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Abstract

We find disparate trend variations in TFP and labor growth across major U.S. production sectors

and study their implications for the post-war secular decline in GDP growth. Capital accumulation

and the network structure of U.S. production amplify the effects of sector-specific changes in the trend

growth rates of TFP and labor on trend GDP growth. We summarize this amplification effect in terms of

sectoral multipliers that, for some sectors, can exceed 3 times their value added shares in the economy. We

estimate that sector-specific factors have historically accounted for approximately 3/4 of long-run changes

in GDP growth, leaving common or aggregate factors to explain only 1/4 of those changes. Trend GDP

growth fell by nearly 3 percentage points over the post-war period with the Construction sector alone

contributing roughly 1 percentage point of that decline between 1950 and 1980. Idiosyncratic changes to

trend growth in the Durable Goods sector then contributed an almost 2 percentage point decline in trend

GDP growth between 2000 and the end of our sample in 2018. Remarkably, no sector has contributed

any steady significant increase to the trend growth rate of GDP in the past 70 years.
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1 Introduction

Following the so-called Great Recession of 2008-2009, U.S. GDP recovered only very gradually which resulted

in a conspicuously low average growth rate in the ensuing decade. Fernald, Hall, Stock, and Watson (2017)

found this weak recovery stemmed mainly from slow growth in total factor productivity (TFP) and a fall

in labor input, and note that these adverse forces preceded the Great Recession. Antolin-Diaz, Drechsel,

and Petrella (2017) likewise document a slowdown in output growth that predates the Great Recession.1

This paper studies what has in fact been a steady decline in trend GDP growth over the entire post-war

period, 1950 − 2018. We explore the implications of TFP and labor inputs in accounting for this secular

decline but we do so at a disaggregated sectoral level. We document disparate trend variations in TFP and

labor growth across sectors and estimate the extent to which these trends are driven by idiosyncratic rather

than common factors. We then study the implications of our empirical findings for trend growth within a

multi-sector framework with production linkages that mimic those of the US economy including, crucially,

in the production of investment goods.

We find that common trend factors play a relatively small role in explaining sectoral trends in labor

and TFP growth. For example, in Durable Goods, only 3 percent of the overall trend variation in labor

and TFP growth is explained by their respective common trend factors. These findings, therefore, highlight

the quantitative importance of idiosyncratic forces not only for business cycle fluctuations (see Gabaix

(2011), Foerster, Sarte, and Watson (2011), and Atalay (2017)), but also for variations in trends. There are,

however, exceptions in that in some service sectors, the trend variation in labor is explained to a greater

degree by the common trend factor. Common trends explain a higher fraction of aggregate trend variation

in labor and TFP growth because aggregation reduces the importance of sector-specific trends. We estimate

that approximately 1/3 of the variation in the trend growth rate of aggregate TFP is common across sectors

while roughly 2/3 is common for labor. One cannot, however, directly infer from these findings the role

that common and sectoral growth trends in labor and TFP play in the overall trend growth rate of GDP.

The reason is that capital accumulation and production linkages can considerably amplify the influence of

particular sectors on the aggregate economy.

To explore the historical implications of changing sectoral trends for the long-run evolution of GDP

growth, we derive balanced growth accounting equations in a dynamic multi-sector framework where sectors

use not only materials but also investment goods produced in other sectors. We then use these new growth

accounting equations to assess the aggregate effects of observed sectoral changes in the trend growth rates

of labor and TFP. Our analysis, therefore, extends the work of Greenwood, Hercowitz, and Krusell (1997)

to an environment with multiple investment sectors and multiple intermediate goods sectors that are also

1Cette, Fernald, and Mojon (2016) suggest that a slowdown in productivity growth that began prior to the Great Recession
reflects in part the fading gains from the Information Technology (IT) revolution. This view is consistent with the long lags
associated with the productivity effects of IT adoption found by Basu and Fernald (2001), and the collapse of the dot-com boom
in the early 2000s. Decker, Haltiwanger, Jarmin, and Miranda (2016) point to a decline in business dynamism that began in
the 1980s as an additional force underlying slowing economic activity.
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interconnected in production.2 At the same time, its focus on estimating common and idiosyncratic sources

of sectoral trends, and what their aggregate implications are for the long-run, differentiates it from the liter-

ature building on Greenwood et al. (1997). Specifically, Fisher (2006), Justiniano, Primiceri, and Tambalotti

(2010, 2011) and Basu, Fernald, Fisher, and Kimball (2013) are primarily concerned with the business cycle

implications of sectoral shocks, and in particular, investment-specific shocks. More recently, vom Lehn and

Winberry (2019) show that the input-output network of investment goods is critical in accounting for shifts

in the cyclicality and relative volatilites of aggregate time series since the 1980s.

We show that capital accumulation and the network structure of U.S. production can markedly amplify

the effects of sector-specific changes in the trend growth rates of TFP and labor on trend GDP growth. We

summarize this amplification mechanism in terms of sectoral multipliers that reflect the knock-on effects

induced by production linkages. The size of a sector’s multiplier depends on its importance as a supplier

of investment goods, and to a lesser degree materials, to other sectors. Given observed U.S. production

linkages, we find that the influence of individual sectors on GDP growth may be as large as 3 times their

share in the economy.

Combining our empirical findings with the amplification effects of sectoral multipliers, we find that

sector-specific trends have accounted for roughly 3/4 of the trend variation in GDP growth over the post-

war period, leaving aggregate or common factors to explain only 1/4 of those changes. These findings arise

in part because the knock-on or indirect effects of sector-specific changes in TFP and labor are large in some

sectors, especially those producing capital goods. Thus, U.S. trend GDP growth fell by nearly 3 percentage

points between 1950 and 2018 with the Construction sector alone contributing roughly 1 percentage point of

that decline between 1950 and 1980. The Durable Goods sector, after contributing to an economic expansion

in the 1990’s, then contributed another 2 percentage point decline in trend GDP growth between 2000 and

2018. Remarkably, no sector has contributed any steady significant increase to the trend growth rate of

GDP over the post-war period.

Our paper also falls within the literature on equilibrium multi-sector models first developed by Long

and Plosser (1983) and later Horvath (1998, 2000) and Dupor (1999). Since then, a large body of work has

explored important features of those models for generating aggregate fluctuations from idiosyncratic shocks.

We maintain the original assumptions of competitive input and product markets as well as constant-returns-

to-scale technologies. Even absent non-log-linearities in production, and beyond the role of idiosyncratic

shocks in explaining aggregate cyclical variations, the analysis reveals that sector-specific changes also

dominate trend variations in U.S. GDP growth.3

2Ngai and Pissarides (2007) provide a seminal study of balanced growth in a multi-sector environment. They consider
both multiple intermediates and multiple capital-producing sectors but not at the same time. Importantly, their analysis
abstracts from pairwise linkages in both intermediates and capital-producing sectors that play a key role in this paper. Ngai
and Samaniego (2009) extend the model in Greenwood et al. (1997) to three sectors which allows for an input-output network in
intermediate goods in carrying out growth accounting. Duarte and Restuccia (2020) include input-output linkages across sectors
in a multi-sector environment abstracting from capital and study the implications of cross-country productivity differences in
non-traditional service sectors.

3See Gabaix (2011), Foerster, Sarte, and Watson (2011) and Atalay (2017) for assessments of the importance of idiosyncratic
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This paper is organized as follows. Section 2 gives an overview of the behavior of trend GDP growth

over the past 70 years. Section 3 provides an empirical description of the trend growth rates of TFP and

labor growth by industry and estimates the contributions of sector-specific and common factors to these

trends. Section 4 develops the implications of these changes at the sector level in the context of a dynamic

multi-sector model with production linkages in materials and investment. This model serves as the balanced

growth accounting framework that we use to determine the aggregate implications of changes in the sectoral

trend growth rates of labor and TFP. Section 5 presents our quantitative findings. Section 6 concludes

and discusses possible directions for future research. An online Technical Appendix contains a detailed

description of the data, statistical methods, economic model, discussions of departures from our benchmark

assumptions, and includes additional figures and tables referenced in the text.

2 The Long-Run Decline in U.S. GDP Growth

Figure 1 shows the behavior of U.S. GDP growth over the post-WWII period. Here, annual GDP growth is

measured as the share-weighted value added growth from 16 sectors comprising the private U.S. economy;

details are provided in the next section.

Panel A shows aggregate private-sector growth rates computed by chain-weighting the sectors, and by

using three alternative sets of fixed sectoral shares computed as averages over the entire sample (1950−2018),

over the first fifteen years of the sample (1950−1964) and over the final fifteen years (2004−2018). Panel A

shows large variation in GDP growth rates – the standard deviation is 2.5 percent over the period 1950−2018

– but much of this variation is relatively short-lived and is associated with business cycles and other relatively

transitory phenomena. Moreover, to the extent that sectoral shares have changed slowly over time, these

share shifts have little effect in Panel A. In other words, changes in aggregate growth largely stem from

changes within sectors rather than between them. Our interest, however, is in longer-run variation.

Panel B, therefore, plots centered 11−year moving averages of the annual growth rates. Here too there

is variability. In the 1950s and early 1960s average annual growth exceeded 4 percent. This fell to 3 percent

in the 1970s, rebounded to nearly 4 percent in the 1990s, but plummeted to less than 2 percent in the 2000s

(See Table 1). At these lower frequencies, the effects of slowly shifting shares over the sample become more

visible.

Panels C and D refine these calculations by eliminating the cyclical variation using an Okun’s law

regression in GDP growth rates as in Fernald et al. (2017).4 Thus, panel C plots the residuals from a

regression of GDP growth rates onto a short distributed lead and lag of changes in the unemployment

shocks in driving business cycle fluctuations. We build on Acemoglu et al. (2012), Baqaee and Farhi (2019) and Miranda-Pinto
(2019) by studying an explicitly dynamic framework along with an empirical model that parses out common and idiosyncratic
components of sectoral trend input growth, as well as their implications for the observed behavior of the trend growth rates of
sectoral value added and GDP since 1950.

4Compared to other measures of cyclical slack or resource utilization, Fernald et al. (2017) point out that the civilian
unemployment rate has two key advantages. First, it has been measured using essentially the same survey instrument since
1948. Second, changes in the unemployment rate have nearly a mean of zero over long periods.
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Figure 1: U.S. GDP Growth Rates 1950-2018
(percentage points at an annual rate)
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(c) Cyclically Adjusted GDP Growth
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(d) Cyclically Adjusted GDP Growth
11-Year Centered Moving Average
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Notes: Growth rates are share-weighted value added growth rates from 16 sectors making up the private U.S. economy.
Cyclical adjustment uses a regression on leads and lags of the first-difference in the unemployment rate.

rate (∆ut+1,∆ut,∆ut−1). This cyclical adjustment eliminates much of the cyclical variability evident in

panel A. In addition, the 11−year moving average in Panel D now produces a more focused picture of the

trend variation in the growth rate of private GDP. Again, time-varying share weights have discernible but

relatively small effect on the aggregate growth rate or its 11-year moving average.

The numbers reported in Table 1 frame the key question of this paper: why did the average growth rate

of GDP fall from 4 percent per year in the 1950s to just over 3 percent in the 1980s and 1990s, and then

further decline precipitously in the 2000s? As the different columns of the table make clear, this question
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Table 1: Average GDP Growth Rates

Const Mean Weights Time-Varying Const Mean Weights Const Mean Weights
Full Sample Weights First 15 Years Last 15 Years

Dates Growth Cyc-adj Growth Cyc-adj Growth Cyc-adj Growth Cyc-adj
rates rates rates rates rates rates rates rates

1950-2018 3.3 3.2 3.3 3.2 3.2 3.1 3.4 3.4

1950-1966 4.5 4.2 4.3 4.0 4.3 4.0 4.6 4.3
1967-1983 3.1 3.6 3.0 3.5 2.8 3.4 3.4 3.9
1984-2000 3.9 3.4 3.9 3.4 4.0 3.4 3.8 3.4
2001-2018 1.9 1.8 2.0 2.0 1.7 1.7 2.0 2.0

Notes: The values shown are averages of the series plotted in Figure 1 over the periods shown.

arises regardless of the shares used in constructing GDP. We look to inputs – specifically TFP and labor at

the sectoral level – for the answer. That is, interpreting long-run variations of the data as a time-varying

balanced growth path, changes in trend GDP growth are in part determined by changes in the trend growth

rates of those two inputs. However, as the analysis in Section 4 makes clear, not all sectoral inputs are

created equal. Sectors not only differ in their size, that is, their value-added share in GDP, but also in the

share of materials or capital that they provide to other sectors. Put another way, input variation across

sectors is also a particularly important driver of low frequency movements in aggregate GDP growth.

Before investigating these input-output interactions, we begin by describing the sectoral data, how these

data are measured, how we construct trend growth rates, and how sectoral value-added as well as labor

and TFP inputs have evolved over the post-WWII period. In much of our analysis we construct aggregates

using the constant weights computed using full-sample averages. As Figure 1 and Table 1 suggest, results

using these constant shares are robust to alternative weighting schemes.

3 An Empirical Description of Trend Growth in TFP and Labor

As a first step, we estimate an empirical model of TFP and labor growth for different sectors of the U.S.

economy. Our paper applies as a benchmark the insights of Hulten (1978) on the interpretation of aggregate

total factor productivity (TFP) changes as a weighted average of sector-specific value-added TFP changes.

