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Abstract

We use a consumption based asset pricing model to show that the predictability of
excess returns on risky assets can arise from only two sources: (1) stochastic volatility of
model variables, or (2) predictable investor forecast errors that give rise to market ineffi -
ciency. While controlling for stochastic volatility, we find that a variable which interacts
the 12-month consumer sentiment change with recent return momentum is a robust pre-
dictor of excess stock returns both in-sample and out-of-sample. The predictive power of
this variable derives mainly from periods when sentiment has been declining and return
momentum is negative– periods that coincide with heightened investor attention to the
stock market as measured by a Google search volume index. The resulting pessimism
appears to motivate many investors to sell stocks, putting further downward pressure on
stock prices, which contributes to a lower excess stock return over the next month.
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1 Introduction

A vast literature, pioneered by Fama and French (1988), examines the so-called “predictabil-

ity” of excess returns on risky assets. Predictability is typically measured by the size of a

slope coeffi cient and the adjusted R-squared statistic in forecasting regressions over various

time horizons. This paper examines the predictability question from both a theoretical and

empirical perspective.

Our theoretical approach employs a standard consumption based asset pricing model. We

show that the predictability of excess returns on risky assets can arise from only two sources:

(1) stochastic volatility of model variables, or (2) departures from rational expectations that

give rise to predictable investor forecast errors and market ineffi ciency. Specifically, we show

that excess returns on risky assets can be represented by an additive combination of conditional

variance terms and investor forecast errors. This result holds for any stochastic discount

factor, any consumption or dividend process, and any stream of bond coupon payments.

The conditional variance terms can be a source of predictability if one or more of the model’s

fundamental state variables exhibit exogenous stochastic volatility or if some nonlinear feature

of the model gives rise to endogenous stochastic volatility. Investor forecast errors can be a

source of predictability if the representative investor’s subjective forecast rule is misspecified

in some way. We provide analytical examples to illustrate each of these possibilities.

Many studies focus on the predictability of raw stock returns as opposed to excess stock

returns. Our theoretical results show if some variable helps to predict raw stock returns, even

after controlling for the presence of stochastic volatility, then this result does not necessarily

imply market ineffi ciency.

Our empirical approach examines whether 1-month ahead excess returns on stocks relative

to the risk free rate can be predicted using measures of consumer sentiment and excess return

momentum, while controlling directly and indirectly for the presence of stochastic volatility.

The predictor variables that control for stochastic volatility are the price-dividend ratio, the

3-month moving average of the variance risk premium (the difference between the implied and

realized variance of stock returns), and the 12-month change in the federal funds rate. These

predictor variables are almost always statistically significant, regardless of the regression spec-

ification or the sample period. The predictor variables that are designed to detect departures

from market effi ciency are the 12-month change in the University of Michigan’s consumer sen-

timent index and a measure of return momentum given by the trailing 1-month change in the

excess stock return. As an additional predictor variable, we interact the 12-month sentiment

change with our measure of return momentum.

While the regression coeffi cients on sentiment and return momentum are individually al-

most never significant, the sentiment-momentum interaction variable is almost always signifi-
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cant. The sentiment-momentum variable enters the regression equation with a negative sign,

regardless of whether sentiment has been rising or declining or whether return momentum is

positive or negative. Periods of rising sentiment and positive return momentum tend to be fol-

lowed by reversal in the excess return while periods of declining sentiment and negative return

momentum tend to be followed by further downward drift in the excess return. The statistically

significant predictive power of the sentiment-momentum variable derives mainly from periods

of declining sentiment and negative return momentum, forecasting a further decline in the

excess stock return. Our full-sample predictability regression for the period from 1990.M3 to

2018.M12 yields an adjusted R-squared statistic of 16.5%. If we omit the sentiment-momentum

variable, the adjusted R-squared statistic drops to 12.4%. In out-of-sample tests, including the

sentiment-momentum variable serves to markedly increase the out-of-sample R-squared sta-

tistic. In split-sample regressions, including the sentiment-momentum variable increases the

out-of-sample R-squared statistic to 14.9% versus 8.8% without this variable. In 10-year rolling

window regressions, including the sentiment-momentum variable increases the out-of-sample

R-squared statistic to 13.8% versus 8.8% without this variable.

We show that the sentiment-momentum variable is positively correlated with monthly

changes in the volume of Google searches for the term “stock market,” which is available

from 2004.M1 onwards. This pattern suggests that our sentiment-momentum variable helps

to predict excess returns because it captures shifts in investor attention, particularly during

stock market declines. Indeed, an alternative predictive regression that replaces our sentiment-

momentum variable with the lagged 1-month change in the Google search volume index deliv-

ers a significant negative regression coeffi cient and an adjusted R-squared statistic of 24.0%.

Both variables remain statistically significant and the adjusted R-squared statistic is improved

further to 25.4% when included together in the predictive regression.

The sentiment-momentum variable and the Google search data both help to predict episodes

of sequential declines in excess stock returns, even after controlling for the presence of sto-

chastic volatility. Both variables appear to serve as a type of investor pessimism indicator

that presages investors’decisions to sell stocks. Investors’decisions to sell stocks puts further

downward pressure on stock prices and contributes to a lower excess stock return over the next

month. Overall, we interpret our empirical results as providing evidence that the predictability

of excess stock returns is coming from both of the two sources identified by the theory.

1.1 Related literature

Theories that ascribe a causal role to sentiment or momentum in driving observed movements

in stock prices have a long history in economics. Keynes (1936, p. 156) likened the stock market

to a “beauty contest”where participants devote their efforts not to judging the underlying

2



concept of beauty, but instead to “anticipating what average opinion expects the average

opinion to be.”More recently, Shiller (2017) argues that investors’optimistic or pessimistic

beliefs about the stock market are similar to fads that can spread throughout the popular

culture like an infectious disease.

The empirical evidence on the effects of sentiment on aggregate stock returns is somewhat

mixed. Fisher and Statman (2003) and Brown and Cliff (2004) find that measures of sentiment

alone have little predictive power for stock returns over short (one -week or one-month) hori-

zons. But Brown and Cliff (2005) find that higher levels of sentiment forecast negative returns

over longer horizons. Lemmon and Portniaguina (2006) find that higher levels of sentiment

forecast lower future returns on value stocks but not growth stocks. Schmeling (2009) finds

that higher levels of consumer confidence negatively forecast aggregate stock returns across

countries at both short and long horizons. Huang, et al. (2014) show that a refined version of

the investor sentiment index originally constructed by Baker and Wurgler (2007) is a robust

negative predictor of 1-month ahead excess stock returns. Lansing (2019) uses a real business

cycle model to identify an “equity sentiment shock” that allows the model to exactly repli-

cate the observed time path the S&P 500 market value from 1960.Q1 through 2017.Q4. The

model-identified sentiment shock is strongly correlated with survey-based measures of U.S.

consumer sentiment. Our sentiment variable has no predictive power by itself, but it does

help to negatively forecast 1-month ahead excess stock returns when interacted with return

momentum.

Tetlock (2007) finds that a measure of media pessimism constructed from the “Abreast

the Market” column in the Wall Street Journal is a significant negative predictor of daily

returns on the Dow Jones Industrial Average (DJIA). His predictability regressions control

for the lagged volatility of returns. In a follow up study, García (2013) finds that a sentiment

measure constructed using counts of positive versus negative words in financial columns of

the New York Times helps to predict daily DJIA returns. Klemola, Nikkinen and Peltomäki

(2016) find that weekly changes in the volume of Google searches for the terms “market crash”

and “bear market”are significant negative predictors of 1-week ahead percentage changes in

the S&P 500 stock index, but they do not control for stochastic volatility. But given that

these three studies focus on the predictability of raw stock returns as opposed to excess stock

returns, the predictability findings are not informative about market ineffi ciency.

Increased attention to the stock market could potentially increase investors’information

about fundamentals. However, the theoretical links between investor information and stock

price movements are complex. Using rational expectations models, Veronesi (2000) and Lans-

ing and LeRoy (2014) show that an increase in investor information about future dividends

can either increase or decrease the variance of excess stock returns, depending on risk aver-

sion and other parameter values. Andrei and Hasler (2015) develop a rational model with
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exogenous time-varying attention to the stock market. Their model predicts that an increase

in investor attention leads to a higher excess stock return and a higher stock return variance.

In contrast, our regressions show that an increase in investor attention, as measured by the

volume of Google searches for the term “stock market,”predicts a lower excess stock return

while controlling for changes in stock return variance.

Our empirical results contribute to a significant body of evidence showing that investors

appear to react asymmetrically to gains versus losses. This idea can be traced back to Roy

(1952) and Markowitz (1952). The asymmetric treatment of gains versus losses is a central

concept in the “prospect theory” of asset pricing (Kahneman and Tversky 1979, Barberis

2013). Fraiberger, et al. (2018) construct a measure of media sentiment using textual analysis

of global news articles published by Reuters from 1991 to 2015. They find that the impact of

“global sentiment shocks”on equity returns is much stronger in global bear markets than in

global bull markets. Fisher, Martineau, Sheng (2020) find that bad news about macroeconomic

fundamentals raises media attention (as measured by Wall Street Journal and New York

Times article counts) by more than good news. Cujean and Hasler (2017) find that time

series momentum in excess stock returns is strongest in “bad times,”defined as periods of low

dividend growth.

With regard to individual traded securities, Frank and Sanati (2018) show that individual

stocks exhibit over-reaction to good news on the upside, followed by reversal, but under-

reaction to bad news on the downside, followed by drift. This is similar to the pattern we

find for aggregate excess stock returns in response to movements in the sentiment-momentum

variable. Da, Engelberg, and Gao (2011) show that an increase in the Google search intensity

for individual stocks tends to predict a short-term (2-week) price increase followed by a price

reversal, suggestive of over-reaction on the upside. Moskowitz, Ooi, and Pedersen (2012) find

that lagged excess returns on futures contracts (a measure of momentum) predict higher excess

returns in the near-term but lower excess returns at longer horizons.

