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Abstract

Using expectations embodied in oil futures prices, we examine how expecta-

tions are formed and how they affect the macroeconomic transmission of shocks.

We show that an empirical framework in which investors form expectations by

learning about the persistence of oil-price movements successfully replicates the

fluctuations in oil-price futures since the late 1990s. We then embed this learn-

ing mechanism in a model with oil usage and storage. Estimating the model,

we document that an increase in the persistence of TFP-driven fluctuations in

oil demand largely account for investors’ perceptions that oil-price movements

became increasingly permanent during the 2000s before declining thereafter. We

show that the presence of learning alters the macroeconomic impact of shocks,

making the responses time-dependent and conditional on the views of economic

agents about the shocks’ likely persistence.
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1 Introduction

Expectations are central in macroeconomics. They affect the response of price and wage

inflation to shocks and impact the transmission of shocks more broadly. Whereas the

literature has often looked at expectations formation in surveys (see Coibion, Gorod-

nichenko, and Kamdar (2018) for a recent overview), we look at the expectations em-

bodied in futures markets. We focus on the oil market in part because of its importance

for economic activity.

The futures market appears to have only slowly recognized that events since the early

2000s–from the growing importance of China in the world economy to the onset of the

financial crisis and the shale revolution–would radically change the outlook for oil prices.

Whereas the resulting forecast errors over this period have often been attributed to

speculation or to time-varying risk, this paper provides an explanation of the movements

in oil-price futures based on expectations formed through learning. We then show, using

an estimated dynamic, stochastic, general equilibrium (DSGE) model, that this learning

process has important macroeconomic implications. In particular, responses to shocks

become time-dependent and conditional on the views of economic agents about the

shocks’ likely persistence.

Our analysis indicates that the developments in the oil futures markets since the

late 1990s are largely consistent with investors gradually learning about the persistence

of underlying shocks. Using the Kalman filter to infer the permanent and transitory

components of shocks to spot oil prices, we show that this simple form of learning

can replicate the observed behavior of futures prices.1 Our estimates suggest a rising

contribution of permanent shocks to the variance of oil prices from 2002 to 2008. Our

analysis further indicates that investors perceived the late-2014 drop in oil prices as

somewhat transitory. Since then, our estimates suggest some additional slight decline

in the perceived persistence of shocks.

We then embed this gradual learning mechanism in a DSGE model in which oil

is storable and used in production to impute the underlying source of shocks for the

changes in investors’ beliefs. We estimate the model focusing on three scenarios that

1The Kalman filter has the advantage of being a straightforward approach to model learning but is
also somewhat restrictive, assuming for example constant model parameters. In robustness exercises,
we present results for two alternatives that allow for time-varying parameters: a constant-gain learning
model and a variant of Stock and Watson’s unobserved components model (2007) with stochastic
volatility, estimated via the particle filter. We find that the baseline results derived using the Kalman
filter are little changed under either alternative.
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are consistent with our empirical results and capture perceptions about the persistence

of oil price movements during key episodes: in the early 2000s, when changes in oil

prices were largely thought to be transitory; in the late 2000s, when oil-price changes

were expected to be much more persistent; and in the mid-2010s during the oil-price

collapse. We document that an increase in the persistence of total factor productivity

(TFP) driven fluctuations in oil demand largely accounts for investors’ perceptions that

oil-price movements became increasingly permanent during the 2000s, before declining

thereafter. In contrast, we estimate that oil-supply shocks were mostly perceived as

being temporary over this time period.

Using our estimated model, we also conduct some counterfactual experiments to

assess the macroeconomic impact of learning about the persistence of shocks underlying

oil-price movements. We show that misperceiving the persistence of shocks has large

macroeconomic effects. For instance, failing to recognize the increase in the persistence

of TFP-driven fluctuations in oil demand during the 2000s substantially increases the

volatility of output and investment by raising the volatility of labor supply. In addition,

this misperception lowers the volatility of the spot and futures prices of oil, as greater

reliance on inventories is used to smooth the shocks in this case. We also show that

the impact of learning partly occurs through storage, since dynamic, forward-looking

inventory management decisions are importantly influenced by expectations.

Our paper thus highlights the importance of learning about the persistence of shocks

underlying oil-price movements for the macroeconomy. Our finding that the perceived

importance of TFP-induced oil-demand fluctuations rose during the 2000s is in line with

Kilian’s (2009) assessment of the period. For instance, he shows that increases in the

global demand for industrial commodities, a shock with large and immediate impacts

on oil prices, were the main source of oil-price increases in the mid-2000s. Our work

complements this perspective by noting that demand and supply decompositions of oil

shocks should also consider the role of perceptions about their likely persistence.

Our emphasis on investors learning about the persistence of shocks underlying oil-

price fluctuations partly complements the work of Jin (2017), who examines the role

of temporary and permanent shocks in driving movements in the spot and futures

prices of oil and in improving forecasting accuracy. Moreover, by highlighting learning,

we provide an alternative perspective to the literature emphasizing the role of time-

varying risk premia embedded in futures prices. In addition, our approach relates to

the analysis of Milani (2009) who examines the role of learning in altering the impact
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of oil shocks on the macroeconomy using a standard New Keynesian model with oil

used in production and directly consumed by households. Emphasizing constant-gain

learning, he shows that learning contributed to a more muted impact of oil shocks since

the 1970s, as agents’ perceptions of the macroeconomic effects of these shocks changed

over time, partly driven by the declining oil share in output. Similarly, Jin (2017)

examines the importance of expectations shocks in driving commodity price dynamics,

finding a limited role for the period between 1987 and 2014. We add to these papers

by emphasizing the importance of learning about the persistence of shocks and by

introducing oil inventories, which can help smooth transitory fluctuations.

The rest of the paper is organized as follows. After describing movements in oil

prices over the past three decades in more detail, we lay out our empirical framework,

estimating a time-series model of permanent and temporary shocks for oil prices. We

also report results for extensions to our baseline empirical model. We then develop

and estimate a DSGE model with oil usage and storage to examine the macroeconomic

consequences of learning about the persistence of oil market developments, calibrating

the learning process to match our empirical findings from 2003, 2007, and 2014. We

conclude in the last section.

1.1 Related literature

Our paper’s emphasis on how learning defines the relationship between spot and futures

prices is an alternative perspective relative to most of the oil-price literature, which

instead focuses on the role of time-varying risk premiums embedded in the futures

markets.2 For instance, Hamilton and Wu (2014) argue that increased participation

by index-fund investing has reduced oil futures premiums since 2005, accounting for

the smaller gap between spot and futures prices observed in the data between 2005

and 2008. Similarly, Buyuksahin et al. (2008) argue that increased market activity

by commodity swap dealers, hedge funds, and other financial traders has helped link

crude oil futures prices at different maturities. Acharya et al. (2013) emphasize limits

to arbitrage and their effects on spot and futures prices in commodity markets. In their

environment, speculators face capital constraints in commodity markets, which limits

commodity producers’ ability to hedge risk and is reflected in commodity prices.

2This literature is large and growing. Some of the many papers discussing this issue include Irwin
and Sanders (2012); Fattouh, Kilian and Mahadeva (2013); Kilian and Murphy (2014); Alquist and
Gervais (2013); and Singleton (2014).
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This literature attributes developments in the futures markets to the increased fi-

nancialization of commodity markets or to speculators’ risk appetite. Relatedly, risk-

premia variations in commodity markets are claimed to have important influence on

futures prices. For instance, Baumeister and Kilian (2015) show such variations to be

important during episodes like the height of the oil-price boom in the beginning of 2008.

In addition Hitzemann (2016) presents a production-model view of asset and commod-

ity markets incorporating long-run risk similar to Croce (2014); he shows such a setting

replicates many observed features in oil futures returns.

By contrast, we abstract from financial factors and risk premia and show that learn-

ing about the persistence of shocks, in the tradition of Brunner et al., 1980, can help

track the evolution of oil futures prices since the late 1990s and alter the macroeconomic

impact of oil shocks. Our work does not intend to determine whether a risk-premium

versus learning explanation should be preferred. Instead, it highlights that learning

is a plausible approach, which may be complementary to a risk-premium view of oil

markets.