In particular, under constant-returns-to-scale and perfect competition in product and input markets, the

sectors’ weights are the ratios of their valued added to GDP.5

We calculate standard TFP growth rates at the sectoral level following Jorgenson et al. (2017) among

5In the absence of constant-returns-to-scale or perfect competition, Basu and Fernald (1997, 2001) and Baqaee and Farhi
(2018) show that aggregate TFP changes also incorporate reallocation effects. These effects reflect the movement of inputs
between low and high returns to scale sectors stemming from changes in relative sectoral TFP.
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others, construct trend growth rates using a ‘low-pass’ filter, and estimate a statistical model to decompose

these trend growth rates into common and sector-specific components.

3.1 Data

Sectoral TFP growth rates are calculated using KLEMS data from of the Bureau of Economic Analysis

and the Bureau of Labor Statistics Integrated Industry-Level Production Accounts (ILPA).6 These data are

attractive for our purposes because they provide a unified approach to the construction of gross output,

the primary inputs capital and labor, as well as intermediate inputs (‘materials’) for a large number of

industries. The KLEMS data are based on U.S. National Income and Product Accounts (NIPA) and

consistently integrate industry data with Input-Output tables and Fixed Asset tables.

The KLEMS dataset contains quantity and price indices for inputs and outputs across 61 private indus-

tries. The growth rate of any one industry’s aggregate is defined as a Divisia index given by the value-share

weighted average of its disaggregated component growth rates. Labor input is differentiated by gender, age,

education, and labor status. Labor input growth is then defined as a weighted average of growth in annual

hours worked across all labor types using labor compensation shares of each type as weights. Similarly,

intermediate input growth reflects a weighted average of the growth rate of all intermediate inputs averaged

using payments to those inputs as weights. Finally, capital input growth reflects a weighted average of

growth rates across 53 capital types using payments to each type of capital as weights. Capital payments

are based on implicit rental rates consistent with a user-cost-of-capital approach. Total payments to capital

are the residuals after deducting payments to labor and intermediate inputs from the value of production.

Put another way, there are no economic profits.

An industry’s value added TFP growth rate is defined in terms of its Solow residual, specifically output

growth less the revenue-share weighted average of input growth rates. This calculation is consistent with the

canonical theoretical framework we adopt in Section 4 where all markets operate under perfect competition

and production is constant-returns-to-scale. For earlier versions of Jorgenson’s KLEMS data up to 1990,

Basu and Fernald (1997, 2001) compute total payments to capital as the sum of rental rates implied by

the user-cost-of-capital and find small industry profits on average that amount at most to three percent of

gross output. In the presence of close to zero profits, elasticities to scale and markups are equivalent. More

recently, an active debate has emerged on the extent to which the competitive environment has changed in

the U.S. over the last two decades. On the one hand, Barkai (2017), also applying the user-cost-of-capital

framework but using post 1990 data, finds substantial profit shares over that period. On the other hand,

Karabarbounis and Neiman (2018) argue that the user-cost-of-capital framework, to the extent that it implies

high profit shares starting in the 1990s, also implies unreasonably high profit shares in the 1950s.7 In this

6The ILPA KLEMS data extend earlier work by Jorgenson and his collaborators, e.g., Jorgenson et al. (2017).
7In addition, De Loecker and Eeckhout (2017), estimating industry production functions from corporate balance sheets,

present evidence of rising markups and returns to scale since the 1980s. However, Traina (2018) argues that the evidence on
rising markups from corporate balance sheets depends crucially on the measurement of variable costs and weights in aggregation.
Similarly, Rossi-Hansberg et al. (2020) show that while sales concentration has unambiguously risen at the national level since
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paper, we maintain the assumptions of competitive markets and constant-returns-to-scale as a benchmark

from which to study the aggregate implications of sectoral changes in labor and TFP inputs.

Our calculations rely on the official 2020 version of the ILPA KLEMS dataset which covers the period

1987-2018, and the experimental ILPA KLEMS dataset for the period 1947 − 2016.8 To simplify the

presentation and analysis, we carry out the empirical work using private industries at the two-digit level.

In particular, we aggregate the 61 private industries included in the two KLEMS datasets into 16 two-digit

private industries following the procedure in Hulten (1978).9 Another advantage of the aggregation into

two-digit industries is that any differences between the two KLEMS datasets are attenuated and we feel

comfortable splicing the two datasets in 1987.10 That is, we use the growth rates calculated using the

experimental ILPA data before 1987 and using the official ILPA data after that date.

Table 2 lists the 16 sectors we consider. For each sector, the table shows average cyclically adjusted

growth rates of value added, labor, and value added TFP over 1950− 2018, and it also shows their average

shares in aggregate value added and labor input. The aggregate growth rates in the bottom row are the

value-weighted averages of the sectoral growth rates with average value added and labor shares used as fixed

weights.

Clearly sectors grow at different rates and this disparity is hidden in studies that only consider aggregates.

Average real value added growth rates range from 1.4 percent in Mining to 4.9 percent in Information,

bracketing the aggregate value added growth rate of 3.3 percent. With the exception of the Durable Goods

sector, most sectors with growth rates that exceed the aggregate growth rate provide services. Similarly,

labor input growth rates range from −1.3 percent in Agriculture to 3.5 percent in Professional and Business

Services (PBS), bracketing the average aggregate growth rate of 1.6 percent. Again, most sectors with labor

input growth rates that exceed the aggregate growth rate provide services. Finally, TFP growth rates range

from −0.4 percent in Utilities to 3.1 percent in Agriculture, bracketing the average aggregate TFP growth

rate of 0.8 percent. Sectoral TFP growth rates are less aligned with either value added or labor input growth

rates. There are four sectors with TFP declines, namely Utilities, Construction, FIRE (x-Housing), and

Education and Health, as well as a number of sectors with stagnant TFP levels. Negative TFP growth rates

are a counter-intuitive but known feature of disaggregated industry data. These are in part attributed to

measurement issues with respect to output though land and other regulations are also clearly a factor in

the 1980s, concentration has steadily declined at the Core-Based Statistical Area, county, and ZIP code levels over the same
period. While these facts can seem conflicting, the authors present evidence that large firms have become bigger through the
opening of more establishments or stores in new local markets, but this process has lowered concentration in those markets.

8The official ILPA dataset for 1987-2018 is downloaded from https://www.bea.gov/data/special-topics/

integrated-industry-level-production-account-klems and the experimental ILPA dataset for 1947-2016 is down-
loaded from https://www.bls.gov/mfp/special_requests/tables_detail.xlsx. See Fleck et al. (2014) and Corby et al.
(2020) for a detailed description of the official ILPA data, and Eldridge et al. (2020) for the experimental ILPA data.

9A detailed description is provided in Section 7 of the online-only Technical Appendix to this paper, Foerster et al. (2021).
10While the two ILPAs are related, they are not exactly identical for the time period in which they overlap. Since both

datasets are constructed to be consistent with the BEA’s input-output tables, they mostly agree on industry details and both
cover the same 61 private industries. Nevertheless, there remain differences but these are reflected mostly in the levels of the
variables rather than their growth rates.
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Table 2: 16 Sector Decomposition of the U.S. Private Economy
(1950-2018)

Sectors Average growth rate Average share

Cyclically adjusted data (Percentage points)

(Percentage points at an

annual rate)

Value
Added

Labor TFP Value
Added

Labor

1 Agriculture 2.41 -1.29 3.12 2.69 3.23

2 Mining 1.38 0.37 0.39 2.11 1.55

3 Utilities 2.09 1.00 -0.42 2.37 1.04

4 Construction 1.69 1.76 -0.23 4.99 7.62

5 Durable Goods 3.65 0.54 2.10 13.32 15.5

6 Nondurable Goods 2.27 0.14 0.83 9.20 8.80

7 Wholesale Trade 4.61 1.67 1.81 7.15 6.63

8 Retail Trade 3.13 1.19 1.07 8.18 9.61

9 Trans. & Ware. 2.58 0.91 1.27 4.16 5.03

10 Information 4.93 1.35 1.04 4.97 3.74

11 FIRE (x-Housing) 3.88 2.77 -0.03 9.97 7.53

12 PBS 4.45 3.51 0.36 8.79 11.25

13 Educ. & Health 3.43 3.34 -0.29 6.22 9.35

14 Arts, Ent., & Food Svc. 2.48 1.79 0.36 3.74 4.56

15 Other Services (x-Gov) 1.99 0.52 1.04 2.94 4.37

16 Housing 3.45 0.86 0.24 9.20 0.20

Aggregate 3.32 1.55 0.82 100 100

Notes: The values shown are average annual growth rates for the 16 sectors. The row labelled
“Aggregate” is the constant share-weighted average of the 16 sectors.

sectors such as Construction.11

To a first approximation, the contributions of the different sectors to aggregate outcomes are given by

the nominal value added and labor input shares in the last two columns of Table 2. In those columns, two

notable contributors to value added and TFP are Durable Goods and FIRE excluding Housing. The two

largest contributors to labor payments are Durable Goods and Professional and Business Services. Over

time, the shares of goods-producing sectors has declined while the shares of services-producing sectors has

increased. However, despite these changes, aggregating sectoral outputs and inputs using constant mean

11See for example Herkenhoff, Ohanian, and Prescott (2018).
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shares, as opposed to time-varying shares, has little effect on the measurement of aggregate outputs and

inputs (Figure 1).

3.2 Empirical Framework

The empirical framework used to characterize the long-run properties of the data proceeds in 3 steps.

First, we carry out a cyclical adjustment of sectoral TFP and labor raw growth rates to eliminate some

of their cyclical variability. Second, we make use of methods discussed in Müller and Watson (2020) to

extract smooth trends capturing the long-run evolution of the data. Finally, we carry out a factor analysis

that explores the relative importance of common and sector-specific factors in driving these smooth trend

components.

3.2.1 Cyclical Adjustment

Let ∆x̃i,t denote the growth rate (100 × the first difference of the logarithm) of annual measurements of

labor or TFP in sector i at date t. These sectoral growth rates are volatile and, in many sectors, much of

the variability is associated with the business cycle. Our interest is in trend (i.e., low-frequency) variation,

which is more easily measured after cyclically adjusting the raw growth rates. Thus, as with the cyclically

adjusted measure of GDP shown in Figure 1, we follow Fernald et al. (2017) and cyclically adjust these

growth rates using the change in the unemployment rate, ∆ut, as a measure of cyclical resource utilization.

That is, we estimate

∆x̃i,t = µi + βi(L)∆ut + ei,t,

where βi(L) = βi,1L + βi,0 + βi,−1L
−1 and the leads and lags of ∆ut capture much of the business-cycle

variability in the data. Throughout the remainder of the paper, we use ∆xi,t = ∆x̃i,t − β̂i(L)∆ut, where

β̂i(L) denotes the OLS estimator, and where xi,t represents the implied cyclically adjusted value of sectoral

TFP (denoted zi,t) or labor input (denoted `i,t) growth rates.

3.2.2 Extracting Low-Frequency Trends

We begin by extracting low-frequency trends from the data using a framework presented in Müller and

Watson (2008). That framework is useful because on the one hand, it yields smooth trends that capture the

long-run evolution of the growth rate of GDP and the associated growth rates of sectoral labor and TFP,

and on the other hand, it simultaneously provides a convenient framework for statistical analysis. We give

an overview below of the approach here. Müller and Watson (2020) provides a detailed Handbook discussion

of statistical analysis using this framework.12

To extract low frequency trends in the growth rates of GDP, TFP and labor input, generically denoted

by ∆xt, we regress these series onto a constant and a set of low-frequency periodic functions. In particular,

12The framework and methods are closely related to well-known spectral analysis methods using low-frequency Fourier
transforms of the data. See Müller and Watson (2020) for a detailed discussion and references.
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Figure 2: Trend Rate of Growth of GDP
(percentage points at an annual rate)
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Notes: The low-frequency trend captures variability for periodicities longer than 17 years.

let Ψj(s) =
√

2 cos(jsπ) denote a cosine function on s ∈ [0, 1] with period 2/j. The fitted values from the

OLS regression of ∆xt onto a constant and Ψj((t − 1/2)/T ) for j = 1, ..., q and t = 1, ..., T capture the

low-frequency variability in the sample corresponding to periodicities longer than 2T/q. Moreover, let Ψ(s)

denote the vector of regressors [Ψ1(s), ...,Ψq(s)]
′ with periods 2 through 2/q, ΨT the T × q matrix with tth

row Ψ((t − 1/2)/T )′ and Ψ0
T = [1T ,ΨT ] where 1T is a T × 1 vector of ones. The specific form used for

the cosine weights implies that the columns of Ψ0
T are orthogonal with T−1Ψ0′

TΨ0
T = Iq+1. Thus, the OLS

coefficients from the regression of ∆xt onto Ψ0
T , that is

(
Ψ0′
TΨ0

T

)−1
Ψ0′
T∆x1:T , amount to q + 1 weighted

averages of the data, T−1Ψ0′
T∆x1:T , which we partition as (x,X) where x is the sample mean of ∆xt. In our

application, T = 69 so that with q = 8, the regression captures long-run variation with periodicities longer

than 17.25 (= 2× 69/8) years. These are the low-frequency growth rate trends analyzed in this paper.13

Figure 2 plots the growth rates of (cyclically-adjusted) GDP, its centered 11-year moving average, and

its trend computed as the fitted values from the low-frequency regression we have just described.14 The

13Calculations presented in Müller and Watson (2008) show that these low-frequency projections approximate a low-pass filter
for periods longer than 2T/q. That said, there is some leakage from higher frequencies and this makes the cyclical adjustment
discussed above useful.

