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Abstract

This paper develops a real business cycle model with five types of fundamental shocks
and one “equity sentiment shock” that captures animal spirits-driven fluctuations. The
representative agent’s perception that movements in equity value are partly driven by sen-
timent turns out to be close to self-fulfilling. I solve for the sequences of shock realizations
that allow the model to exactly replicate the observed time paths of U.S. consumption,
investment, hours worked, the stock of physical capital, capital’s share of income, and the
S&P 500 market value from 1960.Q1 onwards. The model-identified sentiment shock is
strongly correlated with survey-based measures of U.S. consumer sentiment. Counterfac-
tual scenarios with the model suggest that the equity sentiment shock has an important
influence on the paths of most U.S. macroeconomic variables.

Keywords: Belief-driven business cycles, Excess volatility, Animal spirits, Sentiment, Bub-
bles.

JEL Classification: E32, E44, O41.

∗Forthcoming in International Journal of Economic Theory. This paper began as a discussant presentation
prepared for the May 15, 2015 Conference on Multiple Equilibria and Financial Crisis, organized by Jess
Benhabib and Roger Farmer and hosted by the Federal Reserve Bank of San Francisco. For helpful comments
and suggestions, I thank an anonymous referee and participants at the 2018 Symposium of the Society for
Nonlinear Dynamics and Econometrics held in Tokyo Japan and the 2018 CEGAP conference sponsored by
Durham University Business School. Any opinions expressed here do not necessarily reflect the views of the
Federal Reserve of Bank of San Francisco or the Board of Governors of the Federal Reserve System.
†Research Department, Federal Reserve Bank of San Francisco, P.O. Box 7702, San Francisco, CA 94120-

7702, kevin.j.lansing@sf.frb.org



Nowhere does history indulge in repetitions so often or so uniformly as in Wall
Street. When you read contemporary accounts of booms or panics the one thing that
strikes you most forcibly is how little either stock speculation or stock speculators
today differ from yesterday. The game does not change and neither does human
nature.
From the thinly-disguised biography of legendary speculator Jesse Livermore,

by E. Lefevére (1923, p. 180).

1 Introduction

Theories about the interaction of sentiment and expectations have long played a role in efforts
to account for fluctuations in economic variables. Pigou (1927, p. 73) attributed fluctuations
partly to “psychological causes” which lead people to make “errors of undue optimism or
undue pessimism in their business forecasts.”Keynes (1936, p. 156) likened the stock market
to a “beauty contest”where participants devoted their efforts not to judging the underlying
concept of beauty, but instead to “anticipating what average opinion expects the average
opinion to be.”More recently, Ackerloff and Shiller (2009, p. 1) assert: “We will never really
understand important economic events unless we confront the fact that their causes are largely
mental in nature.”

This paper develops a real business cycle model that incorporates the flavor of the above
ideas. The model has five types of fundamental shocks that influence labor productivity, labor
disutility, the marginal effi ciency of investment, the cost of adjusting the capital stock, and
capital’s share of income. To capture the Keynesian notion of “animal spirits,”I allow for an
“equity sentiment shock”that is unconnected to fundamentals.

The representative agent in the model makes use of a sentiment measure to construct a
conditional forecast involving future equity value. Due to the self-referential nature of the
model, the agent’s perception that movements in equity value are partly driven by sentiment
turns out to be close to self-fulfilling. The agent’s subjective forecast errors are close to white
noise with near-zero mean, giving no obvious signal that the sentiment-based forecast rule is
misspecified.

I solve for the sequences of shock realizations that allow the model to exactly replicate the
observed time paths of U.S. consumption, investment, hours worked, the stock of physical cap-
ital, capital’s share of income, and the S&P 500 market value from 1960.Q1 through 2017.Q4.
I show that the model-identified sentiment shock is strongly correlated with survey-based mea-
sures of U.S. consumer sentiment. Counterfactual scenarios with the model suggest that the
equity sentiment shock has an important influence on the paths of most U.S. macroeconomic
variables.

There are a variety of ways in which animal spirits-type mechanisms can be incorporated
into quantitative business cycle models. The original contributions of Benhabib and Farmer
(1994) and Farmer and Guo (1994) exploit the indeterminacy of equilibrium (induced by
increasing returns to scale in production) to introduce “sunspot shocks” that give rise to
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belief-driven fluctuations under rational expectations.1 In a series of papers, Farmer (2012,
2013, 2015) introduces animal spirits via a “belief function”that governs agent’s expectations
about future asset prices, which in turn, influence the level of employment. The belief function
serves to pin down a unique rational expectations equilibrium in a framework that is otherwise
missing a suffi cient number of equilibrium conditions relative to endogenous variables.

