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Abstract

Using high-frequency panel data for U.S. counties through early September, I esti-

mate the full dynamic response of COVID-19 cases and deaths to exogenous movements

in individual mobility and weather. I uncover several important results. First, hold-

ing mobility fixed, temperature reduces COVID-19 cases from 1 to 7 weeks ahead and

deaths from 3 to 10 weeks ahead. Second, holding weather fixed, mobility increases

cases 3 to 10 weeks ahead and deaths 8 to 10 weeks ahead. Third, the deleterious effects

of mobility on COVID-19 outcomes are far greater when the local virus transmission

rate is above one – evidence supportive of public health policies aiming to reduce mobil-

ity specifically in places experiencing high transmission rates while relaxing restrictions

elsewhere. Fourth, I find that the dynamic effects of mobility on cases are generally

similar across counties, but the effects on deaths are higher for counties with older

populations and, surprisingly, counties with lower black or hispanic population shares.

Lastly, using rolling regressions, I find the marginal impact of mobility on deaths has

fallen substantially over time.
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1 Introduction

Understanding the causal effects of social distancing behavior on subsequent growth in

COVID-19 cases and deaths is clearly of first-order public health and economic importance.

Public health officials need to know the impact of social distancing, which can be mediated

by policy actions, on COVID-19 spread. In addition, individual mobility is integrally linked

to economic activity.1 It is thus important for policymakers to understand the influence

of policy-induced economic restrictions and reopenings on the spread of COVID-19. More-

over, such lessons learned in the current pandemic should inform policy responses to future

infectious disease outbreaks as well. The tightenings and loosenings of social distancing

restrictions, at least in the United States, are arguably the most important driver of the

economic outlook going forward. As Jerome Powell, the Federal Reserve Chair, recently put

it “Economic forecasts are uncertain in the best of times, and today the virus raises a new

set of questions: How quickly and sustainably will it be brought under control? Can new

outbreaks be avoided as social-distancing measures lapse?... The answers to these questions

will go a long way toward setting the timing and pace of the economic recovery.”2 Yet,

to date, there has been surprisingly little research estimating the full dynamic response of

COVID-19 outcomes to changes in mobility.

There are a couple formidable empirical challenges that help explain this paucity of

research. First, observed movements in mobility are likely to be endogenous due both to

correlation with other factors that could themselves affect COVID-19 spread and to reverse

causality, with publicity of current growth in cases and deaths affecting individuals’ mobility

(voluntarily and/or via mandatory restrictions). Weather is one such factor. There have been

numerous studies in recent months on the impact of temperature and other weather variables

on COVID-19 spread. The results have been mixed, with some studies finding significant

effects and some not. As this paper will show, weather and mobility are very strongly

correlated and hence, given the possibility that weather has a direct effect on COVID-19

outcomes, it is important to study the impacts of weather and mobility jointly. Second, the

potential lags between mobility and COVID-19 outcomes may be quite long, requiring at

least several months of post-outbreak data before one can begin to trace out the full impacts

of mobility changes. The availability of geographically granular, high-frequency, real-time

data along with, of course, the passage of time now open the doors to such research.

This paper is a first attempt at estimating the full dynamic response of COVID-19 out-

comes to exogenous movements in mobility. It exploits the availability of comprehensive,

1For example, Chen & Spence (2020) document that across countries the drop in GDP in the first quarter
of 2020 was highly correlated with declines in mobility.

2May 13, 2020 speech at the Peterson Institute for International Economics.



high-frequency data from over 2,000 counties across the United States, from the start of the

pandemic through early September (as of the time of this writing). I estimate the impulse

response function (IRF) for COVID-19 cases and deaths up to 10 weeks ahead using a panel

Local Projections estimator with county-level data. In contrast to some other studies on the

impact of social distancing on COVID-19 outcomes (e.g., Unwin et al. (2020), Hsiang et al.

(2020), and Flaxman et al. (2020)), this approach is model-free and hence does not rely

on any structural, epidemiological model characterizing the channels by which individual

mobility behavior affects COVID-19 infections and fatalities.

To identify plausibly exogenous movements (“shocks”) in mobility, I use standard regres-

sion control techniques in a dynamic panel data framework. In particular, when regressing

future COVID-19 outcomes on current mobility, I control for lagged mobility, current and

lagged COVID-19 outcomes, COVID-19 testing, weather (temperature, precipitation, and

snowfall), and high-dimensional fixed effects for counties and for time. Controlling for current

and lagged cases and/or deaths, as well as testing, accounts for the likelihood that news of

current local COVID-19 spread, which itself would predict future cases and deaths, induces

people to increase or decrease their current social distancing (mobility) behavior. Control-

ling for lagged mobility helps ensure that current movements in mobility are not driven

simply by persistence from past mobility shocks. Including county fixed effects effectively

controls for many important known and unknown characteristics of local communities that

can increase COVID-19 transmission and/or lethality, such as demographics, socioeconomic

status, density, etc. Time (week) fixed effects absorb seasonal factors, common time trends,

and any policies or other factors at the national level. In an extension, I also show the results

are robust to controlling for public health non-pharmaceutical interventions (NPIs), such as

shelter-in-place orders and school closures.

The analysis reveals a number of important findings. First, holding mobility fixed, higher

temperatures reduce COVID-19 cases from 1 to 7 weeks ahead (peaking at 6) and deaths 3 to

10 weeks ahead (peaking at 8); precipitation and snowfall have no significant effects. Second,

holding weather fixed, mobility, as measured by time spent away from home, increases cases

3 to 10 weeks ahead and deaths 8 to 10 weeks ahead, with the peak effects around 9 to 10

weeks ahead. Similar results are found for other measures of mobility, with the exception of

visits to parks which have no significant effect on either cases or deaths. Furthermore, the

mobility effects are quantitatively large. For example, a 10% increase in time spent away

from home is found to increase COVID-19 case growth over the following 10 weeks by about

8%.

Third, I find that the deleterious effects of mobility on COVID-19 outcomes are far greater

when the local virus transmission rate is above one. When the transmission rate is below



one, mobility has a small positive effect on subsequent cases and no effect on deaths. When

Rt is above one, mobility has a much larger effect on future cases and has a large, long-

lasting impact on future deaths. These results are consistent with epidemiological models

that predict more infections for a given contact rate (which is closely linked to mobility) when

the transmission rate is higher. They also provide empirical support justifying calls from

some public health experts for mobility-reduction policies, such as shelter-in-place orders and

restrictions on large gatherings, that specifically target places experiencing high transmission

rates while not imposing such restrictions elsewhere.

Fourth, I find that the dynamic effects of mobility on cases are generally similar across

counties, but the effects on deaths are higher for counties with older populations and, sur-

prisingly, counties with lower black or hispanic population shares. Lastly, I find that while

the marginal impact of mobility changes has been fairly stable over recent weeks for cases,

it has fallen substantially for deaths.

There are a few notable studies of the direct effects of mobility behavior on COVID-19

outcomes. Soucy et al. (2020) uses variation across 40 global cities for the late March to mid-

April time period and find a strong correlation between mobility and COVID-19 case growth

14 days ahead. Badr et al. (2020) also investigate the correlation between mobility and

subsequent case growth, but using panel data from the 25 U.S. counties with the most cases

as of mid-April. Estimating this correlation for varying lag lengths, they find it peaks at 11

days. These two studies are correlational. As noted above, the correlation between mobility

and COVID-19 outcomes can be driven by omitted variables and/or reverse causality, such

that correlations may be a misleading guide to the causal impacts of changes in mobility

and thus less useful for policy prescriptions. Kapoor et al. (2020) and Glaeser et al. (2020)

each use an instrumental variables approach estimate the causal effect of mobility changes

on COVID-19 outcomes. The former investigates the early declines in mobility, prior to local

shelter-in-place orders (SIPOs), using a cross-sectional regression design with U.S. county-

level data. They use precipitation as an instrument for the early mobility declines and find

these declines were associated with fewer cases and deaths up to at least 18 days later, the

farthest horizon they investigate. Glaeser et al. (2020) use zip-code level panel data from

New York City and cross-sectional data from four other U.S. cities and instrument for local

mobility using the local area’s share of residents that work in industries deemed essential.

They find a strong effect of mobility on cases per capita 14 days later. Unwin et al. (2020)

estimate the impact of mobility on the transmission rate, Rt, of SARS-CoV-2, the virus that

causes COVID-19. They estimate this impact with state panel data using a logit model

with state-specific random effects. Similar to this paper, they measure mobility using the

Google Mobility Reports. Because the true transmission rate is unknown, they infer it from



observed COVID-19 deaths using a Bayesian semi-structural model. An important element

of the model is an assumed lag structure between infection and death. The authors use

estimates of that lag structure from early studies of the disease in China.

As mentioned above, the evidence on weather’s impact of COVID-19 is mixed. Xu et al.

(2020) finds a “modest” negative effect of temperature on covid19 case growth globally. They

assume a 10-day lag, which the evidence in this paper suggests may be too short to see the full

impact. Carleton et al. (2020) finds a negative relationship between UV light and COVID-

19 case growth, while they find “weak or inconsistent lagged effects of local temperature,

specific humidity, and precipitation.” Similarly, Jamil et al. (2020) find no evidence of a link

between temperature and COVID-19 case growth across countries and Chinese provinces.

Yet, these papers do not generally account for the fact (documented below) that weather has

very strong effects on mobility behavior, which itself affects COVID-19 outcomes, making it

hard to know how much their results reflect a serious omitted variable bias.

Most of the studies above and others in the nascent literature on COVID-19 impose

a specific response lag between the factor of interest (i.e., mobility, SIPOs, weather, etc.)

and COVID-19 cases. Typically, they assume lags of around 14 days, which is based on

the logic of a roughly 7-day incubation period (from exposure to symptoms) and a 7-day

“confirmation” period from symptom onset to a positive test result. Such an assumption

may miss an important third phase, the transmission propagation phase. After that initial

exposed individual becomes infectious, they may spread the infection to one or more addi-

tional individuals, who may in turn spread it to others, and so on. Each of these “rounds”

of infection transmission involves its own incubation and confirmation delays, potentially

spreading out over time the effect of any initial shock such as mobility, weather, NPIs, etc..

This highlights the usefulness of applying an estimation method, such as local projections,

that does not impose any assumed response lag and instead allows for estimation of the full

impulse response function.

2 Data and Stylized Facts

2.1 COVID-19 Data

Daily county-level data on COVID-19 cases and deaths were obtained from usafacts.org,

which compiled the data from state public health agencies.3 I also obtained alternative data

on cases and deaths from the New York Times database (via tracktherecovery.org). The

3https://usafactsstatic.blob.core.windows.net/public/data/covid-19/covid_confirmed_

usafacts.csv

https://usafactsstatic.blob.core.windows.net/public/data/covid-19/covid_confirmed_usafacts.csv
https://usafactsstatic.blob.core.windows.net/public/data/covid-19/covid_confirmed_usafacts.csv


correlation between these two data sets is extremely high (0.9995) and the results in the

paper are nearly identical using the New York Times data. Data on daily testing, which

are only available at the state level, come from The COVID Tracking Project and were

downloaded from tracktherecovery.org.

The time series for COVID-19 cases and deaths, nationally and in a few selected cities,

are shown in Figure 1. The earliest cases occurred in late January, but nationally cases

began accelerating rapidly in mid-March, with deaths accelerating around the beginning of

April. That initial surge in cases and deaths in March and April gradually faded for the

next couple months before surging again from late June to early August. This double-wave

national time series pattern appears to result from asynchronous waves in different parts of

the country. In particular, New York City (counties of New York, Kings, Queens, Bronx, and

Richmond) experienced a surge of new cases and deaths from mid-March through late April.