14An 11-year moving average is a crude low-pass filter with more than half of its spectral gain associated with periods longer
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Figure 3: Labor Growth Rates and Trends by Sector
(percentage points at an annual rate)
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Notes: Each panel shows the cylically adjusted growth rate of labor for each sector in black, along with its low-
frequency trend in blue.

low-frequency trend smooths out the higher-frequency variation in the 11-year moving average. While the

aggregate importance of sectoral shocks is known for business cycles – generally cycles with periods ranging

from 2 to 8 years – our interest here is on the role of sectoral shocks for the aggregate trend variations shown

in Figure 2.15 Thus, we will focus on cycles longer than 17 years as captured by the Ψ-weighted averages of

the data.

Figures 3 and 4 plot the cyclically adjusted growth rates of labor and TFP for each of the 16 sectors

than 17 years.
15See for example Gabaix (2011), Foerster et al. (2011) or Atalay (2017) for empirical analyses of the role of sectoral shocks

at quarterly and business cycle frequencies.
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Figure 4: TFP Growth Rates and Trends by Sector
(percentage points at annual rate)
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along with their low frequency trends. The disparity in experiences across different sectors stands out.

In particular, the trends show large variations across sectors and through time. For example, labor input

was contracting at nearly 4 percent per year in Agriculture in the 1950s but stabilized near the end of the

sample. In contrast, labor input in the Durables and Nondurable Goods sectors was increasing in the 1950s

but has been contracting since the mid-1980s. At the same time, the trend growth rate of labor in several

service sectors exhibit large ups and downs over the sample. Similar disparities are apparent in the sectoral

growth rates of TFP. Trend TFP growth in Construction, for example, was around 5 percent in the 1950s,

declined over the next couple of decades, and flattened out thereafter. In contrast, TFP trend growth in

Durable Goods increased somewhat steadily from the 1950s to 2000 but has since collapsed by more than 5

13



percentage points. In Sections 4 and 5, we quantify the aggregate implications of these sectoral variations

in labor and TFP inputs.

3.2.3 Statistical Properties of Low Frequency Trends

By construction, the low frequency trends are highly serially correlated, and this needs to be accounted for

in the statistical analysis. As it turns out, this is relatively straightforward given the framework described

above. We highlight a few key features of this framework and refer the reader to Müller and Watson (2020)

and references therein for more detail.

To fix notation, let gt denote the trend growth rate constructed from our data on TFP or labor input,

∆xt. That is, gt is the fitted value from the OLS regression of ∆xt onto a constant and the q periodic

functions Ψj((t − 1/2)/T ), and is the low-frequency trend plotted in Figures 2-4. We saw earlier that

because the regressors are mutually orthogonal, the OLS regression coefficients are (x,X) where x is the

sample mean of ∆xt and X is the q×1 vector of OLS regression coefficients from the regression of ∆xt onto

Ψj((t − 1/2)/T ) for j = 1, ..., q. The elements of X are called the cosine transforms of ∆x. Importantly,

because the regressors are deterministic, the stochastic process for gt is completely characterized by the

probability distribution of the (q + 1) random variables (x,X), and variation in gt over the sample is

determined by the q × 1 vector X.

As noted above, the cosine transforms are weighted averages of the sample values of ∆xt, T
−1Ψ′T∆x1:T ,

and a central limit result in Müller and Watson (2020) provides sufficient conditions under which X is

normally distributed when T is large. Importantly, these conditions allow for a wide range of persistent

processes so that ∆xt may be, for example, stationary and I(0), I(1) (that is, have a unit root), or gener-

ated by other highly persistent processes. In these cases, X
a∼ N(0,Ω) where the covariance matrix Ω is

determined by the low frequency second moments of the ∆x process, that is the low frequency (pseudo-)

spectrum.

In the empirical analysis below, we use a ‘local-level-model’ parameterization of the low frequency

spectrum that linearly combines a flat spectrum (from an I(0) component) and a steeply decreasing spectrum

(from an I(1) component). In this model, ∆xt behaves like the sum of independent I(0) and I(1) processes

over the long run. The resulting covariance matrix, Ω, depends on two parameters, (σ2, γ), where σ is an

overall scale parameter and γ governs the relative importance of the I(0) and I(1) components; larger values

of σ produce a more variable low frequency trend and larger values of γ produce a more persistent trend.

For this model, the covariance matrix Ω has the form:

Ω = σ2D(γ), (1)

where D is diagonal.16

16See Section 1 of the Technical Appendix or Müller and Watson (2020) for an explicit formula of the diagonal elements of
D(γ).

14

http://www.princeton.edu/~mwatson/papers/FHSW2021_Technical_Appendix.pdf


A key implication of these results is that the original sample of T observations on ∆xt contains only

q pieces of independent information on the long-run properties of ∆x. In our context, the T = 69 annual

observations contain only q = 8 observations describing the long-run variation for periods longer than 17

years. This makes precise the intuition that a statistical analysis of long-run growth is inherently a ‘small

sample’ problem. Conveniently, however, this small sample problem involves variables that are averages of

the T observations – the elements of X – and that are, therefore, (approximately) normally distributed and

readily analyzed using standard statistical methods.

3.2.4 Decomposition of Trend Growth Rates into Common and Sector-Specific Factors

Examination of the trends plotted in Figures 3 and 4 suggests that some of the trend variation may be

common across sectors while some are sector-specific. In addition, in some sectors, trend variation in labor

appears to be correlated with trend variation in TFP (and interestingly this correlation generally appears

to be negative). We now outline an empirical model that captures these features.

Let ∆ ln `i,t denote the rate of growth of labor input in sector i in period t, and let ∆ ln zi,t denote the

rate of growth of TFP. Consider the factor model[
∆ ln `i,t

∆ ln zi,t

]
=

[
λ`i 0

0 λzi

][
f `t

fzt

]
+

[
u`i,t
uzi,t

]
, (2)

where ft = (f `t f
z
t )′ are unobserved common factors, λi = (λ`i λ

z
i )
′ are factor loadings, and ui,t = (u`i,t u

z
it)
′

are sector-specific disturbances (sometimes referred to as uniquenesses). Denote the trend growth rates in

(∆ ln `i,t,∆ ln zi,t, f
`
t , f

z
t , u

`
i,t, u

z
i,t) by respectively (g`i,t, g

z
i,t, g

`
f,t, g

z
f,t, g

`
u,i,t, g

z
u,i,t) and let (X`

i , Xz
i ,F

`,Fz,U`
i ,U

z
i )

represent the associated cosine transforms. In other words, X`
i is the q × 1 vector of OLS coefficients as-

sociated with Ψj((t − 1/2)/T ), j = 1, ..., q, in the regression of ∆ ln `i,t on a constant and these periodic

functions, and similarly for Xz
i and so on. Pre-multiplying each element in equation (2) by T−1ψ′t, where

T−1ψ′t is the tth row of ΨT , and summing, yields a factor decomposition of the trends and cosine transforms

of the form (abstracting from the constant),[
X`
i

Xz
i

]
=

[
λ`iIq 0

0 λzi Iq

][
F`

Fz

]
+

[
U`
i

Uz
i

]
, (3)

which characterizes the low-frequency variation in the data. We estimate a version of (3) and use it to

describe the common components, (g`f,t, g
z
f,t), and sector-specific components, (g`u,i,t, g

z
u,i,t), of the trend

growth rates in sectoral labor input and TFP.17

To estimate equation (3) requires that we parameterize the covariance matrices for (F,U). We use the

local-level parameterization of Ω in (1) to characterize the covariance matrix of each of the components

17See Müller et al. (2020) for a related application studying long run growth and long horizons forecasts for per-capita GDP
values of a panel of 113 countries.
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in (F`,Fz,
{
U`
i ,U

z
i

}16

i=1
), where each component has its own value of (σ, γ); thus for example Var(F`) =

σ2
F,`D(γ`F ), and similarly for Fz and each of the U`

i and Uz
i components . We assume that F and U are

uncorrelated, as are Ui and Uj for i 6= j. We allow F` and Fz to be correlated by introducing a covariance

parameter σF,`z and letting Cov(F`,Fz) = σF,`zD(γ`F )1/2D(γzF )1/2. We use an analogous parameterization

for the covariance between each of the sectoral values of U`
i and Uz

i . Thus, each pair (F`,Fz) or (U`
i ,U

z
i )

is characterized by a parameter pair, γ = (γ`, γz), that governs persistence and a 2 × 2 covariance matrix,

say Σ, that includes (σ2
` , σ

2
z , σ`z).

The model is estimated using Bayes methods. While large-sample Bayes and Frequentist methods often

coincide, the analysis of long-run trends is predicated on a small sample: in our application, the variation in

each trend is characterized by only q = 8 observations. Hence, large-sample frequentist results are irrelevant

for our ‘small-sample’ empirical problem, and Bayes analysis will in general depend on the specifics of the

chosen priors.18 Thus, we now turn to the priors that we use.

The empirical model is characterized by three sets of parameters: a set of 2 × 2 covariance matrices,

(ΣFF , {ΣUU,i}16
i=1), that govern the variability and covariability of (`, z) pairs of F and U, the low frequency

persistence parameters, ((γ`F , γ
z
F ), {(γ`U,i, γzU,i}16

i=1), and the factor loadings {λ`i , λzi }16
i=1.

We use relatively uninformative priors for the Σ matrices and γ. Specifically, the prior assumes that each

set of parameters is independently distributed. We use a standard conjugate prior for each of the Σ matrices

which is the inverse-Wishart with ν = 0.01 degrees of freedom and scale νI2. There isn’t a conjugate prior

for γ. We use a prior with ln(λ) ∼ U(0, ln(500)). This puts relatively more weight on small values of γ, i.e.,

small weight on the I(1) component of the local-level model (consistent with a body of evidence beginning

in Stock and Watson (1998)) but allows for low-frequency behavior dominated by I(1) dynamics and thus

allows for a wide range of persistence patterns.

The prior for the factor loadings is more informative. Let λ` = (λ`1, ..., λ
`
16)′ and note that the scale

of λ` and F` are not separately identified. Thus, we normalize s′`λ
` = 1, where s` denotes the vector of

average sectoral labor shares shown in Table 2. This imposes a normalization where the growth of aggregate

labor, say ∆ ln `t =
∑

i=1 s`,i∆ ln `i,t, satisfies ∆ ln `t = f `t +
∑

i s`,iu
`
i,t. That is, a one unit change in f `

corresponds to a unit change in the long-run growth rate of aggregate labor.

The prior for λ` is λ` ∼ N(1,P`) where 1 is a vector of 1s and P` = η2(I16−s`(s′`s`)−1s′`) which enforces

the constraint that s′`λ
` = 1. The parameter η governs how aggressively the estimates of λ`i are shrunk

toward their mean of unity. Our benchmark model uses η = 1, so the prior puts approximately 2/3 of its

weight on values of λ`i between 0 and 2. Smaller values of η tighten the constraint, making negative factor

loadings less likely, while larger values of η loosen it. To gauge the robustness of our conclusions to the

choice of η, we will also show results with η = 1/2 and η = 2. We use an analogous prior for λz.

18Frequentist methods for small-sample problems such as these are discussed, for example, in Müller and Watson (2008, 2016,
2018). As practical matter, these methods apply only to univariate and bivariate settings. Our application here involves 32
time series.
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3.3 Estimated Sectoral and Aggregate Trend Growth Rates in Labor and TFP

Section 1 of the Technical Appendix contains details of the estimation method and empirical results for the

low-frequency factor model. For our purposes, the key results are summarized in a table and three figures.

Table 3 reports the posterior medians for λ along with 68 percent credible intervals.19 Also reported

is the fraction of the trend variability in each sector explained by the common trend factors, (g`f,t, g
z
f,t),

which is denoted by R2
` and R2

z in the table. Finally, the table also reports the correlation between the

sector-specific labor and TFP trends, (g`u,i,t, g
z
u,i,t), in each sector and the correlation between the common

trends (g`f,t, g
z
f,t).

Looking first at the median values of the factor loadings, Agriculture, Finance, Insurance and Real Estate

(FIRE (excluding housing)), and Professional and Business Services (PBS) have the largest factor loadings

for labor, and Transportation and Warehousing, and Durable and Nondurable Goods have the smallest.

Utilities, Durable Goods and Construction have the largest loadings for TFP, while FIRE (x-housing) and

Arts, Entertainment and Food Services have the smallest. The 68 percent credible intervals are relatively

wide and give a quantitative sense of how information about the long-run is limited in our sample: the

average width is 1.3 for λ` and 1.9 for λz. That said, for the majority of sectors, the posterior puts relatively

little weight on negative values of the factor loadings. Section 5 summarizes the paper’s key results for

alternative models with tighter (η = 0.5) and looser (η = 2.0) priors for the factor loadings that give rise

to correspondingly tighter or looser posteriors. Detailed results for these alternative models are available in

Section 1 of the Technical Appendix.

The sectoral R2 values are typically low indicating that common trend factors play a relatively muted

role in explaining overall sectoral trends. For example, in Durable Goods, only 3 percent of the overall

trend variation in labor and TFP growth is explained by their respective common trend factors. Notable

exceptions for R2
` arise in several service sectors, for example in FIRE (x-housing) where 76 percent of the

trend variation in labor is explained by the common trend factor. Interestingly, the posterior suggests that

the sector-specific trends in labor and TFP are generally negatively correlated, rather dramatically so for

Professional and Business Services. This negative correlation may reflect economic forces (such as input

substitution) or potentially correlated measurement error in the measures of labor input and TFP.