The macroeconomic model in our paper is related to a broader macroeconomic

literature on learning that focuses on situations when shocks have both persistent and

transitory components not observable separately. A filtering mechanism helps economic

agents disentangle both types gradually, even if early periods following a shock may be

accompanied by expectation errors.3 This type of learning is related but conceptu-

ally distinct from the one originating from the work of Evans and Honkapohja, (2001),

who use least-squares learning using realized economic outcomes to ascertain the gen-

eral form of the economy’s evolution (Milani (2009) uses this framework to study the

changing relationship between oil prices and the macroeconomy since the 1970s). In

our macroeconomic model (but not in our empirical section), all model parameters are

known, but learning is necessary because, upon realization, the persistence of a shock af-

fecting the economy is unknown; in such a setting, futures markets can provide valuable

information about the learning process.4 Overall, these strands of literature argue that

3This literature is exemplified by contributions such as Erceg and Levin (2003), Schorfheide (2005),
Andolfatto et al. (2008) or Saijo (2017).

4Our emphasis on the signaling value of futures markets for expectations is also compatible with
Kellogg’s result (2014), who shows that conditioning on oil futures better explains drilling decisions
than assuming oil prices follow a random walk. Yet another form of learning is related to the ”news
shock” literature of Beaudry and Portier (2004), according to which information received in current
periods may represent imperfect signals about future shocks (see Jin 2017 for an application to oil
markets).
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information included in expectations data should be incorporated in macroeconomic

frameworks, notably via imperfect information and learning; see Coibion et al. (2018)

for an exposition of this research program, as well as Slobodyan and Wouters (2012),

Fornero and Kirchner (2014) or Ormeno and Molnar (2015) for recent contributions.5

Finally, our paper also complements the work of Alquist and Kilian (2010), who

emphasize the presence of a convenience yield associated with oil inventories and its role

in accounting for the large and persistent fluctuations in the oil futures spread. Using a

theoretical model, they argue that under greater uncertainty about future oil supplies,

the presence of a convenience yield may underlie the poor predictive performance of oil-

price futures. We add to this literature by highlighting the interaction between learning

and oil storage.

2 Oil prices over the past three decades

We start our analysis by presenting some evidence of the oil market’s evolving views

regarding the persistence of the shocks affecting the world economy. To do so, consider

the movements in the spot and futures prices of oil since the early 1990s, depicted in the

three panels of Figure 1. In each panel, the solid black line shows the evolution of the

spot price, while the dotted red lines depict the path of futures prices at several given

dates in the sample. The futures prices are quotes as reported by NYMEX. During

the 1990s (top panel), the spot price tended to gyrate around fairly stable oil-price

futures, suggesting that market participants viewed economic developments affecting

the oil market as mainly temporary. Underlying shocks would tend to move the spot

price of oil, at times substantially, but futures prices would indicate an expected return

to roughly $18 per barrel, about the average spot price during that period. These

patterns suggest that market participants did not view the disturbances affecting oil

markets as persistent enough to substantially alter their long-term view of oil prices,

and these views were substantially correct during the 1990s.

However, the middle panel of Figure 1 indicates that the relationship between spot

and futures prices changed during the early 2000s. Between 2000 and 2008, the spot

price of oil rose steadily, from just above $25 per barrel to more than $140 per barrel. In

5Sockin and Xiong (2015) also emphasize the importance of informational frictions in commodity
markets using an equilibrium model with asymmetric idiosyncratic information among traders, where
commodity prices provide imperfect signals about future economic conditions.
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contrast, oil-price futures remained initially low, consistently fluctuating below $20 per

barrel until 2002. Then, oil-price futures started a gradual rise, increasing to roughly

$50 per barrel by the mid-2000s. Spot and futures prices then tended to move in

lockstep between 2005 and 2008. One possible interpretation of this pattern is that

between 2000-03, market participants perceived movements in spot prices to remain

mostly temporary, as indeed had been the case throughout the 1990s. However, after

being consistently surprised by the persistent rise in spot prices, market participants

reassessed their views, placing more weight on the possibility that these steady increases

in oil prices would be long-lasting.

According to this interpretation, by the time the oil market reached its peak in the

spring of 2008, market participants largely expected the movements in spot prices to

be highly persistent so that the price would remain at about $135 per barrel over the

next five years, as indicated by the futures curves at that time. The graph also suggests

that, in the fall of 2008, the global financial crisis led to a reassessment of the long-run

equilibrium price of oil. Indeed, the far-dated futures prices declined from roughly $140

per barrel in the spring of 2008 to roughly $60 per barrel by the end of that year.

Lastly, the evolution of spot and futures prices since 2010 is shown in the bottom

panel of the figure. Between 2010 and 2014, the fluctuations in prices had more in

common with the 1990s. That is, market participants appear to have perceived most

fluctuations in the spot price of oil to be transitory, with the long-run futures price

remaining fairly stable despite significant movements in the spot price. However, the

oil market changed dramatically in mid-2014 when the spot price collapsed by roughly

50 percent.6 As in the early 2000s, this price change was initially perceived as being

mostly temporary, with futures curves rising back to a long-run price of about $80

per barrel during most of 2014 and only gradually adapting to the lower prices. By

the end of 2015, this assessment was substantially changed, as far-dated futures prices

only reached about $55 per barrel. The next few years seemed broadly consistent with

these forecasts. Although prices climbed back to near $70 per barrel in late 2018, they

retraced that increase and ended 2019 at $60 per barrel.

6Further discussion of this decline can be found in Baumeister and Kilian (2016).
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3 Empirical framework

In this section, we develop a simple unobserved components model to account for the

role of permanent and temporary shocks in determining oil-price futures. By design,

we adopt a straightforward approach that highlights our main point and accordingly

abstracts from many features of the oil market. Specifically, we postulate that spot oil

prices are the result of movements in permanent and transitory components and that

market participants use the Kalman filter to assess the relative importance of these two

components over time. In addition, under our baseline model, we re-estimate the model

parameters as the data sample increases. We estimate our benchmark model using spot

prices only. We adopt this approach to show that the learning process goes a long way

in capturing the evolution of futures prices. We then extend our benchmark model to

allow for an alternative form of learning that places less weight on the past than the

present. We then augment our estimation by considering spot and futures prices jointly

in our estimation, comparing estimates from the Kalman filter to those from a nonlinear

model that explicitly allows for time-varying parameters.

3.1 A simple model

Consider the following linear process relating the spot price of oil pt (expressed in logs)

to a permanent component, ePt , and a stationary one, eτt :

pt = ePt + eτt , (1)

Schwartz and Smith (2000) modeled oil prices using this assumption but, unlike

in the current paper, they did not re-estimate the model coefficients as the sample

increased. The permanent component is modeled as a random walk without drift:

ePt = ePt−1 + vt, (2)

where vt is independently and identically normally distributed with mean zero and

constant variance σ2
P .7 For its part, the temporary component is assumed to follow the

AR(1) process

eτt = φτe
τ
t−1 + εt, (3)

7Results are similar if the model allows for a drift parameter in ePt .
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where εt is also independently and identically normally distributed, with mean zero and

constant variance σ2
τ , and where |φτ | < 1.

Assuming full information at time t about the temporary and permanent components

underlying oil prices, the k-period-ahead log futures price at time t, ft,k, is given by

ft,k = Etpt+k = ePt + φkτe
τ
t . (4)

In contrast, absent full information about the current levels of ePt and eτt , the (log)

futures price will be based on the best forecasts given past values of pt:

ft,k = Et
(
pt+k| {pt−i}ti=1

)
= Et

(
ePt + φkτe

τ
t | {pt−i}

t
i=1

)
. (5)

Note that the level of the futures price Ft,k does not translate directly from this

expression because of terms related to Jensen’s inequality. The correct value for Ft,k is

instead

Ft,k = Et exp

(
ePt + φkτe

τ
t +

k∑
j=1

vt+j +
k∑
j=0

φk−jτ εt+j| {pt−i}ti=1

)
. (6)

In assessing our model’s performance, we compare actual values of futures prices, Ft,k,

with estimated (fitted) values computed with our estimated parameters and model

simulations using (6).

In our benchmark specification, we first estimate the model using spot prices to

forecast the levels of the futures price. However, we complement this approach below

by estimating the model using both the spot price and the futures price. In that case,

we include an additional component, ζt, in the equation of the futures price:

ft,k = Etpt+k + ζt. (7)

This component creates a wedge between the futures price and the expected price

and could be interpreted as capturing either measurement error or a risk premium. For

convenience, we will refer to it as a risk premium.

We assume that ζt also follows an AR(1) process

ζt = φξζt−1 + εζ,t. (8)

When we estimate this model using the Kalman filter, we assume that εζ,t is inde-
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pendently and identically normally distributed with mean zero and constant variance

σ2
ζ .