Animal spirits can also be introduced by means of “news shocks”that contain noisy sig-
nals about future fundamentals. Agents’expectations and decisions rationally incorporate the
noisy signal, but if the news later turns out to be wrong, it will appear as if the resulting fluctu-
ations were not driven by fundamentals.2 Benhabib, Wang, and Wen (2015) show that rational
sentiment-driven fluctuations can arise in a model without externalities or non-convexities if
firms make decisions based on expected demand while households make decisions based on
expected income. Milani (2010, 2017) introduces “expectation shocks” in a New Keynesian
model that cause the representative agent’s subjective forecasts to deviate from the forecasts
implied by an adaptive learning algorithm. Angeletos, Collard, and Dellas (2018) introduce
animal spirits by means of “confidence shocks”that arise from an individual household’s belief
that their own signal about productivity is unbiased whereas others receive biased signals. The
confidence shock acts as wedge between an individual household’s subjective expectation and
the fully-rational expectation that would prevail under complete information and common pri-
ors. Chahrour and Ulbricht (2017) introduce “expectation wedges”that represent departures
from full-information in an environment that is consistent with rational expectations of all
agents. In the model developed here, the equity sentiment shock introduces a wedge between
the representative agent’s subjective forecast and the “fundamentals-only”forecast that would
prevail under fully-rational expectations.

The shock-identification methodology used here shares some similarities with the approach
taken by Farmer and Guo (1995) who use a real business cycle model to identify shocks that
affect labor demand versus labor supply. The methodology is also conceptually similar to that
of Chari, McGrattan, and Kehoe (2007) who develop a quantitative business cycle model with
four “wedges” that relate to labor, investment, productivity, and government consumption.
Along similar lines, Smets and Wouters (2007) and Justiniano, Primiceri, and Tambalotti
(2010) employ quarterly data on seven U.S. macroeconomic variables to identify seven types
of fundamental shocks in New Keynesian models. The model parameters are estimated using
Bayesian methods, but unlike here, the authors do not consider their model’s implications for
equity value. As an alternative to estimation, I calibrate the model’s parameters so that the
steady state matches the U.S. data in 1970.Q4– a period when U.S. macroeconomic ratios are
close to their long-run means. More recently, Christiano, Motto, and Rostagno (2014) consider
a fully-rational model with 10 fundamental shocks that is designed to match 12 macroeconomic

1These orginal models required very strong (and likely implausible) degrees of increasing returns to scale
to generate indeterminacy. But subsequent iterations introduced various mechanisms that could substantially
reduce the required degree of increasing returns for indeterminacy. See, for example, Wen (1998) and Guo and
Lansing (2007).

2Chahrour and Jurado (2018) provide an overview of this literature and discuss how the effects of pure shifts
in beliefs can be distinguished from changes in future fundamentals.
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and financial time series. One of these 10 shocks is an “equity shock”that is designed to help
match fluctuations in the net worth of entrepreneurs.

2 Model

The framework for the analysis is a classic real business cycle model along the lines of Hansen
(1985), but augmented to allow for: (1) growth in output per person, (2) adjustment costs
for physical capital, and (3) various additional shocks. The representative agent’s decision
problem is to maximize

Ê0

∞∑
t=0

βt

[
log (ct)−D exp (ut)

h1+γt

1 + γ

]
, (1)

subject to the budget constraint

ct + it = wtht + rtkt, (2)

where ct is consumption, ht is hours worked, it is investment (or saving), wt is the real wage
per hour, rt is the real rental rate per unit of capital, and kt is the stock of physical capital,
where quantities are measured in per person terms. The parameter β ∈ (0, 1) is the agent’s
subjective time discount factor. The symbol Êt represents the agent’s subjective expectation,
conditional on information available at time t. Under rational expectations, Êt corresponds
to the mathematical expectation operator Et evaluated using the objective distribution of all
shocks, which are assumed known to the rational agent. The disutility of labor is governed by
the second term in (1), where D > 0, and γ ≥ 0. The elasticity of intertemporal substitution
in labor supply is given by 1/γ. As γ →∞, the model reduces to one with fixed labor supply.
Following Hall (1997), I allow for a shock ut that shifts the intratemporal trade-off between
consumption and leisure. The “labor disutility shock” evolves according to the following
stationary AR(1) process

ut = ρuut−1 + εu,t, |ρu| < 1, εu,t ∼ NID
(
0, σ2ε,u

)
, (3)

where ρu governs the shock persistence and εu,t is a normally and independently distributed
(NID) innovation with mean zero and variance σ2ε,u.

Resources devoted to investment augment the stock of physical capital kt according to the
following law of motion

kt+1 = B exp (vt) k
1−δt
t iδtt , B > 0, (4)

vt = ρvvt−1 + εv,t, |ρv| < 1, εv,t ∼ NID
(
0, σ2ε,v

)
, (5)

δt = δ
ρδ
t−1 δ

1−ρδ exp (εδ,t) , |ρδ| < 1, εδ,t ∼ NID
(
0, σ2ε,δ

)
, (6)

with k0, v0, and δ0 given. The nonlinear formulation of equation (4) reflects the presence of
capital adjustment costs.3 Lansing (2012) shows that the Cobb-Douglas form of equation (4)

3Abstracting from shocks, the implicit cost of adjusting the capital stock from one period to the next could
be computed as Bkt[(n0 + n1(it/kt − i/k)] −Bkt(i/kt)δ where n0 and n1 are Taylor series coeffi cients and i/k
is the steady-state investment-capital ratio.
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can be viewed as a log-linearized version of the nonlinear law of motion for capital employed by
Jermann (1998).4 Following Cassou and Lansing (1997) and Lansing and Markiewicz (2018),
I allow for a “capital law multiplier shock” vt that evolves as a stationary AR(1) process
with persistence parameter ρv and innovation variance σ