The final row of the table shows the results for aggregate values of labor and TFP. By construction, the

share-weighted factor loadings sum to unity. The common trends, (g`f,t, g
z
f,t), are also negatively correlated.

The R2 values are higher for the aggregates because aggregation reduces the importance of the sector-specific

trends. The point estimates suggest that roughly 2/3 of the variation in the trend growth rate of labor is

common across sectors while roughly 1/3 is common for TFP. However, one cannot directly infer from these

findings the role that common growth trends in labor and TFP play in the overall trend growth rate of GDP.

The reason is production linkages. In particular, the effective weight that each sector has in the aggregate

19Throughout the paper, we report 68 equal-tail percent credible intervals. Section 1 of the Technical Appendix also reports
selected 90 percent credible intervals, which in some cases are markedly wider. We remind the reader that these long-run
empirical results use only q = 8 independent observations on labor input and TFP for each of the 16 sectors.
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Table 3: Changes in Trend Value of Labor and TFP Growth Rates

Sector λ` λz R2
` R2

z corr(`, z)

1 Agriculture 2.01 0.59 0.21 0.02 -0.32
(1.24, 2.71) (-0.59, 1.64) (0.06, 0.44) (0.00, 0.13) (-0.52, -0.15)

2 Mining 0.73 1.10 0.01 0.01 -0.35
(-0.17, 1.64) (0.10, 2.09) (0.00, 0.07) (0.00, 0.04) (-0.63, -0.06)

3 Utilities 1.13 1.36 0.24 0.05 0.22
(0.41, 1.82) (0.36, 2.35) (0.04, 0.58) (0.00, 0.29) (-0.06, 0.58)

4 Construction 1.55 1.26 0.33 0.02 -0.25
(0.95, 2.08) (0.21, 2.66) (0.10, 0.61) (0.00, 0.19) (-0.55, -0.04)

5 Durable Goods 0.40 1.31 0.03 0.03 -0.35
(-0.23, 1.03) (0.44, 2.17) (0.00, 0.18) (0.00, 0.15) (-0.63, -0.05)

6 Nondurable Goods 0.59 1.22 0.06 0.04 -0.36
(-0.20, 1.38) (0.36, 2.13) (0.01, 0.29) (0.00, 0.23) (-0.65, -0.06)

7 Wholesale Trade 1.09 0.88 0.53 0.04 0.20
(0.62, 1.49) (0.06, 1.74) (0.17, 0.81) (0.00, 0.20) (-0.06, 0.53)

8 Retail Trade 0.80 1.14 0.26 0.05 0.06
(0.26, 1.29) (0.17, 2.82) (0.04, 0.60) (0.00, 0.85) (-0.25, 0.62)

9 Trans. & Ware. -0.04 0.88 0.05 0.06 0.06
(-0.75, 0.72) (-0.02, 1.79) (0.00, 0.23) (0.00, 0.28) (-0.25, 0.36)

10 Information 1.34 0.77 0.22 0.03 -0.25
(0.69, 2.01) (-0.18, 1.81) (0.04, 0.51) (0.00, 0.19) (-0.56, -0.00)

11 FIRE (x-Housing) 1.92 0.35 0.76 0.08 0.01
(1.34, 2.48) (-0.42, 1.34) (0.35, 0.92) (0.01, 0.40) (-0.41, 0.40)

12 PBS 1.87 0.90 0.64 0.06 -0.92
(1.48, 2.29) (-0.01, 1.80) (0.31, 0.87) (0.00, 0.39) (-0.98, -0.67)

13 Educ. & Health 0.59 1.36 0.16 0.10 -0.63
(-0.06, 1.05) (0.24, 2.49) (0.01, 0.56) (0.01, 0.54) (-0.88, -0.26)

14 Arts, Ent., & Food Svc. 1.19 0.37 0.37 0.05 -0.18
(0.69, 1.75) (-0.39, 1.31) (0.11, 0.67) (0.00, 0.26) (-0.51, 0.02)

15 Other Services (x-Gov) 0.68 0.74 0.06 0.02 -0.07
(-0.10, 1.48) (-0.10, 1.63) (0.01, 0.23) (0.00, 0.10) (-0.35, 0.17)

16 Housing 0.82 0.75 0.01 0.10 0.07
(-0.13, 1.74) (0.08, 1.50) (0.00, 0.04) (0.01, 0.44) (-0.21, 0.40)

Aggregate 1.0 1.0 0.67 0.30 -0.29
(0.48, 0.82) (0.10, 0.58) (-0.72, -0.13)

Notes: The estimates are posterior medians with 68 percent credible intervals shown parentheses. The entries under cor(`, z)

are the correlations between g`u,i,t and gzu,i,t for the rows corresponding to sectors, and correlations between g`f,t and gzf,t for

the row labeled Aggregate.

economy can differ considerably from its value added share in GDP. Thus, as we show below, idiosyncratic

trends in sectors such as Construction or Durable Goods, with extensive linkages to other sectors as input

providers, will have outsize influence on the aggregate trend.
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Figure 5: Aggregate Trend Growth Rates in Labor and TFP: Common and Sector-Specific Components
(percentage points at annual rate)
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Notes: Panels (a) and (d) show the growth rates (deviated from their sample mean) and the low-frequency trend.
The other panels show the low-frequency trend and its decomposition into common and sector-specific components.
The red lines denote the posterior median and the shaded areas are (pointwise) equal-tail 68% credible intervals.

Figure 5 shows a historical decomposition of the trends in aggregate labor and TFP growth rates arising

from the common factors, (g`f , g
z
f ), and sector specific components, {g`u,i, gzu,i}16

i=1. Panels (a) and (d) show

the (demeaned) values of the aggregate growth rates with the associated low frequency trend. The other

panels decompose the trend into its common (panels (b) and (e)) and sector-specific components (panels

(c) and (f)). This decomposition relies on standard signal extraction formulas to compute the posterior

distribution of (F,U) given X and the resulting trends, and the figure includes 68% (pointwise) credible

intervals for common and sector-specific trends that incorporate uncertainty about the model’s parameter

values. Figure 5, panel (b), suggests that much of the increase in the trend growth rate of aggregate labor in
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Figure 6: Labor Trends and Sector-Specific Components
(percentage points at annual rate)
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Notes: Each panel shows the low-frequency trend for sectoral growth rate (in blue) and its sector-specific component
(in red). The red lines denote the posterior median and the shaded areas are (pointwise) equal-tail 68% credible
intervals.

the 1960s and 70s, and subsequent decline in the 80s and 90s (both typically associated with demographics),

are captured by the model’s common factor in labor. Sector-specific labor factors, for the most part, played

a supporting role. In contrast, while the model’s aggregate common factor played a role in the decline of

trend TFP growth the 1970s, the low frequency variation in the series since then has been associated almost

exclusively with sector-specific sources.

Figures 6 and 7 present the trend growth rates for each of the sectors (shown previoulsy in Figure 5)

along with the estimated sector-specific (g`u,i,t, g
z
u,i,t) components. Consistent with the R2 values shown in

Table 3, much of the variation in the trend growth rates of sectoral TFP and labor is associated with sector-

20



Figure 7: TFP Trends and Sector-Specific Components
(percentage points at annual rate)
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specific factors, and this is particularly true for TFP. Notable in Figures 6 and 7 is the negative correlation

in the low frequency components of labor and TFP sectoral growth. Addressing this somewhat surprising

finding is beyond the scope of this paper but we nevertheless underscore it as an interesting observation.

4 Sectoral Trends and the Aggregate Economy

Given the evolution of sectoral trend growth rates for labor and TFP over the past 70 years, this section

explores their historical implications for the aggregate economy and GDP growth. The key consideration here

is that production sectors are interconnected because each sector uses capital goods and materials produced
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in other sectors. Therefore, we consider a multi-sector growth model that features these interactions and

allows for less than full sector-specific capital depreciation within the period. Consistent with our TFP

calculations in Section 3, the model features competitive product and input markets.

The empirical specification in Section 3 distinguishes between idiosyncratic and common sources of

changes in sectoral trend growth rates. While the importance of idiosyncratic disturbances is well docu-

mented for aggregate cyclical fluctuations, here we study the relative historical importance of sector-specific

trends for the trend growth rate of GDP. We consider a structural framework with preferences and tech-

nologies that are unit elastic so that the economy evolves along a balanced growth path in the long run.

Given linkages across sectors, changes in the growth rate of labor or TFP in one sector affect not only its

own value added but also that of all other sectors. Specifically, we show that capital induces network effects

that amplify the repercussions of sector-specific sources of growth on the aggregate economy and that we

summarize in terms of sectoral multipliers. The magnitude of the multiplier associated with a given sector

depends importantly on the extent to which it serves as supplier of capital goods and, to a lesser degree,

materials to other sectors.

This section begins by outlining the general n-sector model that we use in our quantitative analysis.

After introducing the general model, we present several special cases using n = 2 sectors to highlight the

important mechanisms at work, and then return to the general n-sector model.

4.1 Economic Environment

Consider an economy with n distinct sectors of production indexed by j (or i). A representative household

derives utility from these n goods according to

E0

∞∑
t=0

βt
n∏
j=1

(
cj,t
θj

)θj
,

n∑
j=1

θj = 1, θj ≥ 0,

where θj is the household’s expenditure share on final good j.

Each sector produces a quantity, yj,t, of good j at date t, using a value added aggregate, vj,t, and a

materials aggregate, mj,t, using the technology,

yj,t =

(
vj,t
γj

)γj ( mj,t

1− γj

)(1−γj)
, γj ∈ [0, 1].

The quantity of materials aggregate, mj,t, used in sector j is produced with the technology,

mj,t =
n∏
i=1

(
mij,t

φij

)φij
,

n∑
i=1

φij = 1, φij ≥ 0,

where mij,t denotes materials purchased from sector i by sector j. The notion that every sector potentially

uses materials from every other sector introduces a first source of interconnectedness in the economy. An
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input-output (IO) matrix is an n × n matrix Φ with typical element φij . The columns of Φ add up to the

degree of returns to scale in materials for each sector, in this case unity. The row sums of Φ summarize the

importance of each sector as a supplier of materials to all other sectors. Thus, the rows and columns of Φ

reflect “sell to” and “buy from” shares, respectively, for each sector.

The value added aggregate, vj,t, from sector j is produced using capital, kj,t, and labor, `j,t, according

to

vj,t = zj,t

(
kj,t
αj

)αj ( `j,t
1− αj

)1−αj
, αj ∈ [0, 1].

Capital accumulation in each sector follows

kj,t+1 = xj,t + (1− δj)kj,t,

where xj,t represents investment in new capital in sector j, and δj ∈ (0, 1) is the depreciation rate specific

to that sector. Investment in each sector j is produced using the quantity, xij,t, of sector i goods by way of

the technology,

xj,t =

n∏
i=1

(
xij,t
ωij

)ωij
,

n∑
i=1

ωij = 1, ωij ≥ 0.

Thus, there exists a second source of interconnectedness in this economy in that new capital goods in every

sector are potentially produced using the output of other sectors. This additional source of linkages in the

economy has often been absent from structural multi-sector studies (for example, Acemoglu et al., 2012,

2017; Baqaee and Farhi, 2019) though it is shown to be a key propagation mechanism over the business

cycle in recent work by vom Lehn and Winberry (2019). Similarly to the IO matrix, a Capital Flow matrix

is an n × n matrix Ω with typical element ωij . The columns of Ω add up to the degree of returns to scale

in investment for each sector which is unity in this model. The row sums of Ω indicate the importance of

each sector as a supplier of new capital to all other sectors.

The resource constraint in each sector j is given by

cj,t +
n∑
i=1

mji,t +
n∑
i=1

xji,t = yj,t.

Sectoral change is defined by changes in the composite variable, Aj,t, that reflect the joint behavior of

both TFP and labor growth. In particular, under the maintained assumptions, sectoral value added may

be alternatively expressed as

vj,t = Aj,t

(
kj,t
αj

)αj
,

where

∆ lnAj,t = ∆ ln zj,t + (1− αj)∆ ln `j,t. (4)

In this paper, we condition on the observed joint behavior of TFP and labor growth rates, {∆ ln zj,t,∆ ln `j,t},
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in each sector j and derive their implications for aggregate value added or GDP growth. The model allows

us to flesh out and quantify the way in which capital and the network features of production amplify the

aggregate implications of sectoral growth. In particular, we show that sectors that act mainly as producers

of capital for other sectors, and to a lesser degree materials, have an outsize influence on GDP growth. We

provide general growth accounting expressions that quantify this effect for every sector given its specific

production linkages to all other sectors.

While we condition on observed labor growth rates, the growth accounting expressions we derive are

largely unchanged in a model where the allocation of labor is endogenous. In particular, a conventional

treatment of labor supply produces a growth expression that is isomorphic to that presented below. In that

expression, the way in which capital accumulation and the network features of production determine the

influence of different sectors on aggregate growth is unchanged, as are the effects of long-run changes in

TFP growth on GDP growth. The key difference is that with endogenous labor supply, the common and

idiosyncratic components of labor input now carry a structural interpretation. Specifically, the common

component is associated with broad demographics such as population growth and how these demographics

affect labor input in each sector. The idiosyncratic component reflects sector-specific factors such as those

which determine the disutility cost of working in different sectors, including a sector-specific Frisch elasticity,

or sector-specific labor quality adjustments.20

For ease of presentation, we use the following notation throughout the paper: we denote the vector

of household expenditure shares by Θ = (θ1, ..., θn), the matrix summarizing value added shares in gross

output in different sectors by Γd = diag{γj}, the matrix of input-output linkages by Φ = {φij}, the capital

flow matrix by Ω = {ωij}, the matrix summarizing capital shares in value added in different sectors by

αd = diag{αj}, and the matrix summarizing sector-specific depreciation rates by δd = diag{δj}.

