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Abstract

Growth has fallen in the U.S. while firm concentration has risen. We
propose a theory linking these trends in which the driving force is falling
overhead costs of spanning multiple markets. In response, the most
efficient firms (with higher markups) spread into new markets, thereby
generating a temporary burst of growth. Eventually, due to greater
competition from efficient firms, within-firm markups and incentives to
innovate fall. When we calibrate our model, we find the rise in market
share of more efficient firms outweighs the drop in long-run growth,
leaving welfare modestly enhanced by the fall in overhead costs.
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1 Introduction

Recent studies have documented the following patterns in the U.S. economy

over the past several decades:1

1. Slow growth interrupted by a temporary burst of growth

2. Rising firm concentration within industries at the national level

3. Reallocation of market share toward low labor share firms

Are these patterns linked? Is rising firm concentration slowing growth and

driving down the aggregate labor share? Or are large firms more efficient so

that their rising market share brings aggregate productivity benefits? These

hypotheses are not mutually exclusive, so the answer could be that both are

true. If so, there might be a tradeoff between level benefits and adverse longer

run growth effects of rising concentration.

To contribute to this debate, we construct a model of endogenous growth

and firm dynamics. There are two sources of firm heterogeneity in our model.

The first is product quality, which differs across the product lines of a firm and

improves endogenously through creative destruction. The second is process

efficiency, which we assume to be common to all product lines of a firm. High

process efficiency firms command a higher markup than low productivity firms,

conditional on a given quality advantage over competitors.

A possible source of persistent heterogeneity in process efficiency across

firms is their intangible capital. Firms such as Walmart and Amazon have

established successful business models and logistics that are evidently hard to

copy. Both firms experienced considerable expansion into new geographic

and/or product markets over the past two decades. Similarly, Amazon and

Microsoft have acquired dominant positions in cloud storage and computing

1See Fernald, Hall, Stock and Watson (2017) on productivity growth; Autor, Dorn, Katz,
Patterson and Van Reenen (2020) on rising concentration; and Kehrig and Vincent (2020),
De Loecker, Eeckhout and Unger (2020), and Baqaee and Farhi (2020) on reallocation to low
labor share firms. We discuss this evidence in more detail in the next section.
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due to their logistical advantage over potential competitors. Such firms have

achieved a level of process efficiency which is arguably harder to reverse

engineer and build upon than quality, which may be more observable.

The story we propose is that the IT (Information Technology) wave around

1995–2005 allowed high process efficiency firms to expand into a wider set of

product lines. We model the IT wave as a downward shift in the overhead cost

function c(n) of running n product lines. This cost is assumed to be convex in

n, which puts a brake on the quality innovation (creative destruction) efforts of

high process efficiency firms. The downward shift in the overhead cost

schedule induces high process efficiency firms to cover a larger fraction of

lines. This expansion fuels a temporary surge in aggregate productivity growth

— both because these firms innovate to take over more products and because

they apply their superior process efficiency to those additional products.

Since high process efficiency firms have higher markups and lower labor

shares on average across their product lines, their expansion into more

markets is a force pushing the aggregate markup up and the aggregate labor

share down. Within-firm markups eventually fall, however, as the quality

leader on a product line is more likely to face a high process efficiency

competitor. Competition from an efficient follower can limit the leader’s

markup whether the leader is a high or low process efficiency firm.

While the IT wave induces a burst of growth in the short run in our model,

in the long run the fall in overhead cost may lead to a slowdown in productivity

growth. The expansion of high productivity firms into more lines eventually

deters innovation because innovating on a line where the incumbent firm has

high productivity yields lower profits. Both high and low productivity firms

eventually curtail their efforts at creative destruction, knowing they will face

stiffer competition. This can outweigh the positive direct effect of a downward

shift in the overhead cost on R&D incentives, such that long run innovation

and productivity growth may fall. Thus falling growth can coincide with rising

rents (profits net of R&D and overhead costs).
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To gauge magnitudes, we choose parameter values to fit a pre-IT revolution

period (1987–1995) in terms of productivity growth, the level of concentration,

the aggregate markup, and the correlation across firms between their labor

share and sales share. We then entertain shocks to three parameters to hit

three targets. We allow the overhead cost, the process efficiency advantage of

the best firms, and the scale of R&D costs to change in order to fit the

post-2005 values of productivity growth, concentration, and the revenue per

worker edge of the best firms. We then examine the effect of falling overhead

costs on the path of productivity and consumption, and therefore welfare.

Our calibrated fall in overhead costs can explain a nontrivial portion of the

temporary burst of productivity growth and the subsequent growth slowdown:

about 10 basis points of the 1 percentage point acceleration, and 20 basis points

of the 1.4 percentage point slowdown. Growth ends up 18 basis points lower

after 2005 than before 1996, and lower overhead costs contribute 9 basis points

to this, in our estimation. We find that the short run burst of growth outweighs

the long run decline in growth, leaving consumption-equivalent welfare about

1/3 of a percentage point higher. Thus, in our calibrated model, welfare was

enhanced by the fall in overhead costs and the resulting rise of superstar firms.

Our paper is complementary to a number of other recent studies on falling

growth and rising concentration. These studies feature different driving forces

than our IT-linked fall in overhead costs. The driving force is declining

imitation rates in Akcigit and Ates (2019), declining population growth in

Peters and Walsh (2020), and declining interest rates in Liu, Mian and Sufi

(2020). In De Ridder (2020) some firms become particularly efficient at

reducing their marginal costs through intangible inputs, which discourages

other firms from innovating. Compared to these papers, Our study puts more

emphasis on understanding the temporary burst in productivity growth and

weighing this burst against the long run drop in growth. We also highlight that

within-firm markups fell both in the data and in our model, offsetting the

reallocation of market share toward high markup firms.
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Like us, Hsieh and Rossi-Hansberg (2020) model how an IT shock can lead

to rising national concentration and a burst of process improvements. They

present evidence for Wholesale Trade, Retail Trade, and Services on the

expansion of large firms into more geographic markets. They do not model

long-run growth or changes in labor share due to markup dispersion. We

follow them in focusing on these three sectors, which constitute about

one-half of value added and two-thirds of employment in the nonfarm

business sector.2

Our paper also relates to Hopenhayn, Neira and Singhania (2018) and

Chatterjee and Eyigungor (2019), who study rising concentration. And to

recent papers on forces behind the declining aggregate labor share such as

Karabarbounis and Neiman (2013, 2019), Martinez (2019), Farhi and Gourio

(2018), Kaymak and Schott (2020), Barkai (2020), Koh, Santaeulàlia-Llopis and

Zheng (2020) and Eggertsson, Robbins and Wold (2020).

Kehrig and Vincent (2020) and Autor, Dorn, Katz, Patterson and Van Reenen

(2020) look at labor share in U.S. Census data, while Baqaee and Farhi (2020)

and De Loecker, Eeckhout and Unger (2020) estimate markups in Compustat

firms. These papers decompose the evolution of the aggregate labor share (or

markup) into within-firm and between-firm components. They find the

dominant contributor to be the rising market share of low labor share (high

markup) firms. We contribute to this literature by linking these trends to the

slowdown in U.S. growth in recent decades.

Section 2 describes the empirical patterns that motivate our modeling effort.

Section 3 lays out our model. Section 4 solves for the steady state and performs

some comparative statics. Section 5 calibrates the model to see how much a

drop in overhead costs can contribute to the burst of growth and lower long-

run growth. Section 6 concludes.

2Retail Trade, Wholesale Trade, and Services have the advantage of data going back further
(before the 1990s) for productivity growth, concentration, and labor shares than for sectors
such as Utilities and Transportation or Finance, Insurance and Real Estate. We also exclude
Manufacturing since it may have been most affected by import competition from China — see
David, Dorn and Hanson (2013) and Acemoglu and Restrepo (2018), for example.
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2 Stylized facts

Fact 1: Slow growth interrupted by a burst of growth. Figure 1a presents U.S.

annual TFP growth in Trade and Service industries from the Bureau of Labor

Statistics (BLS) KLEMS data.3 The BLS attempts to net out the contribution of

both physical and human capital growth to output growth. The BLS sometimes

subtracts contributions from R&D and other intellectual property investments;

we consistently included this portion in TFP growth as part of what we are trying

to explain. The Figure shows growth accelerating from its 1987–1995 average of

0.5% per year to 1.7% per year from 1995–2005, before falling to just 0.3% per

year from 2005–2018.4 Figure 1b shows that IT prices fell sharply at the same

time that TFP growth accelerated.

