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ROBOTS OR WORKERS? A MACRO ANALYSIS OF AUTOMATION
AND LABOR MARKETS

SYLVAIN LEDUC AND ZHENG LIU

Abstract. We argue that the threat of automation weakens workers’ bargaining power in

wage negotiations, dampening wage adjustments and amplifying unemployment fluctuations.

We make this argument based on a quantitative business cycle model with labor market

search frictions, generalized to incorporate automation decisions and estimated to fit U.S.

time series. We find that the automation channel is quantitatively important for explaining

the sluggish wage growth and persistent declines in unemployment in the decade prior to the

Covid-19 pandemic. More broadly, we show that the automation mechanism helps account

for the large fluctuations in unemployment and vacancies relative to that in real wages, a

puzzling observation through the lens of standard models. We present some micro-level

empirical evidence supporting our model’s mechanism.

I. Introduction

Recent advances in robotics and artificial intelligence have raised concerns that automa-

tion might put an increasing share of jobs at risk and reduce wages. There is an on-going

debate about whether automation reduces aggregate employment (Autor, 2015; Acemoglu

and Restrepo, 2018, 2020). However, the threat of automation might restrain wage increases,

because firms can potentially cut labor costs by adopting robots. Indeed, during the decade

prior to the Covid-19 pandemic, the United States has had historically low unemployment

rates, but wage growth has remained sluggish. The slow wage growth might be driven by

multiple factors, such as increases in offshoring, declines in worker bargaining powers, and

increases in product market concentration (Autor et al., 2013; Krueger, 2018). We argue
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that the increased threat of automation, by lowering workers’ effective bargaining power, has

also contributed to slowing wage growth in a tight labor market. More broadly, by creating

a source of endogenous wage rigidity, automation helps explain the large fluctuations in un-

employment and vacancies relative to real wages, a puzzling observation through the lens of

standard business cycle models (Shimer, 2005).

We make this argument based on a general equilibrium framework with labor market search

frictions, generalized to incorporate automation decisions and estimated to fit U.S. time se-

ries. The model predicts that an increased threat of automation raises firms’ reservation

value, strengthening their bargaining power in wage negotiations and therefore dampening

wage increases during economic expansions. In our model, the effective bargaining power

between firms and workers is endogenous, and it fluctuates with the business cycle along with

the probability of automation over the business cycle. The automation channel creates two

opposing forces on real wages. In an expansion, a tighter labor market pushes real wages up.

At the same time, the net benefit of automation and thus the probability of automation also

rise, and the increased threat of automation slows wage growth. The automation channel

also creates two opposing effects on employment. It has a direct job-displacing effect, because

robots can substitute for workers in production. On the other hand, automation has a job

creating effect, because the option to automate an unfilled job position raises the expected

value of a job vacancy, boosting firms’ incentive to create new vacancies and thus increasing

the job finding rate and employment. Our estimation suggests that the automation mecha-

nism is a quantitatively important source of real wage rigidities, and it helps account for the

observed large volatilities of unemployment and vacancies. In addition, since automation

raises labor productivity while depressing wages, it leads to countercyclical fluctuations in

the labor share of income, as observed in the data.

I.1. Model mechanism. Our framework builds on the standard Diamond-Mortensen-Pissarides

(DMP) model with labor market search frictions and generalizes it to incorporate automation

decisions. In line with Acemoglu and Restrepo (2018) and Zeira (1998), firms in our model

first make a choice of technologies (adopting a robot or not); and only non-automated tasks

(or vacancies) are available for hiring workers. Firms can produce consumption goods using

either workers or robots. Since robots are perfect substitutes for workers in production, they

are different from the physical capital in standard neoclassical production functions, where

capital and labor are complementary inputs.1

1Krusell et al. (2000) study a neoclassical model in which capital equipment complements skilled labor

but substitutes for unskilled labor. He and Liu (2008) study a general equilibrium extension of the Krusell

et al. (2000) model to incorporate endogenous skill accumulations. The relation between robots and workers
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In the beginning of each period, a firm observes an i.i.d. cost of automation and decides

whether or not to automate an unfilled job position that is carried over from the previous

period. If the cost of automation lies below a threshold determined by the net benefit of

automation, then the firm adopts a robot for production and takes the job vacancy offline.

The probability of automation is thus the cumulative density of the automation cost draws

evaluated at the automation threshold.

If the job position is not automated, then the firm posts the vacancy in the labor market

to search for a potential match with a job seeker. If the match is successful, the vacancy will

be filled with a worker and both the firm and the worker obtain their respective share of the

employment surplus from bargaining over the wage rate. If no match is formed, then the

vacancy remains open and the firm obtains the continuation value of the vacancy, including

the option to automate the position in future periods.2

Our approach to modeling automation decisions requires a job vacancy to carry a positive

value in equilibrium. Unlike the standard DMP model with free entry, we introduce a fixed

cost of vacancy creation. A firm will choose to create a new vacancy if the vacancy-creation

cost (drawn from an i.i.d. distribution) is below the value of the vacancy. Since vacancy

creation is costly, an unfilled vacancy carries a positive value, allowing the firm to choose

whether or not to automate an unfilled vacancy. Furthermore, different from the standard

DMP model where the number of vacancies is a jump variable, it becomes a slow-moving

state variable in our setup, enabling the model to match the persistent vacancy dynamics in

the data (Leduc and Liu, 2019). Importantly, an increase in the value of a vacancy raises

the firm’s reservation value in wage negotiations, putting downward pressures on equilibrium

wages.

I.2. Model implications. We estimate the model to fit quarterly U.S. time series data.

These time series include unemployment, vacancies, real wage growth, and nonfarm business

sector labor productivity growth, with a sample ranging from 1985:Q1 to 2018:Q4. To fit

these four time series, we assume four shocks in our model, including a discount factor shock,

a neutral technology shock, an automation-specific shock, and a job separation shock. We

find that matching the observed fluctuations in labor productivity is an important disciplin-

ing device on the endogenous automation mechanism, especially because of the slowdown in

productivity growth since the mid-2000s (Fernald, 2015).

in our model is analogous to the relation between equipment and unskilled labor in the model of Krusell

et al. (2000).
2We interpret a job position broadly as consisting of a bundle of tasks, which are ex ante identical, but

a fraction of which will be automated depending on the realization of the idiosyncratic costs of automation.

This approach simplifies our analysis significantly.
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In our estimated model, we find that automation amplifies employment fluctuations. Be-

cause of the opposing job-displacing and job-creating effetcs, the net effect of automation on

employment is a priori ambiguous. Under our estimated parameters, automation increases

movements in employment.

We also find that the threat of automation dampens wage increases in a business cy-

cle boom. Since the net value of automation is procyclical, the probability of automation

increases in good economic times, raising the firm’s reservation value (i.e., the value of a

vacancy) in wage bargaining, and therefore muting wage increases.

Increased automation in a boom also boosts aggregate productivity, further fueling the

expansion. Since automation improves labor productivity while muting wage increases, it

implies a countercyclical labor income share, as observed in the data.3

Overall, automation helps generate large fluctuations in unemployment and vacancies

relative to that in real wages. The threat of automation gives rise to a source of endogenous

real wage rigidities, which is important for amplifying labor market fluctuations (Christiano

et al., 2020). In addition, automation raises aggregate productivity in a business cycle boom,

further fueling the boom. This mechanism is quantitatively important. In our estimated

model and the data, the volatility of the vacancy-unemployment ratio (i.e., the v-u ratio),

which is a measure of labor market tightness, is about 40 times that of the real wage rate.4

In contrast, a counterfactual model without the automation mechanism produces a much

smaller volatility ratio of about 8, less than 20 percent of that predicted by our estimated

model. Furthermore, we show that search frictions are also important: a more competitive

labor market tends to mitigate the real wage rigidity stemming form the threat of automation,

making unemployment and vacancies less volatile. In this sense, automation and labor

market search frictions are both important for understanding the observed labor market

fluctuations.

The threat of automation effectively weakens workers’ bargaining power and therefore

mutes wage changes and amplifies unemployment fluctuations. Hagedorn and Manovskii

(2008) argue that, in the standard DMP framework, reducing workers’ bargaining weight

3Karabarbounis and Neiman (2013) focus on the trend declines in the labor share since the mid-1970s

for 59 countries. Their analysis attributes about half of the declines in the labor share to declines in the

relative price of investment goods. We focus on the cyclical dynamics of the labor share, instead of its trend.

Elsby et al. (2013) also study the trend declines in the U.S. labor share since the 1980s. They argue that

offshoring of labor-intensive component of the U.S. supply chain is an important factor that may explain the

declines in the labor share. Our framework can be generalized to include offshoring as an additional form

of labor-saving technology. We conjecture that the threat of offshoring can exert similar influences on labor

market outcomes as does the threat of automation.
4Since we fit our model to these time series, the actual volatility ratio in the data is the same.