2
ε,v. The variable δt is a “capital

law exponent shock”that represents stochastic variation in the elasticity of new capital with
respect to new investment. When δt < 1, equation (4) implies the presence of time-varying
capital adjustment costs. The logarithm of δt evolves as a stationary AR(1) process with
persistence parameter ρ

δ
, innovation variance σ2ε,δ, and steady state value δ. In addition to

time-varying adjustment costs, the two capital law shocks can be viewed as capturing shifts in
the marginal effi ciency of investment, along the lines of Justiniano, Primiceri, and Tambalotti
(2010) and/or stochastic variation in the capital depreciation rate, along the lines of Ambler
and Paquet (1994), Liu, Waggoner and Zha (2011), and Furlanetto and Seneca (2014). A
study by Greenwood, Hercowitz, and Huffman (1988) was the first to consider shocks to the
capital law of motion as an important driving force for business cycle fluctuations. More
generally, shocks that appear in the capital law of motion can be interpreted as capturing
financial frictions that impact the supply of new capital and the price of claims to existing
capital.

The representative agent derives income by supplying labor and capital services to identical
competitive firms. Firms produce output according to the technology

yt = Ak αtt [exp (zt) ht]
1−αt , A > 0, (7)

zt = zt−1 + µ + εz,t, εz,t ∼ NID
(
0, σ2ε,z

)
, (8)

αt = α
ρα
t−1 α

1−ρα exp (εα,t) , |ρα| < 1, εα,t ∼ NID
(
0, σ2ε,α

)
, (9)

with z0 and α0 given. In equation (7), zt represents a “labor productivity shock”that evolves
as a random walk with drift. The drift parameter µ > 0 determines the trend growth rate of
output per person in the economy. Stochastic variation in the production function exponent
αt represents a “factor distribution shock,” along the lines of Young (2004), Ríos-Rull and
Santaeulàlia-Llopis (2010), Lansing (2015), and Lansing and Markiewicz (2018). The loga-
rithm of αt evolves as a stationary AR(1) process with persistence parameter ρα, innovation
variance σ2ε,α, and steady state value α.

Profit maximization by firms yields the factor prices

wt = (1− αt) yt/ht, (10)

rt = αt yt/kt, (11)

which together imply yt = wtht+rtkt. From equation (11), we can see that stochastic variation
in αt (= rtkt/yt) will allow the model to capture the observed fluctuations in the U.S. capital
share of income (Figure 1).

4Specifically, kt+1/kt = 1− d+ ψ0 (it/kt)
ψ1 ' B0

[
(it/kt) /(i/k)

]δ
, where B0 and δ are Taylor series coeffi -

cients. Stochastic variation in the parameters d, ψ0, or ψ1 would imply stochastic variation in the coeffi cients
B0 and δ.
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The first-order conditions with respect to ct, ht, and kt+1 are given by

λt = 1/ct, (12)

D exp (ut)h
γ
t = λtwt, (13)

λtit/ (δtkt+1) = β Êtλt+1 [rt+1 + (1− δt+1) it+1/ (δt+1kt+1)] , (14)

where λt is the Lagrange multiplier on the budget constraint (2). From equation (13), we see
that an increase in exp (ut) is isomorphic to a higher distortionary tax on labor income. In
deriving equation (14), I first use the capital law of motion (4) to eliminate it from the budget
constraint. Since kt+1 is known at time t, equation (14) can be rewritten as follows

it/δt︸︷︷︸
pt

= Êt {Mt+1[αt+1yt+1 − it+1︸ ︷︷ ︸
dt+1

+ it+1/δt+1︸ ︷︷ ︸
pt+1

]}, (15)

where Mt+1 ≡ β (ct+1/ct)−1 is the stochastic discount factor. The rewritten first-order condi-
tion (15) is now in the form of a standard asset pricing equation where pt = it/δt represents the
market value of the agent’s equity shares in the firm. The equity shares entitle the agent to a
perpetual stream of dividends dt+1 starting in period t+1. As originally noted by Basu (1987),
the functional form of the capital law of motion (4) implies a direct link between the market
value of equity and firms’ investment in physical capital. This feature of the model is con-
sistent with the observed low-frequency comovement between the real S&P 500 stock market
index and real business investment in recent decades, as documented by Lansing (2012).

2.1 Fundamental equity value

Defining the equity value-consumption ratio (a stationary variable) as xt ≡ pt/ct = it/ (δtct) ,

the first order condition (15) becomes

xt = β Êt {αt+1yt+1/ct+1 + (1− δt+1) xt+1}

= β Êt {αt+1 + [1− δt+1 (1− αt+1)] xt+1}︸ ︷︷ ︸
≡ qt+1

, (16)

where I have used the budget constraint (2) at time t + 1 and the definition of xt+1 to make
the substitution yt+1/ct+1 = 1+ δt+1xt+1. At this point, it is convenient to define a nonlinear
change of variables such that qt+1 represents the composite stationary variable that the agent
must forecast.5 The agent’s first-order condition (16) becomes xt = βÊtqt+1. Now using the
definition of qt to make the substitution xt = (qt − αt) / [1− δt (1− αt)] yields the following
transformed version of the agent’s first order condition

qt = αt + β [1− δt (1− αt)] Êtqt+1. (17)