Figure 1: Productivity growth and relative price of IT

(a) Productivity growth

1987 - 1995 1995 - 2005 2005 - 2018

0.48%

1.66%

0.30%

(b) Relative price of IT

1949 - 1995 1996 - 2005 2006 - 2018

0

12

-4.56%

-8.92%

-4.96%

The figures plot the average productivity growth and relative price of IT within each subperiod. The unit
is percentage points. Left panel: Source: BLS KLEMS multifactor productivity series. We calculate yearly
productivity growth in two digit NAICS trade and service industries by adding R&D and IP contribution to BLS
MFP and then expressing the sum to labor augmenting form. We calculate trade and service growth by aggregating
industry growth rates using industry share of labor costs. Right panel: Source: BEA. We calculate change per year
in the price of IT relative to the GDP deflator.

3https://www.bls.gov/mfp/special requests/klemscombinedbymeasure.xlsx See Figure A1
in the Online Appendix A for U.S. annual TFP growth in all non-farm private industries.

4Fernald, Hall, Stock and Watson (2017) and Bergeaud, Cette and Lecat (2016) argue that
the recent TFP growth slowdown is statistically significant and predates the Great Recession.
Syverson (2017) and Aghion, Bergeaud, Boppart, Klenow and Li (2019) contend that the
slowdown is unlikely to be fully attributable to growing measurement errors. Aghion et al.
(2019) find that measurement error did not increase at all for trade and service industries.

https://www.bls.gov/mfp/special_requests/klemscombinedbymeasure.xlsx
http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
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Fact 2: Rising concentration. Table 1, presents the average change from 1982

to 2012 in top 20 firm concentration within 4-digit NAICS inside Retail Trade,

Wholesale Trade, and Service industries, respectively.5 These results are from

firm-level data in U.S. Census years. Aggregating across the three sectors, top

20 concentration rose from 27% to 35%.

Table 1: Cumulative change in concentration 1982–2012 (ppt)

RET WHO SRV ALL 3

Top 20 firms sales share 1982 29 45 21 27
Top 20 firms sales share 2012 46 57 27 35

Change 17 12 6 8

Source: Figure 4 of Autor et al. (2020) and BLS KLEMS. Concentration in each industry are averages
across 4-digit industries, with the industries weighted by industry sales shares. Concentration in ALL 3
(=RET+WHO+SRV) is the sales-weighted average share across all three sectors.

Table 2 displays the ratio of sales to payroll of the top 20 firms relative to

smaller firms in the three sectors. For the three sectors combined, the ratio was

1.48 for both 1982–1992 and 2007–2012, consistent with stable relative markups.

Table 2: Sales/payroll of top 20 firms relative to remaining firms

RET WHO SRV ALL 3

1982–1992 average 1.19 2.76 1.27 1.48
2007–2012 average 1.18 2.73 1.32 1.48

Change -0.01 -0.03 0.05 0.00

Source: Figure 4 of Autor et al. (2020). Sales over payroll in ALL 3 (=RET+WHO+SRV) is the labor cost-
weighted average across all three sectors.

Figure 2a shows the number of establishments per firm from 1980 to 2014

in three size bins based on U.S. Census Bureau Business Dynamic Statistics.

5The Table 1 rise in national concentration contrasts with falling local concentration
documented by Rossi-Hansberg, Sarte and Trachter (2020) and Rinz (2018). One explanation
for the diverging trends is that the largest firms grew by adding establishments in new locations.
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Firms with 10,000+ employees added establishments steadily starting in the

early 1990s, when the relative price of IT plunged and TFP growth accelerated.6

Figure 2b shows the rate at which large firms added new establishments

relative to their stock of establishments. This rate can be viewed as a crude

proxy for their pace of product innovation. The largest firms experienced a

burst of establishment entry in the 1990s, which receded from 2005 onward.

Again, these broad trends dovetail with the acceleration and deceleration of

TFP growth. In what follows, we offer the IT revolution as a driver of this

comovement between aggregate productivity growth and the entry rate of

establishments at the largest firms.

Figure 2: Establishments per firm by firm size in trade and service industries

(a) Establishment per firms

1980 1985 1990 1995 2000 2005 2010

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

1990 = 1

Below 1,000

1,000 to 9,999

10,000 plus

(b) Establishment entry rate

1980 1985 1990 1995 2000 2005 20100.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
1990 = 1

Below 1,000

1,000 
 to 9,999

10,000 plus

Source: U.S. Census Bureau Business Dynamic Statistics. Left-hand side panel plots the number of establishments
per firm relative to 1990 within employment bins. Right-hand side panel shows the number of new establishments
over the total number of establishments for different firm size bins. The lines represent 5-year centered moving
average, relative to 1990.

IT as a driving force We focus on changes in IT as a possible driver of the

patterns described above for several reasons. First, price declines for IT goods

accelerated sharply for a decade from the mid-1990s to the mid-2000s as

shown in Figure 1b. Second, TFP growth surged from the mid-1990s to

mid-2000s in IT-producing and IT-intensive sectors relative to

6Cao, Sager, Hyatt and Mukoyama (2019) document a similar pattern in the Quarterly
Census of Employment and Wages data, and Rinz (2018) documents increasing number of
markets with at least one establishment belonging to a top 5 firm.
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non-IT-intensive sectors.7 Third, Crouzet and Eberly (2019) and Lashkari,

Bauer and Boussard (2019) document that bigger firms invest a higher share of

their sales in intangibles and IT, respectively. The former evidence is for U.S.

firms and the latter for French firms. Bessen (2019) provides evidence that

industries with higher IT intensity experienced higher growth in the sales share

of the largest firms. Babina, Fedyk, He and Hodson (2020) demonstrate that

larger firms invested more in Artificial Intelligence in the last decade, and

moved into more markets as a result.

Fact 3: Reallocation of market share toward low labor share firms.

According to the BLS, the labor share of output in the nonfarm business sector

fell about 6 percentage points since 1990. But Kehrig and Vincent (2020) stress

that this decline was almost entirely driven by manufacturing. Autor et al.

(2020) likewise find a declining labor share most sharply in manufacturing.

Figure 3: Labor share over time

1990 1995 2000 2005 2010 2015

0.80

0.85

0.90

0.95

1.00

1987 = 1

Manufacturing

Trade + Services

Source: BLS KLEMS. Labor share
is equal to Cost of Labor + Cost
of Purchased Business Services
divided by Cost of Labor + Cost
of Purchased Business Services
+ Cost of Capital. Trade and
Services consists of Retail Trade,
Wholesale Trade and Service
industries. The end values are
0.96 for Trade and Services and
0.75 for Manufacturing if labor
costs and value added exclude
purchased services.

As mentioned, manufacturing may have been more affected by

automation, outsourcing, and import competition from China than other

sectors. Thus our focus is on Retail Trade, Wholesale Trade, and Services.

These sectors, make up around one-half of value added and two-thirds of

7Online Appendix Figure A2 plots TFP growth in these sectors, updating Fernald (2015).

http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
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Table 3: Cumulative change in labor share 1982–2012 (ppt)

RET WHO SRV

∆
Payroll
Sales -0.85 -0.08 0.23

Within firm 4.39 4.66 1.73
Between -5.44 -4.59 -0.76

Source: Table 5 in Autor et al. (2020). This
is a Melitz-Polanec decomposition of the
change in the labor share. The entry and
exit margin is not reported. The unit is
percentage points. RET, WHO, and SRV
stand for retail, wholesale, and service.

employment in the nonfarm business sector. And, importantly for us, they

have the requisite data from before the 1995–2005 growth burst. Figure 3

shows that the labor share in these three sectors as a whole (“Trade and

Services”) was fairly stable. Within these sectors, however, sales were

reallocated to low labor share firms. Table 3 reproduces statistics from Autor et

al. (2020) showing that the “between” firm component pushed labor share

down from 1982–2012 in each of these sectors. Within-firm labor shares

actually rose in all three sectors.

A complementary fact which Autor et al. (2020) document is that larger

firms tend to have lower labor shares. Within four-digit industries, the

elasticity of firm labor share with respect to firm sales averages -2.2 across

these three Census sectors. The relationship is negative within each sector.