ROBOTS OR WORKERS 5

or raising the workers’ value of non-market activity (such as unemployment insurance) can

amplify fluctuations in unemployment and vacancies. Thus, we consider two such counterfac-

tuals, both without the automation mechanism. We find that lowering workers’ bargaining

weight or raising the unemployment insurance (UI) can dampen wage adjustments and am-

plify unemployment fluctuations, in line with the findings in Hagedorn and Manovskii (2008).

However, the magnitude of amplification is substantially smaller than that arising from the

threat of automation. In addition, the impulse responses of wages and the labor share in the

counterfactual models are qualitatively different from those in our benchmark model. For

example, following a positive discount factor shock, the benchmark model predicts that the

real wage and the labor share both decline, whereas the counterfactuals without automa-

tion predict that they both rise. These differences reflect the importance of the automation

threat for wage bargaining and the endogenous productivity changes through the automation

channel.

The automation mechanism is robust to alternative approaches to modeling automation.

We consider two alternative versions of the model. In one version, we assume that firms

can automate existing jobs instead of job vacancies. In the other version, we generalize

the benchmark model with homogeneous workers by introducing heterogeneous skills and

assume that robots are substitutes for low-skilled workers but complements to high-skilled

workers. In each case, we find that the threat of automation depresses wages and boosts

productivity, leading to countercyclical labor share fluctuations.

I.3. Evidence for the model’s mechanism. We provide micro-level empirical evidence

for the model’s mechanism. We use the U.S. two-digit industry level data on the stock of

robots from the International Federation of Robotics (IFR), and merge the robot data with

the KLEMS account of the U.S. Bureau of Economic Analysis (BEA) based on the industry

codes and descriptions. The merged sample covers 18 industries over the years from 2004 to

2018. We study the relations between industry-level robot adoptions and industry-specific

variables, including labor productivity, real wages, and the labor share in value added. Unlike

previous studies that focus on the long-run relations (such as Graetz and Michaels (2018)),

we focus on the panel data with time-series variations, in line with our general equilibrium

model that highlights the automation channel for propagating business cycle fluctuations.

In our panel-data regressions, we measure robot adoptions by robot density, defined as

the ratio of the stock of robots to labor hours. Robot density is a potentially endogenous

explanatory variable. For example, an industry with higher labor productivity is more likely

to adopt robots. To address this concern, we construct an instrumental variable (IV) for our

measure of robot density. In particular, the IV is an industry’s initial exposure to robots

interacted with the annual time series of the relative price of computer equipment. To the
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extent that the relative price of equipment is correlated with the cost of robot adoptions, our

IV is correlated with the industry’s robot density in subsequent years in our sample. Since

the equipment price is an aggregate variable, variations in our IV are unlikely caused by

the industry-level variables such as labor productivity or wages. The first-stage F-statistic

overwhelmingly rejects the null hypothesis of weak instruments. In all regressions, we control

for the industry fixed effects and the year fixed effects.

Our IV-panel regressions show that a 10-percent increase in robot density raises the

industry-level labor productivity by 0.4 percent and reduces the labor share by 0.3 percent,

and these effects are significant both statistically and economically. The point estimates sug-

gest that an increase in robot density reduces the average real wage rate, but the estimated

coefficient is statistically insignificant. This effect is broadly in line with our model, since it

predicts that the effect of automation on real wages can be positive or negative, depending

on the shock.5 Overall, these regression results lend empirical support to our model’s main

mechanism: increased automation boosts productivity while muting movements in wages,

resulting in a fall in the labor share.

I.4. Related literature. Our empirical evidence highlights the effects of robot adoptions

on labor market outcomes at the business cycle frequencies. Our evidence complements

the empirical literature that typically focuses on longer-run implications of automation.

For example, Graetz and Michaels (2018) examine the labor-market impact of cumulative

changes in robot adoptions from 1993 to 2007 using a panel of industry-level data from

17 countries. They find that robot adoptions boost labor productivity and raise wages,

although the positive effects on wages are much smaller than those on productivity. Arnoud

(2018) also focuses on the long-run implications of automation. He examines occupation-

level relations between the threat of automation and wage adjustments using data from the

2013 U.S. Current Population Survey and an index of automatability developed by Frey

and Osborne (2017). He finds that, controlling for observable characteristics, occupations

that are more susceptible to automation have experienced lower wage growth. Dinlersoz

and Wolf (2018) present plant-level evidence that more automated establishments in the

U.S. manufacturing sector have had a smaller fraction of high-wage workers, higher labor

productivity, and a smaller labor share in production. Acemoglu and Restrepo (2020) present

evidence that, for U.S. communter zones exposed to robots, the increase in the stock of

industrial robots between 1990 and 2007 reduced the average employment-to-population

ratio by 0.4 percentage points and average wages by 0.8 percent, relative to commuter zones

with no robot exposure.

5For example, a positive neutral technology shock in our model raises the real wage rate, whereas a

discount factor shock reduces it.
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Automation in our model represents a labor-substituting technology. There is substantial

evidence that the steady progress in labor substituting technologies (such as computeriza-

tion) has reduced the secular demand for workers with routine skills, contributing to job

polarization in the U.S. labor market (Autor et al., 2003). Furthermore, job polarization

can be linked to the jobless recoveries since the early 1990s, because most of the employ-

ment losses in routine occupations occur in recessions (Jaimovich and Siu, 2020). During

the Great Recession and the subsequent recovery, employers in hard-hit areas raised the

skill requirements when posting job vacancies, consistent with increased job destructions in

routine occupations (Hershbein and Kahn, 2018). Although our benchmark model abstracts

from skill heterogeneity, our extended model with heterogeneous worker skills captures the

idea that robots are complementary with high-skill workers but are substitutes for low-skill

workers. The key predictions of our benchmark model survives in this extended model. In

particular, increases in automation raises labor productivity, reduces wages and the labor

share.

Different from the existing literature that focuses on the secular impact of automation on

labor markets, we focus on business cycle fluctuations. To our knowledge, our study provides

the first quantitative general equilibrium evaluation of the interactions between automation

and labor market fluctuations over the business cycle.

II. The model with labor market frictions and automation

This section presents a DSGE model that generalizes the standard DMP model to incor-

porate endogenous decisions of automation.

To keep automation decisions tractable, we impose some assumptions on the timing of

events. In the beginning of period t, a job separation shock δt is realized. Workers who lose

their jobs add to the stock of unemployment from the previous period, forming the pool of

job seekers ut. Firms carry over the stock of unfilled vacancies from the previous period, a

fraction of which is automated by adopting robots. The stock of vacancies vt available for

hiring workers consists of the remaining vacancies after automation, the jobs separated in

the beginning of the period, and newly created vacancies. The job seekers (ut) randomly

match with the vacancies (vt) in the labor market, with the number of new matches (mt)

determined by a matching technology. Production then takes place, with a homogeneous

consumption good produced using either workers or robots. The unfilled vacancies and the

pool of employed workers at the end of the period are carried over to the next period, and

the same sequence of economic activities repeats in period t+ 1.

Compared to the standard DMP model, our model introduces two new features. First,

we replace the free-entry assumption in the DMP model with costly vacancy creation, as in
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Fujita and Ramey (2007) and Leduc and Liu (2019). Since creating a new vacancy incurs a

fixed cost, a vacancy has a positive value even if it is not filled by a worker. The number of

vacancies becomes a slow-moving state variable (instead of a jump variable as in the standard

DMP framework), enabling our model to match the persistent vacancy dynamics in the data.

Second, we introduce endogenous automation decisions. In the beginning of period t, each

firm draws a fixed automation cost, which determines whether the firm will adopt a robot

or post the vacancy for hiring a worker. If the automation cost lies below a threshold value,

then the firm adopts a robot and obtains the automation value, and the vacancy would be

taken offline. If the automation cost exceeds the threshold, then the firm posts the vacancy

for hiring a worker.6 Since robots can substitute for workers for production, they are different

from the traditional capital input, which is typically complementary to labor input in the

standard macro models.

II.1. The Labor Market. In the beginning of period t, there are Nt−1 existing job matches.

A job separation shock displaces a fraction δt of those matches, so that the measure of

unemployed job seekers is given by

ut = 1− (1− δt)Nt−1, (1)

where we have assumed full labor force participation and normalized the size of the labor

force to one.

The job separation rate shock δt follows the stationary stochastic process

ln δt = (1− ρδ) ln δ̄ + ρδ ln δt−1 + εδt, (2)

where ρδ is the persistence parameter and the term εδt is an i.i.d. normal process with a

mean of zero and a standard deviation of σδ. The term δ̄ denotes the steady-state rate of

job separation.

The stock of vacancies vt consists of unfilled vacancies carried over from period t− 1 that

are not automated, plus the separated employment matches and newly created vacancies.

The law of motion for vacancies is given by

vt = (1− qvt−1)(1− qat ))vt−1 + δtNt−1 + ηt, (3)

where qvt−1 denotes the job filling rate in period t− 1, qat denotes the automation probability

in period t, and ηt denotes newly created vacancies (i.e., entry).