4.2 Balanced Growth and Sectoral Multipliers

We consider a balanced growth path where the growth rates of TFP and labor in sector j are given by gzj
and g`j respectively. From equation (4), it follows that along that path,

∆ lnAj,t = gaj = gzj + (1− αj) g`j .

Furthermore, as highlighted in our empirical section, we let

gzj = λzjg
z
f + gzu,j and g`j = λ`jg

`
f + g`u,j .

20See section 4 of the Technical Appendix. The interpretation or identification of sources of labor growth will necessarily
depend on the particular model of endogenous labor supply under consideration. Because our focus is on growth accounting
(rather than counterfactuals), we take the observations on labor growth as given whatever their underlying forces. Ngai and
Pissarides (2007) explore an alternative framework where the reallocation of labor among consumption goods sectors is an
outcome of unbalanced growth among those goods while, at the same time, preserving balanced growth at the aggregate level.
Absent from their work, however, are the network considerations and the role of capital in determining network multipliers that
are central to this paper.

24

http://www.princeton.edu/~mwatson/papers/FHSW2021_Technical_Appendix.pdf


In other words, composite sources of sectoral growth in the steady state, gaj , reflect steady state sectoral TFP

growth, gzj , and sectoral labor growth, g`j . The growth rates of these inputs in turn reflect both common

(aggregate) factors, (λzjg
z
f , λ

`
jg
`
f ), and unique idiosyncratic components, (gzu,j , g

`
u,j).

We now show that because of production linkages, sources of change in an individual sector, gaj , help

determine value added growth in every other sector along the balanced growth path. These linkages,

therefore, amplify the effects of sector-specific change on GDP growth, particularly for sectors that produce

capital for other sectors. One can summarize this amplification effect by way of a multiplier for each sector.

As we will see, these multipliers scale the influence of some sectors on GDP growth by up to multiple times

their share in the economy.

Let gvt = (gv1,t, ...g
v
n,t)
′ denote the vector of value added growth by sector at any date t. Then, along the

balanced growth path, gvt is constant and given by

gv =

I + αdΩ
′(I − αdΓdΩ′ − (I − Γd)Φ

′)−1
Γd︸ ︷︷ ︸

Ξ′

 ga, (5)

where ga = (ga1 , ..., g
a
n)′.21 Equation (5) describes how the sources of growth in a given sector, gaj , affects

value added growth in all other sectors, gvi . This relationship involves the direct effects of sectors’ TFP

and labor growth on their own value added growth, Iga, and the indirect effects that sectors have on other

sectors through the economy’s sectoral network of investment and materials, αdΩ
′Ξ′ga. Specifically,

∂gvj
∂gaj

= 1 + αj

n∑
k=1

ωkjξjk and
∂gvi
∂gaj

= αi

n∑
k=1

ωkiξjk, (6)

where (ξj1, ..., ξjn) is the jth column of Ξ′ which denotes the generalized Leontief inverse, (I − αdΓdΩ′ −
(I − Γd)Φ

′)−1Γd, in equation (5). Thus, along the balanced growth path, sectoral linkages make it possible

for sources of change by way of TFP or labor in a given sector j, ∂gaj , to affect value added growth in every

other sector, i, so long as that sector uses capital in production, αi > 0. Otherwise, value added growth in a

sector with αj = 0 is entirely determined by its own input growth rates,
∂gvj
∂gaj

= 1. In this sense, the presence

of capital accumulation plays a central role for the sectoral growth implications of production linkages. In

the following subsection we illustrate the mechanisms at play in a series of simplified models with n = 2

sectors.

Given the vector of value added growth rates, gv, the Divisia aggregate index of GDP growth is gV = sv′gv

where sv = (sv1, ..., s
v
n) is a vector of sectoral value added shares in GDP. Alternatively,

gV =
n∑
j=1

svj

[
gaj +

n∑
i=1

αjωij

n∑
k=1

ξkig
a
k

]
, (7)

21See Appendix A for the derivation. Observe also that preference parameters are absent from equation (5) in that balanced
growth relationships are ultimately statements about technologies and resource constraints.
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so that, holding shares constant,

∂gV

∂gaj
= svj + svjαj

n∑
k=1

ωkjξjk +
∑
i 6=j

sviαi

n∑
k=1

ωkiξjk, (8)

where the second and third terms in this last expression reflect network sectoral effects by way of the

generalized Leontief inverse, Ξ′.22 Equation (8) defines the sectoral multiplier for sector j.

When no sector uses capital in production (αj = 0 ∀j), the sources of input growth a given sector j,

gaj , affect GDP growth through that sector’s share in the economy only, ∂gV

∂gaj
= svj . This case recovers a

version of Hulten’s theorem (1978) - discussed below - but in growth rates. More generally, equation (8)

suggests the presence of a network multiplier effect that varies by sector and that depends not only on the

importance of sectoral interactions, ξjk, but also on the extent to which sectors use capital produced by

other sectors in their own production, ωki and αi. In equation (8), sources of growth in sector j influence

every other sector k through the network of production linkages summarized by the generalized Leontief

inverse, ξjk. Induced changes in sector k in turn potentially affect investment in every other sector i, ωki,

(including back to j). The net effect on GDP growth is the sum of all these interactions. Conveniently, the

effects of sectoral changes, ∂ga, on GDP growth may be thought of as a direct effect, svI, and an additional

indirect effect resulting from sectoral linkages, sv′αdΩ
′Ξ′. Hence, we define the combined direct and indirect

effects of structural change on GDP growth in terms of sectoral multipliers, sv′(I + αdΩ
′Ξ′).

4.3 Examples and Relationship to Greenwood, Hercowitz, Krusell (1997)

To gain intuition, this section discusses expressions (5) and (7) above in the context of special cases exempli-

fied in previous work. In particular, we provide examples of sectoral multipliers in Greenwood, Hercowitz,

and Krusell (1997) (henceforth GHK (1997)) and variations thereof. The Technical Appendix also discusses

the link with Ngai and Pissarides (2007). These examples help underscore the role of capital-producing

sectors for the strength of sectoral multipliers. In these examples, goods and factor markets are perfectly

competitive and factors of production are freely mobile across sectors. However, as we also make clear, the

way in which sectoral sources of growth are amplified at the aggregate level is invariant to the assumption

of factor mobility. Details are included in Section 3 of the Technical Appendix.

To establish the link between our economic environment and that of GHK (1997), observe first that the

one-sector environment featuring an aggregate production function in GHK (1997) also has an interpretation

as a two-sector economy.23 Under that interpretation, one sector produces consumption goods (sector 1)

and the other investment goods (sector 2), and each sector’s production function has the same capital

22In general, sectoral value added shares in GDP, sv, will also be functions of the model’s underlying parameters including
the vector of sources of sectoral growth, ga. However, changes in sectoral shares induced by an exogenous change in a sector k,
∂svj
∂ga

k
, will be mostly inconsequential for overall growth, consistent with Figure 1 and the notion that since shares must sum to

1,
∑
j

∂svj
∂ga

k
= 0.

23See Greenwood, Hercowitz, and Krusell (1997), Section V. A.
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elasticity, α. For simplicity, we focus on the discussion in section III of GHK (1997) which abstracts from

the distinction between equipment and structures. Thus, consider a two-sector economy with production

given by

ct = y1,t = z1,tk
α
1,t`

1−α
1,t ,

xt = y2,t = z2,tk
α
2,t`

1−α
2,t ,

kt+1 = xt + (1− δ)kt,

where factors are freely mobile, kt = k1,t+k2,t and `t = `1,t+`2,t, and the constant scale factors in production

(which simplify the algebra in the full model) have been dropped. Under the maintained assumptions, this

two-sector environment reduces to the one-sector framework with aggregate production described in GHK

(1997). Put another way, there exists a one-sector interpretation of the two-sector economy with associated

resource constraint,

ct + qtxt = z1,tk
α
t `

1−α
t ,

where qt =
z1,t
z2,t

is the relative price of investment goods and where aggregate output (in units of consumption

goods), yt = ct + qtxt, is a function of total factor endowment only, z1,tk
α
t `

1−α
t . To the extent that technical

progress in the investment sector, z2,t, is generally more pronounced than in the consumption sector, z1,t,

the relative price of investment goods will decline over time as emphasized by GHK (1997).

We now derive the balanced growth path (BGP) in GHK (1997) and discuss its implications for sectoral

multipliers. That is, we highlight how capital accumulation amplifies sectoral drivers of growth. This also

means that capital producing sectors will tend to have an outsize effect on the aggregate economy relative

to sectors that produce mainly consumption goods.

Along the BGP, all variables grow at constant but potentially different rates. From the market clearing

conditions and the form of production technologies, it follows that sectoral output growth rates, gvi , are

given by,

gvi =
(
gzi + (1− α)g`

)
+ αgk = gai + αgk, i = 1, 2. (9)

Equation (9) makes clear that any amplification of sectoral sources of growth, gai , can only take place through

capital accumulation. In this case, it follows from the capital accumulation equation that along the BGP,

capital grows at the same rate as investment which, in the capital goods producing sector, is also that of

output. Thus, we have that

gv2 = gk =
1

1− α
ga2 and gv1 = ga1 +

α

1− α
ga2 . (10)

Note that the assumption of factor mobility across sectors has only minor implications for the characteri-

zation of the BGP. First, even with sector-specific investment, the resource constraint for investment implies

that investment and capital grow at the same rate in each sector. Second, with sector-specific labor, the

expression for output growth remains as in equation (9) with the only difference being that sector-specific

27



labor growth rates, g`i , now replace the aggregate labor growth rate, g`, so that gai = gzi + (1− α)g`i .

Aggregate GDP growth is defined as the Divisia index of sectoral value-added growth rates weighted

by their respective value added shares. Because GHK (1997) do not consider intermediate goods, there is

no distinction between gross output and value added in equation (9). Thus, from equation (10), aggregate

GDP growth is

gV = sv1

(
ga1 +

α

1− α
ga2

)
+ sv2

1

1− α
ga2 , (11)

or alternatively,

gV = sv1g
a
1 + sv2g

a
2 +

α

1− α
ga2 , (12)

where svi is sector i’s value-added share in GDP.

In this economy, sector 2 is the sole producer of capital for both sectors 1 and 2 and has both a direct and

indirect effect on the aggregate economy. The indirect effect stems from the fact that capital accumulation

amplifies the role of sectoral sources of growth. In equation (11), sector 2 contributes α
1−αg

a
2 > 0 to value

added growth in sector 1 and scales its contributions from TFP and labor to its own value added growth

by 1
1−α > 1. Thus, in equation (12), the direct aggregate effect of an expansion in sector 2 by way of TFP

or labor growth is its share, sv2, while its indirect aggregate effect is α
1−α > 0. It follows that sector 2’s

sectoral multiplier, ∂gV /∂ga2 , is sv2 + α
1−α . In contrast, because sector 1 produces goods that are only fit for

consumption, it only has a direct effect on the aggregate economy. Its sectoral multiplier, ∂gV /∂ga1 , is then

simply its share in GDP, sv1.

A straightforward application of the general framework laid out in the previous section produces the

same balanced growth path and sectoral multipliers for sectors 1 and 2 that we have just discussed. In

particular, the GHK (1997) economy is a special case with n = 2 and, since sector 2 is the only sector

producing investment goods, ω2j = 1, j = 1, 2 (and ω1j = 0, j = 1, 2). In addition, each good is produced

without intermediate inputs, γj = 1, j = 1, 2, and the sectors use the same production functions, αj =

α, j = 1, 2, except for the scale factors, zj,t, j = 1, 2. With these restrictions, the parameters of the model

are summarized by Γd = I, αd = αI and

Ω′ =

(
0 1

0 1

)
,

where this last matrix reflects the production structure whereby all capital in the economy is produced by

sector 2. Then, the generalized Leontief inverse is

Ξ′ = (I − αΩ′)−1 =

(
1 α

1−α
0 1

1−α

)
.

Observe that the first and second rows of the generalized Leontief inverse contain the coefficients that

determine the contributions of sources of growth in sectors 1 and 2 to value added growth in sectors 1 and 2

in equation (10). The model thus delivers the same balance growth path for GDP with associated sectoral
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multipliers given by the elements of sv′ [I + αdΩ
′Ξ′],

∂gV

∂ga1
= sv1, and

∂gV

∂ga2
= sv2 +

α

1− α
.

As discussed above, as the sole producer of capital goods, sector 2 has both a direct effect, sv2, and an

indirect effect, α
1−α , on GDP growth. In contrast, sector 1 only has a direct effect on GDP growth, sv1.

Actual production linkages are generally more involved than those we have just discussed. Importantly,

even in the context of two sectors and no materials, the simple fact that factor income shares differ across

sectors is enough to prohibit an aggregate production function and thus a one-sector interpretation of the

economic environment.24 In this case, the amplification of sources of sectoral growth on GDP growth now

depends on a value-added-share weighted average of capital elasticities. In particular, long-run GDP growth

is now given by

gV = sv1g
a
1 + sv2g

a
2 +

(sv1α1 + sv2α2)

1− α2
ga2 .