3 A model of innovation with heterogeneous firms

The above evidence leads us to seek a theory in which an IT shock leads to a

burst of product innovation by large firms (with lower labor shares), thereby

increasing their market share and bringing a burst of aggregate productivity

growth. The rise in market share should eventually lower markups within

firms, however, causing growth to fall in the long run.
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3.1 Preferences

Time is discrete and the economy is populated by a representative household

who chooses a path of consumption C and wealth a to maximize

U0 =
∞∑
t=0

βt log (Ct) ,

subject to at+1 = (1 + rt)at +wtL−Ct, a standard no-Ponzi game condition, and

initial wealth a0 > 0. Here r is the real interest rate, w is the real wage, and L is

the endowment of labor, which is inelastically supplied to the labor market.

The usual Euler equation resulting from household optimization is given by

Ct+1

Ct
= β(1 + rt+1).

3.2 Production of final output

A final output good is produced competitively using a unit continuum of

intermediate inputs according to a Cobb-Douglas technology:

Y = exp

(∫ 1

0

log [q(i)y(i)]di

)
.

Here y(i) denotes the quantity and q(i) the quality of product i. This structure

yields demand for each product i as

y(i) =
Y P

p(i)
, (1)

where the aggregate price index (which we normalize to 1 in each period) is

P ≡ exp

(∫ 1

0

log [p(i)/q(i)] di

)
.
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3.3 Production and market structure for intermediate inputs

There are J firms indexed by j. J is “large” such that firms take P as given. Each

firm j has the knowledge to produce quality q(i, j) ≥ 0 in a specific market i ∈
[0, 1]. There are two sources of heterogeneity across firms: (i) product-specific

quality q(i, j) which evolves endogenously with innovation; and (ii) permanent

heterogeneity in firm-specific process efficiency.

We denote firm-specific process efficiency by ϕ(j). A firm with process

efficiency ϕ(j) can produce in any line i with the linear technology

y(i, j) = ϕ(j) · l(i, j), (2)

where l(i, j) is labor used by firm j to produce output y(i, j) in product line i.

We assume the heterogeneity in process efficiency is permanent. This

heterogeneity in process efficiency will translate into persistent differences in

markups and labor share across firms. The linear technology in (2) applies

irrespective of the specific quality q(i, j) at which firm j produces in line i.

We explain below how product-specific quality changes endogenously due

to innovations. For the static firm problem here we take the line-specific quality

q(i, j) of a firm in a period t as given. Labor is fully mobile such that the wage

rate is equal across firms. Hence, the marginal cost of firm j in line i is w/ϕ(j).

3.4 Pricing

In each market i firms engage in Bertrand competition. This implies that only

the firm with the highest quality-adjusted productivity q(i, j) ·ϕ(j) will be active

in equilibrium in a given market. We denote the leading firm in line i by j(i)

and the second-highest quality producer by j′(i). Hence the quality-adjusted

productivity of the leader in line i is q(i, j(i)) · ϕ(j(i)), whereas it is q(i, j′(i)) ·
ϕ(j′(i)) for the second-best firm. Under Bertrand competition, price setting of

the leading firm is constrained by the second-best producer. The leader will



13

set its quality-adjusted price equal to the quality-adjusted marginal cost of the

second-best firm. Formally, we then have

p(i, j(i), j′(i))

q(i, j(i))
=

w

q(i, j′(i)) · ϕ(j′(i))
.

Note that the equilibrium price in line i depends on the process efficiency of

the second-best firm as well as the quality difference between them.

The markup in line i, the price of a unit divided by the marginal cost, is

µ(i, j(i), j′(i)) ≡ p(i, j(i), j′(i))

w/ϕ(j(i))
=

q(i, j(i)) · ϕ(j(i))

q(i, j′(i)) · ϕ(j′(i))
.

The markup is increasing in the quality gap q(i, j(i))/q(i, j′(i)) and the process

efficiency gap ϕ(j(i))/ϕ(j′(i)) between the leading and the second-best firm.

Operating profits of the leader in line i are Y [1− 1/µ(i, j(i), j′(i))]. This follows

from the demand function (1) with P normalized to one.

3.5 Innovation and productivity growth

The quality distribution evolves endogenously over time as a result of

innovation. Any firm j can engage in R&D to acquire a patent to produce a

product at higher than existing quality. More specifically, by investing

xt(j) · ψr · Yt units of final output in R&D in period t, xt(j) product lines are

randomly drawn among the lines in which firm j is currently not actively

producing. In these randomly drawn lines the highest existing quality is

multiplied by a factor γ > 1 and the innovating firm j obtains a perpetual

patent to produce at this higher quality level from the next period t+ 1 onward.

We assume that a period is short enough such that no two innovations arrive

on the same line in a given period. As we denote the innovation rate of firm j in

period t by xt(j), the aggregate rate of creative destruction is given by

zt+1 =
J∑
j=1

xt(j).
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That is, for any given line, an innovation arrives in t + 1 with probability zt+1.

These quality improvements are the source of long-run growth.

3.6 Boundary of the firm

Given the constant cost of acquiring a line through innovation and the fact that

firms with higher process efficiency make higher expected operating profits in

an additional line, more productive firms have a stronger incentive to invest in

R&D. To prevent the firm with the highest productivity from taking over all lines,

we assume that firms have to pay a per-period overhead cost which is a convex

function of the number of markets they span. More specifically, we assume a

quadratic per-period overhead cost

1

2
ψo n(j)2 Y,

with ψo > 0, where n(j) denotes the number of lines in which firm j owns the

highest quality patent. The convexity of the overhead cost in n(j) gives rise to a

natural boundary of the firm. High process efficiency will want to operate more

lines than low process efficiency firms, but no firm type will operate all lines.

It may be helpful to compare our model to Klette and Kortum (2004), a

benchmark model in the firm dynamics and growth literature. We assume a

linear cost of innovating on a new line and convex overhead costs. By contrast,

Klette and Kortum (2004) assume a convex cost of acquiring extra product

lines through creative destruction, and a non-diminishing value of additional

lines (the firm’s value function is linear in n in their steady state).8

Our model allows us to do comparative statics with respect to the scalar ψo

without altering the technology for undertaking innovations. With IT

improvements in mind, we lower ψo permanently for all firms and study the

effect on concentration, labor share, and growth during the transition as well

8Our model shares some features with Luttmer (2011), in which more efficient firms
endogenously expand into more products because their efficiency extends across product lines.
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as in the new steady state. Another difference with Klette and Kortum (2004) is

that we assume that each firm operates a continuum of lines, so that there is

no firm exit in our model.

3.7 Markups with binary process efficiency levels

For simplicity we assume in the following two types of firms. A fraction φ of all

firms has high process efficiency ϕH whereas the remaining fraction 1− φ has a

low process efficiency ϕL. We denote their efficiency ratio by ∆ ≡ ϕH/ϕL > 1.

We further assume γ > ∆ so that the firm with the highest quality is the active

producer irrespective of its type or the type of the second-best firm.

Given the two process efficiency levels (high and low) there are four

potential cases of markups µ(i) and operating profits π(i) in a given line i:9

1. A high productivity leader ϕ(j(i)) = ϕH facing a high productivity second-

best firm ϕ(j′(i)) = ϕH in line i. In this case we have

µ(i) = γ and π(i) = Y

(
1− 1

γ

)

2. A high productivity leader ϕ(j(i)) = ϕH facing a low productivity second-

best firm ϕ(j′(i)) = ϕL in line i.

µ(i) = ∆γ and π(i) = Y

(
1− 1

∆γ

)

3. A low productivity leader ϕ(j(i)) = ϕL facing a high productivity second-

best firm ϕ(j′(i)) = ϕH in line i.

µ(i) =
γ

∆
and π(i) = Y

(
1− ∆

γ

)

4. A low productivity leader ϕ(j(i)) = ϕL facing a low productivity second-

9To ease notation we denote the markup in line i, µ(i, j(i), j′(i)), by µ(i).
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best firm ϕ(j′(i)) = ϕL in line i.

µ(i) = γ and π(i) = Y

(
1− 1

γ

)

3.8 Labor income shares

Our baseline model abstracts from physical capital; labor is the only factor of

production. Furthermore, both R&D expenditure and overhead costs are

denominated in final output and are treated as investment as opposed to

intermediate inputs. These last two assumptions are made to avoid a

mechanical effect of overhead and R&D costs on the labor income share.