5This nonlinear change of variables technique is also employed by Lansing (2010, 2016).
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The fundamental equity value is obtained by solving equation (17) under the assumption
of rational expectations such that Êtqt+1 = Etqt+1. As shown in Appendix A, a log-linear
approximate version of the fundamental solution is given by

qft = qf
[αt
α

]γα [δt
δ

]γδ
, (18)

where qf ≡ exp[E log(qft)] and γα and γδ are solution coeffi cients that depend on model para-
meters. Given the value of qft , we can recover the fundamental equity value-consumption ratio
as

xft ≡
pft
ct
=

qft − αt
1− δt (1− αt)

, (19)

which shows that pft/ct will only move in response to the two fundamental shocks αt and δt.

2.2 Introducing animal spirits

Numerous empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have
shown that stock prices appear to exhibit excess volatility when compared to fundamentals,
as measured by the discounted stream of ex post realized dividends.6 To capture the notion of
animal spirits-driven excess volatility, I allow for an “equity sentiment shock”that is uncon-
nected to fundamentals. I postulate that the representative agent’s perceived law of motion
(PLM) for the composite variable qt in equation (17) takes into account the possibility of
departures from the fundamental value qft . Specifically, the agent’s PLM takes the form

qt = qft exp (st) , (20)

st = ρsst−1 + εs,t, |ρs| < 1, εs,t ∼ NID
(
0, σ2ε,s

)
, (21)

where the sentiment shock st evolves as a stationary AR(1) process with persistence parame-
ter ρs, innovation variance σ

2
ε,s, and a steady state value of zero. The agent can learn the

parameters that govern the sentiment shock by constructing the time series log(qt/qft) where
qt is the actual value observed in the data and qft is the value predicted by fundamentals from
equation (18).

Given the PLM (20), the agent’s subjective forecast can be computed as follows

Êtqt+1 = Êtq
f
t+1 exp(ρsst +

1
2σ

2
ε,s),

= qf exp(12γ
2
ασ

2
ε,α +

1
2γ
2
δσ
2
ε,δ +

1
2σ

2
ε,s)
[αt
α

]ραγα [δt
δ

]ρδγδ
exp (ρsst) , (22)

where Êtqft+1 (= Etq
f
t+1) is the “fundamentals-only”forecast that ignores the sentiment shock.

Equation (22) is qualitatively consistent with the findings of Frydman and Stillwagon (2018).
Using survey data of investors’expectations about future stock returns, they present evidence
that expectations are jointly driven by fundamental factors and extrapolation. Substituting

6Lansing and LeRoy (2014) provide a recent update on this literature.
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the agent’s subjective forecast (22) into the first order condition (17) yields the actual law
of motion (ALM) for qt. Due to the self-referential nature of the model whereby qt depends
in part on Êtqt+1, the resulting ALM for qt does indeed depend on st, making the agent’s
beliefs close to self-fulfilling. Given the ALM for qt, we can we can recover the resulting equity
value-consumption ratio as

xt ≡
pt
ct
=

qt − αt
1− δt (1− αt)

= βÊtqt+1, (23)

where qt = q (αt, δt, st) . Hence, pt/ct will move in response to movements in αt, δt, or st.
Given the value of xt from equation (23), we can compute the values of the other macro-

economic variables using the following equations

ht =
[
(1− αt) (1 + δt xt)D−1 exp (−ut)

] 1
1+γ , (24)

yt = Ak αtt [exp (zt) ht]
1−αt , (25)

ct = yt/ (1 + δt xt) , (26)

it = ytδt xt/ (1 + δtxt) , (27)

where I have used the budget relationship yt/ct = 1 + δt xt.

3 Parameter values and shocks

Figure 1 plots the U.S. data versions of the model variables yt, ct, it, ht, kt, pt, and αt. Figure
2 plots the U.S. data versions of the model ratios ct/yt, it/yt, kt/yt, and pt/yt.7 From Figure
2, we see that the U.S. macroeconomic ratios are all close to their long-run means in 1970.Q4.
I choose parameters so that the steady-state, trend, or ergodic mean values of the model
variables correspond to the values observed in the data in 1970.Q4.8 Given a time endowment
normalized to one, a steady state target of ht = 0.3 implies that the representative agent
spends about one-third of available time in market work. Table 1 summarizes the parameter
values.

Table 1: Model Parameter Values

Parameter Value Description/Target
α 0.3507 αt = α in 1970.Q4.
A 0.9662 zt = 0 and kt/yt = 10.248 in 1970.Q4.
δ 0.0639 δt = δ and it/yt = 0.2690 in 1970.Q4.

B 1.2894 vt = 0 and kt+1/kt = B (it/kt)
δ = 1.0219 in 1970.Q4.

D 2.9610 ut = 0 and ht = 0.3 in 1970.Q4.
β 0.9801 st = 0 and pt/yt = 4.2112 in 1970.Q4.
γ 0 Indivisible labor: Rogerson (1988), Hansen (1985).

7The sources and methods used to construct the U.S. data versions of the model variables are described in
Appendix B.