Thus, the sectoral multipliers for sectors 1 and 2 are now respectively,

∂gV

∂ga1
= sv1 and

∂gV

∂ga2
= sv2 +

(sv1α1 + sv2α2)

1− α2
.

With different factor shares, sector 2 continues to have an additional indirect effect on GDP growth,
(sv1α1+sv2α2)

1−α2
, that depends for the most part on its own capital elasticity, α2. As α2 → 0, this indirect

effect tends to sv1α1 < 1. Hence, even when sector 2 uses mostly labor in production, it nevertheless has an

effect on aggregate growth over and above its direct effect (i.e., its value added share, sv2) since it remains

a supplier of capital goods to sector 1. In this case, however, this indirect effect is entirely determined by

parameters of sector 1, specifically its importance as measured by its value added share in GDP, sv1, scaled

by the intensity with which it uses capital to produce consumption goods, α1.25

Actual production linkages are more involved still in that they also reflect a network of materials between

sectors. Thus, we now introduce intermediate goods into the GHK (1997) environment. With intermediate

inputs, additional sectoral contributions to value-added growth continue to arise through the capital growth

rate. However, when the consumption sector (sector 1) also produces materials for the investment goods

sector (sector 2), the growth rate of capital depends on conditions in both sectors 1 and 2. This means that

in contrast to the previous two examples, both sectors 1 and 2 will have indirect effects on long-run GDP

growth over and above their share in the economy.

We illustrate these points via a simple network of intermediate goods. Here, sector 1 produces not only

consumption goods but also materials, m1,t, used by sector 2. Similarly, sector 2 still produces capital

24See Greenwood, Hercowitz, and Krusell (1997), Section V. A.
25Observe also that as α2 → 1, the indirect effect becomes ill-defined since the derivation of the BGP assumes exogenous

forces, gzi and g`i , whereas in the limit where the capital elasticity is one, the model becomes an AK-type endogenous growth
model.
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goods for both sectors but also materials, m2,t, used by sector 1. Since sector 1 now produces consumption

goods and intermediate goods, we refer to sector 1 as the non-durables sector. Thus, in terms of our general

notation, we have that γi 6= 1 and ω2,i = 1 for i = 1, 2. Moreover, the relevant resource constraints in sectors

1 and 2 are now

ct +m1,t = y1.t =
[
z1,tk

α1
1,t`

1−α1
1,t

]γ1
m1−γ1

2,t ,

and

xt +m2,t = y2,t =
[
z2,tk

α2
2,t`

1−α2
2,t

]γ2
m1−γ2

1,t ,

while the rest of the production side of the economy is as in the previous examples.

As before, with perfect factor mobility it follows that gx = gk = gk1 = gk2 and g` = g`1 = g`2, while

from the goods market clearing conditions, we have that gy1 = gc = gm1 and gy2 = gx = gm2 . The form of

production, which now uses intermediate inputs, implies that gross output growth rates are

gy1 = γ1

[
gz1 + α1g

y
2 + (1− α1)g`

]
+ (1− γ1)gy2 ,

and

gy2 = γ2

[
gz2 + α2g

y
2 + (1− α2)g`

]
+ (1− γ2)gy1 .

Therefore, solving for the growth rate of new capital goods, we obtain

gy2 =
(1− γ2)γ1g

a
1 + γ2g

a
2

∆
= gk, (13)

where ∆ = 1− γ2α2 − (1− γ2) [γ1α1 + (1− γ1)].

With intermediate inputs, sectoral value added growth differs from gross output growth. In particular,

value added growth is still determined as in the two previous examples without intermediate inputs, that is

equation (9), gvi = gzi + αig
k + (1− αi)g` = gai + αig

k.

Long-run GDP growth, therefore, is given by

gV = sv1g
a
1 + sv2g

a
2 + (sv1α1 + sv2α2)gk, (14)

where gk follows from equation (13). Two important observations emerge relative to the previous examples.

First, because the non-durable goods sector now produces intermediate inputs for the investment sector,

the growth rate of (new) capital goods in equation (13) reflects sources of growth in both sectors, ga1 and

ga2 . Hence, unlike in the previous examples, both sectors 1 and 2 in equation (14) will have an additional

indirect effect on long-run GDP growth, (sv1α1 +sv2α2)∂g
k

∂ga1
and (sv1α1 +sv2α2)∂g

k

∂ga2
respectively, over and above

their shares in the economy, sv1 and sv2. Second, from equation (14), the indirect effect from sector 2 on GDP

growth will dominate that from sector 1 if and only if its contributions to overall capital growth, ∂gk

∂ga2
, are

larger than the corresponding contributions from sector 1, ∂gk

∂ga1
. Going back to equation (13), this condition
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holds if and only if

γ2 > (1− γ2)γ1.

Put differently, this condition implies that the effect from a one percent change in TFP growth in sector

2 on overall capital growth, gk, is larger than the corresponding effect from sector 1 transmitted through

intermediate inputs. It will fail to hold, for example, in economies where the value added share in gross

output of the capital sector, γ2, is small. In that case, the main input into the production of capital goods

are intermediate inputs from the non-durables sector. Therefore, it is that sector’s conditions that matter

most.

In the general framework we lay out, this economic environment is conveniently summarized by

Ω′ =

(
0 1

0 1

)
, αd =

(
α1 0

0 α2

)
, Γd =

(
γ1 0

0 γ2

)
, and Φ′ =

(
0 1

1 0

)
.

Sectoral multipliers are then immediately given by the elements of sv′(I + αdΩ
′Ξ′) or

∂gV

∂ga1
= sv1 +

(sv1α1γ1(1− γ2) + sv2α2γ1(1− γ2))

∆
,

and
∂gV

∂ga2
= sv2 +

sv1α1γ2 + sv2α2γ2

∆
,

which reproduces the intuition given above.

More generally, the key lesson from these examples is that network production linkages and capital

accumulation are the key components underlying the existence of sectoral multipliers along the balanced

growth path. Furthermore, the implied amplification of idiosyncratic sources of growth on GDP growth

can arise in any sector, including those producing only non-durable goods so long as these goods contribute

intermediate inputs, however indirectly, to sectors producing capital goods.

Finally, we relate our work to that of Hulten (1978) and, more recently, Baqaee and Farhi (2019). In

its simplest form, Hulten (1978) states that the effects of a shock to productivity in a given sector on GDP

is that sector’s ratio of gross output to GDP, namely its Domar weight. This result hinges in part on

interpreting TFP as scaling gross output. When TFP is instead interpreted as scaling value added as we do

here, a sector’s influence on GDP becomes its value added share in GDP.26

Baqaee and Farhi (2019) explore the role of non-linearities in generating aggregate effects from sectoral

shocks over and above the linear approximations highlighted by Hulten (1978). Our work focuses instead

26These results are evidently related. When sectoral TFP, zj , is measured as scaling value added, z̃j,t = z
γj
j,t becomes the

relevant scalar for sectoral gross output, where γj is j’s value added share in gross output,
pvj vj

p
y
j yj

. Hulten’s (1978) theorem then

states that ∂ lnVt
∂ ln z̃j,t

= Dj , where Dj is sector j’s Domar weight or ratio of gross output to GDP,
p
y
j yj

V
. It immediately follows

from the definition of z̃j that ∂ lnVt
∂ ln zj,t

= γjDj , where γjDj is then simply sector j’s value added share in GDP, svj .

31



on other key assumptions, unexplored in Hulten (1978) and related work, that nevertheless are central for

understanding the aggregate implications of sectoral trends. One is the role that capital plays as part of a

production network in amplifying the effects of sectoral changes on long-run GDP growth. Here, the long-

run dynamics of capital accumulation are central to that role. Another is that Hulten (1978) and subsequent

work focus mostly on level effects, ∂ lnV/∂ lnA. Instead, motivated by Figure 1, we are interested in the

effects of sectoral (trend) growth rates on GDP growth over the long-run, ∂∆ lnV/∂∆ lnA.

Importantly, Hulten (1978)’s basic insight remains nested by a static version of our economic environment

without capital and where the focus is on levels rather than growth rates. Section 5 of the Technical Appendix

shows how this ‘levels’ insight changes in the steady state of a dynamic economy with capital. In particular,

the effect of a productivity shock in a sector on the level of GDP is given by its value added share (or Domar

weight) scaled by the inverse of the average labor income share.

4.4 The General Case

Using the insights from the special cases we have described, we separate value added growth, gv, and gross

output growth, gy, implicit in equation (5), as follows,

gv = ga + αdΩ
′gy and gy = Ξ′ga, with Ξ′ =

[
I − αdΓdΩ′ − (I − Γd)Φ

′]−1
Γd. (15)

The first expression, gv = ga + αdΩ
′gy, states that value added growth in each sector is the sum of direct

effects from sources of growth, ga, and indirect effects arising from capital accumulation induced by gross

output growth, αdΩ
′gy. Thus, a sector will benefit from indirect effects only to the extent that it uses capital

goods. The second expression, gy = Ξ′ga, then states that gross output growth in each sector is a multiple

of the sources of growth in the different sectors, ga, determined by the generalized Leontief inverse, Ξ′.

We can write the generalized Leontief inverse as a geometric expansion,

Ξ′ = Γd +
∞∑
k=1

[
αdΓdΩ

′ + (I − Γd)Φ
′]k Γd,

which allows the following interpretation of the network effects discussed above. Consider an initial growth

vector, ga, which has an initial impact on gross output, Γdg
a. This in turn leads to a second round of

gross output growth induced by capital growth, through Ω′, and intermediate input growth, through Φ′.

This then creates a third round of gross output growth, and so on. The generalized Leontief inverse is the

cumulative sum of this sequence of multiplier effects.

Note that in the geometric expansion of Ξ′, the jth column of the transposed capital flow matrix, Ω′

(i.e., the jth row of Ω) reflects the degree to which sector j produces new capital for other sectors. Similarly,

the jth column of the transposed IO matrix, Φ′, (i.e., the jth row of Φ) reflects the degree to which sector j

produces materials for other sectors). Each row of Ω′ and Φ′ is weighted by the contributions of capital and

intermediate inputs to that row’s corresponding sector, that is its share of capital and materials in gross
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Figure 8: Investment Network

Agriculture

Mining

Utilities

Construction Durable Goods

Nondurable Goods

Wholesale Trade
Retail Trade

Trans. & Ware.

Information

FIRE (x-Housing)

PBS

Educ. & Health

Arts, Ent., & Food Svc.

Other Services (x-Gov)

Housing

Notes: This figure shows the investment network as a graph, where capital flows are represented
by edges between nodes representing sectors. A sector with a larger node indicates that other
sectors spend a larger share of their capital expenditures on average from that sector. A wider
edge between two nodes reflects larger bi-directional capital flows relative to all other capital
flows. See the Capital Flow Table in Section 8 of the Technical Appendix.

output, αdΓd and (I − Γd) respectively. The generalized Leontief inverse then inherits these effects such

that its jth column reflects the degree to which the jth sector contributes to the production of capital goods

directly and indirectly through the production of intermediate goods.

5 Quantitative Findings

This section puts together the empirical findings from section 3 and model insights from section 4. It shows

that sector-specific trends have likely played a dominant role in driving the trend rate of growth in GDP

over the postwar period. We estimate that this trend rate of growth has fallen by almost 3 percentage points

between 1950 and today.
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5.1 Model Parameters

Our choice of model parameters follows mostly Foerster et al. (2011) and is governed by the BEA Input-

Output (IO) and Capital Flow accounts.

In our benchmark economy, the consumption bundle shares, {θj}, value-added shares in gross output

{γj}, capital shares in value added, {αj}, and material bundle shares, {φij}, are obtained from the 2015

BEA Make and Use Tables. The Make Table tracks the value of production of commodities by sector, while

the Use Table measures the value of commodities used by each sector. We combine the Make and Use Tables

to yield, for each sector, a table whose rows show the value of a sector’s production going to other sectors

(materials) and households (consumption), and whose columns show payments to other sectors (materials)

as well as labor and capital. Thus, a column sum represents total payments from a given sector to all other

sectors, while a row sum gives the importance of a sector as a supplier to other sectors. We then calculate

material bundle shares, {φij}, as the fraction of all material payments from sector j that goes to sector i.

Similarly, value-added shares in gross output, {γj}, are calculated as payments to capital and labor as a

fraction of total expenditures by sector j, while capital shares in value added, {αj}, are payments to capital

as a fraction of total payments to labor and capital. The consumption bundle parameters, {θj}, are likewise

payments for consumption to sector j as a fraction of total consumption expenditures.

The parameters that determine the production of investment goods, {ωij}, are chosen similarly in accor-

dance with the BEA Capital Flow table from 1997, the most recent year in which this flow table is available.

The Capital Flow table shows the flow of new investment in equipment, software, and structures towards

sectors that purchase or lease it. By matching commodity codes to sectors, we obtain a table that has

entries showing the value of investment purchased by each sector from every other sector. A column sum

represents total payments from a given sector for investment goods to all other sectors, while a row sum

shows the importance of a sector as a supplier of investment goods to other sectors. Hence, the investment

bundle shares, {ωij}, are estimated as the fraction of payments for investment goods from sector j to sector

i, expressed as a fraction of total investment expenditures made by sector j.