Finally, the relative importance of permanent shocks can be assessed using a simple

statistic derived using the formula for the change in the spot price of oil. To this end,

note that

4pt = vt + (φτ − 1) eτt−1 + εt,

which implies that the variance of 4pt can be expressed as

σ2
4p = σ2

P +
2

(1 + φτ )
σ2
τ ,

and the fraction of σ2
4p due to permanent shocks, in turn, is the following expression:

σ2
P

σ2
P + 2

(1+φτ )
σ2
τ

. (9)

In the model section below, we use this equation to calibrate the relative standard

deviations of permanent and transitory shocks.

3.2 Learning

We assume that market participants use the Kalman filter to form expectations of future

oil prices. Following the standard textbook treatment (Hamilton, 1994), define ξt as

the unobserved state vector of the benchmark model above, comprising the permanent

and temporary components: ξt =
(
ePt eτt ePt−1 eτt−1

)′
. Given values for the model’s

parameters, Γ ≡ [σ2
P , σ2

τ , φτ ], the Kalman filtering equation relates how observed vari-

ables (here, the change in the spot oil price 4pt) respond to changes in the unobserved

state vector ξt.

The equations for the dynamics of the observed variable 4pt are thus given by the

following system:

4pt = Hξt; (10)

ξt = Fξt−1 + ηt,

where F and H are matrices of parameters and ηt =
(
vt εt 0 0

)
are the shocks. In
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turn, the unobserved state vector evolves according to the following standard equation:

ξt|t = ξt|t−1 + Pt|t−1H(H ′Pt|t−1H)−1
(
4pt −H ′ξt|t−1

)
, (11)

given initial estimates of ξt|t−1 and Pt|t−1, where the forecast error
(
4pt −H ′ξt|t−1

)
is

used to update estimates of the permanent and transitory components via the term

Pt|t−1H(H ′Pt|t−1H)−1
(
4pt −H ′ξt|t−1

)
. The matrix Pt|t−1, which depends on the values

of σ2
P and σ2

τ , governs the extent to which a given surprise is judged to have arisen from

the permanent or the transitory components.

Whether movements in the spot price of oil are perceived to be permanent or tem-

porary will naturally affect futures prices as well. A 1 percent increase interpreted as

purely transitory will modify the futures price k-period ahead, Et
(
pt+k| {pt−i}ti=1

)
, only

by φkτ , as indicated by equation (5) above; by contrast, the same spot price increase, if

interpreted as purely permanent, will increase Et
(
pt+k| {pt−i}ti=1

)
by the value of the

permanent component, ePt . If a shock is actually permanent but mistakenly perceived

to be temporary, the value of the futures price will include this error.

Our discussion so far has assumed that the parameter values were known with

certainty, but in practice we will need to estimate the model parameters Γ = [σ2
P , σ2

τ ,

φτ ] to derive forecasts of future oil prices. We assume that market participants estimate

the model’s parameters using the standard likelihood function:

LL (Γ) = −
T∑
t=1

(
1

2
ln 2π + 0.5 log ‖Vt‖+ (4pt − E 4 pt)V

−1
t (4pt − E 4 pt)

)
, (12)

where Vt = H ′Pt|t−1H is the variance of the prediction errors. Below, we also provide

results obtained using an alternative likelihood function putting more weight on recent

observations.

4 Benchmark results

In this section, we present our benchmark model predictions for futures prices assum-

ing that market participants form expectations about the permanent and temporary

components of oil prices through the Kalman filter. We estimate our benchmark model

assuming that market participants form their beliefs using univariate methods, i.e.,

using only data on the spot price of oil. Although extracting information about the
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components of oil prices solely from previous spot prices may be suboptimal, our empha-

sis on univariate methods has the benefit of simplicity and shares similarities with the

learning algorithm used in the monetary policy literature (see, for instance, Orphanides

and van Norden, 2005, and Primiceri, 2006). Using the price of West Texas Intermediate

(WTI) crude oil from 1980:Q1 to 2019:Q4, we construct the model-implied estimates

of the two-year-ahead futures prices and compare them with the actual futures price

data.8

To compute the k-period ahead futures prices we apply the following three-step

procedure. First, we use spot oil prices observed up to time t− 1 to estimate the model

parameters Γ = [σ2
P , σ2

τ , φτ ] using the likelihood in (12). Second, we apply the Kalman

filter with the estimated model parameters and observed prices through time t to get

estimates of the unobserved permanent and temporary components ePt and eτt . In the

third step, we use the estimated ePt , eτt and Γ to construct simulated values for Ft,k.

We are particularly interested in the behavior of futures prices since the late 1990s.

As such, we first estimate the model from 1980:Q1 to 1998:Q4 and start calculating

futures prices from this period on, using an expanding window of data. Thus, the

fitted futures prices at the beginning of 2000Q1, say, are calculated using the model

estimated over the period from 1980Q1 to 1999Q4 while the longer sample 1980:Q1–

2004:Q3 would be used to estimate the model and compute the forecast of futures

prices for 2004:Q4. In order to make this most comparable to a real-time exercise, our

modeled two-year-ahead futures price is compared against the actual two-year-ahead

futures price, measured using the closing quote from NYMEX for WTI crude at the

end of the first week of the following quarter (typically near the 7th of the month). For

instance, the futures price computed using information about the spot price through

the third quarter of 2015 is compared against the closing futures price for October 2,

2015.

One concern is whether there is sufficient activity in these far-dated contracts to

provide useful information. One relevant metric to assess the market’s liquidity is the

8We begin the sample in 1980 when U.S. oil production was deregulated. From 1986 onward,
we use the WTI prices reported by the Energy Information Administration (EIA), while for earlier
observations we use those reported in Alquist et al. (2013). Our measure of the quarterly price is
the average daily price during the last month of the quarter. We use reported prices rather than the
inflation-adjusted price. Given the modest level of overall price inflation volatility during this time
period, inflation-adjusting our oil price forecasts would imply relatively modest effects on outcomes,
whereas we gain a great deal of clarity by using reported prices. In particular, we avoid assuming that
we know the inflation forecast tacitly embedded in the market’s oil price forecast.
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fraction of total open interest that has a duration greater than 18 months. Before 2003,

these further-dated futures contracts accounted for roughly 10 percent of open interest.

However, their importance rose substantially between 2004 and 2013, averaging just

under 20 percent of total open interest. With the decline in oil prices in mid-2014,

far-dated futures contracts went back down to about 10 percent of total open interest.

Although subject to fluctuations, the liquidity of the far-dated futures market appears

sufficient to provide relevant price information.

Turning to our results, Figure 2 presents the behavior of the model’s parameter esti-

mates over the expanding estimation window. In each of the figure’s three charts, solid

black lines report the estimated coefficients while the gray intervals are two-standard-

deviation confidence intervals. The results are broadly in line with the narrative of

Figure 1. First, Figure 2 shows that the estimated variance coefficients do vary con-

siderably as the estimation sample period expands and are fairly precisely estimated.

Further, the estimated value of σP (middle panel) is low for the initial sample ending

in 1998:Q4, implying that market participants then perceived oil prices to be mainly

driven by temporary factors. As more data from the 2000s are included in the esti-

mation sample, the estimated standard deviation of the permanent component steadily

increases, peaking in the second quarter of 2008, before the financial meltdown and

global recession. In contrast, the estimated value of στ (right panel) broadly follows

the opposite pattern. Interestingly, the estimated autoregressive coefficient of the tem-

porary component, φτ , fluctuates less during the estimation process, remaining around

a value of 0.7 throughout.

The evolution of these model parameters can also be assessed by considering the

contribution of permanent shocks to the variance of 4pt, which is reported in Figure 3.

The figure shows that this contribution is very low early in the sample, with permanent

shocks accounting for just 10 percent of var(4pt) in the early 2000s, so that the tem-

porary shocks were correspondingly perceived to be the main drivers of changes in spot

prices. These results are very much in line with our assessment of Figure 1, where the

futures curves show transitory deviations from a long-term price during the 1990s and

early 2000s. However, the estimated contribution of permanent shocks steadily rises

between 2002 and the first half of 2008, a point at which it accounts for more than

60 percent of var(4pt). Thereafter, the sharp fall in oil prices in the last half of 2008

results in declines in that contribution to around the 35 percent mark, where it still

stood as the price of oil collapsed in June 2014. This perception has generally continued
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through the end of our sample, although the perceived role of permanent shocks rose

slightly in early 2015.