Our empirical results are also in line with other studies that link the predictability of

excess returns to evidence of departures from rational expectations. Bacchetta, Mertens, and

van Wincoop (2009) find that financial markets which exhibit predictable excess returns also

exhibit predictable forecast errors of returns from surveys, arguing against full rationality of

the survey forecasts. Piazzesi, Salomao, and Schneider (2015) find evidence of departures from

rational expectations in expected excess bond returns from surveys. Cieslik (2018) shows that

investors’real time forecast errors about the short-term real interest rate help to account for

predictability in the bond risk premium.
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2 Excess returns in a consumption-based model

The framework for our theoretical analysis is a standard consumption-based asset pricing

model. For any type of purchased asset and any specification of investor preferences, the

first-order condition of the representative investor’s optimal saving choice yields

1 = Êt
[
Mt+1R

i
t+1

]
, (1)

where Mt+1 is the investor’s stochastic discount factor and Rit+1 is the gross holding period

return on asset type i from period t to t+ 1. The symbol Êt represents the investor’s subjec-

tive expectation, conditional on information available at time t. Under rational expectations,

Êt corresponds to the mathematical expectation operator Et evaluated using the objective

distribution of all shocks, which are assumed known to the rational investor.

For a dividend-paying stock, we have Rst+1 =
(
dt+1 + pst+1

)
/pst , where p

s
t is the ex-dividend

stock price and dt+1 is the dividend received in period t+ 1. For a default-free bond that pays

a stream of coupon payments (measured in consumption units) we have Rbt =
(
1 + δpbt+1

)
/pbt ,

where pbt is the ex-coupon bond price and δ is a parameter that governs the decay rate of

the coupon payments. A bond purchased in period t yields a coupon stream of 1, δ, δ2...

starting in period t+ 1. When δ = 1, we have a consol bond that delivers a perpetual stream

of coupon payments, each equal to one consumption unit. More generally, the value of δ

can be calibrated to achieve a target value for the Macaulay duration of the bond, i.e., the

present-value weighted average maturity of the bond’s cash flows.1 When δ = 0, we have a

one period discount bond that delivers a single coupon payment of one consumption unit in

period t + 1. In this case, Rft+1 ≡ 1/pbt is the risk-free rate of return which is known with

certainty in period t.

With time-separable constant relative risk aversion (CRRA) preferences, we have Mt+1 =

β (ct+1/ct)
−α , where β is the subjective time discount factor, ct is the investor’s real consump-

tion, and α is the risk aversion coeffi cient. With recursive preferences along the lines of Epstein

and Zin (1989), we have Mt+1 = βω (ct+1/ct)
−ω/ψ (Rct+1)ω−1 , where Rct+1 ≡ (ct+1 + pct+1

)
/pct

is the gross return on an asset that delivers a claim to consumption ct+1 in period t + 1,

ψ is the elasticity of intertemporal substitution (EIS), and ω ≡ (1− α) /
(
1− ψ−1

)
. In the

special case when α = ψ−1, we have ω = 1 such that Epstein-Zin preferences coincide with

CRRA preferences. With external habit formation preferences along the lines of Campbell and

Cochrane (1999), we have Mt+1 = β [st+1ct+1/ (stct)]
−α , where st ≡ 1 − xt/ct is the surplus

consumption ratio, xt is the external habit level, and α is a curvature parameter that governs

the steady state level of risk aversion.

1See, for example, Lansing (2015).
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For stocks, equation (1) can be rewritten as

pst/dt = Êt

[
Mt+1

dt+1
dt

(
1 + pst+1/dt+1

)]
, (2)

where pst/dt is the price-dividend ratio and dt+1/dt is the gross growth rate of dividends. At

this point, it is convenient to define the following nonlinear change of variables:

zst ≡ Mt
dt
dt−1

(1 + pst/dt) , (3)

where zst represents a composite variable that depends on the stochastic discount factor, the

growth rate of dividends, and the price-dividend ratio.2 The investor’s first-order condition

(2) becomes

pst/dt = Êtz
s
t+1, (4)

which shows that the equilibrium price-dividend ratio is simply the investor’s conditional

forecast of the composite variable zst+1. Substituting p
s
t/dt = Êtz

s
t+1 into the definition (3)

yields the following transformed version of the investor’s first-order condition

zst = Mt
dt
dt−1

(1 + Êtz
s
t+1). (5)

The gross stock return can now be written as

Rst+1 =
dt+1 + pst+1

pst
=

(
1 + pst+1/dt+1

pst/dt

)
dt+1
dt

=

(
zst+1

Êtzst+1

)
1

Mt+1
, (6)

where we have eliminated pst/dt using equation (4) and eliminated p
s
t+1/dt+1 + 1 using the

definitional relationship (3) evaluated at time t+ 1.

Starting again from equation (1) and proceeding in a similar fashion yields the following

transformed first-order condition for bonds:

zbt = Mt(1 + δÊtz
b
t+1), (7)

where zbt ≡Mt

(
1 + δpbt

)
and pbt = Êtz

b
t+1. The gross bond return can now be written as

Rbt+1 =
1 + δpbt+1

pbt

=

(
zbt+1

Êtzbt+1

)
1

Mt+1
. (8)

2This nonlinear change of variables technique is also employed by Lansing (2010, 2016) and Lansing and
LeRoy (2014).
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When δ = 0 we have zbt+1 = Mt+1 and the above expression simplifies to Rbt+1 = Rft+1 =

1/(ÊtMt+1).

Combining equations (6) and (8) yields the following ratio of the gross stock return to the

gross bond return:
Rst+1
Rbt+1

=
zst+1

Êtzst+1

Êtz
b
t+1

zbt+1
. (9)

Taking logs of both sides of equation (9) yields the following compact expression for the excess

stock return, i.e., the realized equity premium:

log
(
Rst+1

)
− log(Rbt+1) = log

[
zst+1/(Êtz

s
t+1)

]
− log

[
zbt+1/(Êtz

b
t+1)

]
, (10)

where the second term on the right side simplifies to − log[Mt+1/(ÊtMt+1)] when δ = 0.

Similarly, we can compute the excess bond return which compares the return on a longer-

term bond (δ > 0) to the risk free rate (δ = 0) . In this case, we have

log(Rbt+1)− log(Rft+1) = log
[
zbt+1/(Êtz

b
t+1)

]
− log

[
Mt+1/(ÊtMt+1)

]
. (11)

Equations (10) and (11) are striking. If we apply the approximation log (A/B) ' (A−B) /B

to the terms that appear on the right sides of equations (10) and (11), then A−B would rep-

resent the investor’s forecast error. Imposing rational expectations such that Êt = Et might

therefore seem to imply that log (A/B) should be wholly unpredictable. However, as we show

below, predictability can arise under rational expectations if the model exhibits stochastic

volatility. Nonetheless, the intuition of log (A/B) ' (A−B) /B helps to explain why is it

very diffi cult for consumption-based asset pricing models to generate significant predictability

of excess returns under rational expectations. The same intuition also helps to explain why

these same models struggle to produce a sizeable mean equity premium, except in cases where

there is a high degree of curvature in investor preferences. The high degree of curvature serves

to invalidate the approximation log (A/B) ' (A−B) /B.

3 Predictability from stochastic volatility

In the special case of CRRA utility, normally and independently distributed consumption

growth, and ct = dt, the equilibrium price-dividend ratio is constant. The realized equity

premium relative to the risk free rate is log(Rst+1/R
f
t+1) = εt+1+(α− 0.5)σ2ε, where εt+1 is the

innovation to consumption growth and σ2ε is the associated variance which is not stochastic.
3

In this special case, excess returns at time t + 1 are not predictable using variables dated

3For the derivation, see Lansing and LeRoy (2014), Appendix B. Note that in the risk neutral case with
α = 0, we have the result that E[Rst+1/R

f
t+1] = E[exp(εt+1 − 0.5σ2ε)] = 1.
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time t or earlier. But as we show below, models that exhibit stochastic volatility can generate

predictability of excess returns under rational expectations.

When solving consumption-based asset pricing models, it is common to employ approxi-

mation methods that deliver conditional log-normality of the relevant variables. If a random

variable qt is conditionally log-normal, then

log (Etqt+1) = Et [log (qt+1)] + 1
2V art [log (qt+1)] , (12)

where V art is the mathematical variance operator conditional on information available to the

investor at time t.

Starting from equation (10) and imposing rational expectations such that Êt = Et, we

make the assumption that the composite variables zst+1 and z
b
t+1 are both conditionally log-

normal. Making use of equation (12) to eliminate log
(
Etz

s
t+1

)
and log

(
Etz

b
t+1

)
yields the

following alternate expression for the excess stock return

log(Rst+1)− log(Rbt+1) = [log
(
zst+1

)
− Et log

(
zst+1

)
] −

[
log(zbt+1)− Et log(zbt+1)

]

−12V art
[
log
(
zst+1

)]
+ 1

2V art

[
log(zbt+1)

]
(13)

where zbt+1 = Mt+1 for a 1-period discount bond with δ = 0. Notice that the first two terms in

equation (13) are the investor’s forecast errors for log
(
zst+1

)
and log

(
zbt+1

)
, respectively. These

forecast errors cannot be a source of predictability under rational expectations. However, the

last two terms in equation (13) show that predictability can arise under rational expectations

if the laws of motion for the endogenous variables log
(
zst+1

)
and log(zbt+1) exhibit stochastic

volatility. This is because the conditional variance terms at time t would partly determine the

realized excess return at time t+ 1.