Hence in our baseline framework the aggregate labor income share is simply

determined by the distribution of markups across product lines.

Because of the Cobb-Douglas technology in final good production, revenue

for each product is equal to Y . Labor costs in a line i equal wl(i) = Y/µ(i).

Integrating both sides over i yieldswL = Y
∫ 1

0
µ(i)−1di. Dividingwl(i) bywL, the

wage bill (or employment) share of product line i is

l(i)

L
=

1

µ(i)

1∫ 1

0
1
µ(ι)

dι
.

The employment share on a line, l(i)/L, is inversely proportional to the markup

on the line. This comes from revenue being equalized across lines.

Finally, the aggregate labor income share λ is given by the inverse of the cost-

weighted markup:

λ ≡ wL

Y
=

1∫ 1

0
µ(i)l(i)/L di

=

∫ 1

0

µ(i)−1 di.

Because there is no physical capital in the model the profit share and the labor

income share add up to one. However, the aggregate labor share depends non-

trivially upon the full distribution of markups across lines. This distribution is

determined by the types of the leader and second-best firm across lines.
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Consider a firm j with n(j) lines that faces a fraction h(j) of high type

second-best firms and a remaining fraction 1 − h(j) of low productivity

second-best firms. If firm j is itself of high type, its overall labor income share

is given by

λH(h(j)) = h(j)
1

γ
+ (1− h(j))

1

γ∆
. (3)

In contrast, if firm j is low type its overall labor income share is given by

λL(h(j)) = h(j)
∆

γ
+ (1− h(j))

1

γ
. (4)

Faced with the same share of high type competitors h(j), high productivity firms

have a lower labor income share as they can charge higher markups on average.

Hence the model generates persistent differences in labor shares across firms.10

As the composition of competitors h(j) is endogenous, the model can generate

changes in the labor share within firms over time.

3.9 Dynamic firm problem

There are two individual state variables in the firm’s problem: the number of

lines firm j operates, n(j), and the fraction of high productivity second-best

producers, h(j), the firm faces in its lines. Each firm then chooses how many

new lines to innovate upon, xt(j), to maximize the net present value of its flow

of profits. Denoting per-period profits after overhead costs and relative to

aggregate output Y by πH and πL, respectively, we have

πH(n(j), h(j)) = n(j)− n(j)h(j)

γ
− n(j) (1− h(j))

γ∆
− 1

2
ψon(j)2, (5)

and

πL(n(j), h(j)) = n(j)− n(j)h(j)∆

γ
− n(j) (1− h(j))

γ
− 1

2
ψon(j)2. (6)

10See Hsieh and Klenow (2009) and David and Venkateswaran (2019) for evidence of
persistent differences in revenue per worker across firms.
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These scaled by Yt profits only depend on the individual states n(j) and h(j)

and are otherwise time invariant. Letting St denote the aggregate fraction of

lines operated by high productivity firms, the problem of a firm of type k = H,L

can be written as

V0,k = max
{xt,nt+1,ht+1}∞t=0

∞∑
t=0

Yt [πk(nt, ht)− xtψr]
t∏

s=0

(
1

1 + rs

)

subject to

nt+1 = nt(1− zt+1) + xt, (7)

ht+1nt+1 = htnt(1− zt+1) + Stxt, (8)

and a given initial n0 and h0. For completeness there are also non-negativity

constraints xt ≥ 0. Equation (7) states that the number of product lines of a firm

next period is equal to the newly added lines x plus the number of lines today

times one minus the rate of creative destruction in the economy, z. Equation

(8) states that the number of lines in which the firm faces a high type second-

best firm tomorrow is equal to the number of such lines today times 1 − z plus

the number of newly added lines times the aggregate fraction of lines currently

operated by high type firms S. The firm takes the path of output Yt, the interest

rate rt, the rate of creative destruction zt+1, and the aggregate fraction of lines

operated by high productivity firms St as given.

3.10 Market clearing and resource constraints

We close the model with the following market clearing conditions that hold

each period. First, final output will be used for consumption C, total overhead

costs O, and total R&D expenditures Z:

Y = C +O + Z, (9)
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where

O =
J∑
j=1

1

2
ψon(j)2Y and Z =

J∑
j=1

x(j)ψrY.

Labor is used as a variable input by the producers of different intermediate

product lines. Labor and asset market clearing conditions imply

L =
J∑
j=1

∫ 1

0

l(j, i) di and
J∑
j=1

Vt(j) = at,

where l(j, i) denotes labor used by firm j on line i.

In addition, we have the equations defining the aggregate share of lines

operated by high types and an accounting equation that states that all lines are

operated by some firm:11

St =

φJ∑
j=1

nt(j) and 1 =
J∑
j=1

nt(j). (10)

Finally, there is an equation relating aggregate output to the distribution of

process efficiency, quality levels, and markups

Yt = Qt

ϕL∆St exp
[
−
∫ 1

0
log (µt(i)) di

]
∫ 1

0
(µt(i))

−1 di
L. (11)

Here Qt = exp
[∫ 1

0
log (qt(i, j)) di

]
denotes the geometric average quality level.

An equilibrium in this economy is a path of allocations and prices that

jointly solve the household and firm problems and is consistent with the

market clearing and accounting equations stated above.

There is no free entry and the number of firms is fixed. Hence total firm

profits from selling at a markup over marginal cost may exceed the total

investments in R&D and overhead costs. We call such net profits “rents.”

Since output is a function of the full distribution of markups across product

11Here we assume that the high productivity type firms are indexed by j = 1, 2, . . . , φJ .
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lines, the equilibrium path is a function of the initial joint distribution of

product lines n(j) and level of competition h(j) across firms. We assume that

all firms of the same type k = H,L start out with the same level of n0 and h0.12

Using the law of large numbers, firms of the same type will then be identical

along the entire equilibrium path. Therefore only two firm problems — one for

a high type and one for a low type — need to be solved. The aggregate state

vector can then be summarized by S and the shares of high second-best firms

hH and hL in lines operated by high and low productivity firms.

With the two “representative” firms, aggregate labor productivity can be

expressed in terms of these aggregate state variables (S, hL, hH) and the level of

average quality Q as13

Yt
L

= Qt · ϕL∆St · ∆(1−St)hLt−St(1−hHt)

SthHt + (1− St)(1− hLt) + St(1− hHt) 1
∆

+ (1− St)hLt∆

Aggregate labor productivity is the product of three terms. The first term Qt

captures the geometric average level of quality across product lines. The second

term, ϕL∆St , captures the aggregate level of process efficiency. If St = 0 then

aggregate process efficiency is just the level of the low type ϕL, whereas if St = 1

aggregate process efficiency is equal to the high level ϕH = ϕL∆. The third and

final term, which we call allocative efficiency, captures the output distortion

due to markup dispersion. If St = hHt = 1 or St = hLt = 0 this final term is equal

to 1 (no dispersion of markups since all markups are equal to γ in all lines). In

all other cases the third term is smaller than one.

In section 4 below we show that the steady state takes a tractable form that

can be solved analytically. We then discuss how a permanent drop in ψo (say

triggered by improvements in IT) affects market concentration, labor income

shares (within firms as well as in the aggregate), and productivity growth in the

long run. In Section 5 we calibrate the model and numerically solve for the

transition path of the economy.

12This assumption will automatically be fulfilled if the economy starts in steady state.
13The derivation of this expression can be found in Online Appendix B.2.

http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
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4 Solving for the steady-state

4.1 Steady state definition

We define a steady state equilibrium in the following way:

Definition 1 A steady state is an equilibrium path along which the real interest

rate and the gross rate of output remain constant, equal to r? and g?, and along

which a constant fraction of lines, S?, is provided by high productivity producers.

In a steady state all high productivity firms have the same constant number

of products n?H , whereas all low productivity firms have a different number of

products n?L. For the number of lines within a firm to be constant, its R&D

activity must be proportional to its number of products, i.e., x(j)? = n(j)?z?,

where z? is the aggregate rate of creative destruction in steady state. Since all

firms draw new lines from a stationary distribution, they all face the same

share of high productivity second-best firms in their lines:

h(j)? = S? ∀j. (12)

As the markup distribution is stationary in steady state, from (11) aggregate

output Yt grows at the same rate as average quality Qt:

Yt+1

Yt
=
Qt+1

Qt

= γz
? ≡ g?.

