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Abstract

We demonstrate a methodology for replicating and projecting the path of COVID-19 using a simple epidemiol-
ogy model. We fit the model to daily data on the number of infected cases in China, Italy, the United States, and
Brazil. These four countries can be viewed as representing different stages, from later to earlier, of a COVID-19
epidemic cycle. We solve for a model-implied effective reproduction numberRt each day so that the model closely
replicates the daily number of currently infected cases in each country. For out-of-sample projections, we fit a be-
havioral function to the in-sample data that allows for the endogenous response ofRt to movements in the lagged
number of infected cases. We show that declines in measures of population mobility tend to precede declines in
the model-implied reproduction numbers for each country. This pattern suggests that mandatory and voluntary
stay-at-home behavior and social distancing during the early stages of the epidemic worked to reduce the effective
reproduction number and mitigate the spread of COVID-19.
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1 Introduction

As of July 19, 2020, the ongoing COVID-19 pandemic has infected nearly 15 million people worldwide, accounting
for over 600,000 deaths.1 The two hardest hit nations are the United States and Brazil, as measured by the total
number of confirmed cases. In recent months, epidemiology models have been used to project the path of the
epidemic in different locations and help guide decisions about public health interventions.2

This paper demonstrates a methodology for replicating and projecting the path of COVID-19 using a simple
epidemiology model. We fit a standard compartmental epidemiology model (called a SEIR model) to daily data on
the number of COVID-19 infected cases and closed cases (recovered or deceased) in four countries: China, Italy, the
United States, and Brazil.3 These four countries can be viewed as representing different stages, from later to earlier,
of a COVID-19 epidemic cycle. China (specifically Hubei Province) has experienced a nearly complete epidemic
cycle in which the number of COVID-19 infected cases dropped to a value of only 55 on June 10.4 Italy is three
months beyond its peak number of infected cases that occurred on April 19. The number of infected cases in both
the United States and Brazil continue to increase. In the United States, the number of infected cases reached a
local peak on May 30. But after trending down for five days, the number of infected cases reversed course and has
continued to rise through the end of our data sample on July 19. The trailing 7-day average daily growth rate of
infected cases in the United States started trending up in the first week of June, but has recently leveled off at a
value near 1.5%. In Brazil, the trailing 7-day average daily growth rate of infected cases is also near 1.5%, but the
growth rate is more volatile than in the United States.

In addition to representing different stages of the COVID-19 epidemic, the four countries that we examine repre-
sent different magnitudes in the total number of cases (infected plus closed). China has recorded only about 84,000
total cases, whereas Italy has nearly three times that number. In contrast, the total number of cases in the United
States and Brazil are currently about 3.9 million and 2.1 million, respectively.

Based on epidemiological evidence, we calibrate the incubation period for COVID-19 (the average time between
exposure and subsequent infection) to be 5.1 days for each country. Based on the nearly complete epidemic cycle
for China, we calibrate the illness duration parameter (the average time between infection and either recovery or
death) to be 20 days for each country. This value allows the SEIR model’s law of motion for China to approximately
match the end-of-sample number of closed cases on July 19. We introduce an additional country-specific parameter
in the law of motion for closed cases so that we can exactly match the end-of-sample smoothed number of closed
cases in each country. The additional parameter allows us to capture cross-country differences in the reporting of
recoveries or deaths that can influence the transition rate from infected cases to closed cases. For the out-of-sample
projections, we assume that the additional parameter converges towards 1.0 in a manner that approximates the
quasi-real time trajectory of the calibrated value for China.

Given the model parameter values, we solve for the model-implied reproduction number Rt each day so that
our SEIR model exactly replicates a centered 7-day moving average of the number of infected cases in each country.
We use smoothed data in place of the raw data for this computation because it helps to reduce the sensitivity of the
model’s out-of-sample projections to daily fluctuations in new infected cases. But in-sample, the model continues

1The virus responsible for the pandemic is officially named SARS Coronavirus-2 or SARS-CoV-2. The resulting disease, which affects the
human respiratory system, has been named Coronavirus disease 2019 or COVID-19.

2See Avery et al. (2020) for an overview of some modeling techniques that have been applied to the COVID-19 epidemic.
3The labeling of a particular epidemiology model derives from the various health compartments tracked within the population: S = Sus-

ceptible, E = Exposed, I = Infected, R = Removed (or Resolved), and D = Deceased. The standard SEIR model does not distinguish between
recovery or death, but instead combines these into the single R compartment. A SIR model omits the exposed compartment while a SIRD model
places recoveries and deaths into separate compartments.

4But as of July 19, the number of infected cases in China stands at 251, down from 428 on June 30. These numbers reflect a recent outbreak
of new cases in the capital city of Beijing (Source: www.nytimes.com/2020/06/15/world/asia/beijing-coronavirus-outbreak.html). Given that
nearly all cases up to June 10 were concentrated in Hubei Province, we continue to view the epidemic in that area to be nearly complete.
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to closely replicate the raw number of infected and closed cases in each country.
During the early stages of the epidemic, the model-implied Rt is typically large and volatile to capture the

rapid and uneven growth in the number of infected cases. But as the epidemic progresses, the model-implied Rt

tends to decline and become less volatile, providing a daily indicator that can track the degree to which mandatory
or voluntary actions by individuals may be helping to mitigate the spread of the disease. Our model-implied
reproduction number should not be interpreted literally as the average number of secondary infections per infected
case, as usually defined in the epidemiology literature. Rather, the model-implied reproduction number can be
interpreted as the analog to the “Solow residual” in economics, acting as a stand-in for whatever time-varying
model complexities are needed to closely replicate the observed time series of infected cases.5

For the out-of-sample projections, we fit a behavioral function to the in-sample data that allows for the endoge-
nous response of Rt to movements in the lagged number of infected cases. The function captures the idea that
a rising number of infections will trigger a behavioral response by individuals or health authorities that helps to
mitigate the spread of the disease. Our methodology allows us to make projections about the future path of the
epidemic while closely replicating the in-sample data. Nevertheless, we wish to emphasize that our out-of-sample
projections are subject to enormous uncertainty and can sometimes shift by large amounts from one week to the
next, depending on recent incoming data. We illustrate this important point with a quasi real-time experiment
in which we plot a sequence of out-of-sample projections for China and the United States using different end-of-
sample starting points for the projections. Given the wide range of estimates for COVID-19 fatality rates, we do not
attempt to separately project recoveries versus deaths, but we do report some statistics on closed case fatality rates
and estimates of more refined fatality rates from other studies.

The COVID-19 scenarios examined here are intended to demonstrate our methodology and provide a qualitative
view of potential epidemic trajectories in a small sample of selected countries. The out-of-sample projections should
not be viewed as definitive forecasts.6 At the end of our raw data sample on July 19, the epidemic cycle in China
appears nearly complete with only 251 infected cases. For Italy on July 19, there are about 12,400 infected cases
and about 232,000 closed cases. The projected number of closed cases for Italy at the end of the epidemic is around
260,000.