6A plausible alternative way of thinking about automation is to allow firms to automate an existing job

instead of an open vacancy. We consider such an alternative setup in Section V.1 and find that the model’s

main mechanism is robust.
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In the labor markert, new job matches (denoted by mt) are formed between job seekers

and open vacancies based on the matching function

mt = µuαt v
1−α
t , (4)

where µ is a scale parameter that measures matching efficiency and α ∈ (0, 1) is the elasticity

of job matches with respect to the number of job seekers.

The flow of new job matches adds to the employment pool, whereas job separations sub-

tract from it. Aggregate employment evolves according to the law of motion

Nt = (1− δt)Nt−1 +mt. (5)

At the end of period t, the searching workers who failed to find a job match remain

unemployed. Thus, unemployment is given by

Ut = ut −mt = 1−Nt. (6)

For convenience, we define the job finding probability qut as

qut =
mt

ut
. (7)

Similarly, we define the job filling probability qvt as

qvt =
mt

vt
. (8)

II.2. The firms. A firm makes automation decisions in the beginning of the period t. Adopt-

ing a robot requires a fixed cost x in units of consumption goods. The fixed cost is drawn

from the i.i.d. distribution G(x). A firm chooses to adopt a robot if and only if the cost

of automation is less than the benefit. For any given benefit of automation, there exists a

threshold value x∗t in the support of the distribution G(x), such that automation occurs if

and only if x ≤ x∗t . If the firm adopts a robot to replace the job position, then the vacancy

will be taken offline and not available for hiring a worker. Thus, the automation threshold

x∗t depends on the value of automation (denoted by Jat ) relative to the value of a vacancy

(denoted by Jvt ). In particular, the threshold for automation decision is given by

x∗t = Jat − Jvt . (9)

The probability of automation is then given by the cumulative density of the automation

costs evaluated at x∗t . That is,

qat = G(x∗t ). (10)

The flow of automated job positions adds to the stock of automatons (denoted by At),

which becomes obsolete at the rate ρo ∈ [0, 1] in each period.7 Thus, At evolves according

7If a vacancy is “filled” by a robot, it will be taken offline once and for all. Even if the robot later

becomes obsolete, the vacated position does not return to the stock of vacancies.
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to the law of motion

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (11)

where qat (1− qvt−1)vt−1 is the number of newly automated job positions.

A robot produces Ztζt units of output, where Zt denotes a neutral technology shock and ζt

denotes an automation-specific shock. The neutral technology shock Zt follows the stochastic

process

lnZt = (1− ρz) ln Z̄ + ρz lnZt−1 + εzt. (12)

The parameter ρz ∈ (−1, 1) measures the persistence of the technology shock. The term

εzt is an i.i.d. normal process with a zero mean and a finite variance of σ2
z . The term Z̄ is

the steady-state level of the technology shock.8 The automation-specific technology shock

ζt follows a stochastic process that is independent of the neutral technology shock Zt. In

particular, ζt follows the stationary process

ln ζt = (1− ρζ) ln ζ̄ + ρζ ln ζt−1 + εζt. (13)

The parameter ρζ ∈ (−1, 1) measures the persistence of the automation-specific technology

shock. The term εζt is an i.i.d. normal process with a zero mean and a finite variance of σ2
ζ .

The term ζ̄ is the steady-state level of the automation-specific technology shock.

Operating the robot incurs a flow fixed cost κa that captures the costs of energy, facilities,

and space for automated production. The value of automation satisfies the Bellman equation

Jat = Ztζt − κa + (1− ρo)EtDt,t+1J
a
t+1, (14)

where Dt,t+1 denotes the stochastic discount factor determined by the marginal utility of the

households.

If the automation cost exceeds the threshold x∗t , then the firm chooses not to adopt a

robot and instead, it chooses to post the vacancy in the labor market for hiring a worker.

In addition, newly separated jobs and newly created vacancies add to the stock of vacancies

for hiring workers. Following Leduc and Liu (2019), we assume that creating a new vacancy

incurs an entry cost e in units of consumption goods. The entry cost is drawn from an

i.i.d. distribution F (e). A new vacancy is created if and only if the net value of entry is

non-negative. The benefit of creating a new vacancy is the vacancy value Jvt . Thus, the

number of new vacancies ηt is given by the cumulative density of the entry costs evaluated

at Jvt . That is,

ηt = F (Jvt ). (15)

Posting a vacancy incurs a per-period fixed cost κ (in units of final consumption goods).

If the vacancy is filled (with the probability qvt ), the firm obtains the employment value

8The model can easily be extended to allow for trend growth.
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Jet . Otherwise, the firm carries over the unfilled vacancy to the next period, which will be

automated with the probability qat+1. If the vacancy is automated, then the firm obtains the

automation value Jat+1; otherwise, the vacancy will remain open, and the firm receives the

vacancy value Jvt+1. Thus, the vacancy value satisfies the Bellman equation

Jvt = −κ+ qvt J
e
t + (1− qvt )EtDt,t+1

[
qat+1J

a
t+1 + (1− qat+1)Jvt+1

]
. (16)

If a firm successfully hires a worker, then it can produce Zt units of intermediate goods.

The value of employment satisfies the Bellman equation

Jet = Zt − wt + EtDt,t+1

{
(1− δt+1)Jet+1 + δt+1J

v
t+1

}
, (17)

where wt denotes the real wage rate. Hiring a worker generates a flow profit Zt − wt in the

current period. If the job is separated in the next period (with probability δt+1), then the

firm receives the vacancy value Jvt+1. Otherwise, the firm receives the continuation value of

employment.

II.3. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βtΘt (lnCt − χNt) , (18)

where E [·] is an expectation operator, Ct denotes consumption, and Nt denotes the fraction

of household members who are employed. The parameter β ∈ (0, 1) denotes the subjective

discount factor, and the term Θt denotes an exogenous shifter to the subjective discount

factor.

The discount factor shock θt ≡ Θt
Θt−1

follows the stationary stochastic process

ln θt = ρθ ln θt−1 + εθt. (19)

In this shock process, ρθ is the persistence parameter and the term εθt is an i.i.d. normal

process with a mean of zero and a standard deviation of σθ. Here, we have implicitly assumed

that the mean value of θ is one.

The representative household chooses consumption Ct and savings Bt to maximize the

utility function (18) subject to the sequence of budget constraints

Ct +
Bt

rt
= Bt−1 + wtNt + φ(1−Nt) + dt − Tt, ∀t ≥ 0, (20)

where rt denotes the gross real interest rate, dt denotes the household’s share of firm profits,

and Tt denotes lump-sum taxes. The parameter φ measures the flow benefits of unemploy-

ment.
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Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max
Ct,Nt,Bt

lnCt − χNt + βEtθt+1Vt+1(Bt, Nt), (21)

subject to the budget constraint (20) and the employment law of motion (5), the latter of

which can be written as

Nt = (1− δt)Nt−1 + quut, (22)

where we have used the definition of the job finding probability qut = mt
ut

, with the measure

of job seekers ut given by Eq. (1). In the optimizing decisions, the household takes the

economy-wide job finding rate qut as given.

Define the employment surplus (i.e., the value of employment relative to unemployment)

as SHt ≡ 1
Λt

∂Vt(Bt−1,Nt−1)
∂Nt

, where Λt denotes the Lagrangian multiplier for the budget con-

straint (20). The optimizing decision for employment implies that the employment surplus

satisfies the Bellman equation

SHt = wt − φ−
χ

Λt

+ EtDt,t+1(1− qut+1)(1− δt+1)SHt+1, (23)

where Dt,t+1 ≡ βθt+1Λt+1

Λt
is the stochastic discount factor, which applies to both the house-

hold’s intertemporal optimization and firms’ decisions.9

The employment surplus has a straightforward economic interpretation. If the household

adds a new worker in period t, then the current-period gain would be wage income net

of the opportunity costs of working, including unemployment benefits and the disutility of

working. The household also enjoys the continuation value of employment if the employment

relation continues. Having an extra worker today adds to the employment pool tomorrow

(provided that the employment relation survives job separation); however, adding a worker

today would also reduce the pool of searching workers tomorrow, a fraction qut+1 of whom

would be able to find jobs. Thus, the marginal effect of adding a new worker in period t

on employment in period t + 1 is given by (1 − qut+1)(1 − δt+1), resulting in the effective

continuation value of employment shown in the last term of Eq. (23).

We also show in the appendix that the household’s optimizing consumption-savings deci-

sion implies the intertemporal Euler equation

1 = EtDt,t+1rt. (24)

9We provide detail derivations in an online appendix available at ????https://www.frbsf.org/

economic-research/files/wp2019-17.pdf.
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II.4. The Nash bargaining wage. When a job match is formed, the wage rate is deter-

mined through Nash bargaining. The bargaining wage optimally splits the joint surplus of

a job match between the worker and the firm. The worker’s employment surplus is given

by SHt in Eq. (23). The firm’s surplus is given by Jet − Jvt . The possibility of automation

affects the value of a vacancy and thus indirectly affects the firm’s reservation value and its

bargaining decisions.