Specializing equation (13) to the case where δ = 0 such that Rbt+1 = Rft+1 and z
b
t+1 = Mt+1,

we have

log(Rst+1)− log(Rft+1) =
[
log
(
zst+1

)
− Et log

(
zst+1

)]
− [log(Mt+1)− Et log(Mt+1)]

−12V art[log (Mt+1R
s
t+1 p

s
t/dt)︸ ︷︷ ︸

= zst+1

] + 1
2V art [log(Mt+1)] , (14)

where the last line exploits the definition of zst+1. Equation (14) implies that the rational

expected excess return on stocks is given by

Et[log
(
Rst+1

)
]− log(Rft+1) = −12V art[log(Mt+1R

s
t+1 p

s
t/dt)] + 1

2V art [log(Mt+1)] , (15)

where Rft+1 is known at time t.
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Following Campbell (2014), an alternative expression for the rational expected excess re-

turn on stocks can be derived by decomposing the conditional rational expectation in equation

(1) as follows

Et
[
Mt+1R

s
t+1

]︸ ︷︷ ︸
=1

= EtMt+1︸ ︷︷ ︸
=1/Rft+1

EtR
s
t+1 + Covt

[
Mt+1, R

s
t+1

]
. (16)

Solving the above expression for Et
(
Rst+1

)
/Rft+1 and then taking logs yields

log
(
EtR

s
t+1

)
− log(Rft+1) = log

{
1− Covt

[
Mt+1, R

s
t+1

]}
, (17)

Et
[
log
(
Rst+1

)]
− log(Rft+1) = log

{
1− Covt

[
Mt+1, R

s
t+1

]}
− 1

2V art
[
logRst+1

]
, (18)

where, in going from equation (17) to (18), we have assumed conditional log-normality of

the gross stock return Rst+1. The above expression shows that the rational expected excess

return on stocks will be predictable if Covt
[
Mt+1, R

s
t+1

]
or V art

[
logRst+1

]
are time-varying.

Attanasio (1991) undertakes a derivation similar to equation (18) and concludes (p. 481):

“predictability of excess returns constitutes direct evidence against the joint hypothesis that

markets are effi cient and second moments are constant.”While our derivation of equation

(14) delivers a similar conclusion, it helps to focus attention on investor forecast errors as an

alternative source of predictable excess returns when expectations are not fully rational.

3.1 Analytical example: Exogenous stochastic volatility

Here we provide an analytical example to show how exogenous stochastic volatility in the

law of motion for consumption growth can generate predictable excess returns under rational

expectations. Suppose the investor’s stochastic discount factor is given by

Mt+1 = β (ct+1/ct)
−α = β exp

(
−αxct+1

)
, (19)

xct+1 = x+ ρ (xct − x) + σtεt+1, |ρ| < 1, εt ∼ NID (0, 1) , (20)

σ2t+1 = σ2 + γ
(
σ2t − σ2

)
+ ut+1, |γ| < 1, ut ∼ NID

(
0, σ2u

)
, (21)

where xct+1 ≡ log (ct+1/ct) is real consumption growth that evolves as an AR(1) process with

mean x and persistence parameter ρ. The innovation εt+1 is normally and independently

distributed (NID) with mean zero and variance of one. We allow for exogenous stochastic

volatility along the lines of Bansal and Yaron (2004), where γ governs the persistence of

volatility and ut+1 is the innovation to volatility.4 Real dividend growth xdt+1 ≡ log (dt+1/dt)

is given by

xdt+1 = xct+1 + vt+1, vt ∼ NID
(
0, σ2v

)
, (22)

4When simulating their model, Bansal and Yaron (2004) ensure that σ2t remains positive by replacing any
negative realizations with a very small number, which happens in about 5% of the realizations.
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where vt+1 is an innovation with mean zero and variance σ2v.

Under rational expectations, we have

Rft+1 = 1/(EtMt+1) = β−1 exp
[
αx+ αρ (xct − x)− 1

2α
2σ2t
]
, (23)

log [Mt+1/(EtMt+1)] = −ασt εt+1 − 1
2α

2σ2t . (24)

The left side of equation (24) will be predictable only when σ2t is time-varying, i.e., when

σ2u > 0. Appendix A provides an approximate analytical solution for the composite variable

zst+1 that appears in the excess stock return equation (10). Under rational expectations, the

approximate solution implies the following expression:

log
[
zst+1/(Etz

s
t+1)

]
= a1σt εt+1 + a2ut+1 + vt+1 − 1

2 (a1)
2 σ2t − 1

2 (a2)
2 σ2u − 1

2σ
2
v, (25)

where a1 and a2 are Taylor series coeffi cients that depend on the model parameters. Substi-

tuting equations (24) and (25) into the excess stock return equation (10) and imposing δ = 0

such that Rbt+1 = Rft+1 yields

log
(
Rst+1

)
− log(Rft+1) = (a1 + α)σt εt+1 + a2ut+1 + vt+1

+ 1
2

[
α2 − (a1)

2
]
σ2t − 1

2 (a2)
2 σ2u − 1

2σ
2
v, (26)

which shows that excess stock returns will be predictable only when σ2t is time-varying, pro-

vided that α2 − (a1)
2 6= 0. In the special case when ρ = 0, the first Taylor series coeffi cient

becomes a1 = 1 − α and the coeffi cient on σ2t in equation (26) becomes α − 0.5, which is

increasing in the value of the risk aversion coeffi cient α.

It is important to note that the mere presence of the state variable σ2t in equation (26) does

not guarantee that the observed amount of excess return predictability will be statistically

significant. Depending on the model calibration, the fundamental shock innovations εt+1,

ut+1 and vt+1 may end up being the main drivers of fluctuations in realized excess returns,

thus washing out the influence of the state variable σ2t which is sole driver of fluctuations in

expected excess returns. This washing out effect appears to be present in most of the leading

consumption based asset pricing models.

Many studies examine the predictability of raw stock returns as opposed to excess stock

returns. Starting from equation (6) and making use of equations (19) and (25) yields the

following expression for the raw stock return

log
(
Rst+1

)
= (a1 + α)σt εt+1 + a2ut+1 + vt+1 − log (β) + αx

− 1
2 (a1)

2 σ2t − 1
2 (a2)

2 σ2u − 1
2σ

2
v + αρ (xct − x) . (27)
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Equation (27) shows that log
(
Rst+1

)
will be predictable due to the term involving xct −x even

when volatility is not stochastic, i.e., when σ2t = σ2 for all t. Hence, a finding that some

variable helps to predict raw stock returns, even after controlling for the presence of stochastic

volatility, does not necessarily imply market ineffi ciency.

3.2 Analytical example: Endogenous stochastic volatility

Endogenous stochastic volatility can arise from the nonlinear nature of the model’s functional

forms. Consider the time-separable exponential utility function u (ct) = 1− exp (−αct) which
exhibits constant absolute risk aversion such that −u′′ (ct) /u′ (ct) = α. The investor’s stochas-

tic discount factor is given by

Mt+1 = β exp [−α (ct+1 − ct)] = β exp
(
−αctxct+1

)
, (28)

xct+1 = x+ ρ (xct − x) + εt+1, |ρ| < 1, εt ∼ NID
(
0, σ2ε

)
, (29)

where xct+1 ≡ (ct+1 − ct) /ct is real consumption growth that evolves as an AR(1) process with
constant innovation variance σ2ε.

Under rational expectations, we have

Rft+1 = 1/(EtMt+1) = β−1 exp
{
ct [αx+ αρ (xct − x)]− 1

2α
2σ2εc

2
t

}
, (30)

log [Mt+1/(EtMt+1)] = −αct εt+1 − 1
2α

2σ2εc
2
t , (31)

which shows that the left side of equation (31) will be predictable because c2t is time-varying

and helps to partly determine the realized excess stock return at time t + 1. Similarly, the

term log
[
zst+1/(Etz

s
t+1)

]
that appears in the excess stock return equation (10) will also be

predictable.

3.3 Discussion

In the rational long-run risks model of Bansal and Yaron (2004), exogenous stochastic volatility

is achieved by assuming an AR(1) law of motion for the volatility of innovations to consump-

tion growth and dividend growth, along the lines of equation (21). In the rational external

habit model of Campbell and Cochrane (1999), endogenous stochastic volatility is achieved

via a nonlinear sensitivity function that determines how innovations to consumption growth

influence the logarithm of the surplus consumption ratio. Despite these features, subsequent

analysis has shown that these fully-rational models fail to deliver predictability results that

resemble those found in the data.

Kirby (1998) had previously shown that the rational habit model of Abel (1990) and the

rational recursive preferences model of Epstein and Zin (1989, 1991) both fail to generate sig-

nificant predictability in excess stock returns. Chen and Hwang (2018) extend Kirby’s analysis
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to the rational models of Campbell Cochrane (1999) and Bansal and Yaron (2004) and find

that neither model can generate any significant predictable excess returns. Using simulated

data, Beeler and Campbell (2012) show that the rational long-run risk models of Bansal and

Yaron (2004) and Bansal, Kiku and Yaron (2012) both fail to match the predictability patterns

observed in the data.

4 Predictability from market ineffi ciency

The failure of leading rational asset pricing models to produce empirically realistic predictabil-

ity of excess stock returns lends support to considering a second possible source of predictabil-

ity, namely, departures from rational expectations that give rise to predictable investor forecast

errors. Here we provide an analytical example to illustrate this idea.

4.1 Analytical example: Extrapolative expectations

Studies by Fisher and Statman (2002), Vissing-Jorgenson (2004), Amromin and Sharpe (2014),

Frydman and Stillwagon (2018), and Da, Huang, and Jin (2020) all find evidence of extrap-

olative or procyclical expected returns among stock investors. Greenwood and Shleifer (2014)

and Adam, Marcet, and Beutel (2017) show that measures of investor optimism about future

stock returns are strongly correlated with past stock returns and the price-dividend ratio.5

Interestingly, even though a higher price-dividend ratio in the data empirically predicts lower

realized stock returns (Cochrane 2008), the survey evidence shows that investors fail to take

this relationship into account; instead they continue to forecast high future returns on stocks

following a sustained run-up in the price-dividend ratio. Using survey data, Casella and Gulen

(2018) show that the ability of the dividend yield (inverse of the price-dividend ratio) to fore-

cast 12-month ahead excess returns is contingent on a variable that measures the degree to

which investors extrapolate past stock returns.

Along the lines of Lansing (2006), we model extrapolative expectations as ÊtMt+1 = AfMt

and Etzst+1 = Aszst+1, where A
f > 0 and As > 0 are extrapolation parameters. The value

of Ai for i = f, s governs the nature of the extrapolation, where Ai = 1 can be viewed as

“neutral”(corresponding to a random walk forecast), Ai > 1 can be viewed as “optimistic”and

Ai < 1 can be viewed as “pessimistic.”A more complex setup could allow the extrapolation

parameters to be time varying.