For the United States on July 19, there are about 1.953 million infected cases and about 1.946 million closed
cases. Our model projects the peak number of infections in the United States to occur on or about August 8. This
projection reflects what might be called a “resurgent first wave” because a plot of the actual and projected number
of infections exhibits a double-peaked shape. The projected number of closed cases for the United States at the end
of the epidemic is 8.89 million. For Brazil on July 19, there are about 649,000 infected cases and about 1.45 million
closed cases. Our model projects the peak number of infections in Brazil to occur on or about August 10. The
projected number of closed cases for Brazil at the end of the epidemic is 4.45 million.

Finally, we show that declines in measures of population mobility tend to precede declines in the model-implied
reproduction numbers for each country. This pattern suggests that mandatory and voluntary stay-at-home behavior
and social distancing during the early stages of the epidemic worked to reduce the effective reproduction number
and mitigate the spread of COVID-19. More recently, measures of population mobility have been trending upwards
in all four countries. This pattern reflects both the relaxation of mandatory containment measures and increased
voluntary mobility. But as of July 19, a resurgence of new infections in some areas of the United States has triggered
a reinstatement of some containment measures, consistent with our behavioral hypothesis. At the end of our data
sample, measures of population mobility for the United States appear to have plateaued at a level that is below the

5The model-implied Rt can be viewed as a reverse-engineered stochastic shock. For examples of this approach in economics, see Gelain,
Lansing, and Natvik (2018) and Lansing (2019).

6Interactive versions of more complex SEIR models can be found at http://gabgoh.github.io/COVID/index.html and at
https://neherlab.org/covid19/. These models require the user to specify the future time path ofRt.

Page 2 of 25



pre-epidemic baseline.

Related literature

The number of new COVID-19 related research papers is growing in a manner that may rival the growth rate of
the disease itself. It is not possible to summarize the many related contributions to the literature, whether in epi-
demiology, economics, or other fields. Nevertheless, we wish to highlight some known contributions that employ
methods that appear closely related to our approach.

Kucinskas (2020) and Arroyo-Marioli, Bullano, and Rondón-Moreno (2020) employ SIR models and data on the
number of infected cases to infer the time path of the effective reproduction number in various countries using a
Kalman filter that treats the reproduction number as an unobserved component. Beenstock and Dai (2020) compute
daily values of the effective reproduction number in various countries using a “perpetual inventory method” that
cumulates the number of infected cases over time while assuming a fixed period of contagiousness for each infected
case. Dandekar and Barbastathis (2020) allow for time variation in their SEIR model-implied reproduction number
by introducing a new variable called the “strength of quarantine.” They solve for the time path of the unobserved
quarantine variable and other parameters to produce a best fit of the number of infected and recovered cases in
various locations. Toda (2020) estimates values of the COVID-19 transmission rate for many countries by fitting a
SIR model to daily data on the fraction of confirmed cases in the population.

As discussed by Ma (2020), “phenomenological models,” or curve-fitting approaches, represent an alternative
to epidemiology models when forecasting the evolution of an epidemic. An influential example of this approach
applied to COVID-19 is the model developed by the University of Washington’s Institute for Health Metrics and
Evaluation (IHME 2020). Other recent examples include Roosa et al. (2020), Li and Linton (2020), Liu, Moon, and
Schorfheide (2020), and Harvey and Kattuman (2020).

A COVID-19 forecasting model developed by Atkeson, Kopecky, and Zha (2020) combines a curve-fitting ap-
proach with a simple SIRD model. Specifically, they fit a smooth curve to daily data on the cumulative number
of deaths in a given location and then solve for the values of the model parameters (including initial conditions)
and time paths of the model variables (including the effective reproduction number) so as to exactly replicate the
smoothed curve of cumulative deaths. Fernández-Villaverde and Jones (2020) adopt a similar approach by invert-
ing a simple SIRD model to solve for the time path of the effective reproduction number that causes the model to
replicate the smoothed number of cumulative and daily deaths in various locations. In both papers, the number
of infected and recovered cases is inferred from the model; only the number of deaths is considered observable.
In contrast, our approach closely replicates the number of infected and closed cases (recovered or deceased) in the
data.7 In reality, data on the number of infections, recoveries, or deaths are all measured with error, so in the end, it
comes down to which variables the model builder chooses to replicate.

Atkeson (2020a) and Stock (2020) present epidemiology model simulations for different “flattening the curve”
strategies that define the out-of-sample trajectory of the effective reproduction number. Eichenbaum, Rebelo, and
Trabandt (2020), among a long list of others, explicitly model the welfare-maximizing choices of individuals and
policymakers that, in turn, influence the economic and epidemiological consequences of the disease.

Atkeson (2020b), Korolev (2020), and Fernández-Villaverde and Jones (2020) each demonstrate that different
sets of epidemiology model parameters can fit the in-sample data equally well, yet imply markedly different long
run forecasts. Our quasi real-time projections make a similar point. Hong, Wang, and Yang (2020) consider an
epidemiology model in which the effective reproduction number is subject to stochastic shocks. They show that,
relative to the deterministic version of the same model, the stochastic version can predict a substantially lower

7An early version of our paper was presented internally on April 21, 2020, before we had any knowledge of the two papers mentioned above.
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number of infections, even at horizons beyond 12 months.
The remainder of the paper is organized as follows. Section 2 presents the model, followed by the derivation

of the model-implied reproduction number in section 3. The data, parameter values, and initial conditions are
discussed in section 4. Section 5 shows time series plots of the model-implied reproduction numbers for China,
Italy, the United States, and Brazil. Out-of-sample projections for each country are presented in section 6. Time
series plots of population mobility indices versus model-implied reproduction numbers are presented in section 7.
The appendix outlines an extended version of our model that includes asymptomatic infected cases.

2 Model

The canonical SEIR model of epidemics divides the population N into 4 compartments: Susceptible St, Exposed
Et (but not yet infected due to an incubation period), Infected It, and Removed (or Resolved) Rt, representing
closed cases, i.e., those who are either recovered or deceased.8 Homogeneous random mixing between susceptible
and infected individuals creates exposed individuals who later fall ill at the end of a disease incubation period.
Infected individuals experience a period of illness, after which they may either recover or die. At the beginning
of an epidemic, the share of the population susceptible to infection is high. The share of the population that is
infected accelerates as each infected person can infect more than one other person. The number of new infected
cases eventually slows as there are fewer susceptible individuals to infect and more individuals who have become
non-infectious because they recover or die. The basic model employed here does not separate recoveries from
deaths.