By contrast, cities like Miami (Miami-Dade County, FL) and Phoenix (Maricopa County,

AZ) saw relatively few cases and deaths in the spring but experienced substantial surges in

the summer. Interestingly, Miami and Phoenix had far more cases per capita during the

summer than New York City did during the spring, but Miami and Phoenix saw far fewer

deaths per capita than New York City. This difference likely stems from a combination of

lower testing rates during the spring, holding down confirmed cases, and the development of

better COVID-19 treatments as the pandemic evolved, holding down deaths in the summer.

2.2 Mobility Data

The primary measures of individual mobility analyzed in this paper come from the Google

Mobility Reports. These data measure percent changes in mobility relative to its Jan. 3 –

Feb. 6 average. More specifically, Google describes the data as follows: “These datasets show

how visits and length of stay at different places change compared to a baseline. We calculate

these changes using the same kind of aggregated and anonymized data used to show popular

times for places in Google Maps. Changes for each day are compared to a baseline value for

that day of the week: The baseline is the median value, for the corresponding day of the week,

during the 5-week period Jan. 3 – Feb. 6, 2020.”4 Google measures mobility separately for

time spent at home and visits to workplaces, transit stations, grocery & pharmacy, parks,

and retail & restaurants (which includes restaurants, cafes, shopping centers, theme parks,

museums, libraries, and movie theaters). I multiply the time spent at home measure by -1 to

facilitate comparison with the other measures and should thus be interpreted as time spent

away from home.

4The data were accessed at https://www.google.com/covid19/mobility/.

https://www.google.com/covid19/mobility/


In addition to the Google Mobility Reports data, I also collected data on two alternative

measures of mobility based on geolocation data from cellphones and other mobile devices.

The first is the Dallas Fed Mobility and Engagement Index (MEI), which is the first principal

component of seven device geolocation variables obtained the data provider Safegraph.5

The other is the Device Exposure Index (DEI) produced by Couture et al. (2020) based

on geolocation data from the company PlaceIQ. The DEI measures “county-level average

exposure of devices to each other within commercial venues.”

Figure 2 shows how the Google mobility measures have evolved since late January nation-

ally as well as in the cities included in Figure 1. For the nation as a whole, mobility plunged

over the second half of March, bottomed out in early April, partially recovered through

late June, and flattened thereafter. Yet, there is considerable variation across places. Some

places, such as San Francisco (County) and New York City, saw mobility fall much sooner

and further than it did nationally. In other places, such as Miami and Phoenix, mobility fell

around the same time as it did nationally but by a smaller amount. The recovery pattern has

also varied substantially across places. For example, mobility in New York City recovered

relatively quickly and steadily since mid-April, while mobility in Phoenix rose slowly from

mid-April to early June and has fallen slightly since then. It is this type of variation – that

is, the variation across counties in their differences from the national average – that I exploit

to estimate the impact of mobility on subsequent COVID-19 outcomes.

2.3 Weather Data

Following Wilson (2019), I construct measures of daily weather at the county level from

the Global Historical Climatology Network Daily (GHCN-Daily) data set. The GHCN-

Daily is provided by the U.S. National Climatic Data Center (part of the National Oceanic

and Atmospheric Administration (NOAA)) and contains daily weather measurements from

a little over 4,700 weather stations throughout the United States, though not all stations

provide readings every day. All stations with data on a given date are used for measuring

county weather on that date. The spatial distribution of weather stations is highly correlated

with the spatial distribution of population.

The readings from individual weather stations are used to estimate county-level weather

5The seven variables are as follows: the fraction of devices leaving home in a day, the fraction of devices
away from home for 3-6 hours at a fixed location, the fraction of devices away from home longer than
6 hours at a fixed location, an adjusted average of daytime hours spent at home, the fraction of devices
taking trips longer than 16 kilometers, the fraction of devices taking trips less than 2 kilometers, and the
average time spent at locations far from home. Each variable is scaled by the weekday-specific average over
January and February prior to the principal component analysis. See Atkinson et al. (2020) for details. The
data were accessed at https://www.dallasfed.org/~/media/documents/research/mei/MEI_counties_

scaled.csv.

https://www.dallasfed.org/~/media/documents/research/mei/MEI_counties_scaled.csv
https://www.dallasfed.org/~/media/documents/research/mei/MEI_counties_scaled.csv


using an inverse-distance weighting procedure. First, the surface of the conterminous United

States is divided into a 5-mile by 5-mile grid. Second, weather values for each grid point

are estimated using inverse-distance-weighted averages of the weather values from weather

stations within 50 miles of the grid point. See Wilson (2019) for further details of this pro-

cedure. This procedure yields the following daily county-level weather variables: maximum

temperature (degrees Fahrenheit), minimum temperature, precipitation (mm), and snowfall

(cm).

2.4 Other Data

I obtained data on start- and end-dates of various local non-pharmaceutical interventions

(NPIs) from the Keystone Coronavirus City And County Non-Pharmaceutical Intervention

Rollout Date Dataset.6 Keystone has compiled data for all states and about 600 counties,

including all counties that had at least 100 cases as of April 6, 2020. I use the county level

data for those ≈600 counties and state level data for other counties. The data include start-

and end-dates for the following 10 NPIs: social distancing (“social distancing mandate of at

least 6 feet between people”), shelter in place (“an order indicating that people should shelter

in their homes except for essential reasons”), prohibition of gatherings above 100, prohibition

of gatherings above 25, prohibition of gatherings above 10, prohibitions of gatherings of any

size, closing of public venues (“a government order closing gathering venues for in-person

service, such as restaurants, bars, and theaters”), closure of schools and universities, closure

of non-essential services and shops, closure of religious gatherings, and full lockdown. I

condense these data into a single variable, the number of NPIs in place in the county on

each date.

Data on population (average daily residents) in nursing homes by county as of June

4, 2020 were obtained from the Centers for Medicaid and Medicare at: https://data.

medicare.gov/Nursing-Home-Compare/Provider-Info/4pq5-n9py.

3 Methodology

The primary objective of the paper is to estimate the causal effects of mobility, which

can be influenced by government policy choices and public opinion, on COVID-19 spread.

Simultaneously estimating the causal effects of weather, which is exogenous, on COVID-19

is both a secondary objective and necessary for obtaining an unbiased estimate of mobility’s

6https://raw.githubusercontent.com/Keystone-Strategy/covid19-intervention-data/master/

complete_npis_inherited_policies.csv

https://data.medicare.gov/Nursing-Home-Compare/Provider-Info/4pq5-n9py
https://data.medicare.gov/Nursing-Home-Compare/Provider-Info/4pq5-n9py
https://raw.githubusercontent.com/Keystone-Strategy/covid19-intervention-data/master/complete_npis_inherited_policies.csv
https://raw.githubusercontent.com/Keystone-Strategy/covid19-intervention-data/master/complete_npis_inherited_policies.csv


effect given that weather and mobility are likely correlated. Below I describe the econometric

methodology used to achieve these objectives.

3.1 Contemporaneous Effect of Weather on Mobility

I first estimate the contemporaneous effect of weather (w) on mobility (m) using a daily

county panel data model:

mit = witγ + xi,tφ+ αi + αt + εit (1)

where i indexes counties and t indexes dates. wit is a vector of weather variables, consisting of

daily maximum temperature, precipitation, and snowfall. xi,t is a vector of control variables,

consisting of COVID-19 case growth (daily new cases divided by total cases) and testing

growth. αi and αt are fixed effects for county and date. The rationale for the inclusion of

these control variables and fixed effects is discussed in the Identification subsection (3.3)

below.

3.2 Dynamic Effects of Mobility and Weather on COVID-19

Next, I jointly estimate the effects of mobility (m) and weather (w) on subsequent

COVID-19 growth (g) using a panel Local Projections estimator:

gi,t+h =
2∑

τ=0

ψh,τgi,t−τ +
2∑

τ=0

βh,τmi,t−τ + witδ
h + xi,tφ

h + αhi + αht + εi,t,t+h (2)

where i indexes counties, t indexes time (days for daily regressions and weeks for weekly

regressions), and xi,t is a vector of control variables.

I analyze two COVID-19 outcomes (g): growth in cases and growth in deaths. Growth

during a given time period (t + h) is defined as the number of new cases (deaths) recorded

during that period divided by the total number of cases (deaths) as of time t. For instance,

case growth during period t + h is calculated as gi,t+h = (casesi,t+h − casesi,t+h−1)/casesi,t.

Note that this variable is the flow of new cases (deaths) during t+ h.

To additionally estimate effects on cumulative growth of cases or deaths over a given

horizon, I estimate versions of equation 9 in which the dependent variable is cumulative

growth (G), defined as the cumulative sum of new cases from t to t+ h divided by the total

number of cases (deaths) as of time t: Gi,t+h = (casesi,t+h − casesi,t)/casesi,t, and similarly

for deaths.



Note that these dependent variables measure the growth in aggregate cases and deaths

since the beginning of the pandemic. One drawback of these measures as we get beyond the

early stages of the pandemic is that they don’t explicitly account for the strong likelihood

that prior cases imply a shrinking share of the population that is potentially susceptible

to new infection. Appendix B derives an alternative specification based on the canonical

SIR model, in which the dependent variable becomes the log change in cases, mobility and

temperature are measured in logs, and the coefficients can be interpreted as elasticities on

the effective reproduction number. The results, also shown in Appendix B, are qualitatively

similar to those based on the specifications here.

The local projections method (Jordà (2005)) traces out an impulse response function

(IRF) by estimating equation 9 sequentially over horizons from h = 1 to some maximum

horizon, H. I estimate IRFs out to H = 10 weeks ahead. The IRF for mobility is traced out

by the sequence of βh,0, while the IRF for any element of the weather vector wit is traced

out by the sequence of its element of the coefficient vector δh.

I estimate IRFs at a weekly frequency, using weekly aggregated data, for three reasons.

First, aggregating the daily data to weekly frequency removes the sizable variation between

weekdays and weekends in the time series of mobility as well as COVID-19 cases and deaths.

Second, there likely is considerable measurement error at the daily frequency in COVID-19

cases, deaths, and testing due to reporting lags. That measurement error should largely can-

cel out with aggregation to the weekly level. Third, estimating equation 9 is computationally

intensive and hence estimating it for daily horizons from h = 7 to 70 would be extremely

time intensive.

3.3 Identification

As mentioned earlier, the causal effect of mobility, βh,0, or weather, δh, on COVID-19

cases and deaths is unlikely to be identified by any simple cross-sectional correlations due to

a variety of omitted variable and reverse causality concerns.7 I address these identification

concerns through dynamics, control variables, and fixed effects. In terms of dynamics, equa-

tion 9 uses leads of the COVID-19 outcomes as dependent variables to mitigate the potential

contemporaneous reverse causality due to local news about current cases or deaths induc-

ing people to increase or decrease their social distancing (mobility) behavior. For the same

reason, I include the contemporaneous value and two weekly lags of the dependent variable

as well as current growth in testing. When the dependent variable is growth in deaths, I

also add current case growth as a regressor. Controlling for current testing helps mitigate

7See Goodman-Bacon & Marcus (2020) for a thorough discussion of these concerns.



concerns that public fears (or lack thereof) about community spread may affect mobility

and also be correlated with future cases and deaths growth because such fears should be

reflected in greater demand for tests. I additionally include two weekly lags of mobility so

that βh,0 can be interpreted as the effect of a current “shock” or change in mobility that was

not driven simply by its recent trend.