The stochastic discount factor continues to be defined by equations (19) through (21). In

5We confirm this finding in Figure 9 using data from the University of Michigan survey.
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this case, we have

log[Mt+1/(ÊtMt+1)] = log

[
β exp

(
−αxct+1

)
Afβ exp (−αxct)

]
,

= − log(Af )− ασt εt+1 + α (1− ρ) (xct − x) , (32)

which shows that log[Mt+1/(ÊtMt+1)] will be predictable due to the term involving xct − x.
Appendix B provides an approximate analytical solution for the expression zst+1/ (Êtz

s
t+1).

The approximate solution implies

log[zst+1/(Êtz
s
t+1)] = − log(As) + (1− α− b1)σt εt+1 + (1− b2)vt+1

− (1− α− b1) (1− ρ) (xct − x) − (1− b2)vt, (33)

where b1 and b2 are Taylor series coeffi cients that depend on the model parameters. Substi-

tuting equations (32) and (33) into the excess stock return equation (10) and imposing δ = 0

such that Rbt+1 = Rft+1 yields

log
(
Rst+1

)
− log(Rft+1) = log(Af/As) + (1− b1) σt εt+1 + (1− b2)vt+1

− (1− b1)(1− ρ) (xct − x) − (1− b2) vt, (34)

which shows that the terms involving xct − x and vt represent sources of predictable excess
returns that arise from market ineffi ciency.

5 Predictability regressions

In this section we describe: (1) our motivation for the choice of predictor variables, (2) prop-

erties of the data, and (3) the results of 1-month ahead predictability regressions.

5.1 Choice of predictor variables

Our predictability regressions take the following form:

ersf t+1 = c0 + c1 pd+ c2 vrp3+ c3 ∆ff12

+c4 ∆sent12+ c5 ∆ersf + c6 ∆sent12×∆ersf, (35)

where ersf t+1 ≡ log(Rst+1/R
f
t+1) is the realized excess return on stocks relative to the risk free

rate in month t + 1. The gross return on stocks Rst+1 is measured by the 1-month nominal

return on the S&P 500 stock index, including dividends. The gross risk free rate Rft+1 is

measured by the 1-month nominal return on a 3-month Treasury Bill. The predictor variables

on the right side of equation (35) are all dated month t. We do not perform long-horizon
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predictability regressions because the empirical reliability of such results have been called into

question by Boudoukh, Richardson, and Whitelaw (2008) and Bauer and Hamilton (2017).

The variable pd is the price-dividend ratio for the S&P 500 stock index– a standard

predictor variable defined as the end-of-month nominal closing value of the index divided by

cumulative nominal dividends over the past 12 months. Any consumption-based asset pric-

ing model with rational expectations implies that the price-dividend ratio will depend on the

model’s fundamental state variables, including any that would give rise to the conditional vari-

ance terms in equation (13). We illustrate this idea in Appendix A with a rational asset pricing

model that exhibits stochastic volatility of consumption growth along the lines of the long-run

risk model of Bansal and Yaron (2004). Cochrane (2017) shows that the price-dividend ratio in

U.S. data exhibits strong co-movement with a measure of “surplus consumption”constructed

from the data using the parameters of Campbell and Cochrane (1999) habit formation model.

Hence, including pd as a regressor is a way to control indirectly for the presence of stochastic

volatility when the state variables that drive stochastic volatility are not directly observable.

The variable vrp3 is the 3-month moving average of the “variance risk premium”originally

defined by Bollerslev, Tauchen, and Zhou (2009) as the difference between the implied volatility

from options on the S&P 500 index and the realized volatility of the S&P 500 stock index.

Numerous studies find that variance risk premium is a useful predictor of excess stock returns.6

Including vrp3 as a regressor is a way to control directly for the presence of stochastic volatility

since vrp3 represents a time-varying measure of stock return variance. The variance risk

premium can be quite volatile from one month to the next. Our preliminary investigations

revealed that the 3-month moving average of the variance risk premium is a better predictor of

monthly excess stock returns than the variance risk premium measured over the most recent

month. Other studies, such as Attanasio (1991), Guo (2006), and Welch and Goyal (2008),

have employed measures of realized stock return volatility as predictor variables. Christensen

and Prabhala (1998) show that past implied volatility and past realized volatility are both

useful for predicting future realized volatility. We experimented with regression equations

that included implied volatility and realized volatility as separate predictor variables, but the

resulting fit was not improved.

The variable ∆ff12 is the 12-month change the federal funds rate. This variable bears

some resemblance to the “stochastically detrended nominal risk free rate”employed by Guo

(2006) as a predictor variable. Along similar lines, Campbell and Yogo (2006) and Ang and

Bekaert (2007) employ the nominal 3-month Treasury bill yield as a predictor variable. A

study by Miranda-Agrippino and Rey (2020) finds that a single global factor, partly driven by

U.S. monetary policy, helps to explains a significant share of the variance of equity and bond

6See, for example, Drechsler and Yaron (2011), Bollerslev, et al. (2014), Zhou (2018), and Pyun (2019).
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returns around the world.7 From a rational asset pricing perspective, equation (23) shows

that changes in the risk free rate would capture changes in the variables that drive stochastic

volatility. Indeed, sample periods when the variable ∆ff12 is declining roughly correspond

to sample periods when the 12-month rolling variance of the federal funds rate is increasing.

Welch and Goyal (2008) employ the Treasury term spread as predictor variable. Faria and

Verona (2020) show that the low-frequency component of the Treasury term spread is a better

predictor of excess stock returns than the Treasury term spread itself. From 1990.M3 to

2018.M12, the correlation coeffi cient between ∆ff12 and the 12-month change in the Treasury

term spread (nominal yield difference between 10-year Treasury bond and 3-month Treasury

bill) is −0.82. Similar to pd, we view the inclusion of ∆ff12 as a way to control indirectly for

the presence of stochastic volatility.

Although pd, vrp3, and ∆ff12 are intended to control for stochastic volatility, these

controls are imperfect. Departures from rational expectations could affect the price-dividend

ratio and the variance of stock returns. Numerous empirical studies starting with Shiller (1981)

and LeRoy and Porter (1981) have shown that stock prices appear to exhibit excess volatility

when compared to fundamentals, as measured by the discounted stream of ex post realized

dividends.8 A recent study by Greenwood, Shleifer, and You (2017) using stock returns for

various U.S. industries finds that stock valuation ratios and stock return volatility both increase

substantially during the 24 months preceding what they define as “bubble peaks.”Movements

in stock prices that are linked to market ineffi ciency could influence ∆ff12 if Federal Reserve

monetary policy reacts to the stock market. As noted by Brav and Heaton (2002), it is often

diffi cult to distinguish rational and behavioral explanations of financial market phenomena.

Nevertheless, in our empirical analysis, we treat pd, vrp3, and∆ff12 as controls for stochastic

volatility and look for evidence of market ineffi ciency using other predictor variables.9

As reviewed in the introduction, numerous empirical studies find that measures of senti-

ment and momentum are often helpful in predicting aggregate stock market returns or indi-

vidual security returns. But these studies typically fail to control for the presence of stochastic

volatility as a competing explanation for predictable excess returns. The variable ∆sent12

is the 12-month change in the University of Michigan’s consumer sentiment index– a gauge

of investor optimism or pessimism. We experimented with higher frequency changes in the

sentiment index, but the resulting fit was not improved. The variable ∆ersf is the 1-month

change in the excess stock return– a measure of return momentum. In a recent comprehen-

7Similarly, Luo and Ma (2017) find that a global factor is an important driver of house price movements
around the world.

8Lansing and LeRoy (2014) provide a recent update on this literature.
9We experimented with including additional controls for stochastic volatility in the form of volatility measures

for consumption growth or dividend growth, computed using rolling data windows of various lengths. None of
these measures were found to be statistically significant.
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sive study of excess return predictability, Gu, Kelly, and Xiu (2020) find that “allowing for

(potentially complex) interactions among the baseline predictors” can substantially improve

forecasting performance. Motivated by this finding, we interact the sentiment and momentum

variables to obtain ∆sent12×∆ersf as an additional predictor variable. The three “behav-

ioral”predictor variables are intended to detect market ineffi ciency that may manifest itself in

the form of excessive optimism or pessimism, extrapolation, or over/under reaction to news.

5.2 Data

We use monthly data for the period from 1990.M3 to 2018.M12. The starting date for the

sample is governed by the availability of data for vrp3 which makes use of the VIX index.

The sources and methods used to construct the data are described in Appendix C.

Table 1 reports summary statistics of excess stock returns and the six predictor variables.

The average monthly excess return on stocks relative to the risk free rate is 0.53%. The sum-

mary statistics show that excess stock returns exhibit negative skewness and excess kurtosis.

Interestingly, four out of the six predictor variables also exhibit negative skewness and excess

kurtosis, namely, vrp3, ∆ff12, ∆sent12, and ∆sent12×∆ersf.

The four predictor variables pd, vrp3, ∆ff12, and ∆sent12 are each highly persistent.

The other two predictor variables ∆ersf, and ∆sent12×∆ersf exhibit negative autocorrela-

tion statistics. In Appendix D, we use a bootstrap procedure to gauge the quantitative impact

of persistent regressors on the critical values of the standard t-statistic. The bootstrapped crit-

ical values are not substantially different from the asymptotic ones, but there are noticeable

shifts in either direction for some of the persistent predictor variables.

The strongest correlation amongst the predictor variables is between ∆ff12 and ∆sent12.

This pair exhibits a correlation coeffi cient of 0.35. The interaction variable ∆sent12×∆ersf

exhibits a quantitatively small correlation coeffi cient with each of the other five predictor

variables, supporting its inclusion as additional regressor.

5.3 Predictive regressions

The results of our predictability regressions are summarized in Tables 2 through 5 and Figures

1 through 7. The t-statistics for the estimated coeffi cients are computed using Newey-West

HAC corrected standard errors. Bold entries in the tables indicate that the predictor variable

is significant at the 5% level using the bootstrapped critical values. Adjusted R-squared values

are shown at the bottom of each regression specification.

Figure 1 shows scatter plots for each of the six predictor variables in month t versus the

excess return on stocks in month t + 1. The slope of the univariate regression lines show

that higher levels of pd (top left panel) and ∆sent12×∆ersf (bottom right panel) tend to
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forecast a lower excess stock return while higher levels of the other four predictor variables

vrp3, ∆ff12, ∆sent12, and ∆ersf tend to forecast a higher excess return. Extreme values

for the data points are labeled, many of which occurred during the global financial crisis of

2008 and 2009. Our main results are robust to sample periods that do not include the crisis.