Finally, since total overhead O and total R&D Z each grow at the gross rate g?,

given (9) consumption has to grow at this rate as well. Using the Euler equation

this pins down the steady state real interest rate as

r? =
g?

β
− 1.

Next, we show that solving for the steady state boils down to solving for the

quadruple S?, n?L, n
?
H , and z?.
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4.2 Steady state characterization

With h(j)? = S?, (5) and (6) yield for the period profits of high and low type firms

(relative to total output) as

πH(n, S?) = n

(
1− S?

γ
− 1− S?

γ∆

)
− 1

2
ψon

2, (13)

and

πL(n, S?) = n

(
1− S?∆

γ
− 1− S?

γ

)
− 1

2
ψon

2. (14)

Denote v as the value of a firm relative to total output, v ≡ V/Y . The number

of products per firm n becomes the only individual state variable in the firm

problem, so we can write vk = vk(n), k = H,L. High and low productivity firms

then solve the following Bellman equations:

vH(n) = max
n′≥n(1−z?)

{πH(n, S?)− (n′ − n(1− z?))ψr + βvH(n′)}, (15)

vL(n) = max
n′≥n(1−z?)

{πL(n, S?)− (n′ − n(1− z?))ψr + βvL(n′)}. (16)

We denote their solutions as n′ = fH(n) and n′ = fL(n).

In steady state, the two accounting equations in (10) become

S? = n?HφJ

n?HφJ + n?L(1− φ)J = 1.

Finally, we must have

n?H = fH(n?H), n?L = fL(n?L).

These equations fully characterize the steady state. The two dynamic

programming problems (15) and (16) are very simple since πH and πL are

quadratic functions of n from (13) and (14).
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In the following we focus on an interior steady state wherein S? ∈ (0, 1) and

z? ∈ (0, 1). When such a steady state exists, the policy and value functions can

be characterized in closed form.14 Next we impose parameter restrictions that

ensure the existence of an interior steady state solution.

Assumption 1 To ensure an interior steady state where both firm types are active

and long-run growth is positive, we assume

∆− 1

γ
<
ψo
φJ

, (17)

and

0 <
1

ψr
− 1− β

β
− 1

ψr

ψo

J
+ 1

γ

1− (1− φ)φ (∆−1)2

γ∆
J
ψo

< 1. (18)

Restriction (17) ensures that the low type firms are active in steady state, S? <

1.15 This is fulfilled as long as neither the productivity differential ∆ nor the

number of high productivity firms φJ are too large. Restriction (18) ensures

a positive but less than certain rate of creative destruction, 0 < z? < 1. It is

fulfilled as long as ψr relative to β is neither too small nor too large.

The next two propositions characterize the interior steady state solution and

prove that Assumption 1 is sufficient for the existence of such a steady state.

Proposition 1 If an interior steady state exists, it is given by a quadruple

(n?H , n
?
L, S

?, z?) that fulfills

φJn?H = S? and (1− φ)Jn?L + φJn?H = 1, (19)

14Let us denote the marginal steady state profits per line before overhead cost of firms by
π̃H = 1−S?/γ− (1−S?)/(∆γ) and π̃L = 1−∆S?/γ− (1−S?)/γ. Then, for any n ≤ n̄k/(1− z?),
where n̄k ≡ (π̃k + (1− z?)ψr − ψr/β) /ψo we have the policy function fk(n) = n̄k and the value
function vk(n) = π̃kn − 1

2ψon
2 − ψr(n̄k − (1 − z?)n) + β(π̃kn̄k − 1

2ψon̄
2
k − ψrz?n̄k)/(1 − β), for

k = H,L. See Online Appendix B.1 for details.
15With ∆−1

γ ≥ ψo

φJ there exists a trivial steady state with n?L = 0, n?H = 1/(φJ), S? = 1, and
z? = (1− 1/γ − ψo/(φJ)) /ψr + 1− 1/β, where 0 < (1− 1/γ − ψo/(φJ)) /ψr + 1− 1/β < 1 needs
to be imposed to ensure that the high type firms invest strictly positive amounts and that the
rate of creative destruction is less than 100%, i.e., z? ∈ (0, 1).

http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
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as well as the following research arbitrage equations for high and low

productivity firms:

ψr =
1− S?/γ − (1− S?)/(γ∆)− ψon?H

1/β − 1 + z?
(20)

ψr =
1− S?∆/γ − (1− S?)/γ − ψon?L

1/β − 1 + z?
. (21)

Proof. By definition S? ∈ (0, 1) in an interior steady state. This implies that

n?k and x?k are positive for k = H,L. Thus both firm policy functions satisfy the

first-order condition for the Bellman equation. For the high type this is

ψr = β
∂vH(n′)

∂n′
.

Using the envelope theorem we have

∂vH(n′)

∂n′
= 1− S?/γ − (1− S?)/(γ∆)− ψon′ + (1− z?)ψr.

Using the fact that n′ = n?H in steady state then yields the research arbitrage

equation of the high type firm. The research arbitrage equation of the low type

firm is derived in an analogous way.

The intuition for the two research arbitrage equations is straightforward. In

steady state the marginal cost of innovating in a line ψr equals the marginal

(expected) value of having an additional line. For the high type firm, this

marginal value is proportional to the marginal profit 1 − S?/γ − (1 − S?)/(γ∆)

minus the marginal overhead cost ψon?H . These terms are are divided by

1/β − 1 + z? (due to pure time discounting and the probability z? losing the

additional line in each future period) to arrive at the marginal value.

Equations (19)–(21) are four equations in the four unknowns (n?H , n
?
L, S

?, z?)

that can be solved explicitly. We use them to derive conditions that guarantee

an interior solution, and to solve for all the other endogenous variables.
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Proposition 2 Assumption 1 implies that the steady state is interior and is

characterized by Proposition 1. Furthermore, this interior steady state has the

following properties:

(i) The share of lines operated by high productivity firms is equal to

S? =

1
1−φ + ∆−1

γ∆
J
ψo

1
(1−φ)φ

− (∆−1)2

γ∆
J
ψo

, (22)

and the rate of creative destruction is given by

z? =
1

ψr
− 1− β

β
− 1

ψr

ψo

J
+ 1

γ

1− (1− φ)φ (∆−1)2

γ∆
J
ψo

. (23)

(ii) High productivity firms operate more lines than low productivity firms:

n?H > n?L.

(iii) The labor income share of a high type firm is given by

λ?H = S?
1

γ
+ (1− S?) 1

γ∆
, (24)

which is strictly smaller than the labor income share of a low type firm

λ?L = S?
∆

γ
+ (1− S?) 1

γ
. (25)

Finally, the aggregate labor income share is given by

λ? = S?λ?H + (1− S?)λ?L. (26)

Proof. Replacing n?H and n?L in (20) and (21) by S?/(φJ) and (1 − S?)/(J(1 −
φ)), respectively, and solving the two equations for S? and z? yields the unique

solution in part (i). Note that restriction (17) ensures S? < 1 and restriction
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(18) ensures 0 < z? < 1. Finally, note that S? > 0 is always guaranteed since

(17) implies ψo

φJ
> ∆−1

γ
> ∆−1

γ
∆−1

∆
(1 − φ), as ∆−1

∆
(1 − φ) < 1 — Assumption 1 is

sufficient to ensures the existence of an interior steady state.

For part (ii), by combining (20) and (21) the difference in the number of

products can be expressed as

n?H − n?L =
S?(∆− 1)2

γ∆ψo
+

∆− 1

γ∆ψo
> 0.

The labor income shares follow from (3), (4) and (12). This proves part (iii).

In steady state, S? can be viewed as a summary statistic of market

concentration, whereas z? pins down the long-run growth rate of the economy.

Note that all of the endogenous steady state values depend only on the ratio

ψo/J and not on the individual level of ψo or J .

The intuition for (ii) in Proposition 2 is that high process efficiency firms can

(on average) charge higher markups. Consequently their incentive to undertake

R&D is higher and they push up into a steeper area of the convex overhead cost

schedule, as they operate more lines than low process efficiency firms do in

steady state. A corollary is that we have S? > φ since high productivity firms

are larger (in terms of sales per firm) than than low productivity firms. High

and low productivity firms also differ in their employment, but the employment

difference is smaller than the sales difference as high productivity firms charge

higher markups — see part (iii) of Proposition 2.

4.3 Steady state effects of a decrease in overhead costs (ψo)

We hypothesize that the IT revolution may have contributed to lower costs of

managing multiple product lines within a firm. See Aghion and Tirole (1997).