As the results below will demonstrate, when studying the effect of mobility on COVID-

19, it is important to control for weather. Likewise, when studying the effect of weather on

COVID-19, it is important to control for mobility. As discussed in the introduction, most

COVID-19 studies to date of either weather or mobility have not controlled for the other

factor and could be subject to serious omitted variable bias. Thus, I include both mobility

and weather variables – maximum daily temperature, precipitation, and snowfall – in all

regressions unless otherwise indicated.

The county fixed effects absorb many important known and unknown characteristics of

local communities that can increase COVID-19 transmission and/or lethality. These time-

invariant characteristics include demographics (such as age, gender, and race), socioeco-

nomic status, access to healthcare, population density, average household size, the presence

of nursing homes or meat-packing plants, and openness to international travelers. Desmet &

Wacziarg (2020) document the importance of many such time-invariant factors for COVID-

19 cases and deaths among U.S. counties. In Section 5.2, I investigate whether the average

“treatment” effect of mobility on COVID-19 varies across some of these county characteris-

tics.

The time fixed effects are also crucially important. In particular, they will absorb seasonal

factors and any common (i.e., national) time trends. This is particularly important given that

weather, especially temperature and snowfall, obviously has strong trends over the January

to June sample period, and mobility has also trended higher from late March onward.

3.4 Inference

The standard errors and confidence intervals reported in the paper are robust to het-

eroskedasticity and two-way clustering by county and state-by-time (where time is date for

daily regressions and week for weekly regressions). The clustering by county allows for the

possibility that errors, εi,t in equation 1 and εi,t,t+h in equation 9, are serially correlated.

The clustering by state-time allows for the possiblity that errors are contemporaneously cor-

related across counties within the same state. This clustering will account for cross-county

correlation stemming from unobserved statewide factors such as state economic and public

health policies. It will also account for geo-spatial correlation in measurement error, for



example in weather data, to the extent such correlation is encompassed by state boundaries.

3.5 Data Sample

All regressions in the paper use the maximum data sample available for the variables used

in that regression, with the following restrictions. For the regressions involving case growth, I

restrict the sample time period for each county to begin with the first date on which cases per

capita exceeded one per 1,000 persons. For growth in deaths, the analogous restriction is for

deaths per capita to exceed one per 100,000 person. These restrictions exclude observations

from time and places where COVID-19 had not yet begun to spread. The sample time period

varies across the local projections regressions depending on the horizon (h) – the further out

the horizon, the fewer time periods (t) available for estimation – and on the data availability

of the mobility variable used.

Data availability varies across the mobility variables. The Google Mobility data are

available from mid-February through early September as of the time of this writing. None

of the mobility variables is available for all counties due to suppression of data (by Google)

for counties with fewer mobile devices to mitigate privacy concerns. The county coverage

varies across the mobility measures from about 900 counties for visits to parks to roughly

2,600 for visits to workplaces. (There are 3,140 counties in the U.S.)

4 Main Results

4.1 Effects of Weather on Mobility

Before presenting the formal regression results, I begin with some non-parametric graph-

ical evidence on the contemporaneous daily relationship between temperature and mobility.

Temperature is the maximum daily high measured in degrees Fahrenheit. The panels in

Figure 3 show bin-scatter plots with temperature on the x-axis and mobility on the y-axis.

A bin-scatter plot is a common way to visualize correlations involving a large number of ob-

servations. Each variable is first residualized by regressing on county and date fixed effects.

The x and y variables are then averaged within 100 bins corresponding to each percentile of

the distribution of temperature values. (Hence, bins will be many degrees wide toward the

lower and upper end of the temperature range and somewhat narrower than one degree in

the middle of the range.) These plots show a strong positive relationship between temper-

ature and mobility, conditional on county and time fixed effects. For the Google Mobility

measures, the relationship is approximately linear, though some measures show a slightly



flatter relationship as daily high temperature rises above around 85◦ F.8 The tightness of

the fit varies across mobility measures. It is tightest for time spent away from home, visits

to retail & restaurants, visits to grocery & pharmacy, and visits to parks.

Table 1 displays the results from estimating equation 1 using alternative measures of

mobility. Each column corresponds to a separate regression and the column heading indicates

which mobility measure is used as the dependent variable. The sample time period and

number of counties are indicated at the bottom of the table and vary primarily depending

on the availability of the mobility data, as noted in the previous section. The weather

variables are interacted with a weekday vs weekend indicator to allow for the possiblity that

weather affects mobility differently on weekdays, when most workers work, than on weekends,

when most workers have off.

The results show a number of clear patterns. First, weekday temperatures have a strong

positive effect on all measures of mobility. Not surprisingly, the effect is strongest for visits

to parks. The coefficient of 1.581 (standard error of 0.0825) implies that 10 degrees of

higher temperature on a weekday increases visits to parks by nearly 16 percentage points.

(Recall that the Google mobility variables are measured in percentage change relative to

the Jan. 3 – Feb. 6 average.) Second, weekend temperatures have a positive effect on

non-workplace locational visits but a negative effect on workplace visits. The negative effect

may reflect that some workers with flexibility regarding weekend work may opt to choose

leisure over work on weekends with pleasant weather (and/or on hot days when outside

work is less pleasant). The offsetting effects of weekend temperatures on work vs. non-work

mobility likely explains the finding that weekend temperature has no significant effect on

time spent away from home. Third, precipitation has a strong negative effect on all measures

of mobility. The negative effect is true for precipitation on both weekdays and weekends,

though it larger for weekends. This likely reflects that common weekend activities, like going

out to eat, going retail shopping, and going grocery shopping are less appealing when it is

raining. Finally, snowfall, like rain, also has a strong negative effect on mobility, with larger

effects on weekends.

Overall, Table 1 makes clear that weather and mobility are highly correlated and thus

omitting either factor when studying the COVID-19 effects of the other is likely to result in

an omitted variable bias.

8Note that the minimum daily temperature, averaged across county-days in the sample, is roughly 20
degrees lower than the maximum daily temperature and the average daily temperature is roughly 10 degrees
lower.



4.2 Dynamic Impacts of Weather on COVID-19

I now turn to jointly estimating the impulse response functions (IRFs) of mobility and

weather on COVID-19 cases and deaths using the local projections estimator described above

(equation 9). As mentioned earlier, I estimate the IRFs at the weekly frequency on weekly-

aggregated data in order to smooth over the day-of-week variability and high-frequency

measurement error and also to reduce computational burden. The dependent variables are

h-weeks ahead growth in cases and deaths, for h = 1 to 10 weeks. Recall that growth is

defined as new cases (deaths) during week t+ h relative to total cases (deaths) as of week t.

I begin by discussing the estimated IRFs with respect to weather shocks. The results are

presented in Figure 4. The IRFs on the left column are for growth in cases, while those on

the right are for growth in deaths. The point estimates are shown with the circles, while the

shaded regions indicate the 68 (one standard error), 90, and 95 percent confidence bands

(from darkest to lightest). The regressions underlying Figure 4 control for mobility, measured

by time spent away from home.

Temperature is found to have a large and long-lasting negative effect on COVID-19 case

growth. Specifically, higher temperatures reduce case growth significantly starting as soon

as 1 week ahead and for up to 7 weeks ahead. The peak coefficient on temperature is roughly

constant from 4 to 6 weeks ahead at approximately -1.2, with a 95% confidence interval of

-0.9 to -1.5. This coefficient implies that one degree higher daily maximum temperature

during a week lowers growth in COVID-19 cases 4, 5, and 6 weeks later by 1.2 percentage

points. Evaluated at the sample mean of 6-week ahead COVID-19 case growth (35.9%) and

the sample mean of daily high temperature (≈ 79.8◦), this implies an elasticity of 2.7. In

other words, a 10% increase in daily high temperature for a week (from 79.8◦ to 87.8◦ would

predict 27% lower case growth 6 weeks later (from 35.9% to 26.2%), holding mobility and

the other regressors fixed.

The impact of temperature on growth in deaths becomes statistically significant two

weeks later than for case growth, at 3 weeks ahead, and lasts longer, up to 10 weeks ahead.

It peaks at about 8 weeks ahead. This result is likely explained by the fact that COVID-19

deaths have been shown to lag cases by at least two weeks.

Turning to precipitation and snowfall, neither is found to have a significant effect on

deaths growth, but precipitation appears to have a small negative effect on COVID-19 cases

1 to 2 weeks ahead.

In sum, holding mobility fixed, temperature is found to have a negative and significant

direct effect on COVID-19 cases 1 to 7 weeks ahead and on deaths 3 to 10 weeks ahead.



4.3 Dynamic Impacts of Mobility on COVID-19

I now arrive at the central results of the paper, the estimated impulse response functions

for COVID-19 cases and deaths with respect to mobility shocks. These IRFs are the sequence

of β̂h,0 from estimating equation 9 by OLS for each weekly horizon from h = 1 to 10 weeks

ahead. The IRFs are estimated separately for each of the alternative measures of mobility.

The results for case growth are plotted in Figure 5.

Overall mobility is found to have a large positive effect on subsequent growth in COVID-

19 cases. Based on time spent away from home, mobility has a positive and significant

effect on case growth starting about 4 weeks ahead and persisting through at least 10 weeks

ahead. The peak effect is at 10 weeks ahead. The effects are quantitatively large. The peak

coefficient is 5.1, which implies that a 1 percentage point increase (decrease) in time spent

away from home results in an increase in cases 10 weeks ahead equal to 5.1% of current

cases. Evaluated at sample means, this effect implies an elasticity of 1.3, meaning that a

10% increase in mobility raises growth in cases 6 weeks ahead by 13%.

The IRF is qualitatively similar for mobility measured by visits to workplaces. Positive

effects on cases are also found for visits to transit stations, retail & restaurants, and grocery

& pharmacy, though the estimated effects for these categories are less long-lasting and less

precisely estimated. In contrast, I find no significant effect of visits to parks on COVID-19

cases. The lack of an effect for visits to parks is consistent with a growing consensus from

clinical studies that coronavirus transmission is much less likely in outdoor spaces.

The IRFs of mobility shocks for growth in COVID-19 deaths are shown in Figure 6. The

effect of mobility on subsequent COVID-19 deaths is more mixed than that found on cases.

Based on time spent away from home, mobility has a positive and statistically significant

effect on growth in deaths starting around 8 weeks ahead – that is, 4 weeks later than the

initial impact of mobility on cases. The effect persists through at least 10 weeks ahead. Yet,

for mobility measured by visits to workplaces, there is actually a small negative effect on

deaths 2 to 3 weeks ahead followed by small positive (and statistically insignificant) effects

thereafter. The results for other types of mobility indicate positive, but weakly significant,

effects on deaths for visits to transit stations and retail & restaurants, but no significant

effects of visits to parks or grocery stores & pharmacies.

The full regression results underlying these IRFs are provided, for a single selected horizon

of 10 weeks ahead, in Tables 2 and 3. Beyond the results for mobility already discussed,

the results show that current case growth tends to have no significant effect on future case

growth but a positive and significant effect on future deaths growth. Lagged case growth

tends to negatively predict future case growth and lagged deaths growth negatively predicts

future deaths growth. Current testing growth has a positive coefficient but weakly significant



coefficient for cases and is insignificant for deaths.

As noted in Section 3.2, one can also estimate the dynamic effects of mobility on cu-

mulative growth in cases or deaths out to any given horizon. Table 4 report the effects of

current mobility and other variables on cumulative growth in cases over the subsequent 10

weeks. The 10-week ahead cumulative effect is positive and significant at the 10% level or

better for all types of mobility except visits to parks. The effects of mobility are, in general,

quantitatively large. In particular, the coefficient on time spent away from home in Table 4

of 24.70 implies that a one percentage point increase (decrease) in that mobility measure

leads to an increase (decrease) in cumulative case growth over the subsequent 10 weeks of

about 25 percentage points, or about 7.4% of average 10-week case growth in the sample

(332.42%, shown at the bottom of the table). The effect magnitudes, expressed as elastici-

ties, are shown at the bottom of the table. The 24.70 coefficient on time spent away from

home implies an elasticity of 0.81, implying that a 10% increase in mobility leads to 8.1%

higher cumulative case growth 10 weeks ahead.