Table 2 shows the full-sample regression results. Specification 1 includes pd, vrp3 and

∆ff12 which are the predictor variables that control for stochastic volatility. Recall that sto-

chastic volatility is the only source of predictability under rational expectations. Regardless

of the regression specification, the estimated coeffi cient on pd is always negative and statis-

tically significant. This robust result is consistent with numerous previous studies which find

that a higher price-dividend ratio predicts a lower excess stock return. According to the the-

ory, pd encodes any fundamental state variables that would give rise to stochastic volatility.

The estimated coeffi cient on vrp3 is positive and statistically significant, also consistent with

previous studies. The literature has interpreted the variance risk premium as a proxy for

macroeconomic uncertainty. The positive coeffi cient on vrp3 implies that higher uncertainty

in month t induces investors to demand a higher excess stock return in month t + 1. The

estimated coeffi cient on ∆ff12 is positive and statistically significant. As shown in Appendix

D, the relevant bootstrapped critical values for pd, vrp3, and ∆ff12 are −2.570, 1.916, and

1.973, respectively. If we use the variance risk premium measured over the most recent month

in place of vrp3, the regression coeffi cient remains positive and strongly significant, but the

adjusted R-squared statistic for Specification 1 drops from 12.6% to 9.7%.

The positive and statistically significant coeffi cient on ∆ff12 does not have a direct coun-

terpart with previous results in the literature but, as we shall see, it is very robust across

different regression specifications and sample periods. Guo (2006) reports a negative and sta-

tistically significant coeffi cient on the stochastically detrended nominal risk free rate (the risk

free rate minus its past 12-month moving average) using quarterly data. Campbell and Yogo

(2006) report a negative and statistically significant coeffi cient on the nominal 3-month Trea-

sury bill yield using quarterly and monthly data. Ang and Bekaert (2007) report a negative

and statistically significant coeffi cient on the nominal 3-month Treasury bill yield using an-

nual data. If we replace ∆ff12 with either the federal funds rate itself or its 12-month moving

average, then we obtain a negative coeffi cient, but one that is not statistically significant. If

we replace ∆ff12 with the detrended federal funds rate (the funds rate minus its 12-month

moving average), then we recover a statistically significant positive coeffi cient, but the ad-

justed R-squared statistic is somewhat reduced from 16.5% to 15.4%. Since ∆ff12 captures

changes in monetary policy over the medium-term, the positive coeffi cient implies that a more

contractionary (expansionary) monetary policy induces investors to demand a higher (lower)

excess stock return. Along these lines, Bekaert, Hoerova, and Lo Duca (2013) find that a

more contractionary monetary policy increases risk aversion in the future, implying a higher
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expected excess return on stocks.

Specification 2 in Table 2 adds the two behavioral predictor variables ∆sent12 and ∆ersf

while Specification 3 goes a step further and adds the interaction variable ∆sent12×∆ersf.

The estimated coeffi cients on ∆sent12 and ∆ersf are not statistically significant. A finding

of non-significance for these two variables is a typical result across all of our regression spec-

ifications. However, the estimated coeffi cient on ∆sent12×∆ersf is negative and strongly

significant, exhibiting a t-statistic of −4.230. The bootstrapped critical value from Appendix

D is −2.049. The fact that ∆sent12×∆ersf is significant while neither ∆sent12 or ∆ersf

are significant individually argues against the interpretation that either one of these variables

is somehow measuring rational investors’ time-varying risk aversion. Specification 3 deliv-

ers an adjusted R-squared statistic of 16.5% versus 12.6% for Specification 1 and 12.4% for

Specification 2. The full-sample fitted values from Specification 3 are plotted in Figure 2.

At first glance, the negative coeffi cient on ∆sent12×∆ersf in Specification 3 is suggestive

of over-reaction of excess stock returns on the upside followed by reversal in the excess return

(when∆sent12 and∆ersf are both positive) combined with under-reaction of excess stock re-

turns on the downside followed by further downward drift in the excess return (when ∆sent12

and ∆ersf are both negative). Specification 4 explores this idea further using a set of four

dummy variables to classify the four possible sign combinations of ∆sent12 and ∆ersf. The

symbol ∆+ represents a positive change in the predictor variable while ∆− represents a nega-

tive change. Specification 4 shows that the estimated coeffi cient on the sentiment-momentum

variable is negative for all four sign combinations. However, the statistical significance of this

variable derives mainly from periods of declining sentiment and negative return momentum,

forecasting a further decline in the excess stock return.10 We will return to this point in

more detail below when we link movements in the sentiment-momentum variable to an index

measuring the volume of Google searches for the term “stock market.”Search volume for this

term tends to spike during pronounced stock market declines.

We can also offer some (speculative) interpretation of the negative estimated coeffi cients

on the sentiment-momentum variable for the two cases when this variable is negative. When

∆sent12 < 0 and ∆ersf > 0, positive return momentum may provide a short-term bullish

signal for stocks in a bear market where sentiment has been declining over the past year,

thus forecasting a higher excess stock return over the next month. When ∆sent12 > 0 and

∆ersf < 0, negative return momentum may represent a temporary correction in a bull market

where sentiment has been rising over the past year. This event may represent a “buy-the-dip”

opportunity for stocks, forecasting a higher excess stock return over the next month.

Table 3 shows split-sample regression results. The first split-sample runs from 1990.M3

10The frequencies of occurrence for the four possible sign combinations are as follows: 27% (∆+∆+ ), 29%
(∆+∆− ), 23% (∆−∆+ ), and 21% (∆−∆− ).
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to 2003.M12 while the second runs from 2004.M1 to 2018.M12. The regression results for

the first split-sample are similar to the full-sample results, with the exception that the ad-

justed R-squared statistics are now somewhat lower. These results confirm that our main

findings are robust to the exclusion of data associated with the global financial crisis of 2008

and 2009. The results for the second split-sample show much higher adjusted R-squared

statistics– in the vicinity of 20%. Notice that the regression coeffi cients on pd and ∆ff12 are

much larger in magnitude in the second split sample. This is because both variables exhibit

lower average values from 2004 onwards. In Specification 3, the variable ∆sent12×∆ersf is

statistically significant in both split-samples. In Specification 4, the estimated coeffi cient on

the sentiment-momentum variable is almost always negative, regardless of the sample period

or the particular sign combination. However, the reduced number of observations for each

particular sign combination now serves to dilute the statistical significance.

Figure 3 shows the results of rolling regressions using Specification 3, where each regression

employs a 10-year (120-month) moving window of data. The rolling regression coeffi cients on

pd, vrp3 and ∆ff12 exhibit consistent signs and are almost always significant from the early

2000s onwards. The rolling regression coeffi cients on ∆sent12 and ∆ersf are never significant.

However, similar to the results for pd, vrp3 and ∆ff12, the rolling regression coeffi cient

on ∆sent12×∆ersf (bottom right panel) exhibits a consistent sign and is almost always

significant from the early 2000s onwards. These results show that the sentiment-momentum

variable is a robust predictor of excess stock returns.

Table 4 compares goodness-of-fit statistics for predictive regressions that include the vari-

able ∆sent12×∆ersf versus otherwise similar regressions that omit this variable. An asterisk

(*) indicates the superior goodness-of-fit statistic for the two regressions being compared. The

goodness of fit statistics are: (1) the root mean squared forecast error (RMSFE ), (2) the mean

absolute forecast error (MAFE ), the correlation coeffi cient between the forecasted excess re-

turn and the realized excess return (Corr), and (4) either the adjusted R-squared statistic

(for in-sample forecasts) or the out-of-sample R-squared statistic (for out-of-sample forecasts).

The out-of-sample R-squared statistic compares the performance of the predictive regression

to a benchmark forecast model that assumes constant excess stock returns. The statistic is

defined as one minus the ratio of summed squared residuals from the predictive regression

to summed squared deviations of realized excess returns from the mean excess return of the

estimation sample.

The top panel of Table 4 shows the results for in-sample regressions. The middle panel

shows the results for split out-of-sample regressions, where the regression equation is estimated

for the period from 1990.M3 to 2003.M12 and then used to forecast excess stock returns for

the period from 2004.M1 to 2018.M12. The bottom panel shows the results for rolling out-of-

sample regressions, where each regression employs a 10-year (120-month) moving window of
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data. The regression equation estimated for a given window of data ending in month t is used

to forecast the excess stock return for month t+ 1, without re-estimation of the equation.

In all cases in Table 4, including ∆sent12×∆ersf in the predictive regression serves to

improve forecast performance as measured by the goodness-of-fit statistic. When including

∆sent12×∆ersf, the out-of-sample R-squared statistics are 14.9% and 13.8% for the split

and rolling out-of-sample regressions, respectively. When omitting ∆sent12×∆ersf, the cor-

responding statistics are substantially lower at 8.83% and 8.84%. Figures 4, 5 and 6 show

scatter plots of realized versus predicted excess returns for each of the various regression pair-

ings in Table 4. A perfect forecast in any given month would lie directly on the 45-degree

line.

6 Behavioral implications

Having established that the sentiment-momentum variable is a robust predictor of excess stock

returns, we wish to explore the behavioral implications of this result for investors. The left

panel of Figure 7 shows that the variable ∆sent12×∆ersf is positively correlated with the

variable ∆SVI, defined as the 1-month change in the Google Search Volume Index (SVI) for

the term “stock market.”11 The correlation coeffi cient between the two variables is 0.23. In the

right panel of Figure 7 we plot ∆SVI in month t versus the excess stock return ersf in month

t + 1. The univariate regression line shows that a positive SVI change tends to predict lower

excess stock returns. This result, together with the positive correlation between ∆SVI and

∆sent12×∆ersf, suggests that our sentiment-momentum variable helps to predict excess re-

turns because it captures shifts in investor attention to recent stock market movements. These

movements, in turn, appear to influence investors’decisions to buy or sell stocks, resulting in

upward or downward pressure on stock prices.