8As shown in Appendix A, the ergodic mean value of qf ≡ exp[E log(qft)] depends on the shock variances σ
2
ε,δ

and σ2ε,α. Given the shock variances, the value of the discount factor β is chosen such that q
f = qt in 1970.Q4.
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Given the parameter values in Table 1, I solve for the sequences of stochastic shocks that
allow the calibrated model to exactly replicate the observed time paths of the seven U.S. macro
variables plotted in Figure 1. Of the seven variables, only six are independent since yt = ct+

it. The model has six independent shocks, so each shock series is uniquely identified.9 The
model shocks are: zt (labor productivity), ut (labor disutility), vt (capital law multiplier), δt
(capital law exponent), αt (factor distribution), and st (equity sentiment). The time series for
αt is directly pinned down by U.S. data on capital’s share of income. The times series for the
remaining five shocks are computed using the following equations:

zt =
[
log (yt)− log(Akαtt h1−αtt )

]
/(1− αt), (28)

δt = (it/yt) / [(pt/ct) (1− it/yt)] , (29)

vt = log (kt+1/kt)− log (B)− δt log (it/kt) , (30)

ut = log
{
(1− αt) (ct/yt)−1 /(Dh1+γt )

}
(31)

st = (1/ρs) log
{
(pt/ct) (βÊt q

f
t+1)

−1 exp(−12σ
2
ε,s)
}
, (32)

where the right-side macroeconomic variables take on the values observed in the U.S. data
from 1960.Q1 to 2017.Q4.10 If a shock appears on the right side, then it takes on the value
identified in a previous equation. In the case of equation (32), the fundamentals-only forecast
Êt q

f
t+1 (= Etq

f
t+1) is computed using the fundamental solution (18). The parameters β, ρs

and σε,s influence computed time series for st. I start with initial guesses for these parameters
and then iterate until convergence.

The six identified shock series are plotted in Figure 3. By construction, all shocks are
equal to their trend or steady state values in 1970.Q4.11 The labor productivity shock zt
drops sharply in the aftermath of the Great Recession and has yet to fully recover. The labor
disutility shock ut trends down over time, allowing the model to match the observed time
path of ht in the data, despite the sustained weakness in labor productivity (and the real
wage) together with the decline in labor’s share of income implied by the increase in αt.12 The
capital law multiplier shock vt is almost perfectly negatively correlated with the quantity 1−δt,
representing the exponent on kt in the capital law of motion (4). This offsetting pattern allows
the model to match the smooth time path of kt in the data while simultaneously matching
the more-volatile time paths of it and pt. Finally, the equity sentiment shock st mimics
movements the U.S. valuation ratio pt/yt shown earlier in Figure 2. The sentiment shock
reaches its maximum value in 2000.Q1, coinciding with the peak of the NASDAQ technology
stock bubble. Empirical valuation models similarly imply that U.S. equity values were above
levels that can be justified by fundamentals around this time (Lansing 2017). The sentiment

9Lansing and Markiewicz (2018) and Gelain, Lansing, and Natvik (2018) undertake similar shock identifi-
cation excercises, but in the context of different models.
10Since the computation of vt requires data at time t+1, I set the end-of-sample shock value to vT = ρvvT−1.
11The trend value of zt is constructed as zt = zt−1 + µ, where µ is the sample mean of ∆zt and zt = zt in

1970.Q4.
12Kaplan and Schulhofer-Wohl (2018) show that labor disutility, as measured by “feelings about work”from

surveys, has shifted in significant ways since 1950.
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shock is negative from 1973.Q4 through 1997.Q1 and from 2002.Q2 through 2017.Q4. These
two intervals include five out of the eight U.S. recessions that have occurred since 1960.

Table 2 shows the values of the shock parameters implied by the identification exercise.
The five stationary shocks all exhibit very strong persistence– close to a unit root. In this
way, variables which are presumed stationary in the model (e.g., hours worked per person,
capital’s share of income, and the equity value-consumption ratio) can be made to replicate
the sustained uptrends or downtrends observed in the U.S. data.

Table 2: Model-Identified Shock Parameters

Shock Values
Labor productivity, zt µ = 0.0046 σε,z = 0.0301
Labor disutility, ut ρu = 0.9945 σε,u = 0.0099
Capital law multiplier, vt ρv = 0.9732 σε,v = 0.0273
Capital law exponent, δt ρδ = 0.9789 σε,δ = 0.0820
Factor distribution, αt ρα = 0.9796 σε,α = 0.0130
Equity sentiment, st ρs = 0.9760 σε,s = 0.0423

4 Quantitative Analysis

4.1 Model-identified sentiment shock

Movements in the equity sentiment shock capture the notion of animal spirits-driven fluctu-
ations. Figure 4 plots impulse response functions for a one standard deviation innovation of
the equity sentiment shock. The panels show the percent deviation of each variable from its
no-shock trend. On impact, output, hours worked, investment, and equity value all increase.
But since the capital stock cannot respond immediately, the initial increase in output is not
suffi cient to allow both consumption and investment to increase on impact. Consumption
drops slightly on impact, but then increases with the other variables as the capital stock starts
increasing in response to higher investment. Since δt is constant here, movements in equity
value (pt = it/δt) exactly mimic the movements in investment.