The Nash bargaining problem is given by

max
wt

(
SHt
)b

(Jet − Jvt )1−b , (25)

where b ∈ (0, 1) represents the bargaining weight for workers.

Define the total surplus as

St ≡ Jet − Jvt + SHt . (26)

Then the bargaining solution is given by

Jet − Jvt = (1− b)St, SHt = bSt. (27)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 − b of the

total surplus St and the household’s surplus is a fraction b of the total surplus.

The bargaining solution (27) and the expression for household surplus in equation (23)

together imply that the Nash bargaining wage wNt satisfies the Bellman equation

b

1− b
(Jet − Jvt ) = wNt − φ−

χ

Λt

+EtDt,t+1(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1). (28)

We do not impose any real wage rigidities. Thus, the equilibrium real wage rate is just

the Nash bargaining wage rate. That is, wt = wNt .

II.5. Government policy. The government finances unemployment benefit payments φ for

unemployed workers through lump-sum taxes. We assume that the government balances the

budget in each period such that

φ(1−Nt) = Tt. (29)

II.6. Search equilibrium. In a search equilibrium, the markets for bonds and goods both

clear. Since the aggregate bond supply is zero, the bond market-clearing condition implies

that

Bt = 0. (30)
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Goods market clearing requires that consumption spending, vacancy posting costs, ro-

bot operation costs, robot adoption costs, and vacancy creation costs add up to aggregate

production. This requirement yields the aggregate resource constraint

Ct + κvt + κaAt + (1− qvt−1)vt−1

∫ x∗t

0

xdG(x) +

∫ Jvt

0

edF (e) = Yt, (31)

where Yt denotes aggregate output, which equals the sum of goods produced by workers and

by robots and is given by

Yt = ZtNt + ZtζtAt. (32)

III. Empirical Strategies

We solve the model by log-linearizing the equilibrium conditions around the deterministic

steady state.10 We calibrate a subset of the parameters to match steady-state observations

and the empirical literature. We estimate the remaining structural parameters and the shock

processes to fit U.S. time-series data.

We focus on the parameterized distribution functions

F (e) =
(e
ē

)ηv
, G(x) =

(x
x̄

)ηa
, (33)

where ē > 0 and x̄ > 0 are the scale parameters and ηv > 0 and ηa > 0 are the shape

parameters of the distribution functions. We set ηv = 1 and ηa = 1, so that both the

vacancy creation cost and the automation cost follow a uniform distribution.11 We estimate

the scale parameters ē and x̄ and the shock processes by fitting the model to U.S. time series

data.

III.1. Steady-state equilibrium and parameter calibration. Table 1 shows the cali-

brated parameter values. We consider a quarterly model. We set β = 0.99, so that the

model implies an annualized real interest rate of about 4 percent in the steady state. We

set α = 0.5 following the literature (Blanchard and Gaĺı, 2010; Gertler and Trigari, 2009).

In line with Hall and Milgrom (2008), we set b = 0.5 and φ = 0.25. Based on the data from

the Job Openings and Labor Turnover Survey (JOLTS), we calibrate the steady-state job

separation rate to δ̄ = 0.10 at the quarterly frequency. We set ρo = 0.03, so that robots

depreciate at an average annual rate of 12 percent, in line with the estimated average life

10Details of the equilibrium conditions, the steady state, and the log-linearized system are presented in

the appendix.
11Our assumption of the uniform distribution for the vacancy creation cost is in line with Fujita and

Ramey (2007). We have estimated a version of the model in which we include the parameter ηa in the set of

parameters to be estimated. We obtain a posterior estimate of ηa close to one and very similar estimates for

the other parameters. For simplicity and for obtaining a closed-form solution for the steady-state equilibrium,

we assume that ηa = 1 in our benchmark model.



ROBOTS OR WORKERS 15

span of robots used by the International Federation of Robotics (IFR) for constructing their

measure of the operation stocks of robots. We normalize the level of labor productivity to

Z̄ = 1 and automation-specific productivity to ζ̄ = 1.

We target a steady-state unemployment rate of U = 0.0595, corresponding to the average

unemployment rate in our sample from 1985 to 2018. The steady-state employment is given

by N = 1 − U , hiring rate by m = δ̄N , the number of job seekers by u = 1 − (1 − δ̄)N ,

and the job finding rate by qu = m
u

. We target a steady-state job filling rate qv of 0.71 per

quarter, in line with the calibration of den Haan et al. (2000). The implied stock of vacancies

is v = m
qv

. The scale of the matching efficiency is then given by µ = m
uαv1−α

. We set the flow

cost of operating robots to κa = 0.98. Given the average productivities Z̄ = ζ̄ = 1, this

implies a quarterly profit of 2 percent of the revenue by using a robot for production. The

steady-state automation value Ja can then be solved from the Bellman equation (14).

Conditional on Ja and the estimated values of ē and x̄ (see below for estimation details),

we use the vacancy creation condition (15), the automation adoption condition (9), and law

of motion for vacancies (3) to obtain the steady-state probability of automation, which is

given by

qa =
Ja

x̄+ βē(1− qv)v
.

Given qa and v, the law of motion for vacancies implies that the flow of new vacancies

is given by η = qa(1 − qv)v. The vacancy value is then given by Jv = ēη. The stock of

automatons A can be solved from the law of motion (11), which reduces to ρoA = qa(1 −
qv)v = η in the steady state. Thus, in the steady state, the newly created vacancies equal

the flow of automated jobs that become obsolete. The law of motion for employment implies

that, in the steady state, the flow of hiring equals the flow of separated employment relations.

With A and N solved, we obtain the aggregate output Y = Z̄(N + ζ̄A). We calibrate

the vacancy posting cost to κ, so that the steady-state vacancy posting cost is 1 percent of

aggregate output (i.e., κv = 0.01Y ).

Given Jv and Ja, we obtain the cutoff point for robot adoption x∗ = Ja−βJv. The match

value Je can be solved from the Bellman equation for vacancies (16), and the equilibrium real

wage rate can be obtained from the Bellman equation for employment (17). Steady-state

consumption is solved from the resource constraint (31). We then infer the value of χ from

the expression for bargaining surplus in Eq. (28).

III.2. Estimation. We estimate the structural parameters ē and x̄ and the shock processes

by fitting the DSGE model to quarterly U.S. time series.

III.2.1. Data and measurement. We fit the model to four quarterly time series: the unem-

ployment rate, the job vacancy rate, the growth rate of average labor productivity in the
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nonfarm business sector, and the growth rate of the real wage rate. The sample covers the

period from 1985:Q1 to 2018:Q4.12

The unemployment rate in the data (denoted by Udata
t ) corresponds to the end-of-period

unemployment rate in the model Ut. We demean the unemployment rate data (in log units)

and relate it to our model variable according to the measurement equation

ln(Udata
t )− ln(Ūdata) = Ût, (34)

where Ūdata denotes the sample average of the unemployment rate in the data and Ût denotes

the log-deviations of the unemployment rate in the model from its steady-state value.

Similarly, we use demeaned vacancy rate data (also in log units) and relate it to the model

variable according to

ln(vdatat )− ln(v̄data) = v̂t, (35)

where v̄data denotes the sample average of the vacancy rate data and v̂t denotes the log-

deviations of the vacancy rate in the model from its steady-state value. Our vacancy series

for the periods prior to 2001 is the vacancy rate constructed by Barnichon (2010) based

on the Help Wanted Index. For the periods after 2001, we use the vacancy rate from the

JOLTS.

In the data, we measure labor productivity by real output per person in the nonfarm busi-

ness sector. We use the demeaned quarterly log-growth rate of labor productivity (denoted

by ∆ ln pdatat ) and relate it to our model variable according to

∆ ln(pdatat )−∆ ln(pdata) = Ŷt − N̂t − (Ŷt−1 − N̂t−1), (36)

where ∆ ln(pdata) denotes the sample average of productivity growth, and Ŷt and N̂t denote

the log-deviations of aggregate output and employment from their steady-state levels in our

model.

We measure the real wage rate in the data by real compensations per worker in the nonfarm

business sector. We relate the observed real wage growth (denoted by ∆ ln(wdatat )) to the

model variables by the measurement equation

∆ ln(wdatat )−∆ ln(wdata) = ŵt − ŵt−1, (37)

where ∆ ln(wdata) denotes the sample average of wage growth in the data and ŵt denotes

the log-deviations of real wages from its steady-state level in the model.

12We provide more details of the macro time-series data in Appendix A.1.
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III.2.2. Prior distributions and posterior estimates. The prior and posterior distributions of

the estimated parameters from our benchmark model are displayed in Table 2.