The results for cumulative growth in COVID-19 deaths 10 weeks ahead are provided in

Table 5. Time spent away from home and visits to transits stations have a positive and

significant impact on cumulative deaths over the subsequent 10 weeks. The other measures

of mobility, however, have no statistically significant effect.

Lastly, it is interesting to consider the adjusted-R2’s, shown at the bottom of Tables 4

and 5. The regressors in the model, including the county and week fixed effects, explain as

much as 17% of the variation in cumulative case growth 10 weeks ahead and as much as

12% of variation in cumulative deaths growth 10 weeks ahead. In other words, over 80%

of the variation in these COVID-19 outcomes is not readily explainable by time-invariant

county characteristics, common national time-varying factors, recent case and testing growth,

weather, and (measured) mobility.

In sum, overall mobility is found to have a large positive and long-lasting effect on

subsequent growth in COVID-19 cases and deaths. Measured by time spent away from

home, mobility is found to have a large positive and long-lasting effect on COVID-19 cases

and deaths. The effects begin and persist much later than suggested by prior studies of

mobility or governmental social distancing policies (discussed in the introduction), though

those studies generally did not investigate effects beyond one month ahead. The long-lasting

effects found here can be explained by a propagation mechanism by which mobility increases

today result in new infections over the next two weeks (given an incubation period of up to

two weeks), which result in further new infections with their own incubation periods, which

result in further new infections and so on until. This spread can continue indefinitely until

herd immunity is reached or can fade to zero if either interpersonal contacts (i.e., mobility)



sufficiently falls or medical treatments sufficiently reduce individuals’ infectiousness.

5 Extensions

5.1 Dependence of Mobility’s COVID-19 Effects on Virus Trans-

mission Rate

Standard epidemiological SIR/SIER models suggest that the impact of mobility on

COVID-19 spread is likely to depend importantly on the local transmission rate of the virus,

also known as the effective reproduction number (e.g., Bajardi et al. (2011) and Anderson

et al. (1992)). This rate is commonly denoted Rt. In these models, new infections are the

result of an interaction between the contact rate – the rate at which individuals come into

contact with other, potentially infectious, individuals – and the transmission rate, which

is the average number of individuals who contract the virus from exposure to one infected

person. Mobility can be thought of as a proxy for the unobserved contact rate at a particular

time and place. To proxy for the transmission rate, I follow the literature in approximating

Rt by the daily case count divided by its average over the prior 20 days.Xu et al. (2020) The

latter is a proxy for the number of potentially infectious individuals per day, assuming an

average interval from exposure to recovery (or death) of 20 days.

To assess the dependence of mobility’s impacts on COVID-19 cases and deaths on the

local transmission rate, I split the sample into county-week observations for which Rt <= 1

and those for which Rt > 1. One is a critical threshold for the transmission rate, with

virus spread expected to asymptote to zero when Rt is below one and expected to increase

indefinitely when Rt is above one. I then estimate the mobility IRFs for subsequent growth

in cases and deaths separately for each subsample.

The results are shown in Figure 7. Panels (a) and (b) show the mobility IRFs for growth in

cases, while panels (c) and (d) show the IRFs for growth in deaths. Mobility here is measured

using time spent away from home. The results show quite clearly that the deleterious effects

of mobility on COVID-19 outcomes are far greater when the local transmission rate is above

one. When Rt is below one, mobility increases (decreases) have a small positive (negative)

effect on subsequent cases but virtually no effect on deaths. When Rt is above one, mobility

changes have a much larger effect on subsequent cases and have a large positive impact on

deaths around 8 to 10 weeks ahead. This qualitative pattern is also found for each of the

other mobility measures (see Appendix A Figures A1–A3).



5.2 Other Dimensions of Heterogeneity

I next consider whether mobility’s effects vary across different types of counties – that is,

whether they are heterogeneous with respect to certain fixed county characteristics. Specifi-

cally, I consider heterogeneity along the following dimensions: the population share in nursing

homes, the share under 60 years old, the share that identify as black, the share that identify

as hispanic, and average household size. For each dimension I construct an indicator that is 1

if the variable is above the median value over all counties and 0 otherwise. I then interact the

indicator with current and lagged mobility, and add the interactions to the local projections

specification (equation 9). I plot the implied separate IRFs for high versus low.

The results, using mobility measured by time spent away from home, are shown in Figure

8 for cases growth and in Figure 9 for deaths growth. The estimated IRFs are found not to

differ much across these dimensions for cases growth. However, there are some important

differences for deaths growth. First, mobility increases appear to be less deleterious for

COVID-19 fatality in counties with a higher share of the population under 60. Indeed, the

mobility is found to actually reduce deaths growth for counties with younger populations.

The positive effect for older populations likely reflects that well-known fact that COVID-

19 infections are more likely to be fatal for older individuals. Thus, increases in mobility

in counties with older populations likely lead to increased coronavirus exposure by older

individuals. A possible explanation for the negative effect for younger populations is that

when places reduce mobility sharply – e.g., in accordance with shelter-in-place orders –

demand for essential services such as food and parcel delivery rises. These services are much

more likely to be provided by individuals below 60 years old. One does not see a differential

effect of mobility for counties with relatively high populations shares in nursing homes. This

may be because mobility increases in higher nursing home share counties primarily reflect

the mobility behavior of the vast majority of the population not in nursing homes given that

even above-median counties still have a fairly low nursing home share. (The median is only

0.56%.)

Surprisingly, mobility appears to have a lower impact on subsequent deaths in counties

with higher shares of the population that identify as black or hispanic. That is, despite the

prior evidence that counties with higher black and hispanic population shares tend to have

higher COVID-19 cases and deaths, the marginal impact of mobility on deaths appears to go

the other way. This finding could be explained by the same hypothesis provided above for

the negative mobility effect in younger counties. That is, reductions in mobility may increase

demand for essential services, and the workforce for such essential services has been shown

to be disproportionately comprised of black and hispanic individuals. Thus, it is possible

that overall decreases (increases) in mobility may actually lead to increases (decreases) in



virus exposure for these groups.

5.3 The Role of Public Health Policies

To the extent that public health policies, generally known as non-pharmaceutical in-

terventions (NPIs), affect COVID-19 outcomes, their effects are likely to work primarily

through the channel of affecting individuals’ mobility/social-distancing behavior. Indeed,

I find that the number of NPIs in place in a county (or state of the county where county

NPI data is unavailable) does strongly reduce mobility when estimating equation 1 with the

number of NPIs added as a regressor. This is shown in Table 6, which provides the results

from daily panel fixed effects regressions of each measure of mobility on the number of local

NPIs in place as well the set of weather variables used in Table 1. I find that NPIs have

a negative and statistically significant effect on all measures of mobility except parks, for

which the effect is negative but statistically insignificant. On the one hand, this suggests that

NPIs should indirectly reduce COVID-19 cases and deaths through the channel of reducing

mobility, which in turn reduces cases and deaths. On the other hand, the effect of NPIs

on mobility appears to be economically small. Comparing the adjusted R2 in regressions

including NPIs (Table 6) to those that exclude NPIs (Table 6), one can see that NPIs add

very little to the explanatory power of these mobility regressions.9 Nonetheless, it is possible

that NPIs have additional effects on COVID-19 outcomes through other channels such as

encouraging people to wash their hands and stay physically distant from others even when

spending time in public places. Also, empirically, NPIs could be found to have direct effects

on COVID-19 outcomes if mobility is incompletely measured.

Another important public policy response to the pandemic has been mask-wearing guid-

ance and mandates. I assess the effects of NPIs and mask wearing, holding measured mobility

fixed, by adding the number of local NPIs in place as of date t and a weekly state-level survey

measure of mask-wearing from YouGov to the estimations of equation 9 using cumulative

growth in cases or deaths as the dependent variable. The results for cases are shown in

Table A1. Consistent with the hypothesis that NPIs operate primarily through the mobility

channel, I find NPIs generally have no significant direct effect on subsequent COVID-19 case

growth. Similar results are found for deaths, as shown in Table A2. I also find no significant

effect of self-reported mask wearing on either cases or deaths. Lastly, it is worth noting that,

comparing the results in Tables A1 and A2 to the analogous results in Tables 4 and 5 which

omit NPIs, the coefficients on mobility are virtually unchanged by including NPIs and mask

wearing.

9These results are consistent with Goolsbee & Syverson (2020) that find that NPIs played a small role in
the reduction in mobility early in the pandemic.



In sum, it appears that the impact of public health social distancing policies work pri-

marily through affecting individual mobility behavior and do not have separate, independent

effects.

5.4 Time-Varying Mobility Effects

Lastly, I assess whether the marginal effect of mobility changes of a given size on COVID-

19 outcomes changed over the course of the pandemic (to date). To assess how the key results

of the paper have evolved over recent weeks, I re-estimate the mobility IRFs presented in

panels (a) and (b) of Figures 5 and ?? repeatedly using 10-week rolling samples. Specifically, I

estimate the IRFs first using data on the independent variables for the 10-week period ending

with week 19 of 2020 (the week ending May 12), then using the 10-week period ending week

20, and so on until the latest week of available data, week 28. The dependent variables use

data for horizons 1 to 10 weeks beyond the “ending” week for each rolling sample.

To summarize how the results changed over time, I plot the 8-week-ahead mobility co-

efficient (and its confidence interval) for both cases growth and deaths growth against the

sample ending week. The results are shown in Figure 10. The top panels are for cases

growth, while the bottom panels are for deaths growth. The marginal effect of mobility on

cases shows no clear trend. However, there is a clear downward trend in the marginal effect

of mobility on deaths. This result could reflect that, over time, mobility has become less

lethal, in a sense, because of the identification of more effective treatments and/or increased

testing allowing for earlier infection detection (and hence earlier treatment). There have

also been reports that the age distribution of infections has skewed younger over time, which

could lead to fewer deaths from a given level of mobility in the population.

6 Implications

These findings demonstrate that reductions in individual mobility in the U.S. have been

effective at reducing subsequent growth in COVID-19 cases and deaths. Conversely, increases

in mobility appear to have resulted in higher growth in cases and deaths several weeks later.

One way to assess the magnitudes of the estimated mobility effects is to do a simple “back-of-

the-envelope” calculation of the implied change in future cases and deaths under alternative

scenarios for mobility. Two natural scenarios to consider are: (1) a “full reopening” scenario

whereby mobility in the average county return to its pre-pandemic baseline and (2) a “full

suppression” scenario wherby mobility falls sufficiently to eventually eliminate new cases and

deaths.



Based on the Google Mobility measure of time spent away from home as of early August,

the “full reopening” scenario entails an increase from about -9 (percent below baseline) to

0 (see Figure 2, panel (a)). Using the estimated impacts of time spent away from home

on cumulative growth in cases (Tables 4 and 5), this scenario would imply an increase in

cases over the subsequent 10 weeks of approximately 222% and an increase in deaths over

the subsequent 10 weeks of 116%. Those percentages equate to 4,480 more cases per county

and 306 more deaths per county given that the average county in the regression sample

had 1,931 cases and 115 deaths as of the first week of August. For perspective, cumulative

growth in cases over the 10 weeks ending the 1st week of August was 332% and cumulative

growth in deaths over the 10 weeks ending that same week was 230%, implying that a simple

continuation of current trends would yield 6,334 more cases per county and 219 more deaths

per county. These estimates suggest a full reopening would entail 71% more cases than

expected from the current trend and 140% more deaths.