Figure 5 provides a check on the reasonableness of the model sentiment shock. The iden-
tified series for st is plotted together with the University of Michigan’s consumer sentiment
index and the Conference Board’s consumer confidence index. Each series is demeaned and
normalized by its standard deviation. The model equity sentiment shock is strongly corre-
lated with both of the survey-based measures of U.S. consumer sentiment. The correlation
coeffi cient between st and the University of Michigan index is 0.63. The correlation coeffi cient
between st and the Conference Board index is 0.71. The strong correlation is perhaps not
surprising because the identified series for st helps the model to exactly replicate the time
path of U.S. equity value. There is a well-documented link between equity price (or equity
return) movements in the data and measures of investor or consumer sentiment.13 Still, Fig-
ure 5 confirms that it is appropriate to view the model-identified series for st as capturing a

13See, for example, Fisher and Statman (2003), Brown and Cliff (2004, 2005), Schmeling (2009), Greenwood
and Shleifer (2014), Frydman and Stillwagon (2018), and Lansing, LeRoy, and Ma (2018).
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measure of sentiment.

4.2 Representative agent’s forecast errors

Recall from Section 2.2 that the equity sentiment shock introduces a wedge between the agent’s
subjective forecast Êtqt+1 and the “fundamentals-only” forecast that ignores the sentiment
shock. Table 3 summarizes the properties of the agent’s percentage forecast errors, measured
as errt+1 = 100(qt+1 − Êtqt+1)/qt+1.The forecast errors are computed for the sample period
1960.Q2 to 2017.Q4 using the model together with the six identified shock series shown in
Figure 3. The agent’s perception that movements in qt are partly driven by movements in
st turns out to be close to self-fulfilling. Table 3 shows that the agent’s subjective forecast
errors are close to white noise with near-zero mean, giving no obvious signal that the agent’s
sentiment-based forecast rule (22) is misspecified. In contrast, the fundamentals-only forecast
performs very poorly when the ALM is given by qt = q (αt, δt, st) . Put another way, the typical
agent’s use of the sentiment-based forecast rule serves to shift the moments of the forecast
variable qt+1 so that any individual agent would perceive no accuracy gain from switching
to the fundamentals-only forecast.14 The first-order condition (16) can also be written as
xt = βÊtqt+1, where xt ≡ pt/ct. Consequently, very similar results are obtained if the agent’s
percentage forecast errors are instead measured as errt+1 = 100(xt+1 − Êtxt+1)/xt+1.

Table 3. Properties of Representative Agent’s Forecast Errors

Statistic Subjective forecast Fundamentals-only forecast
E (errt+1) 0.63% −15.9%√
E[(errt+1)2] 0.84% 2.62%

Corr(errt+1, errt) 0.12 0.87
Corr(errt+1, errt−1) −0.02 0.83
Corr(errt+1, errt−2) 0.02 0.81

Note: Forecast errors are computed for the sample period 1960.Q2 to 2017.Q4 using the model

together with the six identified shock series shown in Figure 3.

4.3 Counterfactual scenarios

Figure 6 displays counterfactual scenarios for three model variables: yt, ht, and pt. In each set
of panels from top to bottom, I turn off one or more shocks (as indicated) while leaving the
other shocks in place. The purpose of the exercise is see which shocks are the most important
for allowing a given model variable to fit the data. A large gap between the counterfactual path
and the U.S. data path (solid blue line) implies that the omitted shock(s) play an important
role in allowing the model variable to match the path of the corresponding U.S. variable.

In the top set of panels, I shut off the labor productivity shock innovation εz,t (dashed red
lines) and then shutoff the labor disutility shock ut (dotted green lines). The labor productivity
shock serves to hold down the levels of yt and pt, particularly near the end of the data sample.
But this shock has no impact on ht because it operates only through the ratio ct/yt, which is

14Lansing (2006) obtains a similar result in a asset pricing model where the typical agent employs extrapolative
expectations.
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neutral to such a shock in the case of logarithmic utility. The labor disutility shock serves to
push up yt and ht by a significant amount, while also pushing up pt in a more modest way.

In the middle set of panels, I shut off the two capital law of motion shocks vt and δt
(dashed red lines) and then shutoff the factor distribution shock αt (dotted green lines). The
two capital law shocks serve to hold down the end-of-sample level of yt, but have only small
effects on the end-of-sample levels of ht and pt. The factor distribution shock serves to push
up the levels yt and pt, particularly near the end of the data sample when αt is rising more
rapidly. As expected, the net effect of a rising capital income share is to push down the level
of ht. The model implication that movements in αt can have an important impact on the level
of pt is consistent with a recent empirical study by Greenwald, Lettau, and Ludvigson (2014)
who find that highly persistent “factor share shocks” are an important driver of U.S. stock
prices over the period 1952 to 2012.15

In the bottom set of panels, I shut off the equity sentiment shock st (dashed red lines) and
then show the paths implied by a deterministic version of the model (dotted green lines). By
itself, the equity sentiment shock serves to mostly hold down the levels of yt, ht, and pt, except
around the year 2000, coinciding with the peak of the NASDAQ technology stock bubble.

