c

bg
t+1, l) + λbg

t+1u12(c
bg
t+1, l)

u1(c
bg
t+1, l)

1 + r −G

1 + wbg
t+1λ

bg
t+1

+ α
(1 + r)u1(c

bg
t+1, l)

V (abgt+1; θ
bg
t+1)

. (A38)
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Expressing V (abgt+1; θ
bg
t+1) in terms of period utility u is made slightly more complicated by the presence

of balanced growth, since now the arguments of u are not constant but rather grow over time.
King, Plosser, and Rebelo (1988, 2002) show that, to be consistent with balanced growth, u(ct, lt)

must have the functional form

u(ct, lt) =
c1−γ
t

1− γ
v(̄l − lt) (A39)

or, as γ → 1,
u(ct, lt) = log ct + v(̄l − lt), (A40)

where v(·) in (A39) or (A40) is differentiable, increasing, and concave, but otherwise unrestricted. Since
the balanced growth path is nonstochastic, the allowable functional forms for u(ct, lt) are the same for
the case of generalized recursive preferences as they are for expected utility.

If u has the form (A39), then

V (abgt ; θbgt ) =
1

1− βG1−γ
u(cbgt , l) (A41)

and

βV (abgt+1; θ
bg
t+1) = V (abgt ; θbgt )− u(cbgt , l) =

βG1−γ

1− βG1−γ
u(cbgt , l). (A42)

Moreover, β(1 + r) = Gγ . Substituting (A31), (A33)–(A35), and (A42) into (A38) then completes the
proof.

If u has the form (A40), then

V (abgt ; θbgt ) =
1

1− β
u(cbgt , l) +

β

(1− β)2
logG, (A43)

βV (abgt+1; θ
bg
t+1) =

β

1− β
u(cbgt , l) +

β

(1− β)2
logG, (A44)

and β(1 + r) = G. Substituting (A31), (A33)–(A36), and (A44) into (A38) yields

Ra(abgt ; θbgt ) =
−u11 + λbg

t u12

u1

1+r
G

− 1

1 + wbg
t λbg

t

+ α

(
1 + r

G
− 1

)
u1

u+ 1+r
1+r−G

logG
. (A45)

This differs from (63) by the addition of the constant term logG

1− G
1+r

to u. Thus, in the case of log preferences,

u in (63) must be interpreted to include the additive constant logG

1− G
1+r

.

Proof of Corollary 11

As in Definitions 2–3, define wealth Abg
t in beginning- rather than end-of-period-t units; this requires

multiplying by (1+ r)−1G rather than just (1+ r)−1. Then the present discounted value of consumption
along the balanced growth path is given by Abg

t = cbgt /( 1+r
G − 1), and the present discounted value of

leisure by wbg
t (̄l − l)/( 1+r

G
− 1). Substituting these into Proposition 10 completes the proof.

Numerical Solution Procedure for Sections 4–5

The equations of the RBC model itself are standard:

Yt = ZtK
1−θ
t−1 L

θ
t , (A46)

Kt = (1−δ)Kt−1 + Yt − Ct, (A47)

ηLχ
t /C

−γ
t = wt, (A48)

rt = (1−θ)Yt/Kt−1 − δ, (A49)

wt = θYt/Lt, (A50)
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logZt = ρ logZt−1 + εt, (A51)

where, for concreteness, the additively separable preference specification from Examples 3 and 5 have
been used in (A49), and will be assumed throughout this section. In equations (A46)–(A51), note that
Kt−1 denotes the capital stock at the beginning of period t (or the end of period t− 1), so the notation
differs slightly from the main text for compatibility with the numerical algorithm below.

Because of the generalized recursive structure of household preferences, the household’s Euler equa-
tion (A14) involves the value function. Following Rudebusch and Swanson (2012), two equations for the
value function are added to the model, as follows:

Vt =
C1−γ

t

1− γ
− η

L1+χ
t

1 + χ
+ βVTWIST

1/(1−α)
t , (A52)

VTWISTt = EtV
1−α
t+1 . (A53)

The household’s Euler equation (A14) then can be written as

C−γ
t = βEt(1 + rt+1) (Vt+1/VTWIST

1/(1−α)
t )−α

C−γ
t+1. (A54)

To compute risk aversion, the following auxiliary variables and equations must be appended to
(A46)–(A54):

λt = (γ/χ)Lt/Ct, (A55)

C−γ−1
t DCDAt = βEt(1+rt+1)C

−γ−1
t+1 DCDAt+1 [(1+rt)− (1+wtλt)DCDAt], (A56)

CARAt =
EtV

−α
t+1

[
(1+rt+1)(γC

−γ−1
t+1 DCDAt+1) + α(1+rt+1)

2C−2γ
t+1 /Vt+1

]
V1EXPt

, (A57)

V1EXPt = EtV
−α
t+1(1+rt+1)C

−γ
t+1. (A58)

PDVCt = Ct + βEtC
−γ
t+1/C

−γ
t (Vt+1/VTWIST

1/(1−α)
t )

−α
PDVCt+1. (A59)

CRRAt = CARAt PDVCt /(1+rt). (A60)

These are somewhat more complicated versions of the equations in Swanson (2012), owing to the use of
generalized recursive preferences in the present paper. Equation (A55) corresponds to (14), (A57)–(A58)
to Proposition 1, and (A59)–(A60) to Definition 2. The variable DCDAt correspond to ∂c∗t /∂at, and
equation (A56) is the derivative of (A14) with respect to at, which is what determines how ∂c∗t /∂at
evolves over time. Note that

∂c∗t+1

∂at
=

∂c∗t+1

∂a∗t+1

[
(1 + rt)− wtλt

∂c∗t
∂at

− ∂c∗t
∂at

]
, (A61)

which is used in (A56). The envelope condition V1(at; θt) = β(1 + rt)EtV1(at+1; θt+1) is used to rewrite
EtV1(at+1; θt+1) in (A57)–(A58), and equations (11)–(12) are used to rewrite V1 and V11 in terms of
derivatives of u.

The system of equations (A46)–(A60) can then be solved numerically using the Perturbation AIM
algorithm of Swanson, Anderson, and Levin (2006) to compute a fifth-order Taylor series approximate
solution around the nonstochastic steady state. These nth-order Taylor series approximations are guaran-
teed to be arbitrarily accurate in a neighborhood of the nonstochastic steady state, but importantly also
converge globally within the domain of convergence of the Taylor series as the order of the approximation
n becomes large. In practice, the solution seemed to converge globally over the range of values considered
for the state variables in Figure 1–5 by about the third or fourth order, so solutions higher than the
fifth order are not reported. Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) solve a standard
real business cycle model like (A46)–(A60) using a variety of numerical methods, including second- and
fifth-order perturbation methods, and find that the perturbation solutions are among the most accurate
methods globally, as well as being the fastest to compute.
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