In this section we consider how the steady state in our model changes

following a permanent reduction in the overhead cost parameter ψo. We are

particularly interested in how the following endogenous variables respond: (i)
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market concentration, S?; (ii) the labor income share at the aggregate level as

well as within firms; and (iii) the long-run growth rate.

Proposition 3 Concentration S? increases monotonically as ψo decreases.

Proof. Taking derivatives of (22) with respect to ψo yields

∂S?

∂ψo
= −

[1 + φ(∆− 1)] ∆−1
γ∆

J
ψ2
o(1−φ)φ(

1
(1−φ)φ

− (∆−1)2

γ∆
J
ψo

)2 < 0.

The intuition that a fall in ψo increases S? is the following: with a lower ψo a

larger size gap n?H − n?L is needed to yield the same difference in the marginal

overhead cost between high and low productivity firms. Consequently, high

process efficiency firms will operate more lines as ψo decreases, whereas low

productivity firms will shrink in size. Therefore market concentration goes up.

Proposition 4 As ψo decreases (i) the labor income share within firms increases,

(ii) market shares are reallocated toward low labor share firms, and (iii) the

aggregate labor income share increases (decreases) if initial S? is larger (smaller)

than 1/2.

Proof. For (i) note that both (24) and (25) are monotonically increasing in S?

(and S? increases as ψo falls as demonstrated in Proposition 3). For (ii), as S?

increases the sales share of high productivity firms (with higher average

markups and lower labor shares) goes up. For (iii), we obtain from (26) that:

∂λ?

∂S?
= λ?H + S?

∆− 1

γ∆
− λ?L + (1− S?)∆− 1

γ
.

Replacing the expression for λ?H and λ?L by (24) and (25) and simplifying gives

∂λ?

∂ψo
=
∂λ?

∂S?
∂S?

∂ψo
=

(∆− 1)2

γ∆
(1− 2S?)

∂S?

∂ψo
.



28

Since S? is decreasing in ψo (see Proposition 3) this implies that the aggregate

labor income share decreases as ψo falls if and only if S? > 1/2.

The model makes sharp predictions about the labor income shares at the

aggregate vs. micro level. As S? increases due to the drop in ψo, all firms are

more likely to face a high productivity second-best competitor on any given

line. As a consequence within firm markups decrease and within firm labor

shares increase — see (24) and (25). The sales reallocation across firms goes in

the opposite direction. As S? increases the high productivity firms with their

lower labor shares expand and the low productivity firms contract. This

between firm effect pushes the aggregate labor income share downwards. As

emphasized in Section 2, within and between firm labor shares going in

opposite directions is a salient feature of the U.S. micro data.

Whether the within or between firm effect on the labor share dominates in

our model depends on the initial level of S?. Specifically, the aggregate labor

income share falls as ψo decreases if and only if S? > 1/2.

Proposition 5 We have ∂z?/∂ψo > 0 such that long-run growth decreases as ψo

falls if and only if
J(∆− 1)2

γ∆ψo

(
J

γψo
+ 2

)
>

1

φ(1− φ)
. (27)

Proof. Taking derivatives of (23) with respect to ψo gives

∂z?

∂ψo
=

2φ(1− φ) (∆−1)2

γ∆ψo
+ φ(1− φ) (∆−1)2

γ∆ψo

J
γψo
− 1

J

ψr

(
1− (1− φ)φ (∆−1)2

γ∆
J
ψo

)2 .

This expression is positive if and only if (27) holds.

The long-run growth rate is affected by a drop in ψo in two ways. First, there

is a direct positive effect on growth: at a given S?, a lower overhead cost raises

the marginal value of operating an additional line and therefore stimulates

R&D investment and growth. Second, there is a general equilibrium effect that
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goes in the opposite direction. As ψo decreases S? rises. This reduces the

expected markup in an additional line (as the probability of facing a high

productivity second-best firm went up). This general equilibrium effect

decreases the incentive to undertake R&D and consequently long-run growth

can potentially fall as ψo decreases. Whether the direct or indirect effect

dominates depends on the precise parameter values. Proposition 5 states the

parameter range that guarantees that long-run growth falls as ψo decreases.

The condition holds as long as ψo/ [(∆− 1)J ] is not too large.16 We find this

condition holds in our calibrations below.

To recap, our theory can generate a productivity slowdown, rising

concentration, and opposite changes in the labor income shares within firms

and between firms as the outcome of a drop in ψo. In Section 5 below we will

gauge the quantitative size of these effects in a simple calibration. We can also

explore the effect of changes in other parameters, such as the R&D cost

parameter ψr and the process efficiency advantage of high type firms ∆.

4.4 Theoretical extensions

We kept our baseline model parsimonious to show the minimum ingredients

needed to speak to the empirical facts in Section 2 This tractable model can be

augmented in various ways to explore the same mechanisms in richer

environments. In the Online Appendix, we consider various extensions of the

model. We replace the Cobb-Douglas aggregation across goods with a CES

final good aggregator in section (C). This introduces a finite monopoly markup

and hence leads to less markup dispersion. We generalize from two to an

arbitrary number of firm types in terms of their permanent process efficiency

in section (D). Finally, we allow mergers and acquisitions in section (E). In all

of these extensions, we derive the conditions under which the qualitative

results of our baseline model are still valid.

16Restriction (27) is consistent with Assumption 1 for a non-empty set of parameters as long
as 1/φ+ 2(∆− 1) > ∆/(1− φ).

http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
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5 Calibration

We now investigate how much a decline in overhead costs might contribute

quantitatively to a burst and then slowdown of productivity growth. We define

the initial steady state period as 1987–1995 and the ending steady state period

as 2005–2018. We calibrate five parameters to match five moments in the

initial steady state. And we infer changes in three of the parameters — ψo, ψr,

and ∆ — to match three moments in the ending steady state. We then assess

the importance of the overhead cost channel by calculating changes in growth

in the model when only the overhead parameter ψo changes.

5.1 Initial and ending steady states

The five moments we match are: 1) concentration (share of sales going to the

largest 0.137% of firms) within industries in 1987 from Autor et al. (2020);17 2)

the average annual rate of productivity growth over 1987–1995 in Trade and

Services from the BLS KLEMS dataset; 3) average markups in Trade and Service

industries as estimated by Hall (2018) over 1988–2015; 4) the real interest rate

from Farhi and Gourio (2018) for 1980–1995; 5) the semi-elasticity of firm labor

share with respect to firm sales within four-digit industries divided by the

aggregate labor share from Autor et al. (2020).18 The calibrated parameters are:

1) the initial overhead cost parameter ψ0
o ; 2) the initial R&D cost parameter ψ0

r ;

3) the proportional process efficiency gap ∆ > 1 between high and low type

firms; 4) the quality step size γ > 1; and 5) the discount factor 0 < β < 1. We set

the share of high type firms φ to 0.137% to match the fraction of top 20 firms.

17Autor et al. (2020) report the average sales shares of the top 20 firms and the average
number of firms within 4-digit industries in Trade and Service sectors. We use this information
to infer that the top 20 firms are approximately the top 0.137% of firms.

18We aggregate concentration and the semi-elasticity from Autor et al. (2020) for Retail Trade,
Wholesale Trade, and Services using value of production weights from KLEMS. To calculate
the price/cost markup for Trade and Services, we aggregate industry level Lerner indices (one
minus the inverse of markups) estimated by Hall (2018) using sector output shares provided by
Hall (2018) and then convert the resulting aggregate index to markups.
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Tables 4 and 5 display the targets and the calibrated parameter values. First,

concentration S? is monotonically increasing in ψo in the model. Hence the

level of concentration helps to pin down ψ0
o to 0.050%. Next, the semi-elasticity

of labor shares with respect to size becomes more negative with higher ∆,

helping to set ∆ to 1.134. That is, the high-type firms enjoy about 13% higher

process efficiency. Given ∆ and S?, the average markup increases with the

quality step γ. To match the average markup in the data, the model asks for a

25% increase in quality upon innovation (γ = 1.249). Given γ and

concentration, the growth rate in the model decreases with ψr, which scales

the cost of R&D. We obtain ψr = 2.201. Finally, for a given growth rate of the

economy, the real interest rate decreases with the discount factor β. Matching

the real interest rate requires β = 0.947. As shown in Table 4, the model is able

to fit all of the moments despite its simplicity.