For the “full suppression” scenario, I use the estimates underlying Figure ?? to calculate

how far mobility would need to fall to achieve zero new cases and zero new deaths within 10

weeks. The sample average of 10-week ahead growth in cases is 42.9% and the sample average

10-week ahead growth in deaths 26.8%. If one considers a continuation of those growth rates

as a baseline scenario, the mobility effects in Figures 5 and 6 imply that mobility would

need to fall by 8.5 percentage points (from roughly -9 nationally as of the first week of

September) to reach zero case growth after 10 weeks. Such a drop in mobility, to about -18

in the measure of time spent away from home, would be essentially a return to the early

April lockdown period (see Figure 2, panel (a)). The mobility effects for deaths imply that

mobility would need to fall by 7.1 percentage points to reach zero deaths after 10 weeks.

The required mobility reduction is lower for deaths because the trend in deaths growth is

already considerably lower than that for cases.

In sum, changes in mobility have strong effects on the spread of COVID-19, implying

that policy actions such as economic reopenings or closings can have powerful impacts.

Yet, as shown above, mobility’s effects are heavily dependent on the current rate of virus

transmission in the local area. This finding has important implications for optimal public

policy. Mobility reductions, while effective at reducing COVID-19 cases and deaths, entail

substantial costs in terms of economic activity, in-person education, and physical and mental

health. Targeted policies aiming to reduce mobility specifically in areas with high current

transmission rates, while easing restrictions in other areas, are thus likely to be more cost-

effective than national, or even statewide, mandates.



7 Conclusion

This paper sought to provide estimates of the full dynamic response of COVID-19 out-

comes to exogenous movements in mobility. It uncovered several important findings. First,

temperature is found to have a negative and significant effect on future COVID-19 cases and

deaths. Second, controlling for weather, overall mobility is found to have a large positive

effect on subsequent growth in COVID-19 cases and deaths. Third, the effects are found to

be highly dependent on the local transmission rate of the virus: when the transmission rate

is below one, mobility has small effects; when the transmission rate is above one, mobility

has large effects. Fourth, the dynamic effects of mobility on cases were found to be gener-

ally similar across counties, but the effects on deaths were found to be higher for counties

with older populations and counties with lower black or hispanic population shares. Lastly,

I found that the marginal impact of mobility changes has been roughly stable over recent

weeks for cases, but it has fallen substantially for deaths.

This paper is a first attempt at estimating the full dynamic impact of mobility and

weather on COVID-19 outcomes. As noted in the beginning of the paper, this dynamic

estimation is increasingly feasible because of the availability of high-frequency, real-time

data along with sufficient passage of time since the initial outbreaks in most of the U.S..

As further data becomes available in the weeks and months ahead, further updates and

extensions of these analyses will be important to monitor.
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Table 1: Effect of Weather on Mobility

(1) (2) (3) (4) (5) (6)
Time Away From Home Workplaces Transit Retail & Rest. Grocery & Pharmacy Parks

Max Daily Temp – Weekday 0.0759∗∗∗ 0.0848∗∗∗ 0.257∗∗∗ 0.261∗∗∗ 0.221∗∗∗ 1.581∗∗∗

(0.00308) (0.00596) (0.0196) (0.0139) (0.0119) (0.0825)

Max Daily Temp – Weekend 0.00429 -0.0240∗∗∗ 0.0619∗∗ 0.177∗∗∗ 0.178∗∗∗ 1.096∗∗∗

(0.00519) (0.00905) (0.0252) (0.0168) (0.0152) (0.0932)

Precipitation – Weekday -0.0179∗∗∗ -0.0143∗∗ -0.0330∗∗∗ -0.0327∗∗∗ -0.0332∗∗∗ -0.392∗∗∗

(0.00235) (0.00597) (0.00803) (0.00893) (0.00784) (0.0476)

Precipitation – Weekend -0.0335∗∗∗ -0.0256∗∗∗ -0.0961∗∗∗ -0.0612∗∗∗ -0.0709∗∗∗ -0.681∗∗∗

(0.00517) (0.00885) (0.0180) (0.0145) (0.0142) (0.0963)

Snowfall – Weekday -0.134∗∗∗ -0.268∗∗∗ -0.327∗∗∗ -0.593∗∗∗ -0.541∗∗∗ -1.689∗∗∗

(0.0364) (0.0643) (0.125) (0.107) (0.0884) (0.388)

Snowfall – Weekend -0.308∗∗∗ -0.338∗∗∗ -1.186∗∗∗ -0.614∗∗∗ -0.515∗∗∗ -2.343∗∗∗

(0.0631) (0.0999) (0.317) (0.154) (0.158) (0.752)
Observations 224990 472520 183488 329935 303348 106102
Adjusted R2 0.901 0.876 0.741 0.770 0.647 0.652
Earliest date 15feb2020 15feb2020 15feb2020 15feb2020 15feb2020 15feb2020
Latest date 08sep2020 08sep2020 08sep2020 08sep2020 08sep2020 08sep2020
# of days 207 207 207 207 207 207
# of counties 1485 2599 1081 2399 2299 898
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 2: Effects on 10-Week Ahead Cases Growth

(1) (2) (3) (4) (5) (6)
Away from Home Workplaces Transit Retail & Rest. Grocery & Pharmacy Parks

Mobility 5.068∗∗∗ 1.907∗∗∗ 0.286∗∗∗ 0.513∗∗∗ 0.261 0.0186
(0.871) (0.455) (0.0892) (0.175) (0.186) (0.0296)

L.Mobility 2.291∗∗∗ 0.420 -0.0495 -0.0541 0.340∗∗ 0.108∗∗∗

(0.739) (0.571) (0.0906) (0.132) (0.147) (0.0299)

L2.Mobility 2.209∗∗∗ 1.512∗∗∗ 0.195∗∗ 0.252∗ 0.507∗∗∗ 0.166∗∗∗

(0.716) (0.394) (0.0972) (0.144) (0.138) (0.0283)

Cases growth rate -0.559∗∗∗ -0.531∗∗∗ -0.579∗∗∗ -0.489∗∗∗ -0.549∗∗∗ -0.783∗∗∗

(0.0968) (0.0799) (0.114) (0.0848) (0.0959) (0.162)

L.Cases growth rate -0.179∗∗∗ -0.293∗∗∗ -0.271∗∗∗ -0.195∗∗∗ -0.220∗∗∗ -0.253∗∗

(0.0642) (0.0807) (0.0682) (0.0604) (0.0664) (0.109)

L2.Cases growth rate -0.464∗∗∗ -0.440∗∗∗ -0.599∗∗∗ -0.553∗∗∗ -0.566∗∗∗ -0.663∗∗∗

(0.0549) (0.0558) (0.0671) (0.0556) (0.0585) (0.102)

Testing growth rate 14.88 -87.84 107.6 -54.02 1.529 116.6
(88.51) (89.25) (104.3) (89.88) (93.27) (111.0)

Maximum Daily Temp 0.839∗∗∗ 0.969∗∗∗ 1.692∗∗∗ 1.466∗∗∗ 1.462∗∗∗ 1.216∗∗∗

(0.222) (0.234) (0.238) (0.228) (0.242) (0.264)

Precipitation 0.436∗∗ 0.721∗∗∗ 0.320 0.487∗∗ 0.322 -0.119
(0.215) (0.279) (0.241) (0.215) (0.228) (0.235)

Snowfall 2.385 0.110 -1.452 -0.0814 0.128 -1.406
(1.768) (1.804) (2.025) (1.657) (1.696) (1.918)

Observations 9057 14808 7172 10545 9800 4967
Adjusted R2 0.183 0.055 0.138 0.127 0.137 0.168
Dep. Variable Mean 42.862 46.521 43.492 43.433 43.539 43.656
Mobility Mean -10.895 -28.529 -15.522 -13.370 1.961 46.681
Elasticity at means 1.29 1.17 .1 .16 .01 .02
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 3: Effects on 10-Week Ahead Deaths Growth

(1) (2) (3) (4) (5) (6)
Away from Home Workplaces Transit Retail & Rest. Grocery & Pharmacy Parks

Mobility 3.766∗∗∗ 0.635 0.240∗∗ 0.294 0.115 0.0117
(1.168) (0.392) (0.110) (0.189) (0.175) (0.0302)

L.Mobility 1.168 0.293 0.0429 -0.0923 -0.121 0.0193
(0.733) (0.341) (0.0994) (0.141) (0.145) (0.0254)

L2.Mobility 1.577∗ 0.765∗∗ 0.0857 0.343∗∗∗ 0.312∗∗ 0.0156
(0.818) (0.327) (0.103) (0.132) (0.145) (0.0306)

Deaths growth rate -0.108 -0.105∗ -0.167 -0.110∗ -0.162∗∗ -0.208∗

(0.0671) (0.0557) (0.103) (0.0662) (0.0688) (0.107)

L.Deaths growth rate -0.207∗∗∗ -0.105∗∗ -0.181∗∗ -0.153∗∗∗ -0.169∗∗∗ -0.203∗∗

(0.0534) (0.0432) (0.0831) (0.0552) (0.0594) (0.0825)

L2.Deaths growth rate -0.0643 -0.0904∗∗ -0.0591 -0.0524 -0.0578 -0.264∗∗

(0.0615) (0.0426) (0.0813) (0.0558) (0.0608) (0.103)

Cases growth rate 0.0403 0.0984 0.0714 0.0521 0.0627 -0.129
(0.128) (0.110) (0.156) (0.126) (0.125) (0.208)

Testing growth rate 64.68 -72.10 14.37 30.65 27.22 163.1
(114.1) (94.63) (143.0) (105.6) (111.0) (160.1)

Maximum Daily Temp -0.677∗∗∗ -0.203 0.0133 -0.149 -0.0556 -0.286
(0.205) (0.183) (0.213) (0.186) (0.195) (0.198)

Precipitation 0.107 0.0939 0.392 0.180 0.155 0.135
(0.230) (0.203) (0.263) (0.223) (0.235) (0.232)

Snowfall -0.915 -1.115 -3.199∗ -2.322 -2.148 -3.440∗

(1.758) (1.780) (1.900) (1.816) (1.822) (1.891)
Observations 8038 11311 6300 9066 8595 4624
Adjusted R2 0.023 0.008 0.006 0.007 0.006 0.016
Dep. Variable Mean 26.809 26.854 27.301 27.170 27.443 28.091
Mobility Mean -10.928 -29.217 -16.443 -13.846 1.727 48.840
Elasticity at means 1.54 .690 .14 .15 .01 .02
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 4: Estimates of Cumulative Effect on Cases Growth over Subsequent 10 Weeks

(1) (2) (3) (4) (5) (6)
Away from Home Workplaces Transit Retail & Rest. Grocery & Pharmacy Parks

Mobility 24.70∗∗∗ 8.769∗∗∗ 2.301∗∗∗ 2.999∗∗∗ 2.785∗∗∗ 0.0387
(4.983) (1.981) (0.629) (1.137) (1.060) (0.178)

L.Mobility 18.08∗∗∗ 8.127∗∗∗ -0.248 0.805 0.583 0.177
(4.142) (1.915) (0.445) (0.765) (0.841) (0.159)

L2.Mobility 21.57∗∗∗ 13.36∗∗∗ 0.763 2.300∗∗∗ 1.759∗∗ 0.554∗∗∗

(4.155) (1.735) (0.738) (0.805) (0.835) (0.182)

Cases growth rate 2.110∗∗∗ 1.134∗∗ 1.913∗∗∗ 1.964∗∗∗ 1.731∗∗ 2.018∗∗

(0.708) (0.465) (0.628) (0.638) (0.726) (0.976)