The propagation of an epidemic depends crucially on the daily transmission rate βt. The value of βt may be
influenced by public health measures known as non-pharmaceutical interventions (NPIs) or by the endogenous
response of the population as awareness of the disease grows.9 Other model parameters include σ, the rate at which
exposure leads to infection (the inverse of the incubation period) and γ, the rate of recovery or death (the inverse
of the illness duration). Epidemiological models frequently refer to a “basic reproduction number,” denoted by R0

≡ β0/γ. This is the number of secondary infections that one infected case produces in a fully susceptible population
at t = 0 through the duration of the infectious period (given by 1/γ). As the epidemic evolves (t > 0), the number
of susceptible individuals in the population is reduced. For t > 0, we define the effective reproduction number
as Rt ≡ βt/γ (also called the normalized transmission rate) which measures the average number of secondary
infections per infected case in a population that is no longer fully susceptible.10 When Rt > 1, the number of
infected cases continues to grow until the disease eventually spreads to nearly the entire population. However,
when Rt < 1, the growth rate of infected cases is slow enough so that the disease eventually dies out before
reaching a large fraction of the population.

Given parameter values and a set of initial conditions I0, E0, R0, and S0 = N − I0 − E0 − R0, the four health
compartments evolve according to the following laws of motion:

8The basic SIR model was originally developed by Kermack and McKendrick (1927). The discrete-time SEIR model employed here is adapted
from Atkeson (2020a).

9Typical NPIs include early case identification and contact tracing, isolation of infected or contacted cases by voluntary or forced quarantine,
travel bans or restrictions, social distancing, stay-at-home orders, school and park closures, mandatory wearing of face masks, and public service
campaigns to increase hand washing.

10Delamater et al. (2019) and Ma (2020) discuss the difficulties involved in measuring or estimating R0 or Rt. Atkeson (2020c) and others
define the effective reproduction number asRt ≡ (βt/γ)St/N, which multiplies the normalized transmission rate βt/γ (a time-varying param-
eter of the disease) by the ratio St/N (an endogenous variable). If the disease spreads to a significant fraction of the population, then the ratio
St/N will decline over time, causing the effective reproduction number defined in this way to decline mechanically. Our definition Rt ≡ βt/γ
seeks to isolate movements in the effective reproduction number that arise solely from changes in the value of βt/γ.
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St = St−1 −Rtγ
St−1 It−1

N
, (1)

Et = (1− σ) Et−1 +Rtγ
St−1 It−1

N
, (2)

It = (1− γ) It−1 + σEt, (3)

Rt = Rt−1 + θTγIt−1, (4)

where we have made the substitution βt = Rtγ into equations (1) and (2). The ratio St−1/N is the recent fraction
of the population that is susceptible to the disease. This ratio will be high during the initial stages of an epidemic
like COVID-19 for which the population has little or no herd immunity.11 To facilitate the computation of a model-
implied value of Rt, we postulate that the daily number of exposed cases Et in equation (2) immediately impacts
the daily number of infected cases It in equation (3).12

In equation (4), we introduce the additional parameter θT > 0. This parameter allows the model to capture
country-specific differences in the reporting of recoveries or deaths that can influence the transition rate from in-
fected to closed cases.13 In-sample, we calibrate the value of θT for each country so that the model exactly matches
the end-of-sample smoothed number of closed cases, denoted byRT . For the out-of-sample projections (t > T ), we
assume that θt converges towards 1.0 according to the following law of motion:

θt = θt−1 + κθt−1 (1− θt−1) , (5)

where κ > 0 governs the speed of convergence. We estimate the value of κ using the quasi real-time evolution of
the calibrated value of θT for China, which has gone through a nearly complete COVID-19 epidemic cycle.14

As described below, we fit the above model to smoothed data on the number of COVID-19 infected and closed
cases in China, Italy, the United States, and Brazil. We then project the out-of-sample path of the epidemic using a
behavioral function that governs the evolution ofRt.

3 Model-implied reproduction number

Starting from equations (1) through (3), and then solving for Rt yields the following model-implied value of the
reproduction number:

Rt =
σ−1[It − (1− γ)It−1]− (1− σ)Et−1

γ St−1 It−1/N
, (6)

which is not influenced by the additional parameter θT . Given values for σ, γ, and N, together with the initial
conditions of the model variables, we use equation (6) to solve for the value of Rt each day for t = 1, 2, 3... so that
the model exactly replicates a centered 7-day moving average of the number of infected cases in the data for the
in-sample period. Specifically, the values of It and It−1 in equation (6) are taken from the smoothed data which runs
through July 16. We use smoothed data for It and It−1 because this helps to reduce the sensitivity of the model’s
out-of-sample projections (described below) to daily fluctuations in new infected cases. But in-sample, the model
continues to closely replicate the raw number of infected and closed cases in each country.

11Fine, Eames, and Heymann (2011) examine the concept of “herd immunity” from theoretical and practical perspectives.
12Our discrete-time model approximates the continuous-time derivative for any variable Xt as dXt/dt ≈ Xt − Xt−1. In the continuous-time

limit, there is no distinction between the value of right-side variables dated either t or t− 1.
13An extreme example of this phenomenon can be found in the COVID-19 data for Norway. The reported number of recovered cases remained

constant at 32 from mid-April through May 21. On May 22, the reported number of recovered cases jumped to 7,727.
14The adding-up constraint St + Et + It + Rt = N is relaxed when θt 6= 1. In our model projections, the resulting percentage deviation, defined

as 100× (St + Et + It + Rt − N) /N, never exceeds 1.6% in absolute value for any country. This deviation can be interpreted as reflecting changes
in N over time (due to births, deaths, or migration) or errors in measuring It or Rt.
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During the early stages of the epidemic when the value of the denominator in equation (6) is low (because It−1

is low and St−1/N ≈ 1 ), the model-implied reproduction number is typically large (i.e., Rt � 1) and volatile to
capture the rapid and uneven growth in the number of infected cases.15 As the epidemic progresses, the quantity
St−1 It−1/N in the denominator increases and the model-implied reproduction number tends to decline and become
less volatile. During the progression stage, the model-implied reproduction number can serve as a daily indicator
that can track the degree to which mandated or voluntary behavior on the part of individuals in the population
may be helping to mitigate the spread of the disease. Towards the end of the epidemic cycle when the quantity
St−1 It−1/N again becomes low, the model-implied reproduction number can once again become more volatile.
We can see examples of this end-of-cycle volatility in Figure 1 for China. But in these late stages of the cycle, the
model-impliedRt has already served its purpose in tracking the daily progression of the disease.

In the appendix, we consider an extended version of the model that allows a fraction of infected cases to be
asymptomatic. We show that a model that does not explicitly account for asymptomatic cases when they are indeed
present can exhibit a larger model-implied reproduction number, thus capturing the impact of the asymptomatic
cases in a reduced-form way.