Table 4: Baseline Calibration Targets

Targeted Years Data Model

1. top 0.137% concentration 1987 26.7 26.7
2. productivity growth 1987–1995 0.48 0.48
3. price/cost markup 1988-2015 1.25 1.25
4. real interest rate 1980–1995 6.10 6.10
5. semi-elasticity of labor share wrt sales 1987 -2.18 -2.18

Source: 1 and 5: Autor et al. (2020). 5 is relative to aggregate labor share. 2: BLS KLEMS
series. 3: Hall (2018). 4: Farhi and Gourio (2018).

Table 6 displays the moments in the new steady state when ψo, ψr and ∆

change to match the “long run” (post-2005 vs. pre-1996) empirical changes in

concentration, growth, and relative markups of the top firms. In the model, the

relative markup of the top firms is equal to ∆. According to Autor et al. (2020),

both employment and sales shares of the largest firms increased for Trade and

Services such that relative markups did not changed significantly. Hence we

calibrate the change in ∆ to 0. With an unchanged ∆, overhead cost parameter
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Table 5: Baseline Parameter Values

Calibrated Parameter Value

1. overhead costs ψ0
o 0.050%

2. R&D costs ψ0
r 2.201

3. productivity gap ∆ 1.134
4. quality step γ 1.249
5. discount factor β 0.947

Assigned Parameter Value

6. share of H-type firms φ 0.137%

ψo must decline by 23% to generate the rise in concentration seen in the data.19

While the decline in ψo alone leads to lower steady state growth, it does not

generate the entire growth decline observed in the data. As a consequence, the

data asks for the R&D cost parameter ψr to increase by about 6%. This is

reminiscent of Bloom, Jones, Van Reenen and Webb (2020), who argue that

growth is held down by ever-rising research costs.

Table 6: Calibrated change in parameters to fit the ending steady state

Change Targeted change Data Model

1. overhead costs ψo -23.1% concentration 8.3 8.3
2. R&D costs ψr 5.78% productivity growth -0.18 -0.18
3. efficiency gap ∆ 0% relative markup 0 0

Source: 1: Autor et al. (2020), change in the sales share of the top 0.137% firms between 1987 and
2012. 2: BLS KLEMS. 3: Autor et al. (2020), change in revenue per worker of the top 0.137% firms
relative to the rest of the firms. Columns ‘Data’ and ‘Model’ are in percentage points.

Since both ψo and ψr contribute to the decline in steady state growth, in

Table 7 we isolate the contribution of ψo alone. This contribution can be

calculated in two ways: 1) the change in growth when only ψo changes, and 2)

the change in growth when ψo does not change relative to when all parameters

19The parameter ψr does not affect concentration. The 23% decline in ψo compares to a 35%
decline in the relative price of IT goods over 1996–2005 in Figure 1b.
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Table 7: Contribution of overhead costs to the decline in steady state growth

1. ψo, ψr 2. only ψr 1. minus 2. 3. only ψo ψo contribution

change in g -0.180 -0.094 -0.086 -0.089 -0.088

Note: Each column displays the percentage points change in steady state growth rate when
the parameters in the column header changes as in Table 6. Column 1. matches the change in
the data. Column ‘ψo contribution’ equals the average of columns 3. and 4.

change. These two methods differ because the model is nonlinear. The average

of the two says the decline in ψo contributed 9 basis points out of the 18 basis

point decline in steady state productivity growth.

Table 8 displays selected endogenous variables in the initial and ending

steady states. Lower overhead costs increase the share of products and sales at

the high efficiency firms (higher S?). Employment concentration increases by

less than sales concentration because the high efficiency firms charge higher

markups (µH > µL). With the rise in S?, within-firm markups decline for both

firm types because the next best producer is more likely to be a high type firm.

Despite the decline in within-firm markups, the aggregate markup changes

little because of the rising market share of high-type firms. I.e., the between

effect roughly cancels out the within effect. Table 9 shows that the model

generates about 10% of the between and within changes in labor share seen for

Trade and Services in Autor et al. (2020).

The decline in within-firm markups discourages innovation by both firm

types, lowering the rate of creative destruction and growth. R&D spending as a

share of total output declines.20 Meanwhile, the rise in concentration leads to a

rise in overhead costs as a share of output despite the downward shift in the

overhead cost curve. The decline in R&D share exceeds the rise in overhead

cost share. This, combined with a stable aggregate labor share (the inverse of

the aggregate markup), implies a higher share of rents in GDP by about one

percentage point. Finally, the 18 basis point decline in the growth rate

20Note that Trade and Services report little R&D, so this is probably not captured well by R&D
data, which is predominantly in manufacturing and software.



34

Table 8: Initial vs. ending steady state

z? S? µ µH µL r Z/Y O/Y Rent/Y

Initial 2.2 26.7 1.25 1.37 1.21 6.1 4.7 1.3 13.6
Ending 1.4 35.0 1.25 1.35 1.19 5.9 3.2 1.7 14.8

Note: µ, µH and µL denote the aggregate and firm-level markups. Aggregate labor share equals 1/µ.
Aggregate labor income, total R&D expenditure Z, total overhead cost O and rents sum up to GDP Y .
Creative destruction rate (z?), concentration (S?), interest rate (r?), and shares of GDP are in percent.

Table 9: Steady state change in labor share

Total Within Between

Data change over 1987–2012 0.55 10.55 -10.01
Model 0.05 1.11 -1.06

Source: Autor et al. (2020) trade and service industries. All entries are in percentage points.

generates a decline in the real interest from 6.1% in the initial steady state to

5.9% in the ending steady state. This is in the direction of the decline estimated

by Farhi and Gourio (2018) from 6.1% for 1980–1995 to 4.5% from 2000–2016.

5.2 Transition dynamics

Our analysis so far has been based on steady state comparative statics. Yet in

Section 2 we described a ten-year burst in U.S. productivity growth from 1995

to 2005. So here we compute our model’s transition dynamics in response to the

ψo decline shown in Table 6 to see its potential contribution to the acceleration

and deceleration of growth.21

It is easy to show that, as ψo falls, our model will generate a surge in

productivity growth along the transition. The reason for this temporary burst is

twofold: 1) The general equilibrium force that decreases the incentive to

innovate — stiffer competition as St increases — is only realized over time.

Hence on impact, as ψo decreases, the incentive to do R&D increases and

therefore quality growth will increase initially; and 2) the new steady state with

21See Online Appendix F for a description of the computation method.

http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
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a higher S? exhibits higher average process efficiency as the efficient firms

operate a larger fraction of the product lines. This static efficiency gain is

realized along the transition and contributes to the burst of growth.

Figures 4a-4c display the transition dynamics for the share of lines operated

by the high type firms (St), the rate of creative destruction (zt+1), and

productivity growth after the overhead cost parameter ψo declines in year 0. St

rises sharply and converges to the new steady state after around 8 years. On

impact, there is a spike in the rate of creative destruction (z?) that generates

higher productivity growth for about 8 years.22

The rise in creative destruction comes from a jump in innovation by high

productivity firms, which in turns lifts concentration over time. Figure 4d shows

the innovation rate (x/n) by firm type. The Innovation by low type firms actually

falls. Eventually the innovation rate for both types converges to a level below

the initial steady state. If one makes the strong assumption that new product

lines are associated with plant entry, then this behavior qualitatively matches

the pattern in Figure 2b above, wherein only the largest firms experienced a

burst of plant entry rate during the high growth period from 1995–2005.

Finally, Figure 5 compares the path of consumption following the reduction

in ψo with the initial steady state path associated with no change in ψo.

Following the decline in ψo, consumption drops sharply in the first period as

high efficiency firms increase R&D and overhead investments. Consumption

then recovers and is above the initial steady state path for about three decades.

Eventually the long run slowdown in innovation and growth takes its toll and

consumption falls below its old steady state trajectory.

Table 10 displays the contribution of the decline in ψo alone to productivity

growth. We find that the decline in overhead costs might account for 11% of the

rise in productivity growth from 1995–2005 and 16% of the subsequent decline

in productivity growth.

22In addition to the rise in innovation, aggregate process efficiency rises by about 1% as more
products are produced by the high productivity firms. Allocative efficiency declines slightly due
to higher markup dispersion.
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Figure 4: Transition dynamics
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Note: The blue line plots the transition dynamics when overhead cost ψo declines by 23.1%
(as in Table 6) in period 0 while other parameters stay the same. The unit is percent.