To quantify the relative importance of the various shocks for each macro variable, I compute
the mean absolute gaps (measured in percent) between the counterfactual path and the U.S.
data path. The results are shown in Table 3. By this metric, the labor disutility shock is the
most important shock for ht. The capital law of motion shocks are most important shocks for
ct and kt. The equity sentiment shock is the most important shock for yt, it, and pt. The last
column shows the average of the mean absolute gaps across the six macroeconomic variables.
By this metric, the equity sentiment shock has the strongest overall influence on the paths of
the six macroeconomic variables. This result is remarkably similar to the findings of Angeletos,
Collard, and Dellas (2018) who state “the confidence shock emerges as the main driver of the
business cycle within medium-scale DSGE models that contain multiple other shocks.”

Table 3: Mean Absolute Gaps: Model versus Data

Scenario yt ct it ht kt pt Ave.
Baseline simulation 0 0 0 0 0 0 0
No labor productivity shock 9.88 9.88 9.88 0 6.30 9.88 7.63
No labor disutility shock 11.7 11.7 11.7 12.4 10.7 11.7 11.7
No capital law shocks 12.2 13.7 19.8 4.31 37.7 28.5 19.4
No factor distribution shock 13.46 11.9 17.8 2.76 15.0 17.8 13.1
No equity sentiment shock 13.48 7.58 31.2 6.28 28.4 31.2 19.7
Deterministic model 10.9 12.0 9.96 9.60 26.8 40.6 18.3
Notes: Each number is the mean absolute gap (measured in percent) between the path of the model variable

under a given scenario and the path of the corresponding variable in U.S. data from 1960.Q1 to 2017.Q4. Boxed

entries indicate the largest percentage gaps for each variable when other shocks are present.

15Lansing (2015) shows that the introduction of “distribution shocks” can substantially magnify the mean
equity premium in a production economy with capital owners and workers.

11



5 Conclusion

The main contribution of this paper is to show that an “equity sentiment shock” can be
an important element in allowing a standard real business cycle model to exactly replicate
the evolution of U.S. macroeconomic variables and the S&P 500 market value from 1960.Q1
through 2017.Q4. The model-identified sentiment shock is highly correlated with survey-based
measures of U.S. consumer sentiment, validating its interpretation as a type of “animal spirits,”
along the lines envisioned by Pigou (1927) and Keynes (1936).

In the model, the representative agent makes use of a sentiment measure to construct a
conditional forecast involving future equity value. Due to the self-referential nature of the
model, the agent’s belief that movements in equity value are partly driven by sentiment turns
out to be close to self-fulfilling. From the perspective of an individual agent, switching to a
fundamentals-only forecast would appear to reduce forecast accuracy, so there is no incentive
to switch.
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A Appendix: Fundamental solution

This appendix provides the details regarding the fundamental solution qft shown in equation
(18). First imposing rational expectations and then log linearizing the right-side of the trans-
formed first order condition (17) yields

qft = b0

[αt
α

]b1 [δt
δ

]b2
Et

[
qft+1
qf

]b3
, (A.1)

where b0, b1, b2, and b3 are Taylor-series coeffi cients. The expressions for the Taylor-series
coeffi cients are

b0 = α+ β
[
1− δ (1− α)

]
qf , (A.2)

b1 =
α
(
1 + βδqf

)
α+ β

[
1− δ (1− α)

]
qf
, (A.3)

b2 =
−βδ (1− α) qf

α+ β
[
1− δ (1− α)

]
qf
, (A.4)

b3 =
β
[
1− δ (1− α)

]
qf

α+ β
[
1− δ (1− α)

]
qf

(A.5)

where the approximation points are α = exp [E log (αt)] , δ = exp [E log (δt)] and qf ≡
exp[E log(qft)].

A conjecture for the fundamental solution takes the form qft = qf [αt/α ]
γα
[
δt/ δ

]γδ . The
conjectured solution is iterated ahead one period and then substituted into the right-side of
equation (A.1) together with the laws of motion for αt+1 and δt+1 from equations (9) and (6),
respectively. After evaluating the conditional expectation and then collecting terms, we have

qft = b0 exp
[
1
2 (γαb3)

2 σ2ε,α +
1
2 (γδb3)

2 σ2ε,δ

]
︸ ︷︷ ︸

= qf

×
[αt
α

]b1 + ραγαb3︸ ︷︷ ︸
γα ×

[
δt

δ

]b2 + ρδγδb3︸ ︷︷ ︸
= γδ (A.6)

which yields three equations in the three unknown solution coeffi cients qf ,and γα and γδ. For
the baseline calibration, we have qf = 5.868, γα = 1.034 and γδ = −0.499. An increase in
capital’s share of income αt will cause qft to increase. An increase in the capital law of motion
exponent δt will cause qft to decrease. It can be shown that for the baseline calibration, the
fundamental equity value-consumption ratio xft ≡ pft/ct computed from equation (19) will
move in the same direction as qft .