L.Cases growth rate -2.993∗∗∗ -2.822∗∗∗ -2.798∗∗∗ -2.766∗∗∗ -2.907∗∗∗ -3.405∗∗∗

(0.559) (0.354) (0.406) (0.492) (0.549) (0.899)

L2.Cases growth rate -3.437∗∗∗ -2.890∗∗∗ -4.225∗∗∗ -3.706∗∗∗ -4.078∗∗∗ -5.334∗∗∗

(0.380) (0.292) (0.443) (0.372) (0.409) (0.722)

Testing growth rate 1130.9∗ 534.7 1789.8∗∗ 986.9 1072.2 2213.8∗∗

(637.6) (526.4) (730.1) (613.5) (654.3) (884.0)

Maximum Daily Temp -6.786∗∗∗ -4.504∗∗∗ -1.371 -2.408∗∗ -2.182∗ -2.576∗

(1.203) (1.134) (1.325) (1.210) (1.266) (1.459)

Precipitation 0.578 0.607 2.320∗ 1.270 1.348 1.281
(1.220) (1.054) (1.346) (1.266) (1.339) (1.681)

Snowfall 9.932 -7.502 -15.82 -8.594 -5.049 -17.97
(15.98) (17.79) (19.86) (16.13) (16.49) (14.59)

Observations 9057 14808 7172 10545 9800 4967
Adjusted R2 0.173 0.137 0.103 0.107 0.097 0.101
Dep. Variable Mean 332.418 347.508 337.604 336.652 340.762 349.067
Mobility Mean -10.895 -28.529 -15.522 -13.370 1.961 46.681
Elasticity at means .810 .72 .11 .12 .02 .01
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 5: Estimates of Cumulative Effect on Deaths Growth over Subsequent 10 Weeks

(1) (2) (3) (4) (5) (6)
Away from Home Workplaces Transit Retail & Rest. Grocery & Pharmacy Parks

Mobility 12.92∗∗ -0.0351 1.778∗∗∗ 1.208 0.356 0.144
(6.194) (1.966) (0.670) (0.977) (0.936) (0.188)

L.Mobility 7.013 3.181∗ 0.0723 0.532 0.506 0.0605
(4.877) (1.868) (0.595) (0.869) (0.868) (0.181)

L2.Mobility 13.03∗∗ 4.404∗∗ 0.594 1.606∗ 1.306 -0.0556
(5.375) (2.098) (0.640) (0.935) (1.060) (0.203)

Deaths growth rate -1.673∗∗∗ -1.355∗∗∗ -1.503∗∗ -1.746∗∗∗ -1.990∗∗∗ -1.642∗∗∗

(0.475) (0.355) (0.659) (0.434) (0.466) (0.527)

L.Deaths growth rate -1.739∗∗∗ -1.176∗∗∗ -1.841∗∗∗ -1.564∗∗∗ -1.668∗∗∗ -1.829∗∗∗

(0.308) (0.198) (0.378) (0.264) (0.283) (0.408)

L2.Deaths growth rate -0.873∗∗∗ -0.689∗∗∗ -0.950∗∗ -0.726∗∗∗ -0.796∗∗∗ -1.835∗∗∗

(0.286) (0.178) (0.369) (0.248) (0.270) (0.485)

Cases growth rate 8.192∗∗∗ 6.669∗∗∗ 8.293∗∗∗ 7.884∗∗∗ 7.876∗∗∗ 8.521∗∗∗

(0.938) (0.666) (1.234) (0.885) (0.889) (1.077)

Testing growth rate 2406.4∗ 711.3 1997.0 1882.0 2181.8∗ 3564.6∗

(1382.6) (976.9) (1610.2) (1248.8) (1299.1) (2007.5)

Maximum Daily Temp -6.122∗∗∗ -3.934∗∗∗ -3.308∗∗∗ -3.823∗∗∗ -3.604∗∗∗ -3.865∗∗∗

(1.462) (1.094) (1.250) (1.175) (1.175) (1.313)

Precipitation -0.615 -0.291 1.230 -0.208 -0.231 0.708
(1.047) (0.744) (1.046) (0.927) (0.918) (1.296)

Snowfall -4.301 -3.760 -18.54 -11.77 -12.47 -15.74
(21.83) (23.05) (25.18) (23.49) (23.79) (21.70)

Observations 8038 11311 6300 9066 8595 4624
Adjusted R2 0.117 0.088 0.096 0.102 0.104 0.105
Dep. Variable Mean 230.026 219.293 236.939 227.169 230.493 251.224
Mobility Mean -10.928 -29.217 -16.443 -13.846 1.727 48.840
Elasticity at means .61 0 .12 .07 0 .03
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 6: Effect of Non-Pharmaceutical Interventions on Mobility

(1) (2) (3) (4) (5) (6)
Time Away From Home Workplaces Transit Retail & Rest. Grocery & Pharmacy Parks

Number of NPIs in place (out of 10) -0.580∗∗∗ -1.191∗∗∗ -2.250∗∗∗ -2.331∗∗∗ -1.595∗∗∗ -1.105
(0.0471) (0.100) (0.384) (0.290) (0.239) (1.247)

Max Daily Temp – Weekday 0.0745∗∗∗ 0.0877∗∗∗ 0.260∗∗∗ 0.252∗∗∗ 0.217∗∗∗ 1.614∗∗∗

(0.00329) (0.00663) (0.0196) (0.0150) (0.0125) (0.0850)

Max Daily Temp – Weekend 0.000727 -0.0305∗∗∗ 0.0513∗∗ 0.160∗∗∗ 0.169∗∗∗ 1.107∗∗∗

(0.00526) (0.00954) (0.0257) (0.0174) (0.0157) (0.0962)

Precipitation – Weekday -0.0172∗∗∗ -0.0131∗ -0.0313∗∗∗ -0.0297∗∗∗ -0.0339∗∗∗ -0.391∗∗∗

(0.00249) (0.00697) (0.00852) (0.00974) (0.00853) (0.0488)

Precipitation – Weekend -0.0334∗∗∗ -0.0246∗∗∗ -0.0986∗∗∗ -0.0528∗∗∗ -0.0645∗∗∗ -0.678∗∗∗

(0.00532) (0.00950) (0.0187) (0.0150) (0.0148) (0.0988)

Snowfall – Weekday -0.119∗∗∗ -0.228∗∗∗ -0.329∗∗∗ -0.577∗∗∗ -0.535∗∗∗ -1.616∗∗∗

(0.0310) (0.0588) (0.122) (0.104) (0.0889) (0.397)

Snowfall – Weekend -0.314∗∗∗ -0.327∗∗∗ -1.202∗∗∗ -0.659∗∗∗ -0.530∗∗∗ -2.279∗∗∗

(0.0633) (0.101) (0.322) (0.169) (0.174) (0.738)
Observations 198306 393352 162645 281208 259138 100620
Adjusted R2 0.904 0.878 0.748 0.777 0.661 0.655
Earliest date 15feb2020 15feb2020 15feb2020 15feb2020 15feb2020 15feb2020
Latest date 08sep2020 08sep2020 08sep2020 08sep2020 08sep2020 08sep2020
# of days 207 207 207 207 207 207
# of counties 1321 2296 983 2123 2040 846
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 7: Estimates of Cumulative Effect on Cases Growth over Subsequent 10 Weeks

Controlling for Non-Pharmaceutical Interventions

(1) (2) (3) (4) (5) (6)
Away from Home Work Transit Retail & Rest. Grocery & Pharmacy Parks

Mobility 27.21∗∗∗ 9.719∗∗∗ 2.733∗∗∗ 3.945∗∗∗ 3.155∗∗∗ 0.0693
(5.218) (2.297) (0.650) (1.277) (1.134) (0.185)

L.Mobility 18.07∗∗∗ 8.775∗∗∗ -0.121 0.774 0.445 0.195
(4.204) (2.258) (0.478) (0.820) (0.906) (0.164)

Cases growth rate 1.804∗∗ 0.784 2.051∗∗∗ 1.792∗∗∗ 1.610∗∗ 2.163∗∗

(0.724) (0.510) (0.685) (0.659) (0.740) (1.033)

L.Cases growth rate -3.024∗∗∗ -2.939∗∗∗ -2.803∗∗∗ -2.812∗∗∗ -2.869∗∗∗ -3.580∗∗∗

(0.575) (0.387) (0.438) (0.506) (0.558) (0.964)

Testing growth rate 1763.5∗∗∗ 1269.5∗∗ 2069.7∗∗∗ 1545.8∗∗ 1475.1∗∗ 2309.2∗∗∗

(638.7) (568.3) (737.9) (653.8) (666.0) (889.6)

L2.Cases growth rate -3.453∗∗∗ -3.033∗∗∗ -4.505∗∗∗ -3.650∗∗∗ -3.991∗∗∗ -5.591∗∗∗

(0.388) (0.315) (0.478) (0.383) (0.421) (0.754)

L2.Mobility 21.21∗∗∗ 13.34∗∗∗ 0.691 1.582∗ 1.731∗ 0.546∗∗∗

(4.390) (1.950) (0.812) (0.869) (0.887) (0.186)

Maximum Daily Temp -7.028∗∗∗ -5.102∗∗∗ -1.707 -2.512∗∗ -1.971 -2.760∗

(1.220) (1.207) (1.368) (1.260) (1.309) (1.489)

Precipitation 1.085 0.709 2.829∗∗ 1.845 2.022 1.575
(1.252) (1.195) (1.408) (1.356) (1.409) (1.705)

Snowfall 9.497 -14.03 -15.22 -8.053 -3.601 -19.27
(15.41) (14.95) (19.55) (15.64) (16.08) (15.04)

# of NPIs in place -11.93 -2.281 -25.59∗∗ -18.35∗ -25.75∗∗ -22.29∗

(9.501) (11.22) (10.70) (10.18) (10.53) (12.14)
Observations 8260 12838 6567 9475 8890 4779
Adjusted R2 0.184 0.141 0.118 0.112 0.100 0.110
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 8: Estimates of Cumulative Effect on Deaths Growth over Subsequent 10 Weeks

Controlling for Non-Pharmaceutical Interventions

(1) (2) (3) (4) (5) (6)
Away from Home Work Transit Retail & Rest. Grocery & Pharmacy Parks

Mobility 14.10∗∗ 1.109 2.016∗∗∗ 1.390 0.498 0.131
(6.687) (2.274) (0.673) (1.132) (1.013) (0.193)

L.Mobility 9.154∗ 4.090∗ 0.478 1.089 0.0502 0.0738
(5.260) (2.206) (0.611) (0.925) (0.949) (0.187)

Deaths growth rate -1.758∗∗∗ -1.392∗∗∗ -1.663∗∗ -1.713∗∗∗ -1.925∗∗∗ -1.619∗∗∗

(0.517) (0.371) (0.652) (0.459) (0.488) (0.551)

L.Deaths growth rate -1.832∗∗∗ -1.324∗∗∗ -2.009∗∗∗ -1.628∗∗∗ -1.735∗∗∗ -1.860∗∗∗

(0.336) (0.230) (0.418) (0.292) (0.310) (0.423)

Cases growth rate 8.303∗∗∗ 6.548∗∗∗ 8.663∗∗∗ 8.009∗∗∗ 8.040∗∗∗ 8.532∗∗∗

(1.021) (0.727) (1.361) (0.966) (0.965) (1.124)

Testing growth rate 2760.6∗ 1656.1 2483.3 2203.3∗ 2414.6∗ 3743.8∗

(1427.8) (1027.2) (1640.0) (1298.8) (1342.6) (2032.4)

L2.Deaths growth rate -0.929∗∗∗ -0.862∗∗∗ -1.181∗∗∗ -0.820∗∗∗ -0.902∗∗∗ -1.931∗∗∗