When do investors pay more attention to the stock market? To help answer this question,

Figure 8 plots the Google SVI for “stock market” versus the 12-month percentage change

in the S&P 500 stock index. Google searches tend to increase sharply during periods when

stock prices are declining. This pattern is particularly evident during the height of the global

financial crisis in October 2008 (the month following the Lehman Brothers bankruptcy) and

during start of the COVID-19 outbreak in the United States in March 2020. The correlation

coeffi cient between the SVI and the 12-month percentage change in the S&P 500 stock index is

−0.24. Although not plotted, the correlation coeffi cient between Google SVI for “stock market”

and the Google SVI for “stock market crash” is 0.77. Along similar lines, Vlastakis and

Markellos (2012) find that Google searches for the term “S&P 500”are positively correlated

11The Google SVI data are available from 2004.M1 onwards and can be downloaded from
https://trends.google.com/trends/?geo=US.
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with the VIX index; both measures tend to spike upwards during stock market declines.

While Figure 8 is suggestive, we wish to formally examine whether movements in the

Google SVI can help to predict excess stock returns. Table 5 compares our baseline regression

equation (35) with some alternative specifications that include either SVI or ∆SVI as a

predictor variable. The estimated coeffi cient on the Google-based predictor variable is negative

in each case, but is statistically significant only for ∆SVI. If we include ∆SVI together with

∆sent12×∆ersf (last column) both regressors are statistically significant and the adjusted

R-squared statistic improves to 25.4%. These results and the fact that the two regressors are

positively correlated suggest that both ∆SVI and ∆sent12×∆ersf are capturing shifts in

investor attention to the stock market.

Figure 9 provides evidence that the degree of investor optimism or pessimism about the

stock market is strongly linked to recent movements in stock prices. Specifically, we plot the

results of a University of Michigan survey that asks people to assign a probability that stock

prices will increase over the next year.12 The figure shows that movements in mean probability

response from the survey are strongly correlated with movements in the S&P 500 stock index.

Along similar lines, Lansing and Tubbs (2018) find that the percentage change in the S&P 500

stock index for a given month helps to predict the change in University of Michigan consumer

sentiment for the next month.

In summary, our results show that investors pay more attention to the stock market during

periods when stock prices and consumer sentiment are both declining. The resulting pessimism

appears to motivate many investors to sell stocks, putting further downward pressure on stock

prices which contributes to a lower excess return on stocks over the next month. It is diffi cult

to justify this source of excess return predictability as being driven by stochastic volatility (as

would be required under rational expectations) because we have controlled for this source of

predictability with the variables pd, vrp3 and ∆ff12. Rather, it seems far more likely that

the statistical significance of the predictor variables ∆sent12×∆ersf and ∆SVI represents

evidence of market ineffi ciency that is linked to shifts in investor attention. More specifically,

it would appear that each of these “behavioral”variables serves as a type of investor pessimism

indicator that helps to predict episodes of sequential declines in excess stock returns.

12The data is available from June 2002 onwards from https://data.sca.isr.umich.edu/tables.php. The survey
question reads: “Suppose that tomorrow someone were to invest one thousand dollars in a type of mutual fund
known as a diversified stock fund. What do you think is the percent chance that this one thousand dollar
investment will increase in value in the year ahead, so that it is worth more than one thousand dollars one year
from now?”
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7 Conclusion

This paper shows that realized excess returns on risky assets can be represented by an additive

combination of conditional variance terms and investor forecast errors. As a result, predictabil-

ity of realized excess returns can arise from only two sources: (1) stochastic volatility of model

variables, or (2) departures from rational expectations that give rise to predictable investor

forecast errors.

From an empirical perspective, we find that a variable that interacts the 12-month con-

sumer sentiment change with recent return momentum is a robust predictor of excess stock re-

turns even after controlling for the presence of stochastic volatility. Specifically, the estimated

regression coeffi cient on the sentiment-momentum variable remains stable and statistically

significant over various sample periods. Inclusion of the sentiment-momentum variable consis-

tently helps to predict excess stock returns in out-of-sample forecasting tests. The predictive

power of the sentiment-momentum variable derives mainly from periods when sentiment has

been declining and return momentum is negative, forecasting a further decline in the ex-

cess stock return. We show that the sentiment-momentum variable is positively correlated

with fluctuations in Google searches for the term “stock market,”which tend to spike during

pronounced stock market declines. While neither the sentiment-momentum variable nor the

Google search data represent a direct measure of investors’beliefs, both appear to serve as a

useful proxy for investors’outlook for stocks. Overall, we interpret our empirical results as

providing evidence that the predictability of excess stock returns is coming from both of the

two sources identified by the theory.
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A Appendix: Rational solution with stochastic volatility

This appendix derives an approximate analytical solution to the rational asset pricing model

employed in Section 3. Gelain and Lansing (2014) employ similar methods to derive an

approximate analytical solution to a rational asset pricing model for housing that exhibits

stochastic volatility in fundamental rent growth.13 Substituting the functional forms for Mt

and dt/dt−1 into the transformed first-order condition for stocks (5) yields

zst = β exp [(1− α)xct + vt]
(
1 + Etz

s
t+1

)
, (A.1)

where xct ≡ log (ct/ct−1) . A conjectured solution to (A.1) takes the form

zst = a0 exp
[
a1 (xct − x) + a2

(
σ2t − σ2

)
+ a3vt

]
. (A.2)

Iterating ahead the conjectured law of motion for zst and then taking the conditional expecta-

tion yields

Etz
s
t+1︸ ︷︷ ︸

= pst/dt

= a0 exp
[
a1ρ (xct − x) + 1

2 (a1)
2 σ2t + a2γ

(
σ2t − σ2

)
+ 1

2 (a2)
2 σ2u + 1

2 (a3)
2 σ2v

]
,

(A.3)

where pst/dt = Etz
s
t+1 from equation (4). The above expression shows that pst/dt is a function

of the fundamental state variable σ2t that drives the stochastic volatility of consumption and

dividend growth. This analytical result motivates the inclusion of the price-dividend ratio as

a right side variable in the predictability regressions of Section 5.

Substituting the conditional forecast (A.3) into the transformed first order condition (A.1)

and then taking logarithms yields

zt = F
(
xct , σ

2
t , vt

)
= β exp [(1− α)xct + vt]

×
{

1 + a0 exp
[
a1ρ (xct − x) + 1

2 (a1)
2 σ2t + a2γ

(
σ2t − σ2

)
+ 1

2 (a2)
2 σ2u + 1

2 (a3)
2 σ2v

]}
,

' a0 exp
[
a1 (xct − x) + a2

(
σ2t − σ2

)
+ a3vt

]
, (A.4)

where a0 ≡ exp {E [log (zt)]} , a1, a2, and a3 are Taylor-series coeffi cients. After some manip-
ulation, it can be shown that the Taylor series coeffi cients must satisfy the following system

13Lansing (2010) demonstrates the accuracy of this solution method for the level of the price-dividend ratio
by comparing the approximate analytical solution to the exact theoretical solution derived by Burnside (1998)
for the version of the model without stochastic volatility, i.e., σ2u = 0.
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of nonlinear equations

a0 = F
(
x, σ2, 0

)
= β exp[(1−α)x]

1−β exp[(1−α)x+(a1)2σ2/2+(a2)2σ2u/2+(a3)2σ2v/2]
, (A.5)

a1 =
∂ logF

∂xct

∣∣∣∣
x, σ2, 0

= (1−α)
1−ρβ exp[(1−α)x+(a1)2σ2/2+(a2)2σ2u/2+(a3)2σ2v/2]

, (A.6)

a2 =
∂ logF

∂σ2t

∣∣∣∣
x, σ2, 0

=
[(a1)2/2]β exp[(1−α)x+(a1)2σ2/2+(a2)2σ2u/2+(a3)2σ2v/2]
1−γβ exp[(1−α)x+(a1)2σ2/2+(a2)2σ2u/2+(a3)2σ2v/2]

, (A.7)

a3 =
∂ logF

∂vt

∣∣∣∣
x, σ2, 0

= 1, (A.8)

provided that β exp
[
(1− α)x+ (a1)

2 σ2/2 + (a2)
2 σ2u/2 + (a3)

2 σ2v/2
]
< 1. From equations

(A.2) and (A.3), we can compute log[zst+1/(Etz
s
t+1)], yielding equation (25) in the text where

we have inserted a3 = 1.

B Appendix: Solution with extrapolative expectations

This appendix derives an approximate analytical solution for zst+1/(Êtz
s
t+1) under extrapola-

tive expectations. Substituting the extrapolative forecast Êtzst+1 = Aszt+1 together with the

functional forms for Mt and dt/dt−1 into the transformed first-order condition for stocks (5),

and then solving for zst yields

zst =
β exp [(1− α)xct + vt]

1−Asβ exp [(1− α)xct + vt]
, (B.1)

where xct ≡ log (ct/ct−1) . The denominator of equation (B.1) can be approximated as

1−Asβ exp [(1− α)xct + vt] ≡ G (xct , vt) ' b0 exp[b1 (xct − x) + b2vt], (B.2)

where b0, b1, and b2 are Taylor-series coeffi cients. The Taylor series coeffi cients are given by

b0 = G (x, 0) = 1−Asβ exp [(1− α)x] , (B.3)

b1 =
∂ logG

∂xct

∣∣∣∣
x, 0

=
−As (1− α)β exp [(1− α)x]

1−Asβ exp [(1− α)x]
, (B.4)

b2 =
∂ logG

∂vt

∣∣∣∣
x, 0

==
−Asβ exp [(1− α)x]

1−Asβ exp [(1− α)x]
, (B.5)

provided that Asβ exp [(1− α)x] < 1.
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Using equations (B.1) and (B.2), we have

zst+1

Êtzst+1
=

zst+1
Aszst

=
1

As
exp[(1− α− b1)(xct+1 − xct) + (1− b2)(vt+1 − vt)], (B.6)

which can be transformed to obtain equation (33) in the text.