Given the estimates of the model’s parameters, we now construct forecasts of the

one- and two-year-ahead futures prices, using the Kalman filtering formula (11) for each

quarter from 1999:Q1 onward. Figure 4 illustrates the evolution of the estimated and

actual two-year-ahead futures prices, alongside that of the spot price of oil. Comparing

the actual futures prices with our model-implied futures price, the figure shows that our

baseline model successfully replicates the evolution of futures prices.9 As with actual

futures prices, note that our estimated futures prices remain well below the observed

spot prices in the early 2000s, suggesting again that market participants viewed the

underlying factors driving spot prices up to be mostly transitory. By the mid-2000s,

our estimated futures prices move closely together with the spot price: in line with the

rising estimated contribution of the permanent component to the variance in oil-price

changes (Figure 3), changes in the spot price of oil are by then perceived as being mostly

permanent and thus rapidly reflected in futures prices. As the financial crisis intensified

in mid-2008, the spot price of oil falls rapidly, but this decline is much more pronounced

than the fall in the actual futures price, which is well captured by our estimated value.

Our model then tracks well the actual futures price between 2010 and the end of 2012.

A gap developed afterward, as our predicted futures kept rising while the actual futures

price was relatively stable; this gap was largely erased by mid-2014.

To assess the fit of our model, Figure 5 reports the cumulative mean-squared error

(MSE) of fitting the futures price using the implied value from our Kalman filtering

approach relative to using the previous quarter’s spot price. As is clear from the figure,

the Kalman filtering approach is much better at fitting the futures price than the spot

price throughout the 2000s, reaching a value as low as 0.2 and always remaining below

0.6. As visible in the figure, the model’s performance temporarily declines somewhat

in 2013-2014, but the overall performance is still considerably better than the results

using the spot price. Furthermore, as described below, alternative models such as the

9 The gray bands indicate the confidence interval, which is defined as the following set:{
Et

(
pt+8| {pt−i}1i=t , Γ̃t−1

)
|
(

Γt−1 − Γ̃t−1

)′
Ŵ (Γt−1)

−1
(

Γt−1 − Γ̃t−1

)
≤ 6.25

}
,

where Γ̃t−1 is the maximum likelihood vector of parameter estimates and Ŵ (Γt−1) is the corresponding
estimated variance-covariance matrix. The critical value of 6.25 is chosen as the 90th percentile of the
chi-squared distribution with three degrees of freedom.
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particle filter can improve the fit of our learning framework along that dimension.

Overall, our results indicate that learning about the persistence of underlying shocks

helps capture movements in oil-price futures. Although our model is simple and only

uses information from past movements in the spot price of oil, it accounts reasonably

well for the fluctuations in oil-price futures over the past 15 years.

In the next three subsections, we consider extensions to our benchmark approach.

We first examine the possibility that market participants may be concerned with struc-

tural breaks and thus examine a form of learning that places relatively more weight on

recent observations. We then add futures prices to our estimation model. We estimate

this augmented framework using the Kalman filter and then extend this model to for-

mally address time-varying parameters. Overall, we find that the results from all of

these extensions are similar to those from our benchmark model.

In a final subsection, we then close this empirical section by documenting that the

movements in oil-price expectations uncovered by our approach are in line with those

recovered from survey data of professional forecasters.

4.1 Constant-gain learning

Our baseline results highlight the importance of time variations in the model’s param-

eter estimates. This finding suggests that investors may be concerned with structural

breaks and may choose to weight recent observations relatively more than distant ones.

As a result, we now consider the possibility that market participants use a modified

likelihood function, which is in the spirit of the recursive least squares algorithm in

Evans and Honkapohja (2001).10 To this end, the likelihood function now becomes

LLT = (1− χT )LLT−1−χT
(

1

2
ln 2π + 0.5 log ‖Vt‖+ (4pt − E 4 pt)V

−1
t (4pt − E 4 pt)

)
.

(13)

If χt = 1
t
, all observations have the same weight and the approach is equivalent to the

standard likelihood function used above. In contrast, if χt is a constant, recent observa-

tions are then more important than lagged observations (in the learning literature, this

approach is referred to as constant-gain learning, see Appendix D for details). In par-

ticular, for a data set of T observations, the first observation contributes
T∏
t=2

(1− χt)χ1,

10At first glance, our likelihood may not look like the algorithm in Evans and Honkapohja (2001).
However, as shown in Appendix D, the two approaches are equivalent.

15



whereas the most recent observation, observed at time T ), obtains a much greater weight

of χT .

Different values for χT may be considered to conduct this exercise. As a starting

point, we use information from the literature on learning and monetary policy to pa-

rameterize the gain. We set χT to 2 percent based on the value reported by Orphanides

and Williams (2007) who estimate the (constant) gain that best fits the inflation fore-

casts from the Survey of Professional Forecasters. This value implies that an obser-

vation eight years in the past gets only half as much weight in the likelihood as the

current observation. Figure 6 compares our baseline results with the estimate of the

two-year-ahead futures price under the constant-gain filter when χT = 0.02. The figure

shows that discounting past observations at this rate generally leads to worse forecasts.

Notably, the constant-gain filter significantly overpredicts oil-price futures from 2004

onward (relative to our baseline model) by predicting a peak of $180 per barrel in the

second quarter of 2008, well above the actual peak value. We also searched for the value

of χT that results in the best model fit. For two-year-ahead futures, χT = 1.5percent

provides the best match, a value similar to the one used by Primiceri (2006) in a model

of U.S. inflation in which policymakers learn about the natural rate of unemployment

using a constant-gain algorithm. However, the constant-gain estimation continues to

overpredict the run-up in futures prices between 2004 and 2008 even with this optimized

value (full results available on request).

4.2 Adding futures prices to the estimation

In this section, we add futures prices to the estimation equation and examine whether

our benchmark results are robust to this additional information. We thus estimate our

model using both spot and futures prices with the three components. Two of them, the

permanent component, ePt , and the stationary one, eτt are the same as in the previous

section. As previously discussed, the third component, ζt, captures fluctuations in a

risk premium.

For futures prices, we use one-year-ahead futures. Due to data availability, our

estimation period now begins in the first quarter of 1989, but still ends in the fourth

quarter of 2019. Figure 7 reports the estimated model coefficients for the temporary

and permanent components. Although both the sample period and data have changed,

the resulting estimated model coefficients are very similar to those reported by our
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benchmark model. Figure 8 reports the estimated standard deviation of ζt relative

to the estimated values of στ and σP for this two-variable model. Given that these

estimated values of στ and σP are very similar to the estimates from our benchmark

model, it is perhaps not surprising that the estimated standard deviation of ζt is only

a small share of στ and σP . Consistent with Schwartz and Smith (2000), having a

permanent component, ePt , and a stationary one, eτt is enough to match the data. The

third component is redundant and unnecessary.

To further illustrate this result, consider Table C, which reports the estimated coef-

ficients for the full sample period in the first column. The table also reports the results

from two other specifications that restrict respectively the value of the variance of the

permanent component, ePt , and the value of stationary one, eτt to zero, whereas all other

coefficients are estimated freely. The table shows that under either restriction the risk

premium becomes important. However, as shown in the bottom rows of the table, the

fit of these restricted models is poor relative to the unrestricted framework and one

would reject these models using a standard likelihood ratio test at conventional criti-

cal values. These results suggest that using a framework of temporary and permanent

shocks under learning is sufficient to broadly capture movements in oil futures prices.11

4.3 Time-varying parameters: Particle filter

The three-step procedure used to derive our baseline results has the benefit of simplicity,

but it also presents some potentially important limitations. It notably assumes that

the model’s parameters are constant and, as a result, investors’ learning about the

importance of temporary and permanent shocks is restricted by the requirement that

parameter values fit the entire sample rather than just recent observations.

In this section, we address this limitation by assessing the robustness of our baseline

results to a more general learning process. In particular, we consider a variant of Stock

and Watson’s (2007) unobserved component model with stochastic volatility, which

allows for time variation in Γ. As in the previous section, we estimate using both

spot and year-ahead futures prices. Likewise, we include all three components ePt ,

eτt−1, and ζt, but with assumptions that the standard deviations of their innovations

are themselves random variables. The estimation is conducted using the particle filter

11This result contrasts with the findings of Jin (2017), who conducts a similar exercise, although
without learning. Nonetheless, the estimated risk premium in her framework is relatively small (at
most $5 per barrel), which we view as largely in line with our finding.
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as described in Creal (2012): Appendix A describes this alternative model and the

estimation procedure in greater detail.