The priors for the structural parameters ē and x̄ are drawn from the gamma distribution.

We assume that the prior mean of each of these three parameters is 5, with a standard

deviation of 1. The priors of the persistence parameter of each shock are drawn from the

beta distribution with a mean of 0.8 and a standard deviation of 0.1. The priors of the

volatility parameter of each shock are drawn from an inverse gamma distribution with a

mean of 0.01 and a standard deviation of 0.1.

The posterior estimates and the 90 percent probability intervals for the posterior distri-

butions are displayed in the last three columns of Table 2. The posterior mean estimate

of the vacancy creation cost parameter is ē = 8.39. The posterior mean estimates of the

automation cost parameter is x̄ = 1.86. These parameters imply a steady-state share of

output produced by automation of A/Y = 0.24. Thus, our model implies that, in the long

run, about 24 percent of the jobs will be performed by robots, which lies in the range of

the estimates in the empirical literature (Nedelkoska and Quintini, 2018). The 90 percent

probability intervals indicate that the posterior estimates are significantly different from the

priors, suggesting that the data are informative about these structural parameters.

The posterior estimation suggests that the shocks to both neutral technology and the

discount factor are highly persistent, whereas the automation-specific shock is less persis-

tent but more volatile. The 90 percent probability intervals suggest that the data are also

informative for these shock processes.

IV. Economic implications

Based on the calibrated and estimated parameters, we examine the model’s transmission

mechanism and its quantitative performance for explaining the labor market dynamics. We

also present some counterfactuals to illustrate the quantitative importance of both automa-

tion and labor market search frictions.

IV.1. The model’s transmission mechanism. The equilibrium dynamics in our model

are driven by both the exogenous shocks and the model’s internal propagation mechanism.

To help understand the contributions of the shocks and the model’s mechanism, we examine

impulse response functions and forecast error variance decompositions.

IV.1.1. Impulse responses. Figure 1 shows the impulse responses of several key macro vari-

ables to a positive neutral technology shock in the benchmark model. The shock leads to

persistent declines in unemployment and persistent increases in vacancies and hiring. The
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shock also raises the value of automation. Under our parameters, the value of automa-

tion rises more than does the value of a vacancy, raising the net value of robot adoption and

therefore leading to an increase in the automation probability. The increase in vacancy value

also strengthens the firm’s bargaining power in wage negotiations, dampening the responses

of real wages. Increased automation also raises labor productivity, reinforcing the initial

expansionary impact of the technology shock. The increase in labor productivity, coupled

with muted wage responses, implies persistent declines in the labor income share.

Figure 2 shows the impulse responses to a positive discount factor shock. The shock raises

the present values of a job match and an open vacancy. Thus, it generates a persistent boom

in employment, vacancies, and hiring. The shock also raises the net value of automation (i.e.,

the difference between the value of a robot and the value of a vacancy), increasing the prob-

ability of robot adoption. The increase in robot adoptions boosts labor productivity, further

fueling the boom. However, as the threat of automation rises, the workers’ bargaining power

weakens, leading to a modest short-run decline in the real wage. By increasing productivity

and reducing the real wage rate, the discount factor shock generates a persistent decline in

the labor share.

Figure 3 shows the impulse responses to a positive automation-specific shock. The shock

directly raises the value of automation. Since the option of automation boosts the value

of vacancies, the increase in automation leads to more vacancy creation. With more job

openings, the job finding rate increases, raising hiring and reducing unemployment. Since

a greater fraction of output is produced with robots, labor productivity improves. The

increased threat of automation weakens the worker’s bargaining power, leading to a decline

in the real wage rate. The improvement in labor productivity and the reduction in the real

wage rate result in a persistent decline in the labor income share.13

IV.1.2. Forecast error variance decompositions. We now examine the unconditional forecast

error variance decompositions for the four observable labor market variables used for our

estimation.14 Table 3 displays the results.

The variance decompositions suggest that fluctuations of unemployment and vacancies

are mostly driven by the neutral technology shock and the discount factor shock. The

13We report the impulse responses to a job separation shock in the online appendix at ????https://

www.frbsf.org/economic-research/files/wp2019-17.pdf. As we discuss there, a job separation

shock raises both unemployment and vacancies. Consistent with Shimer (2005), this counterfactual positive

correlation between unemployment and vacancies renders the job separation shock unimportant for driving

labor market dynamics.
14We have also computed the conditional forecast error variance decompositions with forecasting horizons

between 4 quarters and 16 quarters and found that they deliver the same message as the unconditional

variance decomposition.
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neutral technology shock accounts for about 30 percent of the variances of unemployment and

vacancies, and the discount factor shock accounts for about 60 percent. The job separation

shock is not important for these labor market variables, consistent with Shimer (2005).

The automation-specific shock does not directly contribute to the fluctuations in unem-

ployment and vacancies; instead, the threat of automation works to amplify the effects of the

other shocks, particularly the neutral technology and the discount factor shocks, by raising

the probability of automation. These two shocks explain about 70 percent of the fluctua-

tions in the automation probability (not shown in the table). As discussed in the previous

section, the resulting procyclical threat of automation dampens real wage adjustments and

thus magnifies the impact of the neutral technology and the discount factor shocks on labor

market variables.

While the threat of automation dampens wage adjustments, the actual adoption of robots

raises labor productivity. Through these channels, the automation-specific shock plays a

quantitatively important role in driving fluctuations of the growth rates of both labor pro-

ductivity and real wages, accounting for about one-third of their variances. Perhaps not

surprisingly, the neutral technology shock is also important for explaining the fluctuations

in labor productivity, explaining about 47 percent of its variance.15 In addition, about 60

percent of the real wage fluctuations are accounted for by shocks to the neutral technology

and the discount factor.

IV.2. Automation vs. other amplification mechanisms. Our model suggests that

automation effectively weakens workers’ bargaining power and mutes wage changes, and

therefore amplifying labor market fluctuations. Absent the automation mechanism, however,

it is difficult to reproduce the observed labor market dynamics. The literature has studied

other amplification mechanisms in the standard DMP framework without automation. For

example, Hagedorn and Manovskii (2008) argue that, in the standard DMP framework,

reducing workers’ bargaining weight or raising the workers’ value of non-market activity

(such as unemployment insurance, or UI) can amplify fluctuations in unemployment and

vacancies.

To evaluate the quantitative importance of the automation channel relative to these alter-

native amplification channels, we study a counterfactual specification without the automa-

tion mechanism (labelled “no automation”), which is a version of our benchmark model

with all automation-related variables held constant at their steady-state levels and with no

automation-specific shocks. We consider two variations of the “no automation” specification,

15In the standard DMP model without automation, labor productivity fluctuations would be entirely

driven by the neutral technology shock.
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one with a lower worker bargaining weight (reducing b to 0.25 from 0.5) and the other with

a higher UI benefit (raising φ to 0.5 from 0.25).

Figure 4 displays the impulse responses to a positive discount factor shock in the bench-

mark model with automation (the black solid lines), the counterfactual with no automation

(the blue dashed lines), and the no-automation counterfactual with a lower worker bargaining

weight (the red dotted-dashed lines). Without the automation channel, reducing workers’

bargaining weight dampens wage increases and amplifies unemployment responses (the red

dotted-dashed lines vs. the blue dashed lines), confirming Hagedorn and Manovskii (2008).

However, the magnitude of amplification is small relative to that from the automation mech-

anism (the black solid lines vs. the blue dashed lines). Furthermore, the no-automation

counterfactuals generate qualitatively different impulse responses of the real wage rate and

the labor share than does the benchmark model. In our benchmark model with automation,

the discount factor shock reduces the real wage rate and raises labor productivity, because

the value of automation rises, raising the threat of automation and the actual use of robots

for production. The decline in wages and the rise in productivity lead to a decline in the

labor share. In contrast, the no-automation counterfactuals predict that the shock raises the

real wage but does not affect labor productivity, leading to an increase in the labor share.

Figure 5 shows the impulse responses in the benchmark model (the black solid lines), the

counterfactual with no automation (the blue dashed lines), and the no-automation coun-

terfactual with a higher UI benefit (the red dotted-dashed lines). Absent the automation

channel, raising the UI benefit dampens wage adjustments and amplifies the responses of

unemployment and vacancies, confirming the finding by Hagedorn and Manovskii (2008).

However, similar to the case with a lower worker bargaining weight, the magnitude of ampli-

fication is small relative to that from the automation mechanism.16 These impulse responses

suggest that the automation channel is an important mechanism for amplifying labor market

fluctuations and generating a countercyclical labor income share.

IV.3. The role of labor market search frictions in the propagation mechanism.