C Appendix: Data sources

Monthly data on the end-of-month nominal S&P 500 stock index, nominal dividends, and the

nominal risk free rate of return are from Welch and Goyal (2008). Updated data through

the end of 2018 are available from Amit Goyal’s website.14 The gross nominal return on

the S&P 500 stock index in month t is defined as (Pt +Dt/12) /Pt−1, where Pt is the end-

of-month closing value of the index and Dt is cumulative nominal dividends over the past

12 months. The price-dividend ratio in month t is defined as Pt/Dt. Data on the variance

risk premium are from Zhou (2018). Updated monthly data through the end of 2018 are

available from Hao Zhou’s website.15 The variance risk premium is defined as the difference

between implied variance as measured by the end-of-month VIX-squared, de-annualized (i.e.,

VIX2/12) and realized variance as measured by the sum of squared 5-minute log returns of the

S&P 500 stock index over the month. Both variance measures are expressed in percentage-

squared terms and are available in real time at the end of the observation month. The federal

funds rate is the monthly average value in percent from the FRED database of the Federal

Reserve Bank of St. Louis. The University of Michigan consumer sentiment index is from

www.sca.isr.umich.edu/tables.html.

D Appendix: Bootstrapped critical values

The literature on return predictability has raised an important issue about the potential size

distortion of the standard test, such as the t-statistic, in finite samples when the regression

equation includes persistent regressors. Table 1 shows that the predictor variables pd, vrp3,

∆ff12, and ∆sent12 are highly persistent. We address this issue using a bootstrap procedure

to gauge the quantitative impact of persistent regressors for our specific application.

Stambaugh (1999) and Mankiw and Shapiro (1986) show that the highly persistent price-

dividend ratio leads to a finite-sample bias in the estimated slope coeffi cient and its associated

t-statistic when one regresses stock returns (or excess stock returns) on the lagged price-

dividend ratio. More recently, Bauer and Hamilton (2017) evaluate the impact of persistent

regressors on standard tests in long-horizon predictability regressions for excess bond returns

14www.hec.unil.ch/agoyal/.
15https://sites.google.com/site/haozhouspersonalhomepage/.
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that involve overlapping return observations. Consider a system of the type studied in Stam-

baugh (1999) and Mankiw and Shapiro (1986):

log(Rst+1/R
f
t+1) = α0 + α1(p

s
t/dt) + ut+1, ut ∼ NID

(
0, σ2u

)
, (D.1)

pst+1/dt+1 = β0 + β1(p
s
t/dt) + vt+1, vt ∼ NID

(
0, σ2v

)
. (D.2)

Stambaugh (1999) shows that the bias in the least squares estimate of α1 depends on the

contemporaneous correlation between the two innovations ut and vt, and is proportional to

the bias in the estimate of the AR(1) coeffi cient β1. The expression for the bias in the estimate

of α1 is

E ( α̂1 − α1) =
[
Cov (ut, vt) /σ

2
v

]
E( β̂1 − β1). (D.3)

Upward movements in the stock price tend to drive up the price-dividend ratio and the

excess stock return simultaneously, implying that Cov (ut, vt) > 0. Indeed, Table 1 shows that

there is a small positive correlation between pd and the excess stock return ersf. The AR(1)

parameter estimate β̂1 has a downward bias such that E( β̂1 − β1) < 0, as shown originally

by Kendall (1954). He also derives an expression for the estimation bias, which is given by

−(1 + 3β1)/N, where N is the sample size. Therefore, the downward bias becomes larger as

β1 increases, implying a more persistent price-dividend ratio. The upshot is that the least

squares estimate of α1 and its t-statistic tend to have a non-trivial downward bias when the

regressor is highly persistent and there is a positive correlation between the two shocks.

It is important to note, however, some important differences between our regression ex-

ercises and those in the previous literature. Although we include some highly persistent regres-

sors (pd, vrp3,∆ff12, and∆sent12), our primary focus relates to the variable∆sent12×∆ersf

which is not persistent. The sentiment-momentum variable exhibits an autocorrelation statis-

tic of −0.22 and a correlation with ersf of −0.12.

Nevertheless, we still wish to gauge the magnitude of the potential size distortion of the

standard t-statistic for our specific application. We follow Nelson and Kim (1993), Mark

(1995), and Rapach and Wohar (2006) to implement a bootstrapping procedure to provide

some guidance for our discussion of the regression results using the actual data. In the boot-

strap, we postulate that the data are generated by the following system under the null hy-

pothesis:

log(Rst+1/R
f
t+1) = a0 + ε1t+1, (D.4)

pst+1/dt+1 = b0 + b1 (pst/dt) + ...+ bj(p
s
t−j+1/dt−j+1) + ε2t+1, (D.5)

where the two innovations are distributed as NID(0,Σ). To obtain the parameters for boot-

strapping, we first use the actual data sample to estimate these two equations using ordinary

least squares (OLS). The number of lags in equation (C.5) is determined using the AIC (with
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a maximum order of four). Given the parameter estimates, we compute and store the residuals

(ε̂1t, ε̂2t) . Next, we take random draws (with replacement) of the actual data from these OLS

residuals in tandem, preserving the contemporaneous correlation between these disturbances

in the original sample. For each simulation, we obtain a bootstrapped data of sample size

N ∗ (1 + 25%), where N = 345 is the sample length of monthly U.S. data from 1990.M3 to

2018.M12. We drop the first 25% of the bootstrapped data to remove any potential impact

of the initial values, thus keeping the length of the pseudo-sample equal to the length of the

U.S. data sample. Following Shaman and Stine (1988), we also implement a bias correction

procedure for the estimated AR coeffi cients in equation (D.5). We use the bias-corrected para-

meter values and the randomly-drawn residuals to generate bootstrapped data from equations

(D.4) and (D.5). For each bootstrapped sample, we compute and store the t-statistics for

the slope coeffi cient α1 in equation (D.1). The t-statistics are computed using Newey-West

HAC corrected standard errors. We repeat the process 1000 times and obtain an empirical

distribution of the bootstrapped t-statistics. We report the 2.5% and 97.5% percentiles of the

empirical distribution as the empirical critical values corresponding to the 5% size level. See

Rapach and Wohar (2006) for additional details of the bootstrapping procedure.

We carry out the bootstrap procedure using two types of regressions. For the first type, we

run a univariate regression by regressing excess stock returns in month t+1 on a constant and

pd in month t, as in equation (D.1). In the second type of regression, we regress excess stock

returns in month t + 1 on a constant, pd in month t, and one additional predictor variable

in month t. The additional predictor variables that we test, one at a time, are vrp3, ∆ff12,

∆sent12, ∆ersf, and ∆sent12×∆ersf. This procedure results in a three-variable system

consisting of equation (D.4) and two equations similar to (D.5), one for the price-dividend

ratio and one for the additional predictor variable. This three-variable system is used to

generate the pseudo-sample. The reason to include both pd and the additional predictor

variable in the second type of regression is to gauge the size of potential impacts of the

interdependence between the two predictor variables on the test statistic. We implement this

bootstrap procedure for the full sample. The bootstrapping results are reported in Table D.1

The two-sided 5% asymptotic critical values of a t-statistic that adheres to a standard

normal distribution are −1.96 and +1.96. The bootstrapped critical values in Table D.1 are

not substantially different from the asymptotic ones, but there are some noticeable shifts in

either direction for the persistent predictor variables, depending upon the direction of the

underlying correlation between the innovations.

For example, the 2.5% percentile of the bootstrapped t-statistic for pd is −2.570. This

value is larger in absolute value than the asymptotic value of −1.96, thus raising the bar for

one to reject the null hypothesis of a zero coeffi cient in favor of a negative coeffi cient. At the

same time, the 97.5% percentile of the bootstrapped t-statistic for pd is 1.313, less than the
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asymptotic value of 1.96. This left-skewed distribution of the test statistics results from the

positive correlation between the innovations in equations (D.4) and (D.5) which gives rise to

a downward bias in the slope coeffi cient and the associated t-statistic.

The distributions of the t-statistic for the other predictor variables in the second-round

regressions all appear less skewed and closer to the standard normal or student-t distribution.

For example, although the 97.5% percentile of the bootstrapped t-statistic for vrp3 is 1.916,

slightly smaller in magnitude than the asymptotic value of 1.96, its 2.5% percentile is also

slightly smaller in absolute value than the asymptotic value of −1.96, leading to a more or less

symmetric distribution. The resulting distribution of the bootstrapped t-statistic for ∆ff12

is also quite symmetric despite the highly persistent nature of ∆ff12. The bootstrapped

critical values for ∆sent12×∆ersf, our key variable of interest, are close to the asymptotic

critical values. This result is to be expected because this predictor variables exhibits very little

persistence, resulting in minimal estimation bias.

Table D.1: Bootstrapped Critical Values

Variable 2.5% percentile 97.5% percentile
pd −2.570 1.313
vrp3 −1.923 1.916
∆ff12 −1.886 1.973

∆sent12 −2.189 1.773
∆ersf −2.012 1.964

∆sent12×∆ersf −1.893 1.949
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Table 1: Summary Statistics: 1990.M3 to 2018.M12

Variable Mean Std. Dev. Skewness Kurtosis Min. Max. Autocorr.
ersf 0.53 4.14 −0.79 4.74 −18.4 10.5 0.05
pd 52.1 14.0 0.54 3.19 25.5 92.2 0.98
vrp3 15.8 14.5 −1.03 14.9 −73.9 74.9 0.82
∆ff12 −0.25 1.40 −0.70 3.56 −4.58 2.67 0.98
∆sent12 0.23 9.89 −0.66 3.63 −30.0 22.8 0.85
∆ersf −0.03 5.69 0.40 4.05 −14.6 21.8 −0.47
∆sent12×∆ersf −3.61 57.5 −0.21 10.7 −292.7 290.3 −0.22

Contemporaneous Cross Correlations

ersf pd vrp3 ∆ff12 ∆sent12 ∆ersf
∆sent12
× ∆ersf

ersf 1.00
pd 0.04 1.00
vrp3 0.16 0.17 1.00
∆ff12 0.12 0.20 −0.14 1.00
∆sent12 0.17 0.03 −0.03 0.35 1.00
∆ersf 0.69 0.00 0.03 −0.01 −0.06 1.00
∆sent12×∆ersf −0.12 0.03 −0.09 0.04 0.05 −0.19 1.00

Notes: ersf = excess return on S&P 500 stock index relative to the risk free rate in percent, as measured by the
return on 3-month Treasury bills, pd = price-dividend ratio for the S&P 500 index defined as the end-of-month
nominal closing value of the index divided by cumulative nominal dividends over the past 12 months, vrp3 = 3-
month moving average of variance risk premium for the S&P 500 stock index, defined as the difference between
the implied variance in percent-squared from options and the realized variance in percent-squared measured
using 5-minute return intervals over the month, ∆ff12 = 12-month change in the federal funds rate in percent,
∆sent12 = 12-month change in the University of Michigan’s consumer sentiment index, ∆ersf = excess return
momentum, defined as the 1-month change in ersf.