Figure 9 compares the expected futures prices using the Kalman filter model to those

from the particle filter. Overall, the figure shows that both models have very similar

predictions, especially during the 2002–05 period. In 2006 and 2007, the particle-

filter-implied futures estimates are somewhat higher than futures price data, but the

differences are relatively slight. In addition, the particle filter differs more from the spot

price since 2013.

4.4 Professional forecasters

Our baseline model extracts oil-price expectations, from which we construct an es-

timated futures price path. Our results indicate that the estimated two-year-ahead

futures price tracks the actual one reasonably well. Since we did not find an impor-

tant role for a risk premium, our results suggest that changes in price expectations

broadly capture the behavior of futures prices. In this section, we examine whether

our model-based oil price expectations match direct measures from survey data. We

therefore compare our estimated one-year-ahead futures prices using our benchmark

model estimates to the spot price expectations from professional forecasters compiled

by Bloomberg (see also Bianchi and Piana, 2016, for an analysis of this survey).

Each quarter, this survey compiles the one-year-ahead price expectations of around

100 forecasters. Using these individual forecasts, we construct the range of one-year-

ahead expected spot price, which is depicted in Figure 10.12 The figure shows that our

estimated futures prices typically fall within the range of individual forecasts, suggesting

that spot price expectations derived from our approach are broadly in line with those

of market participants.

5 A DSGE model with learning

In the previous sections, we showed both that investors’ perceptions of the persistence

of oil prices changed over the past 30 years and that these changes are captured well by

12The range of professional forecasts could indicate that professional forecasters use different models
to predict future oil prices. To keep the analysis tractable, we abstract from modeling this heterogeneity.
Similarly, as we note below, we also abstract from possible differences in the way that consumers and
professional forecasters may predict future oil prices.
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a learning process about the role of transitory and persistent factors in the economy.

We now assess the importance of this learning process for the macroeconomic impact

of shocks that affect the outlook for oil prices, using a DSGE model with oil usage

and oil storage similar to those developed in Leduc and Sill (2004), Unalmis et al.

(2012), Arseneau and Leduc (2013) or Hitzemann (2016). In contrast to this literature

however, the model is constructed and solved to allow for agents’ learning about the

persistence of shocks. Specifically, we assume that economic agents are subject to the

same information constraint faced by investors in the empirical models developed above:

observed shocks may be permanent or transitory and agents use a filtering mechanism

to perform that decomposition. We thus abstract from the possibility that households

form expectations about future oil prices in a different manner than market participants,

as suggested, for instance, by Baumeister and Kilian (2016). As such, our learning

mechanism is similar to those employed by Erceg and Levin (2003), Gourinchas and

Tornell (2004), Schorfheide (2005), Andolfatto et al. (2008), or Saijo (2017) to study

the macroeconomic implications of learning about the persistence of shocks.13

The model consists of households that supply labor and rent capital to firms and

save over time by holding one-period, pure discount bonds and by accumulating capital.

One important aspect of our approach is the use of an oil storage model. This frame-

work is a priori appealing for our purpose, since storage directly links current oil prices

to expectations of their future values. We assume that risk-neutral speculators make

the decisions related to storage, but results are similar if we follow Arseneau and Leduc

(2013) and assume that households hold the oil inventories, or Hitzemann (2016) where

firms hold oil inventories but evaluate future profits using households’ stochastic dis-

count factors. As is typical in the rational expectations storage literature, speculation

in inventory holdings allows agents to smooth temporary volatility in the oil market.

The production side of the model is composed of firms producing a consumption good

using labor, capital, and oil. Using our model, we estimate and analyze three scenarios

that capture salient features of our empirical results at important points during the

past two decades.

13Our work is related to but conceptually different from the literature that arose from Evans and
Honkapohja (2001) which considers that the general form of the data generating process for the econ-
omy’s evolution under rational expectations is known but where exact parameter values for it are
established via least-squares learning using realized economic outcomes (Milani, 2009, provides an ap-
plication to the oil markets). By contrast, our contribution puts forth a view whereby imperfect signals
about future shocks are the key challenge when forming expectations. Thus futures markets, which
embody expectations in the model, provide crucial signals about agents’ learning.
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5.1 Households

The representative household’s utility function is defined over the consumption of a

composite good, ct, and hours worked, nt:

Ut =
∞∑
t=0

βt
[
c1−σ
t

1− σ
− η n

1+ϕ
t

1 + ϕ

]
(14)

where β denotes the subjective discount factor, σ is the coefficient of relative risk aver-

sion, η affects the disutility of labor, and ϕ controls the Hicksian labor supply elasticity.

In turn, the composite consumption good is itself the following CES combination of

final goods consumption, cgt , and oil consumption, cot :

ct =
[
(1− ωc)1/ξccgt

ξc−1
ξc + ω1/ξc

c cot
ξc−1
ξc

] ξc
ξc−1

, (15)

with ξc denoting the elasticity of substitution between final goods and oil consumption

and where ωc represents the share of oil in the consumption composite.

The price of the composite good, P c
t , is given by the standard expression:

P c
t =

[
(1− ωc)P g

t + ωcP
o
t

1−ξc
] 1

1−ξc , (16)

where P g
t and P o

t are the price of final goods and oil, respectively. Using the price of

final goods as the numéraire, this equation expresses the relative price of the composite

good, pct , as a function of the relative price of oil pot :

pct =
[
(1− ωc) + ωcp

o
t
1−ξc
] 1

1−ξc . (17)

Households supply labor and capital services to firms producing the final good, and

the associated income from these two activities are wtnt and rtkt, with the real wage

and rental rate of capital denoted by wt and rt, respectively.

Households hold two types of assets: risk-free bonds, capital, and oil inventories.

First, we assume that they can purchase a risk-free bond, bt+1 yielding a rate of return

Rt. Next, capital kt accumulates according to the usual law of motion

kt+1 = it + (1− δ)kt, (18)
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where it denotes investment and δ represents the depreciation rate of capital.

Households also receive an exogenous and stochastic endowment of oil each period,

ot, which they can sell to firms on the spot market for oil. We assume that the endow-

ment ot is affected by both persistent and transitory components, as in:

ot = o εPo,t ε
τ
o,t, (19)

where the persistent and transitory components εPo,t and ετo,t follow AR(1) processes:

log(εPo,t) = ρPo log(εPo,t−1) + uPo,t, (20)

log(ετo,t) = ρτo log(ετo,t−1) + uτo,t. (21)

In this context, the household’s optimization problem is to choose sequences of ct,

nt, kt+1,, and bt+1 to maximize (14) subject to (18) and an infinite sequence of flow

budget constraints given by:

pctct + bt+1 + it = wtnt + rtkt +Rtbt + pot ot. (22)

5.2 Production

Final Goods

Firms combine capital, labor, and oil inputs to produce the final good yt using the

production function

yt = zt

[
(1− ωy)1/ξyva

ξy−1

ξy

t + ω1/ξy
y o

ξy−1

ξy

t

] ξy
ξy−1

, (23)

where ot represents the oil input, ωy is the share of oil in final output, and ξy is the elas-

ticity of substitution between energy and value-added vat, which itself is the following

CES combination of capital and labor:

vat =

[
(1− ωva)1/ξvak

ξva−1
ξva

t + ω1/ξva
va n

ξva−1
ξva

t

] ξva
ξva−1

, (24)

where ωva is the share of labor in value added. The neutral technology shock, zt, is

affected by both persistent and transitory components, as captured by the following
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expression:

zt = z εPz,t ε
τ
z,t, (25)

where the persistent and transitory components εPz,t and ετz,t follow the AR(1) processes

log(εPz,t) = ρPz log(εPz,t−1) + uPz,t; (26)

log(ετz,t) = ρτz log(ετz,t−1) + uτz,t. (27)

5.3 Storage

We assume that there is a continuum of competitive risk-neutral speculators who buy

and sell oil in the spot market. In particular, they can purchase st+1 units of oil to store

until the next period. Holding inventories entails a per-unit cost φ(st+1) in terms of oil,

with φ′(st+1) > 0. 14 Because speculators cannot borrow oil from the future, inventories

must be non-negative. However, to simplify the numerical analysis below, we assume

that the economy fluctuates around a steady state characterized by inventory holdings

sufficiently large that the non-negativity constraint is never binding, as in Unalmis et

al (2012).15 We verify that this condition is met in our simulations below.