Conditional on these parameters, equation (5) gives sectoral value added growth along the balanced

growth path. In constructing aggregate GDP growth from these sectoral value added growth rates, we

rely on the same actual constant mean value added shares from the KLEMS data that were used in our

empirical analysis. Recall also that in Figure 1, we explored using different definitions of value added

shares in calculating GDP growth. While this did not lead to meaningful differences in aggregate growth,

to the extent that these shares are changing over time as do input-output relationships, the model might

nevertheless yield material differences in the implied sectoral multipliers described above. Thus, we also

consider versions of the model informed by the mean value added shares for the first and last 15 years, and

the 1960 and 1997 Make and Use Tables.
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5.2 Production Linkages in the U.S. Economy

The production of investment goods in the U.S. turns out to be concentrated in relatively few sectors, with

many sectors not producing any capital for other sectors while Construction and Durable Goods produce

close to 80 percent of the capital in almost every sector. Put another way, as shown in Figure 8, we can

think of the Construction and Durable Goods sectors as investment hubs in the production network.27

Construction comprises residential and non-residential structures, including infrastructure such as power

plants or pipelines for example, but also the maintenance and repair of highways, bridges, and other surface

roads. The bulk of capital produced by the Durable Goods sector resides in motor vehicles, machinery, and

computer and electronic products. Other sectors recorded as producing capital goods for the U.S. economy

include Wholesale Trade, Retail Trade, and Professional and Business Services. In the Professional and

Business Services sector, the notion of capital produced for other sectors is overwhelmingly composed of

computer system designs and related services. As a practical matter, the distinction between materials

and investment goods is not always straightforward. The BEA distinguishes between materials and capital

goods by estimating the service life of different commodities and, consistent with a time period in this paper,

commodities expected to be used in production within the year are defined as materials.28 From the Capital

Flow table, we expect that columns of the Leontief inverse, Ξ′, associated with Construction and Durable

Goods will have relatively large elements.

Compared to the Capital Flow table, the production of materials is considerably less concentrated in that

all sectors produce materials for all other sectors though to varying degrees.29 From the Make-Use table,

Professional and Business Services, Finance and Insurance, and to a degree Nondurable Goods, all play an

important role as suppliers of intermediate inputs including to the capital goods sectors. While Professional

and Business Services figures prominently in in the IO table, this sector is not nearly as dominant as Durable

Goods or Construction are in the Capital flow table.

In contrast to the sectors that play a key role in the U.S. production network, output produced in sectors

such as Agriculture, Forestry, Fishing, and Hunting, Entertainment and Food Services, or Housing, is mostly

consumed as a final good. Therefore, columns of the Leontief inverse associated with these sectors will have

elements that tend to be comparatively small.30

27Table A5 in Section 8 of the Technical Appendix shows the Capital Flow matrix of the U.S. economy, Ω, for the 16 sectors
considered in this paper.

28As noted in Foerster et al. (2011), there are a couple of notable measurement issues related to the construction of the
Capital Flow table. First, the table accounts for the purchases of new capital goods but not used assets. Thus, for example, a
firm’s purchase of a used truck in a sector from another sector will not be recorded as investment in the capital flow table even
though the truck’s remaining service life may be well in excess of a year. Second, McGrattan and Schmitz (1999) note that a
non-trivial portion of maintenance and repair takes place using within sector resources, yet many of the diagonal elements of
the Capital Flow table are very small or zero. Results presented here are robust up to an adjustment that assumes that an
additional 25 percent of capital expenditures takes place within sectors.

29Table A6 in Section 8 of the Technical Appendix shows the IO matrix or Make-Use table for the U.S. economy, Φ. The
values shown in that table are from the 2015 BEA Make and Use Tables but the next section shows results using values from
different Make and Use Tables over the decades.

30See Table A7 in Section 8 of the Technical Appendix which describes the generalized Leontief Inverse.
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Table 4: Sectoral Multipliers

Sector sv sv′αdΩ
′Ξ′ sv′ (I + αdΩ

′Ξ′)

Agriculture 0.03 0.01 0.03
Mining 0.02 0.03 0.05
Utilities 0.02 0.01 0.03
Construction 0.05 0.12 0.17
Durable Goods 0.13 0.28 0.42
Nondurable Goods 0.09 0.03 0.13
Wholesale Trade 0.07 0.08 0.15
Retail Trade 0.08 0.02 0.11
Trans. & Ware. 0.04 0.03 0.07
Information 0.05 0.03 0.08
FIRE (x-Housing) 0.10 0.03 0.14
PBS 0.09 0.16 0.25
Educ. & Health 0.06 0.00 0.06
Arts, Ent., & Food Svc. 0.04 0.01 0.04
Other Services (x-Gov) 0.03 0.01 0.04
Housing 0.09 0.00 0.09

Notes: This table decomposes each sector’s total multiplier (column 3) into a direct effect
(column 1) and an indirect effect (column 2). The sums do not necessarily add up because of
rounding.

5.3 Sectoral Multipliers

Table 4 shows what the direct and combined effects of sources of growth in different sectors are on GDP

growth given the input-output and capital flow matrices. The importance of Construction and Durable

Goods as suppliers of investment goods means not only that their value added share in GDP is large, 5 and

13 percent respectively, but also that they have large spillover effects on other sectors. In particular, the

network multipliers for the Construction and Durable Goods sectors are more than 3 times their share, 0.17

and 0.42 respectively. Considering that trend TFP growth in Construction fell by almost 5 percentage points

between 1950 and 2018 in Figure 4, this gives us, all else equal, a roughly 0.85 percentage point contribution

to the decline in trend GDP growth from TFP changes in Construction alone. Similarly, the over 6 percent

collapse in the trend growth rate of TFP in Durable Goods since 2000 would have on its own contributed

roughly a 2.5 percent decline in trend GDP growth over the same period. The effects from Construction and

Durable Goods are particularly pronounced because of their central role as producers of capital goods for all

sectors, ranging from commercial and residential structures to motor vehicles and electronics. It is apparent

from Table 4 that the effects of sectoral change on GDP growth are always at least as large as sectors’ value

added shares in GDP. Sectoral network multipliers roughly double the share of Professional and Business

Services, from 0.09 to 0.25, and Wholesale Trade, from 0.07 to 0.15. In other sectors, such as Agriculture,
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Table 5: Sectoral Network Multipliers Under Alternative Calibrations

Sector Benchmark Mean
Shares,
First 15
Years

Mean
Shares,
Last 15
Years

1997 IO
Table

1960 IO
Table

Agriculture 0.03 0.06 0.02 0.03 0.04
Mining 0.05 0.06 0.05 0.04 0.04
Utilities 0.03 0.03 0.02 0.03 0.03
Construction 0.17 0.17 0.17 0.15 0.17
Durable Goods 0.42 0.48 0.35 0.39 0.42
Nondurable Goods 0.13 0.16 0.10 0.13 0.14
Wholesale Trade 0.15 0.15 0.14 0.14 0.13
Retail Trade 0.11 0.12 0.09 0.11 0.11
Trans. & Ware. 0.07 0.08 0.06 0.06 0.07
Information 0.08 0.07 0.09 0.08 0.07
FIRE (x-Housing) 0.14 0.12 0.17 0.14 –
PBS 0.24 0.20 0.28 0.20 0.16
Educ. & Health 0.06 0.03 0.09 0.06 0.06
Arts, Ent., & Food Svc. 0.04 0.04 0.05 0.04 0.04
Other Services (x-Gov) 0.04 0.04 0.03 0.04 0.04
Housing 0.09 0.08 0.11 0.09 –

Addendum: FIRE + Housing 0.24 0.20 0.28 0.24 0.23

Notes: This table shows the sectoral multiplier (see Table 4) for the baseline calibration (column 1), for alternative
value-added share weights (columns 2 and 3) and for alternative IO tables (columns 4 and 5).

Forestry, Fishing and Hunting, or Housing, the network multipliers are small with little or negligible indirect

effects since these sectors produce mainly final consumption goods. Because the same network relationships

embodied in the Capital Flow table, Ω, and Make-Use table, Φ, determine the importance that sectors have

in the economy both as a share of value added and through their spillover effects, sectors with relatively

larger shares in GDP will also tend to be associated with large network multipliers.

A key implication of Table 4 is that the effects of sectoral change on GDP growth arise in part through

a composition effect. Therefore, secular changes in GDP growth can take place without observable changes

in aggregate TFP growth. For example, consider purely idiosyncratic changes in TFP growth, ∂gu,zu,j , that

leave aggregate TFP growth unchanged,
∑n

j=1 s
v
j∂g

z
u,j = 0. In other words, the direct effect of sectoral TFP

growth in this case is zero. Despite aggregate TFP growth not changing, these idiosyncratic changes may

nevertheless have an (indirect) effect on GDP growth since the sum of sectoral multipliers is larger than 1.
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5.4 Robustness of the Sectoral Multipliers

The key take away from Table 4 is that the influence of sectors on aggregate growth generally exceed their

value added share in GDP, especially in Construction and Durable Goods whose multipliers amount to

more than three times their respective share in the economy. As the table makes clear, this observation

of course depends on what shares are being used and how the sectors interact through input-output and

capital linkages. Table 5, therefore, explores how sectoral multipliers change with the definition of shares or

input-output table. (Data limitations require us to use the 1997 capital flow table throughout.)

The first column of Table 5 reproduces our benchmark sectoral multipliers shown in the last column

of Table 4; recall that these results are based on constant value added shares computed as averages over

the full sample (1950-2018) and the 2015 Make and Use Tables. The second column of Table 5 shows the

sectoral multipliers obtained using constant mean shares calculated only over the first 15 years of the sample

(1950-1964). The third column shows these multipliers computed instead using constant mean shares from

the last 15 years of the sample (2002-2016). The fourth and fifth columns of Table 5 shows the sectoral

multipliers implied by the Make and Use Tables from 1997 and 1960 respectively.

While there are differences across the columns of Table 5, the general lesson remains the same. The sum

of the multipliers always exceeds 1 and varies from 1.7 to 1.9 across columns. Construction and Durable

Goods consistently have an outsize influence on aggregate growth regardless of the calculation in Table 5

given their central as input suppliers. Moreover, the ranking of sectoral multipliers by sector is also generally

consistent across columns. The Make and Use table from 1960 does not allow us to separate FIRE and

Housing so that the last row of Table 5 gives a multiplier for the combined sectors, about 0.24 on average

across columns.

5.5 Historical Decomposition of the Trend Growth Rate of GDP

The various sectoral multiplier calculations we have just carried out depend on the balanced growth equations

(5) and (7). These equations hold only in steady state and ignore endogenous transitional dynamics that are

potentially important in explaining variations over the business cycle. However, because our empirical focus

is on variations in growth rates with periodicities longer than 17 years, we abstract from these transitional

dynamics and apply the formulas (5) and (7) directly to the trend growth rates of TFP and labor extracted

in section 3, gzi,t and g`i,t, as an approximation.31 In addition, we then explore how our estimates of common,

(λzi g
z
i,t, λ

`
ig
`
i,t), and sector-specific, (gzu,i,t, g

`
u,i,t), trend input growth have historically contributed to the trend

growth rates of sectoral value added and GDP. Thus, we compute the trend growth rates of sectoral value

added as,

gvt =
[
I + αdΩ

′Ξ′
] (
λzgzf,t + gzu,t + (I − αd)

(
λ`g`f,t + g`u,t

))
,

31A previous working paper version where linearized transition dynamics are calculated shows this approximation to be
generally close at these low frequencies.
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Figure 9: Trend Growth Rate in GDP: Data and Model
(percentage points at annual rate)
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Notes: The figure shows the cyclically adjusted GDP growth rate (thin black line) along with its low-frequency trend
(thick black line). Also shown are the model-implied trend using the low-frequency trends of labor and TFP growth
(solid blue line), and the trend implied by only the direct effects of labor and TFP based solely on value-added shares
(dashed blue line).

where gvt = (gv1,t, ..., g
v
n,t), which then gives trend GDP growth as

gVt = sv′gvt .

Figure 9 depicts the annual growth rate of GDP and its trend in black (previously shown in Figure

2) together with the corresponding trend growth rate computed from the balanced growth multipliers (in

solid blue) and its contribution from the direct effect using sectors’ value added shares only (in dashed

blue), sv′I
(
gzt + (I − αd)g`t

)
. In all, trend GDP growth fell by nearly 3 percent over the postwar period.

Importantly, the sizable gap between the model trend with direct effects only and the complete model

trend implies that the indirect effects stemming from network production linkages constitute a significant

component of trend GDP growth. There is a notable discrepancy between model and data in the 1970s,

when the balanced growth multipliers suggest a larger decline in trend GDP growth rates than in the data.

In that period, periodicities longer that 17 years may not be adequate to capture the required adjustment

to capital implied by the model.
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Figure 10: Decomposition of the Trend Growth Rate in GDP
(percentage points at annual rate)
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Notes: Panels (a) and (b) show the (demeaned) model-implied trend GDP growth (black line), and its decomposition
into changes due to the common factor and sector-specific factors (red lines), respectively. The red lines denote the
posterior median and the shaded areas are (pointwise) equal-tail 68% credible intervals. Panel (c) shows the posterior
distribution for the fraction of the variance in trend GDP growth attributed to the common factor.

Figure 10 decomposes the trend growth rate of GDP implied by the model into its components derived

from common factors and sector-specific factors.32 The model indicates that sector-specific or unique factors

in trend labor and TFP growth have historically accounted for roughly 3/4 of the long-run changes in GDP

growth. Conversely, only about 1/4 of the variation in trend GDP growth since 1950 has come from common

sources of input growth. This is despite common factors explaining roughly 2/3 of the variation in the trend

growth rate of aggregate labor noted in Section 3. To understand this finding, recall that some sectors that

have large sectoral multipliers such as Durable Goods or Construction, Table 3, also have large variations

in trend input growth that are almost entirely driven by idiosyncratic factors, Figures 6 and 7.