4 Data, initial conditions, and parameter values

Raw data for the daily number of infected (or active) cases and closed cases (recovered or deceased) are from
www.worldometers.info/coronavirus/.16 Starting from the raw data ending on July 19, we apply a centered 7-day
moving average to construct the time series for It that is used to compute Rt from equation (6). For China, we use
January 25, 2020 to represent t = 0. For Italy and the United States, we use February 25, 2020 to represent t = 0.
For Brazil, we use March 1, 2020 to represent t = 0. These dates allow for some smoothing of the raw data before
computing the initial model-implied reproduction numbers. Given that our raw data sample runs through July 19,
the endpoint T of the smoothed data is July 16.

We calibrate N to equal the total population of each country with the exception of China, where N equals the
population of Hubei Province, the area that accounts for nearly all confirmed cases. The values of I0 and R0 are
the smoothed number of infected and closed cases at t = 0. Following Atkeson (2020a), we set E0 = 4I0 in all four
countries, such that S0 = N − 5I0 − R0. Based on a recent study of COVID-19 cases in China by Lauer et al. (2020),
we set σ = 1/5.1 in all four countries, implying an average incubation period of 5.1 days.

When θT = 1, the model’s law of motion for closed cases, equation (4), implies γ = (RT − R0)/ ∑T−I
t=0 It, where

RT is the smoothed number of closed cases at the end of our data sample on day T and the denominator is the
cumulative sum of smoothed infected cases through day T − 1. Using this formula, we obtain γ ≈ 1/20 for China,
which is the only country so far to have experienced a nearly complete COVID-19 epidemic cycle. Based on this
result, we set γ = 1/20 for all countries, implying an illness duration of about three weeks on average.

Given the common value of γ = 1/20, we solve for the value of θT so that the model-predicted value of RT

exactly matches the end-of-sample smoothed number of closed cases in each country. Specifically, we set θT =

(RT − R0)/ ∑T−I
t=0 γIt. For China, we obtain θT ≈ 1 by construction. For Brazil, we obtain θT = 1.07, implying a

somewhat faster transition rate from infected to closed cases. But for Italy and the United States we obtain θT = 0.64
and θT = 0.33, respectively, implying slower transition rates from infected to closed cases. These faster or slower
transition rates may reflect the lack of uniform standards for the reporting of recoveries among local, state, or
national governments.17 But death counts can also be inaccurate, as evidenced by the April 17 revision to the

15The model-impliedRt can even turn briefly negative if It − (1− γ)It−1 < σ(1− σ)Et−1.
16The data for China shows only 66 infected cases on April 17. But the data for April 16 and April 18 show 1,081 and 1,058 infected cases,

respectively. We interpreted the April 17 number to be a data entry error and recoded it as 1,066 infected cases.
17Regarding data on recoveries, Worldometer states “This statistic is highly imperfect, because reporting can be missing, incomplete, incorrect,
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number of COVID-19 deaths in Wuhan, China, which caused the number to jump from 2,579 to 3,869, an increase of
50%.18 Figure A.1 in the appendix plots the quasi real-time evolution of θT for each country. For the out-of-sample
projections, we estimate the value of the speed-of-convergence parameter κ in equation (5) using the quasi real-time
evolution of θT for China. The estimation yields κ = 0.07 with a standard error of 0.01.

To construct model projections for the out-of-sample paths of It and Rt, we must project the future evolution of
the effective reproduction number Rt. Along the lines of Cochrane (2020), we postulate a behavioral function that
allows for the endogenous response of Rt to movements in the number of infected cases. Specifically, we assume
that the out-of-sample value ofRt evolves according to the following law of motion

Rt = Rt−1 I −η
t−1, (7)

where η > 0. Equation (7) implies that the out-of-sample reproduction number is highly persistent, but it responds
negatively to an increase in the lagged number of infected cases. This function captures the idea that a rising
number of infections will trigger a behavioral response by individuals or health authorities that helps to mitigate
the spread of the disease. A number of recent COVID-19 studies present empirical evidence in support of this type
of behavioral response (Maloney and Taskin 2020, Hatzius, Struyven, and Rosenberg 2020, Goolsbee and Syverson
2020, and Winkler 2020).19

Given the in-sample time path of the model-impliedRt, we solve for the best fit values of the starting reproduc-
tion numberR0 and the behavioral response parameter η that cause the end-of-sample value ofRt computed from
equation (7) to hit an end-of-sample target value.20 For Italy, the United States, and Brazil, the end-of-sample target
value is the model-impliedRt from equation (6) averaged over the most recent 7 days. As before, using a 7-day av-
erage helps to reduce the sensitivity of the out-of-sample projections to daily fluctuations in new infected cases. For
China, we set the end-of-sample target value to 0.1, reflecting our view that the epidemic cycle in Hubei Province is
nearly complete. Otherwise, the end-of-sample target value can be unduly influenced by the end-of-cycle volatility
in the model-impliedRt, as evidenced in Figure 1.21 For the first out-of-sample projection, we setRt−1 in equation
(7) equal to the end-of-sample target value for each country.

Table 1 summarizes the initial conditions and parameter values used in the projections.

Table 1: Initial conditions and parameter values

Country t = 0 N I0 E0 R0 θT R0 η

China (H.P.) Jan 25 60×106 2443.4 4I0 113.1 0.99 4.8 0.0031
Italy Feb 25 62×106 375.3 4I0 25.0 0.64 6.0 0.0014
United States Feb 25 332×106 45.9 4I0 6.0 0.33 9.7 0.0011
Brazil Mar 1 212×106 1.9 4I0 0.0 1.07 11.4 0.0014
Notes: For all countries, σ = 1/5.1, γ = 1/20, and κ = 0.07. The values of θT ,R0 and
η are computed using smoothed data that runs through T = July 16. H.P. = Hubei Province.

based on different definitions, or dated (or a combination of all of these) for many governments, both at the local and national level...In view of
this, “Active Cases” and “Closed Cases Outcome” which both depend on the number of recoveries (in addition to an accurate death count and
a satisfactory rate of case detection, both of which are lacking in the vast majority of countries) can be affected by this inherent flaw for many
countries and for the total worldwide count.” Source: https://www.worldometers.info/coronavirus/about/.

18According to the Wall Street Journal “A growing pool of global death statistics indicates that few countries are accurately capturing fatalities
from the new coronavirus—and in some the shortfall is significant.” Source: https://www.wsj.com/articles/most-countries-fail-to-capture-
extent-of-covid-19-deaths-11590658200.

19Starting of June 25, 2020, the COVID-19 model developed by the University of Washington’s Institute for Heath Metrics and Evaluation
(IHME) employs a behavioral function in which the trend of easing containment measures in a given location continues along its current
trajectory until the daily death rate rises above a threshold, thus triggering a reintroduction of stricter containment measures. For details, see
http://www.healthdata.org/covid/updates.

20In an earlier version of this paper, we assumed that the out-of-sample reproduction number evolved according to the exogenous law of
motion: Rt = R0 exp(−ηt) + [1− exp(−ηt)]R∞, withR0 and η estimated from in-sample data andR∞ = 0.1.