Speculators choose the amount of oil to store to maximize expected profits given by

Et(p
o
t+1)st+1 −Rtp

o
tst+1(1 + φ(st+1)). (28)

The optimal demand for oil inventories is characterized by the following:

Rtp
o
t (1 + φ(st+1) + φ′(st+1)st+1) = Et(p

o
t+1). (29)

This expression states that speculators will accumulate oil inventories up until the

marginal cost of holding one additional unit, inclusive of the opportunity cost of invest-

ing in the risk-free asset and of the cost of storage, is equal to the expected gain from

holding oil for one period and selling it at next period’s spot price. In turn, we can

define ft+k|t as the futures price for delivery for any future date t+ k. Arbitrage among

speculators will be such that ft+1|t ≡ Etp
o
t+1.

14Our results are quantitatively similar if the adjustment cost is instead denoted in terms of output.
15See Williams and Wright (1991) and Arseneau and Leduc (2013) for partial and general equilibrium

analyses directly tackling the non-negativity constraints on inventories.
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5.4 Learning

We contrast two different information structures when solving the model. In the first,

agents have full information and directly observe the components εPo,t and ετo,t of the

shock zot in equation (19) and the components εPz,t and ετz,t of the shock zt in equation

(25). In the second, agents observe zot andzt and know all model parameters, but they

cannot distinguish the permanent and transitory components of the shocks. Consistent

with our empirical results above, we assume that they use the Kalman filter to gradually

learn about them. Initially, agents’ perception is driven by the degree to which they

see TFP-induced fluctuations in oil demand and oil-supply shocks as temporary or

permanent. Under this information structure, a permanent shock occurring under a

scenario in which they are relatively rare will thus only gradually be incorporated into

economic agents’ expectations. The appendix describes how we extend a standard

solution method for rational expectations models to allow Kalman filtering of persistent

and transitory shocks.

5.4.1 Equilibrium

Taking as given the exogenous variables zt and ot, the equilibrium of the model is a se-

quence of {yt, vat, ct, cgt , cot , nt, kt, ot, st, wt, pct , rt} that satisfy the household optimality

conditions; the optimality conditions for firms producing final and consumption goods;

the optimality condition for speculators; the bond market clearing condition, as

well as the oil-market clearing condition (1 + φ(st+1))st+1 − st + cot + ot = ot and the

resource constraint cgt + it = yt.

5.5 Calibration and estimation results

We adopt a flexible empirical strategy in which we calibrate some parameters and

estimate others using a simulated method of moments. We calibrate the model to a

quarterly frequency and accordingly set the discount factor β and the depreciation rate δ

to 0.99 and 0.025, respectively. The parameter σ, controlling the degree of intertemporal

substitution in consumption, is 2, and the Hicksian elasticity of labor supply ϕ is 1.

The scaling parameter η is set in order for the labor input in the economy’s steady state

to be 1.

We calibrate the parameters related to the production and storage of oil. Following

Unalmis et al. (2012), we adopt the storage cost φ(s) = κ + φ
2
s, where the constant
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κ can be interpreted as a convenience yield which we set to 5 percent and where φ is

calibrated such that the steady-state stock of oil stored as a ratio of total (quarterly)

output is 50 percent, also as in Unalmis et al. (2012).

We calibrate the production function parameters as follows. We set ωva = 0.66

and ξva = 1.0, which matches the values used in standard business cycle models where

substitution between capital and labor in production is unity and the capital share in

final output is around one-third. We set ωy = ωc = 0.0585 and ξy = ξc = 0.1, which

ensures that the elasticity of substitution between oil and other inputs is small, at 0.1,

and that the steady-state value of oil used in production and in composite consumption

is about 4 percent, the values also used in Bodenstein, Erceg, and Guerrieri (2011).

We set ρPz and ρPo arbitrarily close to 1, such that the permanent components of

the technology and oil-supply shocks are (near) random walks. We then fix στz to

an arbitrary value (1 percent), since only the relative importance of transitory versus

permanent shocks matter for the analysis.

The remaining parameters are estimated using a simulated method of moments

approach. We thus choose the parameters of the technology shock process, ρτz , σ
P
z and

those of the oil-supply shock process, ρτo , σ
P
o , στo to match the following five moments:

The volatility of oil inventories (relative to the volatility of real GDP), the correlation

between oil prices and oil inventories, the correlation between oil prices and real GDP,

the autocorrelation of GDP, and the fraction of the volatility of the changes in spot

prices explained by permanent shocks from our Kalman filter estimate. The first four

moments are calculated after filtering the log of each series, while the last moment uses

the log of the spot price of oil.

In matching these moments, we consider three scenarios, labeled Early 2000s, Late

2000s, and Mid-2010s. For the Early 2000s, we conduct the moment matching exercise

over the period 1980 to 2002. We then use data from 1980 to 2008 to estimate the

parameters under the Late 2000s scenario, while for the Mid 2010s scenario, we use the

data sample from 1980 to 2014.16

Table C reports the results for the three scenarios. Focusing on the moments to

match, the first panel shows that, for the Early 2000s scenario, the perceived impor-

tance of permanent shocks in oil price fluctuations was small at around 10 percent.

16For each historical episode, estimates are arrived at as follows. Starting for initial guesses, the
Simplex method is used to minimize the discrepancies between targeted moments (conditional on the
episode) and those in simulated data, which consist of 500 sample economies of 250 periods’ each.
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It also indicates that the volatility of oil inventories was about six times that of real

GDP. Although oil prices are roughly acyclical and not correlated with GDP, oil inven-

tories are substantially negatively correlated with oil prices. This negative correlation

is consistent with inventories increasing when prices are temporarily low and decreasing

when inventories are temporarily high. Across the three scenarios and consistent with

our empirical results, we observe an increase in the perceived importance of permanent

shocks in driving oil price fluctuations to about 50 percent during the late 2000s, before

decreasing somewhat in the mid 2010s. The correlation between oil prices and real

GDP also rises to about 30 percent in the mid-2010s, while inventories become slightly

more negatively correlated with oil prices. GDP is highly autocorrelated under each

scenario.

The table shows that our matching exercise can capture the broad patterns in the

data. For instance, it is consistent with a rise in the perceived importance of permanent

shocks as drivers of oil price fluctuations during the 2000s and the slight decline in the

mid-2010s. Our estimation also captures the decline in the volatility of inventories over

time, although the estimated volatility for the Early 2000s scenario is somewhat higher

than in the data. Oil prices in our model become increasingly more procyclical across

the three scenarios, while inventories are negatively correlated with spot prices as in

the data. Overall, we view the resulting simulated moments as broadly consistent with

the observed empirical evidence.

Table 3 then reports the estimated values of the five parameters driving the shock

processes across the different scenarios. Comparing the Early 2000s to the Late 2000s

scenarios, the striking change in the estimated parameter values is the large increase in

the estimated standard deviation of the permanent component of TFP shocks, which

rises from 0.1 percent in the early 2000s to 0.6 percent in the late 2000s. We also obtain

a similar, though more modest, increase in the estimated volatility of the permanent

component of oil-supply shocks. In contrast, the estimated volatility of the transitory

component of TFP shocks declines only slightly across the two scenarios. The estimated

persistence of transitory shocks to either TFP or oil supply are roughly constant. As we

move to the Mid 2010s scenario, the estimated volatility of the permanent components

of TFP shocks declines substantially, while the volatility of temporary TFP shocks is

estimated to have risen.

An alternative way to synthesize these results is by considering the implications for

the gain in the Kalman filter. When a shock hits the economy, the gain determines
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how agents interpret the source of the disturbance, i.e., whether it is due to TFP-

induced fluctuations in oil demand or the supply of oil, and its persistence, i.e., whether

temporary or permanent. Table C reports the changes in the gains across the three

scenarios. First, it shows that oil-supply shocks are viewed as being mostly transitory

under each scenario. As a result, a realized permanent oil-supply shock will be highly

unexpected and learning about its persistence will be gradual. In contrast, the table

also indicates that agents view TFP shocks very differently in the three scenarios.

Although these innovations are largely considered transitory in the early 2000s, agents’

perceptions dramatically changed in the late 2000s, viewing TFP shocks as largely

permanent. By the mid-2010s, agents placed an equal probability that TFP shocks

were either transitory or permanent.

Overall, our procedure highlights a substantial rise in the persistence of TFP shocks

that drove a persistent increase in economic activity and the demand for oil, which

households and investors learned over time. The emphasis on the important of an oil-

demand channel, driven by an aggregate shock, is broadly in line, for instance, with the

analysis in Kilian (2009).