The model’s amplification mechanism depends not only on automation, but also on labor

market search frictions. To illustrate the importance of the search frictions, we consider a

counterfactual version of the model which features low levels of labor search frictions. In

particular, that counterfactual model has a smaller vacancy posting cost (of 0.5 percent of

16The impulse responses to a neutral technology shock in these counterfactual models display similar

patterns, as we show in the online appendix at ????https://www.frbsf.org/economic-research/

files/wp2019-17.pdf.
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aggregate output in the steady state instead of 1 percent) and a higher average job separation

rate (with δ̄ = 0.5 instead of 0.1).17

Figure 6 shows the impulse responses of the macro variables following a positive automation-

specific shock, and compares the impulse responses from the benchmark model (the black

solid lines) with those from the counterfactual with low search frictions (the blue dashed

lines). Although both models have the automation channel operating, they produce starkly

different responses of the labor market variables. In the benchmark model, the shock reduces

unemployment and increases vacancies, suggesting that the job-creating effect of automation

dominates the job-displacing effect. In contrast, in the model with low search frictions, the

shock raises unemployment and reduces vacancies. In an economy with a spot labor market

(i.e., the extreme case without search frictions), an employment relation would cease to be a

long-term relation, and the option of automation in the future would not affect current hiring

decisions. In an economy with low search frictions, the option of automation would have

a weak effect on job-creating incentives, and thus the job-displacing effect would become

dominant.

In addition, in the case with low search frictions, the present value of a vacancy responds

less to the automation-specific shock (because the model becomes closer to a spot labor

market). Since the shock directly raises the value of automation, the automation threshold

(i.e., x∗t = Jat −Jvt ) and the automation probability rises more sharply than in the benchmark

model, as shown in Figure 6, leading to sharper increases in labor productivity. Although the

real wage rate also increase more than that implied by the benchmark model, the productivity

effects dominate, leading to a more pronounced and persistent decline in the labor share.18

The impulse responses shown in Figure 6 suggest that search frictions are important

because they give rise to forward-looking hiring decisions, generating a job-creating effect of

automation that would be otherwise absent in a spot labor market.

IV.4. Automation threat and labor market dynamics. Our benchmark model implies

that the automation channel mutes wage growth in a business cycle boom, allowing the

model to generate large volatilities of the labor market tightness (the v-u ratio) relative to

that of the real wage rate. In this sense, the automation channel helps resolve the Shimer

(2005) puzzle.

17In the limit with κ = 0 and δ = 1, there is no vacancy posting cost and employment becomes a jump

variable, approximating a spot labor market. We do not consider that extreme case to minimize deviations

from our benchmark framework.
18We have also compared the impulse responses to a neutral technology shock between the benchmark

model and the counterfactual with low search frictions. We find that the benchmark model produces much

stronger amplifications for the labor market variables than does the counterfactual with low search frictions.

For details, see the online appendix at ????http:.
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To further illustrate the quantitative importance of the automation mechanism for resolv-

ing the Shimer puzzle, we compare our benchmark model’s predictions for the volatilities of

labor market tightness and real wages with those from two counterfactuals: one without the

automation channel and the other with low search frictions. In the no-automation case, we

also consider two variations: one with a lower worker bargaining weight and the other with

an increase in UI benefit, as we have done in Section IV.2.

Table 4 displays the standard deviations of the labor market tightness (measured by the

v-u ratio v/U), the real wage rate (w), and the relative volatility of the tightness (relative

to that of real wages). In the benchmark model, the v-u ratio is about 42 times as volatile

as the real wage rate. This relative volatility is the same as in the actual data, because the

model is estimated to fit these time series.

The counterfactual with no automation generates a much smaller volatility of the v-u ratio

(0.260 vs. 1.234) and slightly larger volatility of the real wage rate (0.033 vs. 0.030) than

does the benchmark model, implying a much smaller relative volatility (7.92 vs. 41.73). This

no-automation case essentially reproduces the Shimer (2005) volatility puzzle. Reducing the

worker bargaining weight or raising the UI benefit boosts the relative volatility modestly

(from 7.92 to 8.19 and 14.08, respectively), but the relative volatility remains substantially

smaller that in the data (41.73).

The counterfactual with low search frictions also generates less volatility of the v-u ratio

(1.076) and more volatility of the real wage rate (0.034), implying a smaller relative volatility

than in the benchmark model (31.40 vs. 41.73). Thus, both automation and labor search

frictions are important for the model’s transmission mechanism.

Our model’s mechanism also sheds light on the driving factors for the muted wage growth

over the recent years prior to the Covid-19 pandemic, despite an increasingly tightened labor

market. To assess the contribution of the automation mechanism to the observed dynamics

of real wages and unemployment, we simulate a counterfactual model in which we shut off

the automation channel, and into which we feed in the same parameters and shocks as those

in our benchmark model. We then compare the smoothed time series generated from the

counterfactual model with those from the benchmark model, the latter of which replicates

the actual time series data under our Bayesian estimation. We find that, between 2013 and

2018, the automation mechanism has reduced the cumulative real wage growth by roughly

10 percent; it has also contributed to the declines in the unemployment rate by an average

of about 2.5 percentage points per year. Thus, absent automation, both the real wage rate

and the unemployment rate would have been substantially higher during this period. In this

sense, the automation mechanism has contributed significantly to the persistent declines
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in unemployment accompanied by sluggish wage growth in the recovery from the Great

Recession.

V. Robustness of the model mechanism

Our benchmark model shows that the threat of automation can effectively weaken workers’

bargaining power, resulting in sluggish adjustments in real wages and therefore amplifying

fluctuations in unemployment and vacancies. We now consider two variations of the bench-

mark model and examine the robustness of the model’s main transmission mechanism.19

V.1. Automating jobs. In our benchmark model, we assume that firms can automate a

vacancy if that vacancy is not filled with a worker. A plausible alternative way of thinking

about automation is to allow firms to automate an existing job instead of an open vacancy.

We now consider that alternative setup.

In the beginning of period t, after observing all aggregate shocks, a firm can decide whether

or not to replace a worker in an existing job match by a robot. The firm draws a cost x of

automation from an i.i.d. distribution F (x) and chooses to automate if the cost lies below

the expected benefits of automation. There exists a threshold level of the automation cost—

denoted by x∗t—such that the firm automates the job position if and only if x ≤ x∗t . Thus,

the automation probability is given by qat = F (x∗t ). If the firm adopts a robot, it obtains

the automation value Jat (see Eq. (14)), but gives up the employment value Jet . Thus, the

automation threshold is given by x∗t = Jat − Jet .

The employment value takes into account the possibility of automation, and is given by

Jet = Zt − wt + Etβθt+1
Ct
Ct+1

{
δt+1J

v
t+1 + (1− δt+1)

[
qat+1J

a
t+1 + (1− qat+1)Jet+1

]}
, (38)

A job match yields the flow profit Zt − wt in period t. In period t + 1, the job can be

exogenously separated, in which case the firm obtains the vacancy value Jvt+1. If the job is

not separated, it can be automated with the probability qat+1, in which case the firm obtains

the automation value Jat+1. If the job is neither separated nor automated, then the firm

obtains the continuation value of employment Jet+1.

Since a fraction of non-separated jobs are automated, employment follows the law of

motion

Nt = (1− δt)(1− qat )Nt−1 +mt. (39)

The law of motion for employment (39) reveals that, in this model setup, automation acts

like a job separation shock. This intuition is confirmed by the impulse responses to a discount

factor shock in Figure 7. The figure shows that a positive discount factor shock raises the

19To conserve space, we sketch the key ingredients of each model in the text and describe the full equi-

librium system in the online appendix at ????http:.
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net present value of automation and thus increases the probability of automation. Since

automation directly replaces workers, the unemployment rate rises following the shock. At

the same time, automation improves labor productivity and boosts employment and vacancy

creation, offsetting its direct job-displacing effect. With estimated parameters and shocks

in the model (using the same time-series data as in our benchmark case), the job-displacing

effect dominates the employment boosting effect in the short run, so that a positive discount

factor shock raises both unemployment and vacancies, similar to the effects of an exogenous

job separation shock.

More importantly, increased automation probability leads to a decline the real wage, re-

flecting that the threat of automation weakens workers’ bargaining power. Since labor pro-

ductivity rises and wages decline, the labor share declines following a positive discount factor

shock, as in our benchmark model. Thus, the automation channel that we have identified in

the benchmark model is robust when we consider automating jobs instead of vacancies.

V.2. Allowing for heterogeneity in worker skills. Our benchmark model features one

type of workers, who compete with robots for jobs. We now generalize the model to incor-

porate heterogeneity in worker skills. The economy has two types of workers, skilled and

unskilled, and all workers are members of the representative household family. A firm can

produce a homogeneous consumption good by either hiring an unskilled worker from the

frictional labor market or adopting a robot and hiring a skilled worker in a competitive spot

labor market. Thus, robots and skilled workers are complementary inputs, whereas they are

substitutes for unskilled workers.

To keep the model tractable, we assume that the aggregate supply of skilled workers is

inelastic and fixed at s̄.20 Skilled workers face a spot labor market with the competitive

wage rate wst. Unskilled workers face search frictions in the labor market, and they each

receives the low-skilled wage rate wnt if employed or the unemployment insurance benefit φ

if unemployed.