21For the quasi real-time projections plotted in Figure 7 for the earlier stages of the epidemic cycle in China, the end-of-sample target value is
the model-impliedRt from equation (6) averaged over the most recent 7 days.
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5 Model-implied reproduction numbers for each country

Since China (specifically Hubei Province) has experienced a nearly complete COVID-19 epidemic cycle, it offers a
template for modelling the evolution of the epidemic in other countries. The model-implied Rt for China together
with the “China trajectory” are plotted in Figure 1. The level and volatility of the model-implied Rt for China is
high at beginning stages of the epidemic cycle when the quantity St−1 It−1/N in the denominator of equation (6) is
low. But during the middle stage of the epidemic, the volatility of the model-implied Rt is low. The peak number
of infections for China occurred on February 17 (t = 26). After this date, the model-impliedRt tracks mostly below
1.0 aside from some noisy fluctuations that derive from changes in the small number of infected cases toward the
end of the epidemic. The end-of-sample spike in the model-implied Rt for China reflects a recent outbreak of new
COVID-19 cases in Beijing, as noted in the introduction.

The China trajectory that is used for out-of-sample projections is the estimated version of equation (7) with
R0 = 4.8 and η = 0.0031. While the starting valueR0 may seem rather large, a study by Aguiar et al. (2020) argues
that the rapid exponential growth of recorded COVID-19 cases in thirteen countries during February and March
2020 implies a very high percentage of asymptomatic carriers. Their model implies that the effective reproduction
number at the start of the outbreak could range from 5.5 to 25.4, with a point estimate of 15.4.22

The model-implied Rt for Italy together with the “Italy trajectory” are plotted in Figure 2. As with China,
the level and volatility of the model-implied Rt are high during the first 25 days of the epidemic.23 The peak
number of infections for Italy occurred on April 19 (t = 54). Compared to China, it took longer for Italy to reach its
peak number of infections. The model-implied Rt for Italy tracks below 1.0 after the infection peak, reflecting the
persistent decline in the number of infected cases. The Italy trajectory that is used for the out-of-sample projections
starts atR0 = 6.0 and then declines over time to hit the end-of-sample target value of 0.81.

The model-implied Rt for the United States together with the “United States trajectory” are plotted in Figure
3. As with China and Italy, the level and volatility of the model-implied Rt for the United States are high during
the first 25 days of the epidemic. But the level and volatility both decline noticeably thereafter. Indeed, the model-
impliedRt dropped below 1.0 from May 30 through June 3, reflecting a short-lived decline in the number of infected
cases. But from June 4 onward, the model-implied Rt for the United States has remained above 1.0, reflecting
a continued increase in the number of infected cases. The United States trajectory that is used for out-of-sample
projections starts at R0 = 9.7 and then declines over time to hit the end-of-sample target value of 1.42. The United
States trajectory crosses below 1.0 on August 7 (t = 164), one day before the projected date of peak infections on
August 8.

The model-implied Rt for Brazil together with the “Brazil trajectory” are plotted in Figure 4. As with the other
countries, the level and volatility of the model-impliedRt are high during the first 25 days of the epidemic. But after
an interval where the level and volatility are both declining, the model-implied Rt for Brazil exhibits some sharp
downward and upward jumps during the middle part of April (t = 40 to 50), which reflect corresponding jumps
in the number of infected cases in the data. These jumps may reflect reporting errors or corrections to reporting
errors.24 Since then, however, the level and volatility of the model-implied Rt have resumed their declines. The
Brazil trajectory that is used for out-of-sample projections starts atR0 = 11.4 and then declines over time to hit the
end-of-sample target value of 1.56. The Brazil trajectory crosses below 1.0 on August 9 (t = 161), one day before
the projected date of peak infections on August 10. Based on this trajectory, Brazil appears roughly aligned with
the United States in the COVID-19 epidemic cycle. During the month of May, it had appeared that Brazil was about

22Studies that estimate the effective reproductive number in China include Kucharski et al. (2020), Wang et al. (2020), and Wu et al. (2020).
23Cerada et al. (2020) provide estimates of the effective reproduction number in regions of northern Italy in February 2020.
24The raw number of infected cases dropped from 21,929 on April 13 to only 9,704 on April 14. Four days later on April 18, the raw number

of infected cases was back up to 20,335. The raw number then dropped to 14,062 on April 19.
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two to three weeks behind the United States in the cycle. But the incoming data during the months of June and July
has served to delay the projected date of peak infections for the United States.

6 Out-of-sample projections

Using the foregoing framework, we construct out-of-sample projections for the number of infected cases and the
number of closed cases (recovered or deceased) in each country. In-sample, we assume that Rt is given by the
country’s model-implied value that is computed using smoothed data that runs through July 16. For the out-of-
sample projections starting on July 20, we assume that Rt evolves according to the estimated version of equation
(7).

6.1 China

The top panels of Figure 5 show the out-of-sample predictions for China. At the end of our data sample, the
epidemic cycle in Hubei Province appears nearly complete with only a small number of infected cases. The most-
recent recorded death from COVID-19 occurred on May 17. The peak number of infections occurred on February
17 (t = 26) at 58,016. By construction, the model closely replicates the number infected cases (top left panel) and the
number of closed cases (top right panel).

Even though COVID-19 emerged just a few weeks prior to the Chinese New Year (a period of typically high
travel), the rapid deployment of NPIs proved to be effective in limiting the spread of the outbreak. This is a re-
markable achievement for an area with a population of around 60 million people.25 A study by Lai, et al. (2020)
concludes that “if NPIs were conducted one week, two weeks, or three weeks later, the number of cases could have
shown a 3-fold, 7-fold, and 18-fold increase across China, respectively.”26 The same study acknowledges that “If
NPIs could have been conducted one week, two weeks, or three weeks earlier in China, [then] cases could have
been reduced by 66%, 86%, and 95%, respectively.”

At the end of our data sample, China has recorded a total of 4,634 deaths out of 83,660 closed cases, yielding
a closed case fatality rate of 5.5%. But more refined estimates yield much lower fatality rates. After adjusting for
lags in the reporting of deaths and differences in fatality rates by age, China’s fatality rate from COVID-19 has been
estimated to be in the range of 1.1% (Russell et al. 2020) to 1.4% (Verity et al. 2020, Guan, et al. 2020). Further
adjustments to include estimates of asymptomatic cases in the denominator yield even lower fatality rates—in the
range of 0.5% to 0.7%.

6.2 Italy

The bottom panels of Figure 5 show the out-of-sample predictions for Italy. At the end of our data sample, there
are about 12,400 infected cases and about 232,000 closed cases. The peak number of infections occurred on April 19
(t = 54) at 108,165. The projected number of closed cases at the end of the epidemic is around 260,000.