(0.319) (0.201) (0.402) (0.271) (0.296) (0.504)

L2.Mobility 14.31∗∗ 4.974∗∗ 0.784 1.608 1.465 -0.0411
(5.771) (2.458) (0.681) (1.070) (1.182) (0.209)

Maximum Daily Temp -6.667∗∗∗ -4.803∗∗∗ -3.429∗∗∗ -4.168∗∗∗ -3.654∗∗∗ -4.082∗∗∗

(1.552) (1.190) (1.313) (1.256) (1.234) (1.347)

Precipitation -0.887 -0.730 1.226 -0.473 -0.206 0.652
(1.101) (0.802) (1.098) (1.000) (1.000) (1.342)

Snowfall -7.100 -10.29 -20.28 -15.16 -14.91 -16.34
(21.89) (23.23) (25.18) (23.71) (24.02) (21.82)

# of NPIs in place 10.71 9.103 2.023 8.495 4.880 -5.170
(11.24) (10.42) (13.00) (11.38) (11.23) (14.70)

Observations 7378 9928 5806 8206 7844 4458
Adjusted R2 0.120 0.092 0.106 0.104 0.105 0.105
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Figure 1: COVID-19 Cases and Deaths in the United States

(a) Daily New Cases Per Capita (7-day moving average)
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(b) Daily New Deaths Per Capita (7-day moving average)
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Figure 2: Mobility Over Time

(a) Time Spent Away From Home
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(b) Visits to Workplaces
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(c) Visits to Transit Stations
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(d) Visits to Retail and Restaurants
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(e) Visits to Grocery and Pharmacy
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(f) Visits to Parks
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Figure 3: Relationship Between Temperature and Mobility

(a) Time Spent Away From Home
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Note: Bin scatterplots, using 100 bins after residualizing on county and date fixed effects.



Figure 4: Dynamic Impacts of Weather on COVID-19 Cases and Deaths

Impulse Response Functions Estimated by Panel Linear Projections

(a) Effect of Max Temp on Cases
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24 (15) weeks in sample when h = 1 (10). 1,309 (1,109) counties in sample when h = 1 (10).

(b) Effect of Max Temp on Deaths
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23 (14) weeks in sample when h = 1 (10). 1,251 (1,005) counties in sample when h = 1 (10).

(c) Effect of Precipitation on Cases
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24 (15) weeks in sample when h = 1 (10). 1,309 (1,109) counties in sample when h = 1 (10).

(d) Effect of Precipitation on Deaths
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23 (14) weeks in sample when h = 1 (10). 1,251 (1,005) counties in sample when h = 1 (10).

(e) Effect of Snowfall on Cases
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24 (15) weeks in sample when h = 1 (10). 1,309 (1,109) counties in sample when h = 1 (10).

(f) Effect of Snowfall on Deaths
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23 (14) weeks in sample when h = 1 (10). 1,251 (1,005) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 68 (one standard error), 90, and 95 percent confidence intervals (from darkest to
lightest).



Figure 5: Dynamic Impacts of Mobility on COVID-19 Case Growth

Impulse Response Functions Estimated by Panel Linear Projections

(a) Time Spent Away From Home
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24 (15) weeks in sample when h = 1 (10). 1,309 (1,109) counties in sample when h = 1 (10).

(b) Visits to Work

-1
0

1
2

3
C

ha
ng

e 
in

 C
as

e 
G

ro
w

th
 (p

.p
.) 

Pe
r U

ni
t C

ha
ng

e 
in

 M
ob

ilit
y

1 2 3 4 5 6 7 8 9 10
Weeks Ahead

24 (15) weeks in sample when h = 1 (10). 2,516 (1,917) counties in sample when h = 1 (10).

(c) Visits to Transit Stations
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24 (15) weeks in sample when h = 1 (10).   992 (  846) counties in sample when h = 1 (10).

(d) Visits to Retail and Restaurants
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24 (15) weeks in sample when h = 1 (10). 1,641 (1,358) counties in sample when h = 1 (10).

(e) Visits to Grocery and Pharmacy
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24 (15) weeks in sample when h = 1 (10). 1,487 (1,251) counties in sample when h = 1 (10).

(f) Visits to Parks
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24 (15) weeks in sample when h = 1 (10).   670 (  603) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 68 (one standard error), 90, and 95 percent confidence intervals (from darkest to
lightest).



Figure 6: Dynamic Impacts of Mobility on COVID-19 Deaths Growth

Impulse Response Functions Estimated by Panel Linear Projections

(a) Time Spent Away From Home
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23 (14) weeks in sample when h = 1 (10). 1,251 (1,005) counties in sample when h = 1 (10).

(b) Visits to Work
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23 (14) weeks in sample when h = 1 (10). 2,066 (1,482) counties in sample when h = 1 (10).

(c) Visits to Transit Stations
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23 (14) weeks in sample when h = 1 (10).   936 (  760) counties in sample when h = 1 (10).

(d) Visits to Retail and Restaurants
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23 (14) weeks in sample when h = 1 (10). 1,526 (1,181) counties in sample when h = 1 (10).

(e) Visits to Grocery and Pharmacy
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23 (14) weeks in sample when h = 1 (10). 1,407 (1,108) counties in sample when h = 1 (10).

(f) Visits to Parks
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23 (14) weeks in sample when h = 1 (10).   647 (  564) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 68 (one standard error), 90, and 95 percent confidence intervals (from darkest to
lightest).



Figure 7: Dynamic Impacts of Mobility on Growth in COVID-19 Outcomes

Estimated Rt <= 1 Estimated Rt > 1

(a) Case Growth
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22 (13) weeks in sample when h = 1 (10). 1,262 (  835) counties in sample when h = 1 (10).

(b) Cases Growth
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24 (15) weeks in sample when h = 1 (10). 1,301 (1,063) counties in sample when h = 1 (10).

(c) Deaths Growth
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22 (13) weeks in sample when h = 1 (10). 1,213 (  956) counties in sample when h = 1 (10).

(d) Deaths Growth
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24 (15) weeks in sample when h = 1 (10). 1,207 (1,058) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Mobility
measured by time spent away from home according to Google Mobility Reports. Shaded regions
are 68 (one standard error), 90, and 95 percent confidence intervals (from darkest to lightest).



Figure 8: Dynamic Impacts of Mobility on COVID-19 Cases Growth

(a) Low (Blue) vs High (Orange) Pop Share
in Nursing Homes
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24 (15) weeks in sample when h = 1 (10). 2,722 (1,985) counties in sample when h = 1 (10).

(b) Low (Blue) vs High (Orange) Pop Share
Under 60
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19 (10) weeks in sample when h = 1 (10). 2,503 (1,317) counties in sample when h = 1 (10).

(c) Low (Blue) vs High (Orange) Pop Share
Black
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19 (10) weeks in sample when h = 1 (10). 2,503 (1,317) counties in sample when h = 1 (10).

(d) Low (Blue) vs High (Orange) Pop Share
Hispanic
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19 (10) weeks in sample when h = 1 (10). 2,503 (1,317) counties in sample when h = 1 (10).

(e) Low (Blue) vs High (Orange) Avg. Household Size
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19 (10) weeks in sample when h = 1 (10). 2,503 (1,317) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 90 and 95 percent confidence intervals (from darkest to lightest).



Figure 9: Dynamic Impacts of Mobility on COVID-19 Deaths Growth - Weekly

(a) Low (Blue) vs High (Orange) Pop Share
in Nursing Homes
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23 (14) weeks in sample when h = 1 (10). 2,123 (1,497) counties in sample when h = 1 (10).

(b) Low (Blue) vs High (Orange) Pop Share
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19 (10) weeks in sample when h = 1 (10). 1,807 (1,310) counties in sample when h = 1 (10).

(c) Low (Blue) vs High (Orange) Pop Share
Black
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19 (10) weeks in sample when h = 1 (10). 1,807 (1,310) counties in sample when h = 1 (10).

(d) Low (Blue) vs High (Orange) Pop Share
Hispanic
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19 (10) weeks in sample when h = 1 (10). 1,807 (1,310) counties in sample when h = 1 (10).

(e) Low (Blue) vs High (Orange) Avg. Household Size
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19 (10) weeks in sample when h = 1 (10). 1,807 (1,310) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 90 and 95 percent confidence intervals (from darkest to lightest).



Figure 10: Rolling Regressions (10-Week Windows)

Impact of Mobility on COVID-19 Outcomes 8-Weeks Ahead

(a) Effect of Time Away From Home on Cases
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(b) Effect of Workplace Visits on Cases
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(c) Effect of Time Away From Home on Deaths

0
5

10
15

C
ha

ng
e 

in
 D

ea
th

s 
G

ro
w

th
 (p

.p
.) 

Pe
r U

ni
t C

ha
ng

e 
in

 M
ob

ilit
y

0
5

10
15

2020w19 2020w22 2020w25 2020w28
Latest Week of Data Used For Regressors

(d) Effect of Workplace Visits on Deaths
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Note: Shaded regions are 68 (one standard error), 90, and 95 percent confidence intervals (from
darkest to lightest).



Appendix A – Supplementary Results

Table A1: Estimates of Cumulative Effect on Cases Growth over Subsequent 10 Weeks

Controlling for Non-Pharmaceutical Interventions and Mask Wearing

(1) (2) (3) (4) (5) (6)
Away from Home Work Transit Retail & Rest. Grocery & Pharmacy Parks

Mobility 27.11∗∗∗ 7.375∗∗∗ 2.682∗∗∗ 3.999∗∗∗ 3.215∗∗ 0.108
(5.811) (2.802) (0.654) (1.422) (1.262) (0.194)

L.Mobility 15.76∗∗∗ 10.06∗∗∗ 0.179 0.698 0.677 0.169
(4.725) (3.164) (0.596) (0.950) (1.025) (0.193)

Cases growth rate 2.124∗∗∗ 1.022∗ 1.950∗∗∗ 2.152∗∗∗ 1.968∗∗∗ 2.196∗∗

(0.710) (0.523) (0.694) (0.643) (0.735) (1.059)

L.Cases growth rate -2.640∗∗∗ -2.943∗∗∗ -2.130∗∗∗ -2.387∗∗∗ -2.399∗∗∗ -2.719∗∗∗

(0.494) (0.441) (0.487) (0.463) (0.500) (0.841)

Testing growth rate 698.4 572.7 758.5 633.8 410.5 673.7
(559.5) (510.6) (616.9) (559.3) (562.5) (696.3)

L2.Cases growth rate -3.818∗∗∗ -3.178∗∗∗ -4.689∗∗∗ -4.028∗∗∗ -4.422∗∗∗ -5.748∗∗∗

(0.403) (0.365) (0.514) (0.399) (0.450) (0.734)

L2.Mobility 22.06∗∗∗ 15.14∗∗∗ 0.540 1.653∗ 1.573 0.611∗∗∗

(4.939) (2.158) (0.622) (0.953) (1.013) (0.208)

Maximum Daily Temp -7.632∗∗∗ -5.181∗∗∗ -2.105 -3.074∗∗ -2.688∗ -2.760∗

(1.350) (1.404) (1.537) (1.420) (1.482) (1.666)

Precipitation 1.644 1.191 2.777 2.209 2.251 2.201
(1.444) (1.436) (1.740) (1.628) (1.712) (2.038)

Snowfall 2.081 -17.01 -15.57 -12.11 -8.481 -21.29
(14.57) (14.80) (18.11) (14.71) (15.03) (14.14)

# of NPIs in place -11.61 -0.00923 -21.29∗ -15.78 -22.82∗∗ -20.14
(9.600) (12.06) (11.10) (10.52) (10.87) (12.24)

Mask-wearing share -14.31 -25.40 45.95 -1.221 2.373 27.13
(31.25) (26.85) (30.88) (32.67) (34.90) (38.28)