The household utility function remains the same (see Eq. (18)). The budget constraint

now includes the wage income from skilled workers and is given by

Ct +
Bt

rt
= Bt−1 + wntNt + wsts̄+ φ(1−Nt) + dt − Tt, (40)

Since the supply of skilled workers is inelastic, introducing skilled workers does not affect

the household’s optimizing decisions relative to the benchmark model. The only required

20Given our focus on business cycles, assuming a constant supply of skilled workers seems innocuous since

human capital accumulation is likely a slow-moving process. In the data, the share of skilled workers (e.g.,

those with a bachelor’s degree or higher) has been rising steadily over time, although it shows little cyclical

fluctuations.
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modification in the household’s problem is that, in the employment surplus expression (23),

the wage rate wt should be replaced by the low-skilled wage rate wnt.

A firm can choose a technology at the beginning of each period: one requires an unskilled

worker as the only input, and the other requires both a robot and st skilled workers as inputs.

If the firm hires an unskilled worker for production, then it can produce ynt = Zt units of

output. If the firm adopts a robot, then it optimally chooses the input of skilled workers st,

with the production function

yat = Ztζ
αa
t s1−αa

t , (41)

where αa ∈ (0, 1) denotes the output elasticity of the robot input.

The firm takes the skilled wage rate wst as given and chooses st to maximize the profit

before paying robot operation costs. The value of automation is then given by

Jat = πat − κa + (1− ρo)Etβθt+1
Ct
Ct+1

Jat+1, (42)

where πat ≡ maxst Ztζ
αa
t s1−αa

t − wstst.
Aggregate output is the sum of goods produced by low-skill workers and those produced

by robots operated by skilled workers. In particular, aggregate output is given by

Yt = ZtNt + Zt (ζtAt)
αa s̄1−αa . (43)

We use the calibrated and estimated parameters in the benchmark model (where appropri-

ate), and calibrate three additional parameters in this generalized model. We set αa = 0.3,

such that the skilled labor share is 70% of the revenue generated by the technology using

robots and skilled workers as inputs. We normalize the supply of skilled workers to s̄ = 1.

Finally, we calibrate the average value of the automation-specific productivity ζ̄ such that

the model implies a steady-state skill premium of 52%, matching the ratio of median weekly

earnings of workers with a bachelor’s degree or higher to those of workers with some college

or associate degrees.

Figure 8 shows the impulse responses following a positive automation-specific productivity

shock. The shock lowers unemployment and raises vacancies in the short run. Overtime,

however, unemployment overshoots its steady state. These patterns reflect the two opposing

forces created by the automation mechanism that we have discussed in the benchmark model:

the job displacing effect and the job creating effect. The shock boosts the present value of

automation, raising the automation probability and labor productivity, which is measured by

the ratio of aggregate output to aggregate employment, including both skilled and unskilled

workers.

The increased threat of automation raises the firm’s reservation value in wage bargaining,

reducing the wage rate for unskilled workers, as shown in the figure. Since robots and skilled



ROBOTS OR WORKERS 26

workers are complementary in production, increases in automation raises the wage rate for

skilled workers, leading to an increase in the skill premium and income inequality.

Since the skilled wage rises while the unskilled wage falls, it is a priori unclear how the

shock affects aggregate labor income and the labor share in aggregate output. Under our

calibration, the model predicts that the labor share (defined as the ratio of aggregate labor

income–including skilled and unskilled labor—to aggregate output) falls in response to a

positive automation-specific shock. Thus, the decline in unskilled wage income stemming

from the threat of automation dominates the rise in skilled wage income.21

These two variations of the model (automating jobs instead of vacancies or incorporating

worker heterogeneity) show that the central mechanism of our benchmark model is robust.

In all cases, we find that increased automation dampens wage increases, raises labor produc-

tivity, and reduces the labor share.

VI. Empirical evidence for the model mechanism

Our theory predicts that increases in automation boost productivity and reduce the labor

income share. Depending on the source of the shock, our model also predicts that real

wages may rise or fall. We now present some empirical evidence that supports the model’s

predictions. Since we focus on the business cycles, we examine empirical evidence based on

panel evidence, using U.S. industry-level data at the annual frequency.22

We estimate the empirical specification

Yjt = βRobotDensityjt + αj + γt + εjt, (44)

where Yjt denotes the dependent variable of interest in industry j and year t, RobotDensityjt

denotes industry j’s robot density in year t, αj denotes industry fixed effects, γt denotes year

fixed effects, and εjt denotes the regression residuals.

We consider three different dependent variables, including labor productivity, real wages,

and the labor share in value added, all expressed in logarithmic terms. These data are taken

from the KLEMS account of the U.S. Bureau of Economic Analysis (BEA). Following Graetz

and Michaels (2018), we measure the independent variable RobotDensityjt by the ratio of the

operation stock of robots to labor hours in industry j and year t, also expressed in logarithmic

terms. We obtain the U.S. robot data from the International Federal of Robotics (IFR). We

21The labor share also declines following a positive TFP shock and a positive discount factor shock.

Details are available from the authors upon request.
22Our empirical study here using relatively high frequency (annual) panel data complements the existing

empirical literature that focuses on long-run impact of robot adoptions on the labor market.
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merge the IFR data with the KLEMS data using industry codes and descriptions from each

data source. Our panel sample covers the years from 2004 to 2018, with 18 industries.23

Since the independent variable (i.e., robot density) is potentially endogenous, we use an

instrumental-variable (IV) approach to estimating the empirical specification (44). The IV

that we use is the initial exposure of an industry to robot adoptions interacted with the

time series of the relative price of computer equipment. We measure the initial exposure by

the average robot density of industry j for the first four years in our sample (2004-2007).

We do not have annual observations of the relative price of robots for the whole sample.

Thus, we use as a proxy the relative price of computer equipment (i.e., the chain price index

of private nonresidential investment in computer and peripheral equipment relative to the

personal consumption expenditure price index). To the extent that computer equipment

prices are correlated with robot prices, this time series captures the time-varying costs of

robot adoptions. Since the robot density of an industry with a higher initial exposure to robot

adoptions is likely to be more sensitive to changes in robot adoption costs, our IV should

be correlated with the independent variable RobotDensityjt. However, since all industries

face the same equipment price over time, the interactions between the industry’s initial

robot exposure and the time series of equipment prices are likely exogenous to subsequent

industry-level productivity, wages, and labor share.

Table 5 shows the estimation results. The F-statistics from the first-stage regression is

30.78, indicating that we have a strong instrument. The second-stage estimation shows that

a 10-percent increase in robot density raises labor productivity by about 0.4 percent, and the

effect is statistically significant at the 1 percent level. A 10-percent increase in robot density

reduces the labor income share by about 0.3 percent, with the effect also significant at the

1 percent level. Changes in robot density do not have a significant impact on industry-level

real wages, although the point estimate is slightly negative. This is broadly consistent with

our model, as the effects of automation on real wages can be positive or negative depending

on the source of the shock.

Overall, the industry-level evidence provides support for our model’s key predictions:

increased automation boosts productivity while muting movements in wages, resulting in a

fall in the labor share.

23We provide more detailed descriptions of the data and the list of the industries in the Appendix A.2.

The IFR robot data sample starts in 2000 for most industries in the United States. However, the robot

counts are very sparse and there are many zeros in the pre-2004 periods. Thus, we use the sample from 2004

to 2018 for our empirical estimation.
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VII. Conclusion

We have studied the role of automation in explaining the observed labor market dynamics

in a quantitative general equilibrium framework. The threat of automation raises the firm’s

reservation value in wage bargaining, dampening increases in real wages in a business cycle

boom. Thus, automation creates a source of real wage rigidity. At the same time, the option

to automate a job position boosts the incentive for job creation, which offsets the direct

job-displacing effects of automation. By muting wage growth while improving productivity,

automation helps amplify fluctuations in unemployment and vacancies and also leads to

countercyclical labor share.

Our estimated general equilibrium model shows that the automation channel is quantita-

tively important. The automation mechanism has contributed significantly to the observed

sluggish wage growth despite strong labor markets during the long expansion following the

Great Recession. More broadly, automation helps account for the large volatility in unem-

ployment and job vacancies relative to that of real wages, a puzzling observation through

the lens of the standard DMP model with labor search frictions.

Similar effects could also arise from other labor-saving mechanism, such as offshoring.