At the end of our data sample, Italy has recorded a total of 35,045 deaths out of 231,994 closed cases, yielding a
closed case fatality rate of 15.1%, well above the 5.5% closed case fatality rate for China. Rinaldi and Paradisi (2020)

25The first cases were identified in early December 2019. On December 31, 2019, the Wuhan Health Commission notified the China Center
for Disease Control and Prevention and the World Health Organization (WHO) of a potential virus problem. On January 23, 2020, travel from
Wuhan City was shut down, followed by similar travel shutdowns for 16 other cities in Hubei Province. Sources: Wu and McGoogan (2020),
Wang et al. (2020) and Leung et al. (2020).

26According to Lai et al. (2020): “In Wuhan, where the largest number of infected people live, residents were required to measure and report
their temperature daily to confirm their onset, and those with mild and asymptomatic infections were also quarantined in ‘Fang Cang’ hospitals,
which are public spaces such as stadiums and conference centers that have been repurposed for medical care.” The early detection and isolation
of cases was estimated to prevent more infections than travel restrictions and contact reductions.
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use population level statistics of death records comparing pre-COVID and post-COVID sample periods to estimate
a fatality rate of 1.29% for Italy. Using a modified SIR Model, Calafiore, et al. (2020) estimate a fatality rate of 1.18%
for Italy using cases that tested positive.

6.3 United States

The top panels of Figure 6 show the out-of-sample projections for the United States. At the end of our data sample,
there are about 1.953 million infected cases and about 1.946 million closed cases. The number of infected cases
reached a local peak on May 30. But after trending down for five days, the number of infections reversed course
and has continued to rise through the end of our data sample. The peak number of infections is projected to occur
on August 8 (t = 165) at about 2.23 million. This projection reflects what might be called a “resurgent first wave”
because the plot of the actual and projected number of infections (top left panel of Figure 6) exhibits a double-peaked
shape.

The projected number of closed cases at the end of the epidemic is around 8.89 million (top right panel of Figure
6). The calibrated value of θT for the United States is well below 1.0 and the peak number of infections has yet to
be reached. Consequently, the projected number of closed cases at the end of the epidemic is somewhat sensitive
to the value of the speed-of-convergence parameter κ that appears in equation (5).27 Our baseline projection of 8.89
million closed cases employs κ = 0.07. When κ = 0.04, the projected number of closed cases declines to around 7.88
million. When κ = 0.10, the projected number of closed cases rises to around 9.37 million.

At the end of our data sample, the United States has recorded a total 143,289 deaths out of 1,945,627 closed cases,
yielding a closed case fatality rate of 7.4%, somewhat above the 5.5% closed case fatality rate for China. According
to the U.S. Centers for Disease Control and Prevention, the best estimate of the overall infection fatality rate for
COVID-19 is 0.65%.28

On July 20, 2020, the University of Washington’s Institute for Heath Metrics and Evaluation (IHME) was project-
ing about 225,000 total deaths for the United States for the period through November 1, with an uncertainty range
of about 197,000 to 268,000 deaths.29 Prior to May 4, 2020, IHME employed a purely phenomenological model
that fitted a statistical distribution to the hump-shaped curve of daily deaths in various locations and then used
the fitted distribution to project out-of-sample. Starting on May 4, 2020, the IMHE projection methodology was
augmented to include a SEIR model component in which the effective reproduction number is allowed to vary over
time to closely match the observed number of deaths in each location.30 Upon introduction of these updates, the
projected number of total deaths from COVID-19 for the United States jumped from 72,433 to 134,475. This example
helps to illustrate the wide range of uncertainty surrounding out-of-sample projections, even when constructed by
professional epidemiologists.31

6.4 Brazil

The bottom panels of Figure 6 show the out-of-sample projections for Brazil. At the end of our data sample, there
are about 649,000 infected cases and about 1.45 million closed cases. The peak number of infections is projected to

27For the other three countries, the sensitivity of the out-of sample projections to the value of κ is much lower because θT is already close to
1.0 (China and Brazil) or because the number of infections is well past the peak (Italy).

28Source: www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.
29Daily updates of the projections can be found at https://covid19.healthdata.org/projections.
30Details of the May 4 update can be found at http://www.healthdata.org/sites/default/files/files/Projects/COVID/Estimation update 050420.pdf.
31Atkeson (2020c) provides a simplified example of IHME’s pre-May 4 forecasting approach. He shows that when mapped into the daily

number of deaths predicted by a simple SIRD model, the IHME’s approach implies an effective reproduction number that falls linearly over
time, possibly resulting in an optimistic forecast if the declining time trend does not materialize in practice. Similarly, Wang, Wua, and Yang
(2012) demonstrate a one-to-one mapping between the parameters of a curve-fitting approach based on the Richards (1959) model and a simple
SIR model.
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Table 2: Population-adjusted statistics

China (H.P.) Italy United States Brazil

Total cases/million 1,394 3,942 11,743 9,905
Total deaths/million 77 565 432 375

Notes: Total cases are active cases (currently infected) plus closed cases
(recovered or deceased). Statistics are computed using raw data that runs
through July 19. H.P. = Hubei Province.

occur on August 10 (t = 162) at about 802,000. The projected number of closed cases at the end of the epidemic is
around 4.45 million.

At the end of our data sample, Brazil has recorded a total 79,533 deaths out of 1,285,663 closed cases, yielding a
closed case fatality rate of 5.5%, the same as China. An epidemiological study of COVID-19 deaths by Ganem, et al.
(2020) estimates a case fatality rate of 1.6% for Brazil.

6.5 Population-adjusted statistics

The four countries we examine have large differences in population, which can affect the total number of cases and
the number of resulting deaths from COVID-19. Table 2 provides population-adjusted statistics for the total number
of cases (infected plus closed) and the total number of deaths for each country. As before, we use the population of
Hubei Province to compute the statistics for China because that area accounts for nearly all confirmed cases. Table
2 shows that China has the lowest number of population-adjusted cases whereas the United States has the highest
number. China also has the lowest number of population-adjusted deaths whereas Italy has the highest number.

6.6 Sensitivity of out-of-sample projections

Our out-of-sample projections are subject to enormous uncertainty and can sometimes shift by large amounts from
one week to the next, depending on recent incoming data. This is a typical feature of epidemiology (and economic)
prediction models.32 Figure 7 illustrates this important point. Specifically, we plot a sequence of “quasi real-time”
projections for the number of infected cases and the number of closed cases in China and the United States.33 Each
projection uses a different end-of-sample starting point. For each end-of-sample starting point, we recalibrate the
values of θT ,R0, and η according to the procedures described in Section 4.

The left-side panels in Figure 7 show that our out-of-sample projections can significantly underpredict or over-
predict the number infected cases during the early stages of the epidemic when the model-implied Rt is above 1.0
and highly volatile. But as the epidemic evolves and the model-implied Rt declines and becomes less volatile, the
out-of-sample projections exhibit less sensitivity to incoming data. The sensitivity to incoming data also declines
after the peak number of infections has been reached. Similarly, Fernández-Villaverde and Jones (2020) find that
their out-of-sample projections for daily deaths from COVID-19 become less noisy after the peak number of daily
deaths in a given location has been reached.