B Appendix: Data sources and methods

I start with data on nominal personal consumption expenditures on nondurable goods plus
services (Ct) , nominal private nonresidential fixed investment plus nominal personal consump-
tion expenditures on durable goods (It) , the corresponding price indices for each of the various
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nominal expenditure series that sum to Ct and It, and U.S. population. All of this data are
from the Federal Reserve Bank of St. Louis’FRED database. I define the nominal ratios
Ct/Yt and It/Yt, where Yt ≡ Ct + It. The nominal ratios capture shifts in relative prices.
I then deflate Yt by an output price index constructed as the weighted-average of the price
indices for the various nominal expenditure series that sum to Ct and It, where the weights
are the nominal expenditure ratios relative to Yt. The level of real output per person yt in the
data is normalized to 1.0 in 1970.Q4. The real per person series ct and it are constructed by
applying the nominal ratios Ct/Yt and It/Yt to the deflated output series and then dividing
by U.S. population. In this way, the real per person series reflect the same resource allocation
ratios as the nominal per person series.

Data for ht are hours worked of all persons in the nonfarm business sector from FRED,
divided by U.S. population and then normalized to equal 0.3 in 1970.Q4.

The data for kt are constructed using the historical-cost net stock of private nonresidential
fixed assets plus the historical-cost net stock of consumer durable goods, both in billions of
dollars at year end, from the Bureau of Economic Analysis (BEA), NIPA Table 4.3, line 1 and
Table 8.3, line 1, respectively. The data are only available at annual frequency, so I first create
a quarterly series by log-linear interpolation. The nominal capital stock series is deflated using
the output price index mentioned above and then divided by U.S. population. I normalize the
real per person series for kt to deliver a target value of it/kt = 0.0263 in 1970.Q4. The target
value is arbitrary given that the model parameters B and δ can be adjusted to hit any desired
target value. I choose the target value of it/kt to coincide with the steady state value implied
by a model with no capital adjustment costs, such that it/kt = kt+1/kt−1+d, where d = 0.02
is a typical quarterly depreciation rate for physical capital. For the normalization, I employ the
mean quarterly growth rate of the real per person series which implies kt+1/kt = exp(0.0062)
in steady state. I calibrate the value of A in the production function (7) to yield yt = 1 in
1970.Q4 when kt is equal to the normalized capital stock in 1970.Q4. This procedure delivers
a sample mean of kt/yt = 9.80 from 1960.Q1 to 2017.Q4.

Following Lansing (2015) and Lansing and Markiewicz (2018), capital’s share of income is
measured as 1 minus the ratio of employee compensation to gross value added of the corporate
business sector. Both series are from the BEA, NIPA Table 1.14, lines 1 and 4.

To construct data for pt, I start with the nominal market capitalization of the S&P 500 stock
market index from www.siblisresearch.com. The nominal market capitalization is deflated
using the output price index noted above and then divided by U.S. population to create a
series for real equity value per person.

The University of Michigan consumer sentiment index is from www.sca.isr.umich.edu/tables.html.
The Conference Board’s consumer confidence index is from www.conference-board.org/data.
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Figure 1: U.S. Macroeconomic Variables

The baseline simulation exactly replicates the observed U.S. time paths of the variables yt, ct, it, ht, kt, pt, and
αt from 1960.Q1 to 2017.Q4. Data series are constructed as described in Appendix B.
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Figure 2: U.S. Macroeconomic Ratios

The ratios of U.S. macroeconomic variables to output are close to their long-run means in 1970.Q4. Parameter
values are chosen so that the steady-state, trend, or ergodic mean values of model variables correspond to the
values observed in the data in 1970.Q4.
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Figure 3: Model-Identified Shocks

The panels show the time series of stochastic shocks that are needed for the model to exactly replicate the time
paths of the seven U.S. macroeconomic variables shown earlier in Figure 1. By construction, all shocks are
equal to their trend or steady state values in 1970.Q4. The equity sentiment shock reaches its maximum value
in 2000.Q1, coinciding with the peak of the NASDAQ technology stock bubble.
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Figure 4: Impulse Responses to Model Equity Sentiment Shock

Notes: Movements in the equity sentiment shock capture the notion of animal spirits-driven fluctuations. The
panels show the percent deviation of each variable from its no-shock trend. A positive innovation to the equity
sentiment shock leads to an immediate increase in output, hours worked, investment, and equity value. But
since the capital stock cannot respond immediately, the initial increase in output is not suffi cient to allow both
consumption and investment to increase on impact. Consumption drops slightly on impact, but then increases
with the other variables as the capital stock starts increasing in response to higher investment. Since δt is
constant here, movements in equity value (pt = it/δt) exactly mimic the movements in investment.
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Figure 5: Measures of Sentiment: Model versus U.S. Data

The model-identified equity sentiment shock is strongly correlated with survey-based measures of U.S. consumer
sentiment. The correlation coeffi cient between st and the University of Michigan index is 0.63. The correlation
coeffi cient between st and the Conference Board index is 0.71. The figure confirms that it is appropriate to view
the model-identified series for st as capturing a measure of sentiment.
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Figure 6: Counterfactual Scenarios

The panels show the effects of shutting off one or more of the various shocks on output (left panels), hours
worked (middle panels), and equity value (right panels). A large gap between the model counterfactual path
and the U.S. data path (blue line) implies that the omitted shock(s) play an important role in allowing the
model variable to match the path of the corresponding U.S. variable.
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