Figure 5: Transition dynamics for consumption
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Note: The blue line plots consumption relative to period -1 when overhead cost ψo declines
by 23.1% (as in Table 6) in period 0 while other parameters stay the same.

5.3 Welfare analysis

The drop in ψo raises consumption growth in the short run but reduces

consumption growth in the long run. Hence it is natural to ask whether welfare

is higher or lower because of the drop in ψo. Recall that utility from a
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Table 10: Contribution of decline in overhead costs to growth burst

Data 1. ψo, ψr 2. ψr 3. 1. minus 2. 4. ψo 5. ψo contribution

Acceleration 1.18 0.04 -0.09 0.13 0.12 0.13 (10.9%)
Deceleration 1.36 0.22 0.00 0.22 0.21 0.22 (15.9%)

Note: For data, ‘Acceleration’ = growth over 1995–2005 minus growth over 1987–1995. ‘Deceleration’ =
growth over 1995–2005 minus growth over 2005–2018. In the model, ‘Acceleration’ = growth over period
1 to 10 minus initial steady state growth. ‘Deceleration’ = growth over period 1 to 10 minus new steady
state growth. Each column displays the acceleration and deceleration in growth when the parameters
in the column header changes as in Table 6. Column ‘ψo contribution’ equals the average of columns 3.
and 4. Entries are in percentage points.

consumption path is given by

U0 =
∞∑
t=0

βt logCt = U({Ct}∞t=0).

The change in welfare can therefore be evaluated in (permanent) consumption-

equivalent terms, ξ, using

U
(
{(1 + ξ)Cold

t }∞t=0

)
=

log(1 + ξ)

1− β
+ U({Cold

t }∞t=0) = U({Cnew
t }∞t=0),

where {Cnew
t }∞t=0 and {Cold

t }∞t=0 are paths of consumption with and without a

change in ψo and/or ψr. When we allow both ψo to fall and ψr to rise, welfare is

lower by the same amount as a permanent 0.57% decrease in consumption (ξ

= -0.57%). As shown in Table 11, however, when only ψo declines, welfare

improves (ξ = 0.28%). When only ψr rises, welfare declines even more (ξ =

-1.01%). Averaging these two ways (0.28% and 1.01%-0.57%), the decline in ψo

raises welfare by the same amount as a permanent 0.36% increase in

consumption. Even though the decline in overhead costs reduces long-run

innovation, overall it increases welfare through a combination of a permanent

boost in process efficiency and a temporary surge in innovation.
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Table 11: Contribution of the decline in overhead costs to welfare

1. ψo and ψr 2. only ψr 3. 1. minus 2. 4. only ψo 5. ψo contribution

ξ% -0.57 -1.01 0.43 0.28 0.36%

Note: Each column displays the welfare change in consumption-equivalent percentage terms
when the parameters in the column header change to the value in Table 6. Column ‘5. ψo
contribution’ equals the average of columns 3 and 4.

5.4 Discussion

According to our calibration, the decline in ψo explains only a fraction of the

growth burst and slowdown as well as the long run decline in growth. In this

sub-section we present potential ways to amplify the growth effect of ψo.

5.4.1 Source of ψr increase

In our benchmark calibration, a 6% increase in the R&D cost parameter, ψr,

accounts for half of the modest decline in long run growth. We can endogenize

this increase in R&D costs as stemming from diminishing returns with respect

to n in research. Suppose the cost of innovating on x lines is given by ψrnνx/nY .

In a steady state where x/n = z? for all firms, the aggregate cost of R&D as a

share of output can be written as ψ̃rz? where ψ̃r = ψr[S
?nν−1

H + (1 − S?)nν−1
L ].

Higher ψ̃r means lower aggregate R&D efficiency. Our baseline model features

ν = 1 and ψ̃r = ψr. When ν > 1, R&D intensity increases with firm size and

higherS? endogenously raises ψ̃r and lowers R&D efficiency. For example, when

ν = 1.5 as in De Ridder (2020), the observed rise in concentration raises ψ̃r

by 21%, leading to a much bigger decline in growth. We did not go this route

because it would make R&D intensity increase markedly with firm size, contrary

to available evidence.23

23According to the 2016 Business R&D and Innovation Survey (BRDIS) Table 17, R&D
intensity of firms reporting R&D declines with firm employment (3.5% for firms with 10K or
more employees vs. 5.2% for other firms). We combine BRDIS with Business Dynamics Statistics
(BDS) to estimate the share of firms that report R&D and find that unconditional R&D intensity
is 0.63% for 10K+ firms and 0.43% for the other firms. This translates to ν ≈ 1 because 10K+
firms are about 1600 times larger than the rest of the firms (2016 BDS).

https://ncses.nsf.gov/pubs/nsf19318/assets/data-tables/tables/brdis16-dst-tab017.xlsx
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5.4.2 Sensitivity of the growth effects in ∆

In Proposition 3 and 5, the effect of ψo on concentration S? and growth z? is

increasing in the firm process efficiency gap ∆. For example, suppose the

constant level of ∆ is 1.168 rather than its baseline value of 1.134, because the

semi-elasticity target for labor share with respect to firm size is -2.7 rather than

-2.2. Then the steady state growth decline due to lower ψo becomes 11.3 basis

points per year vs. our baseline of 8.8 basis points..

Alternatively, suppose the IT revolution enhanced the process efficiency

advantage of high-type firms, increasing ∆ over time.24 In our model an

increase in ∆ can lower the long-run growth rate by raising market

concentration and increasing the efficiency of second-best producers

confronting innovators (see Online Appendix B.3). If we fix ψo and calibrate the

change in ∆ and ψr to fit the rise in concentration and decline in steady state

growth, the model asks ∆ to increase by 3.9% and ψr to decline by 2.5%. Thus a

rise in ∆ alone could explain more than 100% of the decline in steady state

growth. We did not make this alternative our baseline because of evidence for

stable markups at large relative to small firms in Autor et al. (2020).

6 Conclusion

We developed a model of innovation-led growth with intrinsic firm

heterogeneity. We solved for the steady state and transition dynamics and

analyzed the extent to which the model can potentially account for a

significant portion of the U.S. growth experience over the past 30 years: (i) a

productivity slowdown (after a burst in productivity growth); (ii) rising

concentration at the national level; and (iii) opposing between and within firm

changes in labor share.

24This channel is emphasized by Lashkari et al. (2019) and De Ridder (2020). Large firms
may be more likely than small firms to make fixed investments in IT and intangibles to reduce
marginal production costs.

http://www.klenow.com/ABBKL_Falling_Growth_Rising_Rents_Online_Appendix.pdf
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We argued that a significant part of these phenomena can be explained by

IT improvements in the mid-1990s to mid-2000s which allowed the most

efficient firms to expand their boundaries. In our story, these firms enjoy

higher markups, so when they expand their reach into more markets this

pushes down the aggregate labor share. High productivity firms expand by

innovating on more product lines, bringing a temporary surge of productivity

growth. Within-firm markups eventually fall for both high and low productivity

firms, as they are more likely to face high productivity competitors. This force

ultimately reduces within-firm markups, and drags down innovation and

growth. We find that welfare increases despite the lower long run growth.

We focused our analysis on the overhead cost parameter ψo. However, the

model lends itself to richer comparative static and transition analyses. In

particular it is straightforward to explore the steady state effects of changes in

the efficiency gap ∆, the innovation size γ, the innovation cost ψr or the share

of high productivity firms φ. We see it as a virtue of our model that the within

vs. between firm effects of such changes can be studied easily.

Our baseline framework is based on leapfrogging innovations. In other

words, our model does not feature a positive escape competition effect as in

Akcigit and Ates (2019) or Liu, Mian and Sufi (2020). One can introduce such

an effect into our model via step-by-step innovation.

One could also explore optimal tax and subsidy policies in our quantitative

framework. The decentralized equilibrium is suboptimal due to markup

dispersion across products as well as knowledge spillovers across firms. Falling

overhead costs may increase welfare more strongly in the presence of an

optimal R&D subsidy.

Finally, our framework is well suited for discussing competition policy and

its relation with the productivity slowdown. We analyzed the implications of

allowing mergers and acquisitions, but other dimensions of competition policy

such as data access or firm breakup can be naturally considered through the

lens of our model. We leave these extensions of our analysis for future research.
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