Panel (c) plots the posterior density for R2
f , the fraction of the variance in trend GDP growth explained

by common sources. The median of the posterior for R2
f is 0.26, the mode is less than 0.20, and 70 percent

of the posterior mass is associated with values of R2
f that are less than 0.40.33 Thus, these results suggest

32The overall trend, sv′ [I + αdΩ
′Ξ′] (gzt+ (I−αd)g`t), is in black and the posterior median estimates of common components,

sv′ [I + αdΩ
′Ξ′]

(
λzgzf,t + (I − αd)λ`g`f,t

)
, and sector-specific components, sv′ [I + αdΩ

′Ξ′] (gzu,t + (I−αd)g`u,t), along with their
68 percent credible intervals are in red.

33Readers may be interested in the implied prior for R2
F induced by the priors for the model parameters. The small value

of ν = 0.01 generates an improper prior for Σ, making the prior for R2
F difficult to characterize. However, a larger value of

ν = 2 generates a proper prior, and the resulting prior for R2
F has the majority of its mass concentrated around the extremes

of R2
F = 0 and R2

F = 1, each associated with the possibility of an extremely large value of σu,i or σF . The posterior for R2
F
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Figure 11: Robustness to Changes in Statistical Model
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(b) Model: q = 8, η = 0.5 , R2
f = 0.26 (0.12, 0.46)
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(c) Model: q = 8, η = 2.0 , R2
f = 0.25 (0.11, 0.45)
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(d) Model: q = 6, η = 1.0 , R2
f = 0.37 (0.19, 0.60)
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Notes: See notes for Figure 10. Each vertical panel of the Figure shows results for a different specification of the
prior distribution, η, or long-run periodicities, q.

that most of the long-run evolution of GDP growth has historically stemmed from sector-specific factors.

The results reported thus far use the benchmark priors. Recall from Section 3 that these priors were

relatively uninformative except for the factor loadings. In particular, the prior for λ` was λ` ∼ N(1,P`),

shown in Figure 10 differs markedly from this prior, and thus reflects information in the sample data.
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where P` = η2(I16 − s`(s
′
`s`)

−1s′`) and an analogous prior was used for λz. These priors enforced the

normalization that s′`λ
` = s′vλ

z = 1, so that unit changes in f `t and fzt lead to unit changes in the long-run

growth rate of aggregate labor and TFP. The parameter η then governed how aggressively the estimates

of λ`i or λzi are shrunk toward their mean of unity. The benchmark results use η = 1. Smaller values of η

shrink the estimates closer to 1 while larger values of η allows them to deviate from 1 more than the baseline

model. Thus, we now explore the robustness of our findings to alternative priors, η = 1/2 and η = 2. In

addition, we also run the model using q = 6 which captures long-run variations with periodicities longer

than 2× 69/6 = 23 years.

Figure 11 summarizes the findings from these robustness exercises by reproducing Figure 10 for each of

these alternative models It is clear from the figure that across all cases, contributions from common sources

of trend input growth to the long-run evolution of GDP growth remain limited. Median estimates of R2
f

range from 0.28 to 0.37 with posterior distributions that are clearly not uniform across values of R2
f and

that place the bulk of their mass between 0 and 0.5. We thus conclude that the result that sector-specific

forces are the primary driver of trend GDP are robust to these changes in the prior for the factor loadings

and to increasing the periodicity used to define the long-run trends.

Given that sector-specific (rather than common) trends have played a dominant role in driving trend

GDP growth over the postwar period, Figure 12 gives the historical trend contributions to aggregate GDP

growth from the sector-specific components for each sector. Two sectors clearly stand out, Construction

and Durable Goods. Recall that U.S. trend GDP growth fell by approximately 3 percentage points between

1950 and 2018. Comparing the beginning and the end of the sample, Figure 12 indicates that Durable

Goods alone contributed around 1 percentage point of that decline and Construction 0.75 percentage points.

However, there are also important differences in the timing and variation of those sectoral contributions.

Construction contributed roughly a 1 percentage point decline in trend GDP growth between 1950 and

1980 and was essentially flat thereafter. In contrast, Durable Goods played a key role in raising trend GDP

growth in the 1980’s and 1990’s before contributing an almost 2 percentage point decline in trend GDP

growth between 2000 and the end of the sample in 2018. Non-Durable goods also notably contributed to the

post-war decline in trend GDP growth at roughly 0.5 percentage points over the entire sample period, though

offset somewhat by Mining after 1980. Strikingly, many other sectors show relatively flat contributions to

aggregate trend growth over 1950 to 2018, between −0.1 and 0.1 percentage points. Perhaps even more

surprising, no sector has contributed any steady significant increase to the trend growth rate of GDP over

that period.

6 Concluding Remarks

In this paper, we study how trends in TFP and labor growth across major U.S production sectors have

helped shape the secular behavior of GDP growth. We find that aggregate trends in TFP and labor growth

have generally decreased across a majority of sectors since 1950. Common trends in sectoral TFP growth
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Figure 12: Sector-Specific Contributions to the Trend Growth Rate of GDP
(percentage points at annual rate)
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Notes: Each panel shows the implications of sector-specific trends for the trend growth rate of GDP using the model-
based multipliers. The solid lines denote the posterior median and the shaded areas are (pointwise) equal-tail 68%
credible intervals.

contributed around 1/3 of the secular decline in aggregate TFP growth. Common sectoral trends in sectoral

labor growth contributed about 2/3 of the secular decline in aggregate labor growth.34

We embed these findings into a dynamic multi-sector framework in which materials and capital used by

different sectors are produced by other sectors. These production linkages along with capital accumulation

mean that changes in the growth rate of labor or TFP in one sector affect not only its own value added but

34One caveat is that those findings emerge in the context of a closed economy. Cavallo and Landry (2010) point out that the
fraction of investment coming from abroad has increased since 1967. See also Basu et al. (2013). Thus, some of our conclusions
could be sensitive to this observation.
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also that of all other sectors. In particular, capital induces network effects that amplify the repercussions

of sector-specific sources of growth on the aggregate economy and that we summarize in terms of sectoral

multipliers. Quantitatively, these multipliers scale up the influence of some sectors by multiple times their

value added share in the economy.

Ultimately, we find that sector-specific factors in TFP and labor growth historically explain 3/4 of low

frequency variations in U.S. GDP growth, leaving common or aggregate factors to explain only 1/4 of these

variations. Changing sectoral trends in the last 7 decades, translated through the economy’s production

network, have on net lowered trend GDP growth by close to 3 percentage points. The Construction and

Durable Goods sectors, more than any other sector, stand out for their contribution to the trend decline

in GDP growth over the post-war period. Strikingly, no sector has contributed any steady or significant

increase to the trend growth rate of GDP in the last 70 years.
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Appendix A: Balanced Growth with Production Linkages

Consider the case where ∆ ln zj,t and ∆ ln `j,t are growing at constant rates, gzj and g`j respectively, given by

λzjg
z
f + gzu,j and λ`jg

`
f + g`u,j . Then,

∆ lnAj,t ≡ gaj = λzjg
z
f + gzu,j + (1− αj)

(
λ`jg

`
f + g`u,j

)
, (A.1)

and we denote by Ãj,t the gross growth rate of Aj,t,

Ãj,t =
Aj,t
Aj,t−1

= eg
a
j ≈ 1 + gaj .

The balanced growth path of the economy is one in which, given the constant exogenous growth rates of

TFP, gzj = λzjg
z
f + gzu,j , and labor input, g`j = λ`jg

`
f + g`u,j , all other variables grow at constant rates and all

shares are constant. Thus, to derive the aggregate balanced growth path, we need to normalize the model’s

variables in such a way that these normalized variables (generally denoted by a ‘∼’ over the variable) are

constant along that path. Because different sectors will generally grow at different rates along the balanced

growth path, the factors used to normalize variables will be sector-specific. Generically, we denote these

normalizing factors by µj,t (or functions thereof). Solving for those factors below will yield a system of

equations that is stationary in the normalized variables along the economy’s steady state growth path as

well as the growth rates of all variables along that path.

Making the model Stationary

If all growth rates are constant, the resource constraint in any individual sector implies that all the

variables in that constraint must grow at the same rate. Thus, define ỹj,t = yj,t/µj,t, c̃j,t = cj,t/µj,t,

m̃ji,t = mji,t/µj,t, and x̃ji,t = xji,t/µj,t. The goal in this subsection is to solve for the normalizing factors,

µj,t, as a function of the model’s underlying parameters only (and in particular the constant growth rates

of TFP and labor input).

The economy’s resource constraint becomes

c̃j,t +

n∑
i=1

m̃ji,t +

n∑
i=1

x̃ji,t = ỹj,t.

Given the above definitions, the production of investment goods may be re-written as

x̃j,t =
n∏
i=1

(
x̃ij,t
ωij

)ωij
,
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where x̃j,t = xj,t/

n∏
i=1

µ
ωij
i,t . Under this normalization, the capital accumulation equation is

kj,t+1 = x̃j,t

n∏
i=1

µ
ωij
i,t + (1− δj)kj,t,

and so becomes

k̃j,t+1 = x̃j,t + (1− δj)k̃j,t
n∏
i=1

(
µi,t−1

µi,t

)ωij
,

where k̃j,t+1 = kj,t+1/

n∏
i=1

µ
ωij
i,t .

The expression for value added may be written as

vj,t = Aj,t


k̃j,t

n∏
i=1

µ
ωij
i,t−1

αj


αj

,

so that defining

ṽj,t =
vj,t

Aj,t

(
n∏
i=1

µ
ωij
i,t−1

)αj , (A.2)

where Aj,t

(
n∏
i=1

µ
ωij
i,t−1

)αj
is the scaling factor that makes normalized value added, ṽj,t, constant along the

balanced growth path, we have

ṽj,t =

(
k̃j,t
αj

)αj
.

The composite bundle of materials used in sector j may be expressed as

m̃j,t =
n∏
i=1

(
m̃ij,t

φij

)φij
,

with m̃j,t = mj,t/
n∏
i=1

µ
φij
i,t .
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Given these normalizations, gross output may be written as

ỹj,tµj,t =


ṽj,tAj,t

n∏
i=1

µ
αjωij
i,t−1

γj


γj 

m̃j,t

n∏
i=1

µ
φij
i,t

1− γj


1−γj

,

which, collecting terms, gives

ỹj,t =

(
ṽj,t
γj

)γj ( m̃j,t

1− γj

)1−γj
[
A
γj
j,t

µj,t

n∏
i=1

µ
γjαjωij
i,t−1 µ

(1−γj)φij
i,t

]
.

We can now use the expression in square brackets to solve for the normalizing factors, µj,t, as a function of

the model’s underlying parameters.

First, re-write the term in square brackets as

A
γj
j,t

µj,t

(
n∏
i=1

µ
γjαjωij
i,t−1

µ
γjαjωij
i,t

)(
n∏
i=1

µ
(1−γj)φij
i,t µ

γjαjωij
i,t

)
,

where this last expression involves the growth rate of µi,t. Then, without loss of generality with respect to

growth rates, we choose µj,t in every sector such that, on the steady state growth path,35

A
γj
j,t

µj,t

n∏
i=1

µ
γjαjωij+(1−γj)φij
i,t = 1.

Sectoral Value Added Growth

Taking logs of both sides of the above expression, we have

γj lnAj,t − lnµj,t +

n∑
i=1

(γjαjωij + (1− γj)φij) lnµi,t = 0,

or in vector form,

Γd lnAt − lnµt + ΓdαdΩ
′ lnµt + (I − Γd)Φ

′ lnµt = 0,

which gives us

lnµt = Ξ′ lnAt, (A.3)

where

Ξ′ =
(
I − ΓdαdΩ

′ − (I − Γd)Φ
′)−1

Γd,

35This is without loss of generality since in the derivations of growth rates below, any constant κ may be used instead of 1.
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with Ξ = {ξij} is the generalized Leontief inverse.

Going back to equation (A.1), and writing the vector of productivity growth rates as ∆ lnAt = ga where

ga = (ga1 , ..., g
a
n), it follows that

∆ lnµt = Ξ′ga = Ξ′
(
λzgzf + gzu + (I − αd)

(
λ`g`f + g`u

))
,

where gzf and g`f are common or aggregate factors in the growth rates of TFP and labor respectively, λz

and λ` are loading vectors as defined in the main text, and gzu = (gzu,1, ..., g
z
u,n) and g`u = (g`u,1, ..., g

`
u,n) are

vectors of (unique) idiosyncratic TFP and labor input growth rates.

Recall from equation (A.2) above that the normalizing factor for value added in sector j isAj,t

(
n∏
i=1

µ
ωij
i,t−1

)αj
.

Thus, define this factor by µvj,t,

µvj,t = Aj,t

 n∏
j=1

µ
ωij
i,t−1

αj

.

In particular, since µvj,t is the normalizing factor that makes value added in sector j constant along the

balanced growth path, it follows that µvj,t grows at the same rate as j’s value added along that path,

denoted gvj . Then, using equation (A.3), we have that

lnµvt = lnAt + αdΩ
′Ξ′ lnAt−1,

or

gv =
[
I + αdΩ

′Ξ′
]
ga,

where gv = (gv1 , ..., g
v
n) is a vector that summarizes value added growth in every sector. Alternatively,

gv =
[
I + αdΩ

′Ξ′
] (
λzgzf + gzu + (I − αd)

(
λ`g`f + g`u

))
.
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