6 Macro effects of learning

We now examine the response of the economy to a permanent shock, εoz,t, to oil supply

and to TFP-driven oil demand (i.e., a permanent shock to TFP, εPz,t, which boosts the

demand for all inputs, including oil). We consider shocks whose amplitude entails a

10 percent increase in oil prices under full information and compare the effects of the

shocks under full information to those arising when agents do not directly observe the

shocks and must instead infer their persistence via Kalman filtering. Under this learning

mechanism, agents gradually reassess their views regarding the shock’s persistence over

time, which in turn informs their forward-looking decisions.

To demonstrate the model’s mechanism, Figures 11 first contrast the transmission

of permanent and transitory oil-supply shocks, while 12 shows the response of the

economy to a permanent and a transitory TFP-driven increase in oil demand, assuming

full information. This comparison helps provide intuition for the effects of learning, since

the consequence of learning can be interpreted as an endogenous convex combination

between the impact of permanent and transitory shocks.

Figure 11 shows that the permanent oil-supply shock lowers GDP, investment, and
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consumption, with oil inventories declining following the rise in the price of oil. A tran-

sitory shock has similar qualitative effects, although the responses are muted because

of the larger inventory decline, which mutes the rise in oil prices. In turn, the oil-price

basis (i.e., the difference between the spot and futures price) increases more following

the transitory oil-supply increase than in response to a permanent one.

As shown in Figure 12, the relative impact of transitory and permanent fluctuations

in TFP-driven increase in oil demand differs from those arising from the supply side of

the oil market. For instance, the transitory shock amplifies the GDP and investment

responses compared to those following a permanent shock. This partly reflects a more

pronounced increase in labor supply (not shown), which boosts the rate of return on

capital and investment relatively more. It also results from a decline in oil inventories

that mutes the rise in oil prices. In line with the greater increase in income, consumption

rises relatively more following a permanent TFP shock. Still, the oil-price basis rises

following a transitory shock, while it decline in response to a permanent one.

We now examine the effect of learning on the economic responses following perma-

nent shocks to the supply of oil and to TFP-driven increases in the demand for oil.

We compare the full-information responses to those arising under learning in the Early

2000s and Late 2000s scenarios. Recall that the shocks are misperceived to be tem-

porary as estimated under our Early 2000s scenario and are more rapidly identified as

being permanent under the Late 2000s scenario.

The impact of learning following an oil-supply shock is described in Figure 13. The

figure shows that, when agents misperceive the shock’s persistence as being transitory,

the decline in GDP is substantially smaller, by about one-half under the Early 2000s

scenario, than when agents have full information. The responses of investment and

consumption are similarly more muted. This partly reflects the more substantial decline

in inventories and the associated smaller rise in oil prices that occur under incomplete

information. In addition, the spot price of oil rises persistently above the one-year-ahead

futures price, a feature observed empirically during the early 2000s.

Figure 14 describes the responses to a TFP-driven increase in oil demand under

learning and full information. It shows that when agents misperceived the permanent

shock to be transitory, the effects on GDP and investment are amplified. Under the

Early 2000s scenario, when agents put little weight on the possibility that shocks are

permanent, these effects are particularly strong and persistent. Boosted by the increase

in economic activity, the misperceived shock ultimately leads to a substantial rise in oil
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prices and in the oil-price basis, again consistent with developments in the early 2000s

shown in Figure 1. In line with our empirical evidence and estimated parameters, agents

perceived permanent shocks to be much more likely under the Late 2000s scenario,

resulting in more muted differences with the full information responses. In addition,

spot prices do not rise as much above futures prices in this case.

To complement these impulse responses, we highlight the importance of learning for

macroeconomic volatility through counterfactual simulations. In the empirical section,

we documented a gradual revision in the perceived persistence of oil price fluctuations.

We documented that this learning process helped account, for instance, for the lack of

movements in futures prices in the early 2000s despite large increases in spot prices. To

examine the impact of this gradual learning process for the macroeconomy, we examine

a polar case in which agents maintain their priors despite changes in the structural

shocks. The first column of Table 5 reports the counterfactual output and oil price

volatilities if economic agents had kept their priors constant in the face of changing shock

properties during the 2000s, thus missing the increased persistence of TFP-induced oil-

demand fluctuations. To do so, we simulate the economy with the estimated shock

processes under the Late 2000s scenario, assuming, however, that agents perceived oil-

price movements to be as temporary as under the Early 2000s scenario. We report the

volatilities of this counterfactual as a ratio to the volatility under our benchmark model

with learning under the Late 2000s scenario. The results first indicate that futures

prices experience a decline in volatility of roughly 15 percent, as fluctuations are too

likely to be misperceived as temporary. Importantly, it also reports a substantial impact

of output volatility, which increases by nearly 40 percent.

The second column of the table reports the results of a similar experiment for the

Mid 2010s episode. In this case, we simulate the economy with the estimated shock

processes under the Mid 2010s scenario, assuming, however, that agents perceive oil-

price movements to be as persistent as under the Late 2000s scenario. We report

the volatilities of this counterfactual exercise as a ratio to the volatility under our

benchmark model with learning under the Mid 2010s scenario. In contrast to the

previous counterfactual, oil prices are now misperceived to be too persistent. As a

result, this misperception leads to a 15-percent decline in output volatility, while futures

prices fluctuate more.17

17In addition to the expectations channel that we emphasize, the empirical effects of shocks to the
demand and supply of oil during the mid-2010s is further altered by the rise in shale gas production in
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The impact of learning on macroeconomic outcomes also stem from an interaction

between agents’ expectations, which embed their views about the shocks’ persistence,

and the storage capabilities of the economy, which allow the impact of transitory shocks

to be smoothed. Figure 15 shows the importance of this interaction. The figure contrasts

the full-information and learning responses in the economy with storage (left column

of the figure) with those arising when agents are unable to store oil (right column).

Following an oil-supply shock, the figure shows that the ability to store oil is particularly

important for dampening the fall in output during the quarters immediately following

the shock: the left-hand panels show that GDP falls substantially less when inventories

are available to smooth the effects of the shocks and the rise in oil prices is concurrently

more modest. A similar pattern occurs following a TFP-driven increase in oil demand,

though the presence of inventories mutes the impact on GDP to a lesser extent in this

case. Similarly, the last of column of Table 6 reports volatility ratios for GDP and

oil prices in the benchmark model relative to those in the model without storage. It

shows that introducing storage reduced output volatility by 8 percent, while oil price

futures are 13 percent less volatile in this case. Overall, learning partly impacts the

macroeconomic transmission of shocks through its effects on forward-looking storage

decisions.

7 Conclusion

Our analysis highlights that learning about the persistence of shocks underlying oil-

price movements is consistent with developments in the oil market and has important

macroeconomic implications. We first provided an analysis of movements in oil-price

futures since 2000 based on learning. We showed that a simple model with unobserved

components in which investors must form beliefs about the persistence of changes in oil

prices accounts well for the fluctuations in oil-price futures. Our framework captures

the relatively slow increase in futures prices at the beginning of the past decade and

their unprecedented run-up between 2004 and 2008. Even during the first half of 2008,

a volatile period during which oil prices reached historic highs, the model predicts

a level of futures prices broadly in line with the data. Our estimates suggest that

through learning investors revised up their estimate of the contribution of permanent

the United States. As emphasized by Baumeister and Kilian (2015), this change affected the impact
of oil-price changes on the U.S. economy via changes to its effects on U.S. investment.
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shocks to the variance of oil prices over this period. Similarly, our results suggest that

throughout 2014 investors perceived the dramatic decline in oil prices as somewhat

temporary. Importantly, we show the importance of learning for oil markets is robust

to allowing for the presence of a risk premium and for time-varying volatility.

Using a DSGE model in which oil is storable and used in production, we estimated

that changes in TFP-driven fluctuations in oil demand largely accounted for the changes

in investors’ perceptions. In addition, we showed that misperceptions about the per-

sistence of shocks underlying oil price movements had large macroeconomic effects.

Because of learning, failing to recognize the increased persistence of TFP-driven fluc-

tuations in oil demand substantially increases the volatility of output and oil prices.