Observations 6433 9932 5151 7371 6931 3802
Adjusted R2 0.187 0.143 0.112 0.116 0.104 0.099
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table A2: Estimates of Cumulative Effect on Deaths Growth over Subsequent 10 Weeks

Controlling for Non-Pharmaceutical Interventions and Mask Wearing

(1) (2) (3) (4) (5) (6)
Away from Home Work Transit Retail & Rest. Grocery & Pharmacy Parks

Mobility 10.48 1.029 2.462∗∗∗ 0.980 -0.325 0.204
(8.120) (2.729) (0.768) (1.323) (1.265) (0.204)

L.Mobility 15.02∗∗∗ 6.009∗∗ 0.626 1.237 0.883 0.134
(5.612) (2.422) (0.736) (1.000) (1.072) (0.204)

Deaths growth rate -1.705∗∗∗ -1.391∗∗∗ -1.591∗∗ -1.695∗∗∗ -1.908∗∗∗ -1.497∗∗

(0.627) (0.439) (0.787) (0.553) (0.587) (0.583)

L.Deaths growth rate -2.154∗∗∗ -1.477∗∗∗ -2.418∗∗∗ -1.915∗∗∗ -2.035∗∗∗ -2.255∗∗∗

(0.407) (0.277) (0.503) (0.353) (0.375) (0.491)

Cases growth rate 8.175∗∗∗ 6.499∗∗∗ 8.719∗∗∗ 7.969∗∗∗ 7.974∗∗∗ 8.483∗∗∗

(1.100) (0.795) (1.494) (1.055) (1.047) (1.189)

Testing growth rate 2118.6∗∗ 995.4 1693.9 1565.9∗ 1838.9∗∗ 2847.5∗∗

(919.6) (688.5) (1029.5) (844.7) (868.3) (1262.8)

L2.Deaths growth rate -0.972∗∗∗ -0.890∗∗∗ -1.294∗∗∗ -0.831∗∗∗ -0.914∗∗∗ -1.854∗∗∗

(0.364) (0.225) (0.461) (0.308) (0.335) (0.540)

L2.Mobility 12.16∗∗ 5.002∗ 0.476 2.009∗ 1.493 0.0684
(5.927) (2.569) (0.758) (1.033) (1.242) (0.248)

Maximum Daily Temp -6.779∗∗∗ -4.900∗∗∗ -3.393∗∗ -4.152∗∗∗ -3.706∗∗∗ -3.903∗∗∗

(1.670) (1.326) (1.337) (1.371) (1.328) (1.424)

Precipitation 0.131 -0.0204 2.324∗ 0.436 0.609 1.879
(1.267) (1.014) (1.317) (1.168) (1.172) (1.564)

Snowfall -1.867 -5.138 -13.22 -9.538 -8.945 -8.700
(20.62) (21.93) (23.61) (22.51) (22.71) (19.91)

# of NPIs in place 13.40 12.35 8.488 12.00 8.445 1.293
(11.39) (10.92) (12.96) (11.62) (11.26) (14.37)

Mask-wearing share -30.76 -6.628 1.570 -20.82 -22.20 -25.66
(38.67) (29.80) (44.93) (36.15) (38.01) (48.66)

Observations 5734 7648 4533 6372 6101 3548
Adjusted R2 0.124 0.095 0.114 0.107 0.109 0.108
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Figure A1: Dynamic Impacts of Mobility on Growth in COVID-19 Cases

Estimated Rt <= 1 Estimated Rt > 1

(a) Visits to Workplaces - Cases
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22 (13) weeks in sample when h = 1 (10). 2,381 (1,435) counties in sample when h = 1 (10).

(b) Visits to Workplaces - Cases
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24 (15) weeks in sample when h = 1 (10). 2,492 (1,793) counties in sample when h = 1 (10).

(c) Visits to Workplaces - Deaths
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22 (13) weeks in sample when h = 1 (10). 1,950 (1,360) counties in sample when h = 1 (10).

(d) Visits to Workplaces - Deaths
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24 (15) weeks in sample when h = 1 (10). 1,919 (1,515) counties in sample when h = 1 (10).

(e) Visits to Transit - Cases
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22 (13) weeks in sample when h = 1 (10).   957 (  652) counties in sample when h = 1 (10).

(f) Visits to Transit - Cases
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24 (15) weeks in sample when h = 1 (10).   977 (  815) counties in sample when h = 1 (10).

(g) Visits to Transit - Deaths
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22 (13) weeks in sample when h = 1 (10).   911 (  716) counties in sample when h = 1 (10).

(h) Visits to Transit - Deaths
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24 (15) weeks in sample when h = 1 (10).   892 (  781) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 68 (one standard error), 90, and 95 percent confidence intervals (from darkest to
lightest).



Figure A2: Dynamic Impacts of Mobility on Growth in COVID-19 Cases

Estimated Rt <= 1 Estimated Rt > 1

(a) Visits to Retail & Rest. - Cases
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22 (13) weeks in sample when h = 1 (10). 1,585 (1,005) counties in sample when h = 1 (10).

(b) Visits to Retail & Rest. - Cases
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24 (15) weeks in sample when h = 1 (10). 1,620 (1,266) counties in sample when h = 1 (10).

(c) Visits to Retail & Rest. - Deaths
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22 (13) weeks in sample when h = 1 (10). 1,474 (1,088) counties in sample when h = 1 (10).

(d) Visits to Retail & Rest. - Deaths
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24 (15) weeks in sample when h = 1 (10). 1,450 (1,218) counties in sample when h = 1 (10).

(e) Visits to Grocery & Pharmacy - Cases
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22 (13) weeks in sample when h = 1 (10). 1,441 (  931) counties in sample when h = 1 (10).

(f) Visits to Grocery & Pharmacy - Cases
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24 (15) weeks in sample when h = 1 (10). 1,473 (1,169) counties in sample when h = 1 (10).

(g) Visits to Grocery & Pharmacy - Deaths
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22 (13) weeks in sample when h = 1 (10). 1,364 (1,027) counties in sample when h = 1 (10).

(h) Visits to Grocery & Pharmacy - Deaths
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24 (15) weeks in sample when h = 1 (10). 1,339 (1,142) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 68 (one standard error), 90, and 95 percent confidence intervals (from darkest to
lightest).



Figure A3: Dynamic Impacts of Mobility on Growth in COVID-19 Cases

Estimated Rt <= 1 Estimated Rt > 1

(a) Visits to Parks - Cases
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22 (13) weeks in sample when h = 1 (10).   623 (  437) counties in sample when h = 1 (10).

(b) Visits to Parks - Cases
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24 (15) weeks in sample when h = 1 (10).   640 (  575) counties in sample when h = 1 (10).

(c) Visits to Parks - Deaths
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22 (13) weeks in sample when h = 1 (10).   629 (  525) counties in sample when h = 1 (10).

(d) Visits to Parks - Deaths
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24 (15) weeks in sample when h = 1 (10).   622 (  585) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 68 (one standard error), 90, and 95 percent confidence intervals (from darkest to
lightest).



Appendix B – Specification and Results Derived from SIR Model

The canonical SIR model posits that new infections (I) evolve according to:

It+1 = It

(
1− γ + βt

St
N

)
, (3)

where St is the number of susceptible (not previously infected) individuals as of week t, N

is the population, and γ is the weekly rate at which infectious individuals recover or die.

Setting γ = 1 yields:

It+1

It
= βt

St
N
. (4)

This implies:

It+1 = Itβt
St
N

It+2 = It+1βt+1
St+1

N
= It

(
βt
St
N

)(
βt+1

St+1

N

)
...

It+h = It

h−1∏
τ=0

βt+τ
St+τ
N

(5)

Dividing both sides by It and taking logs yields:

logIt+h − logIt = logβt + log

(
St
N

)
+

h−1∑
τ=1

[
logβt+τ + log

(
St+τ
N

)]
(6)

Noting that St = N −
∑t

τ=1 It−τ , then
St
N

= 1−
∑t
τ=1 It−τ
N

and

log(St
N

) = log(1−
∑t
τ=1 It−τ
N

) ≈
∑t
τ=1 It−τ
N

.

Thus:

logIt+h − logIt = logβt +

∑t
τ=1 It−τ
N

+
h−1∑
τ=1

[
logβt+τ + log

(
St+τ
N

)]
. (7)

I hypothesize that the reproduction number, β, is a function of mobility (M) and weather



(W )(e.g., temperature): β = f(M,W ). Log-linearizing f(m,w) around 0 implies log(β) ≈
ψlog(M) + δlog(W ), where ψ and δ represent the elasticities of the reproduction number

with respect to mobility and weather, respectively. Substituting this relationship into the

above equation motivates the following local projections regressions:

logIi,t+h − logIit = ψhmi,t + w
′

itδ
h + θ

∑t
τ=1 It−τ
N

+ αhi + αht + εi,t,t+h, (8)

where m ≡ log(M), w ≡ log(W ), i indexes counties, t indexes time (sample week). Note

that the summation term above is unobserved at time t and so it is omitted. That is, it is

included in εi,t,t+h.

I also add lags of all regressors and new infections to alleviate any correlation between

the omitted summation term above and the regressors due to their serial correlation:

logIi,t+h − logIit =
2∑

τ=0

ψhτmi,t−τ +
2∑

τ=0

w
′

itδ
hτ + θ

∑t
τ=1 It−τ
N

+ αhi + αht + εi,t,t+h. (9)

The resulting IRFs for mobility and temperature, for h = 1 to 10 are shown below in

Figure B1. The results are qualitatively similar to the baseline results in the main text,

which are based on growth in total cases rather than growth in new cases. Specifically,

temperature has a temporary negative effect while mobility has a persistent negative effect.

In the context of the SIR model above, the coefficients can be interpreted as elasticities of

the effective reproduction number with respect to temperature or mobility: dlogβ
dlogX

, where X

is temperature or mobility. The peak coefficient for log temperature of about -1.7 suggests

that a 20% decrease in temperature (say from 80 degrees to 64 degrees), as would be typical

for a transition from summer to fall, would result in an increase in the reproduction number

of about 34%. The effects for mobility are much larger. For time spent away from home,

the elasticity two weeks ahead is about 3 but grows to 17 after 10 weeks. These elasticities

imply that a 10% increase in time spent away from home would increase the reproduction

number by 30% after 2 weeks and by 170% after 10 weeks.



Figure B1: Dynamic Impacts of Mobility on Percent Change in New Cases

Impulse Response Functions Estimated by Panel Linear Projections

(a) Log Maximum Daily Temperature
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24 (15) weeks in sample when h = 1 (10). 1,307 (1,109) counties in sample when h = 1 (10).

(b) Time Spent Away From Home
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24 (15) weeks in sample when h = 1 (10). 1,307 (1,109) counties in sample when h = 1 (10).

(c) Visits to Work
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24 (15) weeks in sample when h = 1 (10). 2,512 (1,911) counties in sample when h = 1 (10).

(d) Visits to Transit Stations
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24 (15) weeks in sample when h = 1 (10).   989 (  846) counties in sample when h = 1 (10).

(e) Visits to Retail and Restaurants
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24 (15) weeks in sample when h = 1 (10). 1,639 (1,358) counties in sample when h = 1 (10).

(f) Visits to Grocery and Pharmacy
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24 (15) weeks in sample when h = 1 (10). 1,486 (1,250) counties in sample when h = 1 (10).

Note: Estimates of equation 9 in the text using panel local projections regressions. Shaded
regions are 68 (one standard error), 90, and 95 percent confidence intervals (from darkest to
lightest).
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