When firms have the option of importing intermediate goods instead of producing them

domestically, the threat of offshoring could also weaken domestic workers’ bargaining power

in wage negotiations, similar to the threat of automation in our model. Other factors such

as increases in product market concentration and declines in union powers may have also

contributed to the observed labor market dynamics in the past few decades. Assessing

the quantitative importance of these alternative contributing factors requires a coherent

general equilibrium framework that can be used to fit time series data. Our framework with

automation provides a useful step in that promising direction for future research.
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.99

φ Unemployment benefit 0.25

α Elasticity of matching function 0.50

µ Matching efficiency 0.6594

δ̄ Job separation rate 0.10

ρo Automation obsolescence rate 0.03

κ Vacancy posting cost 0.0939

b Nash bargaining weight 0.50

ηv Elasticity of vacancy creation cost 1

ηa Elasticity of automation cost 1

κa Flow cost of automated production 0.98

χ Disutility of working 0.7292

Z̄ Mean value of neutral technology shock 1

ζ̄ Mean value of equipment-specific technology shock 1
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Table 2. Estimated parameters

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

ē scale for vacancy creation cost G [5, 1] 8.3941 6.3915 10.2294

x̄ scale for robot adoption cost G [5, 1] 1.8593 1.2728 2.4279

ρz AR(1) of neutral technology shock B [0.8, 0.1] 0.9448 0.9274 0.9652

ρθ AR(1) of discount factor shock B [0.8, 0.1] 0.9732 0.9555 0.9917

ρδ AR(1) of separation shock B [0.8, 0.1] 0.9410 0.9068 0.9765

ρζ AR(1) of automation-specific shock B [0.8, 0.1] 0.8206 0.7878 0.8550

σz std of tech shock IG [0.01, 0.1] 0.0106 0.0093 0.0116

σθ std of discount factor shock IG [0.01, 0.1] 0.0123 0.0074 0.0165

σδ std of separation shock IG [0.01, 0.1] 0.0476 0.0430 0.0530

σζ std of automation-specific shock IG [0.01, 0.1] 0.0332 0.0219 0.0432

Log data density 1257.76

Note: This table shows our benchmark estimation results. For the prior distribution types,

we use G to denote the gamma distribution, B the beta distribution, and IG the inverse

gamma distribution.
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Table 3. Forecasting Error Variance Decomposition

Variables Neutral Discount Job Automation

technology shock factor shock separation shock specific shock

Unemployment 30.81 66.95 1.23 1.01

Vacancy 28.19 60.40 10.38 1.03

Productivity growth 47.43 19.34 0.26 32.98

Real wage growth 40.90 19.78 0.46 38.86

Note: The numbers reported are the posterior mean contributions (in percentage terms) of

each of the four shocks in the benchmark estimation to the forecast error variances of the

variables listed in each row.
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Table 4. Labor market volatilities implied by alternative models

Model Market tightness Real wage Relative volatility

(a) (b) (c)

(1) Benchmark model 1.2339 0.0296 41.7293

(2) No automation 0.2602 0.0329 7.9218

(2A) Low bargaining weight 0.2724 0.0333 8.1909

(2B) High UI benefit 0.4167 0.0296 14.0808

(3) Low search friction 1.0755 0.0343 31.4024

Note: The rows in the table correspond to the alternativ models: (1) the benchmark

model, (2) the no-automation counterfactual, and (3) the low-search-friction

counterfactual. We consider two additional variations of the no-automation case: (2A) low

worker bargaining weight and (2B) high UI benefits. For each model, the numbers in the

three columns are (a) the standard deviation of labor market tightness (measured by v/U ,

the ratio of vacancies to unemployment), (b) the standard deviation of the real wage rate,

and (c) the ratio of the first two columns.
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Table 5. Labor market impact of robot adoptions: Industry-level evidence

(1) (2) (3)

Productivity Real wages Labor share

RobotDensityjt 0.039*** -0.008 -0.027***

(0.006) (0.727) (0.002)

IV: Initial robot intensity in industry j

interacted with equipment price in year t

F statistics: 30.78

Observations 220 220 220

Industries 18 18 18

Year FE Y Y Y

Industry FE Y Y Y

Note: The table reports the panel regression results using U.S. two-digit industry level

data and a measure of robot intensity. The panel data cover 18 two-digit industries from

2004 to 2018. The dependent variables for each industry j and year t include average labor

productivity (Column (1)), real wages measured by average real hourly compensations

(Column (2)), and the labor share in value added (Column (3)). The independent variable

of interest, RobotDensityjt, is the ratio of the operation stock of robots to labor hours in

industry j and year t. The instrumental variable (IV) for the potentially endogenous

independent variable is the industry’s initial robot density (the average robot density from

2004 to 2007) interacted with the time series of the relative price of computer equipment.

The first F statistics is 30.78. In each IV panel regression, we control for the year fixed

effects and the industry fixed effects. We obtain the industry-level data on the operation

stocks of robots from the International Federation of Robotics (IFR). The remaining data

used in our analysis are taken from the KLEMS account of the U.S. Bureau of Economic

Analysis (BEA). We merge the two data sources based on industry codes and descriptions

from each source.
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Figure 1. Impulse responses to a positive neutral technology shock in the

benchmark model.
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Figure 2. Impulse responses to a positive discount factor shock in the bench-

mark model.
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Figure 3. Impulse responses to a positive automation-specific shock in the

benchmark model.
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dashed lines), and the counterfactual with no automation and low worker bar-

gaining power (red dot-dash lines).
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dashed lines), and the counterfactual with no automation and high unemploy-
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Figure 7. Impulse responses to a positive discount factor shock in the alter-

native model with automated jobs instead of vacancies.
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Appendix A. Data

A.1. Macro data. We fit the DSGE model to four quarterly time-series data of the U.S. la-

bor market: the unemployment rate, job vacancies, real wage growth, and labor productivity

growth. The sample covers the period from 1985:Q1 to 2018:Q4.

(1) Unemployment: Civilian unemployment rate (16 years and over) from the Bureau

of Labor Statistics, seasonally adjusted monthly series (LRUSECON in Haver).

(2) Job vacancies: For pre-2001 periods, we use the vacancy rate constructed by Bar-

nichon (2010) based on the Help Wanted Index. For the periods starting in 2001, we

use the job openings from the Job Openings and Labor Turnover Survey (JOLTS),

seasonally adjusted monthly series (LIJTLA@USECON in Haver).

(3) Real wages: real compensation per worker in the nonfarm business sector. We

first compute the nominal wage rate as the ratio of nonfarm business compensa-

tion for all persons (LXNFF@USECON in Haver) to nonfarm business employment

(LXNFM@USECON) and then deflate it using the nonfarm business sector implicit

price deflator (LXNFI@USECON).

(4) Labor productivity: nonfarm business sector real output per person (LXNFS@USECON

in Haver)

A.2. Industry-level data. We use annual industry-level data from the International Feder-

ation of Robots (IFR) and the US Bureau of Economic Analysis (BEA) Integrated Industry-

Level Production Account Tables (KLEMS) to construct measures of robot density, produc-

tivity, real wages, and labor share for 18 two-digit industries from 2004 to 2018. Table A1

shows the industry concordance between IFR and KLEMS.

(1) Robot density: the ratio of the operational stock of robots (from IFR) to labor hours

(from KLEMS).

(2) Labor productivity: integrated labor productivity (from KLEMS).

(3) Real wages: the ratio of nominal wages to gross output deflator, where nominal wages

are the sum of nominal compensations for non-college and college workers and the

deflator is the ratio of nominal gross output to real gross output (from KLEMS).

(4) Labor share: the ratio of total nominal worker compensations (the sum of non-college

and college compensations) to nominal value added (from KLEMS).

(5) IV for Robot density: the instrumental variable for robot density in industry j and

year t is the industry’s initial robot density (average robot density from 2004 to 2007),

interacted with the time series of the relative price of computer equipment.

(6) The relative price of computer equipment is the ratio of the chain price index of

private nonresidential investment in equipment: computers & peripherals (annual
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Table A1. Industry concordance between IFR and KLEMS

Industry IFR Code IFR Label Current KLEMS Categories Current

1 A-B Agriculture, forestry, fishing Farms

Forestry, fishing, and related activities

2 10-12 Food and beverages Food and beverage and tobacco products

3 10-15 Textiles Textile mills and textile product mills

Apparel and leather and applied products

4 16 Wood and furniture Wood products

Furniture and related products

5 17-18 Paper Paper products

Printing and related support activities

6 19 Chemical products, pharmaceuticals, and cosmetics Chemicals

7 20-21 Unspecified chemical, petroleum product Petroleum and coal products

8 22 Rubber and plastic products Plastics and rubber products

9 23 Glass, ceramics, stone, mineral products Nonmetallic mineral mining

10 24 Basic metals Primary metals

11 25 Metal products Fabricated metals

12 26-27 Electrical / electronics Computer and electronic products

Electrical equipment, appliances, and components

13 29 Automotive Motor vehicles, bodies and trailers, and parts

14 28 Industrial machinery Machinery

15 30 Other vehicles Other transportation equipment

16 E Electricity, gas, water supply Utilities

17 F Construction Construction

18 P Education / research / development Educational services

frequency, 2012=100, JAFNENP@USNA in Haver) to the personal consumption ex-

penditure chain price index (annual frequency, 2012=100, JAC@USNA in Haver).
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