The right-side panels of Figure 7 show that shifts in the projected trajectory of infected cases can translate into
large shifts in the projected number of closed cases at the end of the epidemic (and correspondingly large shifts in

32For epidemiology models, see the record of real-time forecasts from the University of Washington’s Institute of Heath Metrics and Evaluation
(IHME) model, which are available from https://www.covid-projections.com.

33Orphanides and van Norden (2002) employ this quasi real-time methodology to demonstrate that most of the variation in real-time estimates
of the output gap (defined as the percent deviation of actual GDP from trend GDP) is due to new incoming data, as opposed to revisions to older
data. The COVID-19 data from www.worldometers.info/coronavirus/ are frequently revised without any notifications to the user. Taking into
account these real-time data revisions would increase the uncertainty surrounding our out-of-sample projections.
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the projected number of total deaths). This result highlights the difficulty of formulating a set of health policy con-
tainment measures that strike the appropriate balance between epidemiological benefits and the costs that derive
from negative impacts to the economy and other health metrics. We note that recent studies of optimal COVID-19
containment policy often treat key model parameters, such as the disease transmission rate, as known constants,
thereby suppressing a major source of uncertainty. Hornstein (2020) is an example of one study that does take into
account the uncertainty regarding COVID-19 disease parameters. He shows that model-projected outcomes for
total deaths as a fraction of the population can vary by a factor of nine.

7 Mobility indices and model-implied reproduction numbers

What accounts for the declines in the model-implied reproduction numbers plotted in Figures 1 through 4? A num-
ber of studies have linked declines in daily COVID-19 infections, deaths, or effective reproduction numbers to both
mandatory and voluntary containment measures. For example, Xu, et al. (2020) argue that there were two turning
points of daily new infections or deaths in the United States which appear to be linked to the implementation of
stay-at-home orders in 10 states on March 23 and the Center for Disease Control’s recommendation for the wearing
of face-masks on April 3. A study by Pei, et al. (2020) of major United States metropolitan areas estimates signif-
icant declines in reproduction numbers that appear linked to declines in real-time mobility indices. Maloney and
Taskin (2020) present evidence that reductions in mobility for various countries (as measured by Google mobility
indices) are driven mainly by voluntary responses. A cross-country study by Deb et al. (2020) finds that daily num-
bers of infected cases and deaths declined in the 30 days following the implementation of government-mandated
containment measures.34 Based on trends in Google mobility indices, Hatzius, Struyven, and Rosenberg (2020) con-
clude that voluntary social distancing started in many places before mandatory government controls were enacted,
possibly due to fear of the virus.

Motivated by the studies mentioned above, Figure 8 plots the model-implied Rt in each country versus mea-
sures of population mobility. We use two measures of population mobility: (1) the daily average of the Google
mobility indices for workplace and transit locations, and (2) an index defined as 100 minus the Goldman Sachs
lockdown index. The Google mobility indices, which do not cover China, are expressed as a percent deviation from
a baseline value of zero. For plotting purposes, we re-normalize the baseline value to equal 100.35 The Goldman
Sachs lockdown index combines lockdown and social distancing measures from the University of Oxford’s Coron-
avirus Government Response Tracker with Google mobility indices. For China, the lockdown index makes use of
subway transportation data.36

Figure 8 shows that declines in measures of population mobility tend to precede declines in the model-implied
Rt for each country. This pattern suggests that mandatory and voluntary stay-at-home behavior and social distanc-
ing during the early stages of the epidemic worked to reduce the effective reproduction number and mitigate the
spread of COVID-19.

More recently, measures of population mobility have been trending upwards in all four countries. This pattern
reflects both the relaxation of mandatory containment measures and increased voluntary mobility.37 But as of
July 19, a resurgence of new infections in some areas of the United States has triggered a reinstatement of some
containment measures, consistent with our behavioral hypothesis set forth in equation (7). At the end of our data

34Data on the various containment measures are from the University of Oxford’s Coronavirus Government Response Tracker:
www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker.

35The Google mobility indices are available from https://www.google.com/covid19/mobility/.
36Data on the Goldman Sachs lockdown index are available from https://research.gs.com/content/research/en/reports/2020/07/15/38f54e72-

93ba-4fdd-a166-5781558b43fd.pdf. See also Tilton and Struyven (2020).
37Chakrabarti and Pinkovskiy (2020) find that the relaxation of mandatory containment measures contributes to increases in mobility after

accounting for trends that were already in place at the time of relaxation.

Page 12 of 25



sample, measures of population mobility for the United States appear to have plateaued at a level that is below the
pre-epidemic baseline.

8 Conclusion

Modeling the evolution of COVID-19 is fraught with challenges. There is an enormous range of uncertainty sur-
rounding the projected numbers of infections, recoveries, or deaths. At the same time, this enormous uncertainty
highlights the potentially large risks of relaxing containment measures too early. Some countries, including the
United States, which had started to relax containment measures are now reversing course after seeing a resurgence
in the number of infected cases.

Previous influenza pandemics have typically been followed by a second (and sometimes even a third) wave of
infections (Moore, et al. 2020). A second wave of infections could be magnified by “seasonal forcing” that serves to
push up the effective reproduction number of COVID-19 during the Fall of 2020 (Kissler et al. 2020). Some infectious
disease experts advocate for maintaining strict containment measures long after the effective reproduction number
drops below 1.0.38 This is because a delayed relaxation date permits the number of infected cases to be driven much
lower, resulting in a slower spread of the disease when random mixing between infected and susceptible groups
eventually recommences. Clearly, there are epidemiological benefits of maintaining strict containment measures,
but these epidemiological benefits must be balanced against the economic costs and the collateral health damage
costs of doing so.