33



Table 2: Predicting Excess Returns on Stocks: Full Sample Results

1990.M3 to 2018.M12 1 2 3 4

pd
−0.063
(−3.665)

−0.062
(−3.726)

−0.060
(−3.556)

−0.060
(−3.576)

vrp3
0.090
(5.839)

0.090
(5.729)

0.084
(6.048)

0.083
(5.502)

∆ff12
0.655
(4.530)

0.600
(4.408)

0.604
(4.630)

0.567
(4.402)

∆sent12
0.021

(1.230)
0.024

(1.403)
0.013

(0.483)

∆ersf
0.023

(0.478)
−0.007

(−0.189)
−0.054

(−1.052)

∆sent12×∆ersf
−0.015
(−4.230)

∆+sent12×∆+ersf
−0.007

(−0.586)

∆+sent12×∆−ersf
−0.004

(−0.291)

∆−sent12×∆+ersf
−0.015
(−2.090)

∆−sent12×∆−ersf
−0.025
(−3.049)

Adj. R2 12.6% 12.4% 16.5% 16.3%

Notes: All regressions include a constant term with regressors dated month t. Dependent variable is ersf for
month t + 1. Newey-West HAC corrected t-statistics in parentheses. Boldface indicates significant at the 5%
level using the boostrapped critical values shown in Appendix C. The symbol ∆+ represents a positive change
in the corresponding variable while ∆− represents a negative change. See Table 1 for variable definitions.
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Table 3: Predicting Excess Returns on Stocks: Split Sample Results

1990.M3 to 2003.M12 1 2 3 4

pd
−0.056
(−3.037)

−0.057
(−3.151)

−0.053
(−2.939)

−0.052
(−2.907)

vrp3
0.107
(4.736)

0.116
(5.236)

0.102
(4.494)

0.105
(4.642)

∆ff12
0.528
(3.339)

0.489
(2.793)

0.461
(2.647)

0.459
(2.652)

∆sent12
0.024

(0.764)
0.035

(1.150)
0.020

(0.511)

∆ersf
−0.042

(−0.809)
−0.058

(−1.426)
−0.067

(−1.119)

∆sent12×∆ersf
−0.016
(−3.725)

∆+sent12×∆+ersf
−0.019

(−1.080)

∆+sent12×∆−ersf
−0.009

(−0.509)

∆−sent12×∆+ersf
−0.011

(−1.196)

∆−sent12×∆−ersf
−0.026
(−3.755)

Adj. R2 10.4% 9.93% 13.8% 12.5%

2004.M1 to 2018.M12 1 2 3 4

pd
−0.204
(−3.771)

−0.203
(−4.140)

−0.194
(−4.247)

−0.196
(−4.049)

vrp3
0.082
(3.949)

0.078
(4.037)

0.079
(4.510)

0.078
(4.268)

∆ff12
1.287
(3.405)

1.201
(3.630)

1.202
(3.822)

1.119
(2.828)

∆sent12
0.032

(1.477)
0.025

(1.201)
0.017

(0.407)

∆ersf
0.102

(1.363)
0.065
(1.077

−0.014
(−0.134)

∆sent12×∆ersf
−0.012
(−2.415)

∆+sent12×∆+ersf
−0.0001
(−0.004)

∆+sent12×∆−ersf
0.003

(0.140)

∆−sent12×∆+ersf
−0.015

(−1.340)

∆−sent12×∆−ersf
−0.023

(−1.301)
Adj. R2 17.6% 18.9% 21.6% 20.9%

Notes: Same as Table 2.
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Table 4: Goodness-of Fit Statistics

1-month ahead forecast RMSFE MAFE Corr Adj. R2 OOS R2

In-sample with ∆sent12×∆ersf 3.75%∗ 2.86%∗ 0.42∗ 16.5%∗

In-sample without ∆sent12×∆ersf 3.84% 2.89% 0.37 12.4%
Split out-of-sample with ∆sent12×∆ersf 3.65%∗ 2.84%∗ 0.43∗ — 14.9%∗

Split out-of-sample without ∆sent12×∆ersf 3.78% 2.89% 0.37 — 8.83%
Rolling out-of-sample with ∆sent12×∆ersf 3.97%∗ 3.00%∗ 0.39∗ — 13.8%∗

Rolling out-of-sample without ∆sent12×∆ersf 4.08% 3.06% 0.34 — 8.84%

Notes: RMSFE = Root mean squared forecast error, MAFE = Mean absolute forecast error, Corr = correla-
tion coeffi cient between realized excess return and and forecasted excess return, Adj. R2 = Adjusted R-squared
statistic for in-sample regressions, OOS R2 = Out-of-sample R-squared statistic defined as 1−SSR/SST , where
SSR is the sum of the squared residuals from the predictive regression and SST is the sum of the squared devia-
tions of realized excess returns from the mean excess return of the estimation sample. The in-sample regressions
cover the period from 1990.M3 to 2018.M12. For the split out-of-sample regressions, the regression equation
is estimated for the period from 1990.M3 to 2003.M12 and then used to forecast excess stock returns for the
period from 2004.M1 to 2018.M12. The rolling out-of-sample regressions each employ a 10-year (120-month)
moving window of data. The regression equation estimated for a given window of data ending at month t is
used to forecast the excess stock return for month t + 1, without re-estimation of the equation. An asterisk ∗
indicates the superior goodness-of-fit statistic for the two regressions being compared.

Table 5: Predicting Excess Returns on Stocks: Alternative Specifications

2004.M3 to 2018.M12 Baseline SVI ∆SVI 1 ∆SVI 2

pd
−0.218
(−4.642)

−0.254
(−4.461)

−0.226
(−4.894)

−0.218
(−4.785)

vrp3
0.078
(4.629)

0.064
(2.889)

0.079
(4.593)

0.080
(4.712)

∆ff12
1.315
(4.050)

1.350
(3.847)

1.338
(4.179)

1.328
(4.255)

∆sent12
0.020

(0.956)
0.023

(1.060)
0.023

(1.178)
0.019

(0.936)

∆ersf
0.063

(1.028)
0.088

(1.196)
0.051

(0.764)
0.027

(0.457)

∆sent12×∆ersf
−0.012
(−2.348)

−0.010
(−1.967)

SVI
−0.096

(−1.757)

∆SVI
−0.191
(−2.367)

−0.168
(−2.142)

Adj. R2 22.3% 20.3% 24.0% 25.4%

Notes: All regressions include a constant term with regressors dated month t. Dependent variable is ersf for
month t + 1. Newey-West HAC corrected t-statistics in parentheses. Boldface indicates significant at the 5%
level. SVI = Google search volume index for the term “stock market,”∆SVI = 1-month change in SVI. See
Table 1 for other variable definitions.
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Figure 1: Predictor Variables versus 1-Month Ahead Excess Returns on Stocks
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Notes: The scatter plots show the relationships between each of the six predictor variables and the 1-month
ahead excess return on stocks. The slope of the line indicates the sign of the regression coeffi cient in a univariate
predictive regression for the period from 1990.M3 to 2018.M12.
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Figure 2: Realized versus Predicted Excess Returns on Stocks
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Notes: Monthly excess stock returns are characterized by positive means, high standard deviations, negative
skewness, excess kurtosis, very low autocorrelation, and time-varying volatility. A predictive regression estimated
over the period from 1990.M3 to 2018.M12 using all six predictor variables (Specification 3 in Table 2) exhibits
an adjusted R2 statistic of 16.5%.
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Figure 3: Rolling Regression Coeffficients
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Notes: The rolling regression coeffi cients on pd, vrp3 and ∆ff12 exhibit consistent signs and are mostly
significant from the early 2000s onwards. The rolling regression coeffi cient on ∆sent12 is rarely significant
while the rolling regression coeffi cient on ∆ersf is never significant. Similar to the results for pd, vrp3 and
∆ff12, the rolling regression coeffi cient on ∆sent12×∆ersf (bottom right panel) exhibits a consistent sign and
is mostly significant from the early 2000s onwards.
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Figure 4: In-Sample Predictive Regression Results
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Notes: An in-sample regression that includes ∆sent12×∆ersf as a predictor variable outperforms an otherwise
similar regression that omits ∆sent12×∆ersf.
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Figure 5: Out-of-Sample Predictive Regression Results
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Notes: A split out-of-sample regression that includes ∆sent12×∆ersf as a predictor variable outperforms an
otherwise similar regression that omits ∆sent12×∆ersf.
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Figure 6: Rolling Out-of-Sample Predictive Regression Results
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Notes: A rolling out-of-sample regression that includes ∆sent12×∆ersf as a predictor variable outperforms an
otherwise similar regression that omits ∆sent12×∆ersf.
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Figure 7: Increase in Google SVI Predicts Lower Excess Returns
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Notes: The predictor variable ∆sent12×∆ersf is positively correlated with changes in the Google Search
Volume Index (SVI) for the term “stock market,” suggesting that ∆sent12×∆ersf helps to predict excess
stock returns because it captures shifts in investor attention. An increase in the Google SVI for month t
predicts a lower excess stock return in month t+ 1.
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Figure 8: Declines in Stock Prices and Sentiment Spur Increased Investor Attention
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Notes: Google searches for the term “stock market” tend to increase sharply during periods when stock prices
are declining. For the sample period from 2004.M1 to 2020.M7, the correlation coeffi cient between the SVI and
the 12-month percentage change in the S&P 500 stock index is −0.24.
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Figure 9: Optimism or Pessimsim About Stocks is Strongly Linked to Recent Price Movements
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Notes: The degree of investor optimism or pessimism about the stock market is strongly linked to recent
movements in stock prices. Together with the Google SVI data, this pattern shows that a recent drop in stock
prices contributes to an increase in investor attention and a more pessimistic outlook for stocks.
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