38See, for example, McBryde, Meehan, and Trauer (2020) and the following Washington Post news article from April 8,
2020: https://www.washingtonpost.com/national/health-science/as-social-distancing-shows-signs-of-working-whats-next-crush-the-curve-
experts-say/2020/04/08/3c720e06-7923-11ea-b6ff-597f170df8f8 story.html.
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Appendix: Extended model with asymptomatic cases

According to the U.S. Centers for Disease Control and Prevention, the best estimate of the percentage of COVID-19
infections that are asymptomatic is 40%.39 Following Aguilar et al. (2020), this appendix extends our model to
allow a fraction of infected cases to be asymptomatic. We show that a model that does not explicitly account for
asymptomatic cases when they are in fact present can nevertheless capture the impact of asymptomatic cases on
the model-implied reproduction number in a reduced-form way. The laws of motion for the generalized model are
given by:

St = St−1 − R̃tγ
St−1

(
Is
t−1 + Ia

t−1
)

N
, (A.1)

Et = (1− σ)Et−1 + R̃tγ
St−1

(
Is
t−1 + Ia

t−1
)

N
, (A.2)

Is
t = (1− γ)Is

t−1 + (1− α)σEt, (A.3)

Ia
t = (1− γ)Ia

t−1 + ασEt, (A.4)

Rt = Rt−1 + γ (Is
t−1 + Ia

t−1), (A.5)

where the superscripts s and a denote symptomatic and asymptomatic infected cases, respectively. The parameter
α is the fraction of exposed cases that are infected without showing any symptoms, i.e. the probability of becoming
an asymptomatic case. The effective reproduction number in the generalized model is given by R̃t≡ β̃t/γ, where
we have assumed that the daily transmission rate and the average illness duration are the same for both types of
infected cases.40

Solving equations (A.1) through (A.4) for R̃t yields

R̃t =
σ−1[Is

t − (1− γ)Is
t−1]− (1− σ)Et−1 + σ−1[Ia

t − (1− γ)Ia
t−1]

γ St−1
(

Is
t−1 + Ia

t−1
)

/N
, (A.6)

which collapses to equation (6) when Ia
t = Ia

t−1 = 0. The above expression implies ∂R̃t/∂Ia
t > 0, i.e., an increase in

asymptomatic cases serves to magnify the effective reproduction number for any given values of Is
t , Is

t−1, Ia
t−1, and

Et−1. We can rewrite equation (A.6) as follows

R̃t =
RtγSt−1 Is

t−1/N + σ−1[Ia
t − (1− γ)Ia

t−1]

γSt−1
(

Is
t−1 + Ia

t−1
)

/N
, (A.7)

where Rt is the model-implied reproduction number from equation (6) in the reduced-form model that does not
account for asymptomatic cases. Solving equation (A.7) forRt yields:

Rt = R̃t
(
1 + Ia

t−1/Is
t−1
)
−

σ−1[Ia
t − (1− γ)Ia

t−1]

γSt−1 Is
t−1/N

. (A.8)

Equation (A.8) implies that Rt > R̃t whenever R̃t > σ−1[Ia
t − (1− γ)Ia

t−1]/(γ St−1 Ia
t−1/N). In other words, if

the reproduction number R̃t in the true model with asymptomatic cases is sufficiently high to satisfy this condition,
then the model-implied reproduction number Rt in the reduced-form model that does not account for asymp-
tomatic cases will be even higher. For example, at the start of the epidemic we have St−1/N ≈ 1 (because few
individuals are infected) and Ia

t ≈ Ia
t−1 (because infections grow very slowly at the start). In this case, we have

Rt > R̃t whenever R̃t > σ−1.
39Source: www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.
40A more generalized version of the model could allow β̃s

t 6= β̃a
t or γs 6= γa.
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Figure 1: China reproduction number
Notes: The peak number of infections for China occurred on February 17 (t = 26). After this date, the model-
implied Rt tracks mostly below 1.0 aside from some brief daily fluctuations. The spike in the model-implied Rt
around t = 140 reflects an outbreak of new cases in the capital city of Beijing.

Figure 2: Italy reproduction number
Notes: The peak number of infections for Italy occurred on April 19 (t = 54). After this date, the model-implied Rt
tracks below 1.0.
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Figure 3: United States reproduction number
Notes: The model-impliedRt for the United States dropped below 1.0 from May 30 (t = 95) through June 3 (t = 99),
reflecting a short-lived decline in the number of infected cases. But from June 4 onward, the model-implied Rt for
the United States has remained above 1.0, reflecting a continued increase in the number of infected cases.

Figure 4: Brazil reproduction number
Notes: The model-impliedRt for Brazil exhibits some sharp downward and upward jumps during the middle part
of April (t = 40 to t = 50), which may reflect reporting errors in the number of infected cases. The model-implied
Rt averaged over the most-recent 7 days remains above 1.0 at the end of our data sample, reflecting a continued
increase in the number of infected cases.
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(a) China: Number infected (b) China: Number recovered of deceased

(c) Italy: Number infected (d) Italy: Number recovered of deceased

Figure 5: Out-of-sample projections: China and Italy
Notes: The top panels show the out-of-sample projections for China (specifically Hubei Province). The peak number
of infections occurred on February 17 (t = 26). At the end of our data sample, the epidemic cycle is nearly complete
with only a small number of infected cases. The bottom panels show the out-of-sample projections for Italy. The
peak number of infections occurred on April 19 (t = 54). The projected number of closed cases for Italy at the end
of the epidemic is around 260,000.
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(a) United States: Number infected (b) United States: Number recovered of deceased

(c) Brazil: Number infected (d) Brazil: Number recovered of deceased

Figure 6: Out-of-sample projections: United States and Brazil
Notes: The top panels show the out-of-sample projections for the United States. The peak number of infections is
projected to occur on or about August 8 (t = 165). The projected number of closed cases at the end of the epidemic
is around 8.89 million. The bottom panels show the out-of-sample projections for Brazil. The peak number of
infections is projected to occur on or about August 10 (t = 162). The projected number of closed cases at the end of
the epidemic is around 4.45 million.

Page 22 of 25



(a) China: Number infected cases (b) China: Number recovered of deceased

(c) United States: Number infected (d) United States: Number recovered of deceased

Figure 7: Quasi real-time projections
Notes: The figure plots sequences of “quasi real-time” projections for the number of infected cases and the number of
closed cases in China and the United States. Each projection uses a different end-of-sample starting point indicated
by the month-day label. For each end-of-sample starting point, we recalibrate the values of θT ,R0, and η according
to the procedures described in Section 4. The out-of-sample projections can sometimes shift by large amounts from
one week to the next, depending on recent incoming data. Dashed lines mark the highest and lowest out-of-sample
projections for the number of closed cases at the end of the epidemic.
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(a) China: Mobility and reproduction number (b) Italy: Mobility and reproduction number

(c) United States: Mobility and reproduction number (d) Brazil: Mobility and reproduction number

Figure 8: Mobility indices and model-implied reproduction numbers
Notes: Declines in measures of population mobility tend to precede declines in the model-implied Rt for each
country. This pattern suggests that mandatory and voluntary stay-at-home behavior and social distancing during
the early stages of the epidemic worked to reduce the effective reproduction number and mitigate the spread of
COVID-19. For plotting purposes, the Google mobility indices are re-normalized to have baseline value of 100
instead of zero.
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Figure A.1: Calibrated value of parameter θT
Notes: Given the common value of γ = 1/20 for all countries, we solve for the value of θT so that the model-
predicted value of RT exactly matches the end-of-sample smoothed number of closed cases for each country. The
figure plots the quasi-real time evolution of θT for each country. For the out-of-sample projections (t > T), we
assume that θt converges towards 1.0, as governed by equation (5) with κ = 0.07, which is estimated from the
quasi-real time evolution of θT for China. The dashed lines show the out-of-sample paths of θt for each country.
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