As such, our analysis highlights expectations formation and the importance of learn-

ing about the persistence of shocks underlying oil-price movements for macroeconomic

fluctuations.
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A Particle Filter

A.1 Model and estimation

In this section, we generalize from our estimated baseline model and formally model

time variation in the learning process. In particular, we consider a variant of Stock and

Watson’s (2007) unobserved components model with stochastic volatility, in which we

introduce an additional temporary shock to the level of oil prices. The model is thus

similar to our baseline framework but allows for time variation in the parameter vector

Γ. Specifically, the log spot price of oil is, as before,

pt = ePt + eτt , (30)

where we continue to assume that the permanent component follows the random walk

ePt = ePt−1 + vt. (31)

In contrast to our baseline framework however, we assume that the disturbance vt is

Gaussian with time-varying variance σ2
P,t: vt ∼ N(0, σ2

P,t). Moreover, we postulate that

σ2
P,t evolves according to

lnσ2
P,t = lnσ2

P,t−1 + ξP,t, (32)

where ξP,t is a Gaussian disturbance with zero mean and variance σ2
ξP

.

As before, the temporary component follows an AR(1) process:

eτt = φτe
τ
t−1 + εt; (33)

although we fix φτ at a constant 0.7, the variance of εt ∼ N(0, σ2
τ,t) is time-varying,

with the following equation

lnσ2
τ,t = lnσ2

τ,t−1 + ξτ,t, (34)

with ξτ,t a homoskedastic, Gaussian error term with zero mean and variance σ2
ξτ
.

Following Schwartz and Smith (2000), we further allow for the presence of mea-

surement error in the pricing of oil futures, which could capture errors in reporting or
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deviations between our model’s fit and observed prices. We accordingly specify

fkt = Ept+k + ξt, (35)

where the measurement error term ξt is assumed to be independently and identically

normally distributed with zero mean and time-varying variance σ2
ξ,t, which evolves ac-

cording to

lnσ2
ξ,t = lnσ2

ξ,t−1 + ξΦ,t, (36)

with ξΦ,t ∼ N(0, σ2
ξ⊕

).

To bring our model to the data, we use the set of equations consisting of the growth

rate of the spot price of oil

4pt = vt + (φτ − 1) eτt−1 + εt; (37)

the expression for the spread between the k-period-ahead futures price and the spot

price

fkt − pt =
(
φkτ − 1

) (
φτe

τ
t−1 + εt

)
+ ξt; (38)

as well as (31), (32), (33), (34), and (36). To better discipline the particle filter, we

complement the use of the price of West Texas Intermediate oil used for estimating

our baseline model with the nine-month-ahead futures price. We then use the model’s

estimates to forecast two-year-ahead futures prices. Because we are limited by the avail-

ability of nine-month-ahead futures contracts, our estimation period begins in 1989:Q1.

The sample still ends in 2015:Q4. The estimation is conducted using the particle filter

as described in Creal (2012), which we describe in the next section.

A.2 Filtering

This appendix briefly describes our use of the particle filter, which draws on the survey

by Creal (2012). A more thorough and advanced treatment is available in Creal (2012).

Given the observed data yt

yt =
(

∆ ln pt ln fkt − ln pt

)
.
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and the model structure, our goal is to infer the distribution of the unobserved state

xt =
(

lnσ2
P lnσ2

τ,t lnσ2
ξ,t vt eτt−1 εt ξt

)
.

To construct estimates of xt, we will attempt to draw out the distribution. We begin

with a set of model parameters θ (below these are estimated to maximize likelihood):

θ =
(
σ2
ξP

σ2
ξτ

σ2
ξ⊕

φτ

)
.

Now start with a set of initial particles xi0 ,where i = 1 to N , which are drawn randomly

from a distribution conditional on θ. For the stationary variables, we draw from the

unconditional distribution. For the nonstationary variables, we choose random variables

that are reasonable approximations.

lnσ2
τ,t = vτt where vτt ˜N(0, σ2

τ )

lnσ2
p,t = vpt where vpt ˜N(0, σ2

P).

For each i, we then draw xi1 from the distribution P (xi1|xi0; θ)

xi1˜P
(
xi1|xi0; θ

)
where the p (xi1|xi0; θ) is specified by the model. For example, we draw vi1 from a normal

distribution with variance σ2
τ and combine this with lnσ2,i

τ,0 to generate lnσ2,i
τ,1

lnσ2,i
τ,t = lnσ2,i

τ,t−1 + vit

. For each particle we then compute the likelihood of the observed data,

P
(
yt
∣∣xit; θ))

yt =

(
4pt

fkt − pt

)
where it is assumed that yt is randomly distributed with the conditional mean given
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above. The variance covariance matrix is

N

((
4pt −

[
vt + (φτ − 1) eτt−1

]
fkt − pt −

[(
φkτ − 1

)
φτe

τ
t−1

] ) ,( σ2
τ,t φkσ2

τ,t

φkσ2
τ,t φ2kσ2

τ,t + σ2
ξ,t

))

We define

wit = wit−1P
(
yt|xit; θ

)
.

Note that, given the model structure here, these weights wit are simpler than the general

expression for wit given in Creal. We normalize the weights

ŵit =
wit∑
wit

We then report filtered values of variables of interest like µt and σ2
τ,t, which are

calculated as weighted averages of the particles:

µ̄t =
∑

ŵitµ
i
t

σ2
τ,t =

∑
ŵitσ

2,j
τ,t .

Each time that we resample, we draw the particles from the distribution with prob-

ability ŵit. In line with the discussion in Creal (2012), we follow Liu and Chinn and

resample only when the importance weights are unstable. Since excessive resampling

should be avoided to minimize Monte Carlo error, we use the effective sample size (ESS)

to decide when to resample.

ESS =
1∑(
ŵit
)2
.

If the ESS is less than the critical value 0.5N , then we resample. For the resample

particles, we then set

wit =
1

N
.

We then move on to the next observation.
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B Model Solution

We extend King and Watson’s (2002) solution method to allow Kalman filtering of per-

sistent and transitory shocks. Denote dynamic (dt) and flow (ft) variables as functions

of exogenous expected future variables xt, as follows (King and Watson, Sec. 4):

Etdt+1 = Wdt + Et [Ψd(F )xt] ; (39)

ft = −Kdt − Et [Ψf (F )xt] ; (40)

with Ψd(F ) and Ψf (F ) matrix polynomials in the forward operator (i.e, Fxt = xt+1).

The dynamic variables dt can be further separated into nonpredetermined and prede-

termined variables labeled λt and kt, respectively, so that dt = [λt kt]
′.

King and Watson use the following decomposition of the matrix W in (39):

VuW = µVu, (41)

where µ is a lower-triangular matrix with the unstable eigenvalues of W on its diagonal.

Next, they define ut ≡ Vudt, or, since dt = [λt kt]
′,

ut = Vuλλt + Vukkt. (42)

Finally, they apply Vu to (39) and use the definition of ut and (39) to obtain:

Etut+1 = µut + VuΨd(F )Et(xt). (43)

Meanwhile, the exogenous variables xt evolve as

xt = Θξt, (44)

ξt = ρξt−1 + θηt, ηt ∼ (0, Q); (45)

where ηt is a martingale difference sequence.

B.1 Solution when shocks in ξt are observed

For reference, we first describe how King and Watson (2002) solve the model when

all shocks ξt are observed. The system (44)–(45) is used to evaluate all expressions
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depending on expected future values of xt. Notably, the last part of expression (43)

becomes

VuΨd(F )Et(xt) = VuΨd,0xt + VuΨd,1Et(xt+1) + VuΨd,2Et(xt+2) + . . .

= Vu
[
Ψd,0Θ + Ψd,1Θρ+ Ψd,2Θρ2 + . . .

]
ξt

≡ ϕu ξt; (46)

while the last part of (40) becomes

Ψf (F )Et(xt) = Ψf,0xt + Ψf,1Et(xt+1) + Ψf,2Et(xt+2) + . . .

=
[
Ψf,0Θ + Ψf,1Θρ+ Ψf,2Θρ2 + . . .

]
ξt

≡ ϕf ξt. (47)

Eigenvalues of µ are unstable so (43) can be solved forward, equation by equation and

yield

ut = νξt, (48)

where ν is a function of the coefficients in ϕu, in µ, and in ρ. Once ut is solved as a

function of ξt, the remainder is straightforward: using (42) allows us to compute λt as

a function of the predetermined variables kt and the exogenous shocks ξt:

λt = −V −1
uλ Vukkt + V −1

uλ νξt, (49)

and the stable part of (39) allows us to compute the dynamic evolution of predetermined

variables kt. Finally, (40) is used to solve for ft, and the complete solution reads as
ft

λt

kt

xt

 =


Πfk Πfξ

Πλk Πλξ

I 0

0 Θ


[
kt

ξt

]

[
kt+1

ξt+1

]
=

[
Mkk Mkξ

0 ρ

][
kt

ξt

]
+

[
0

θ

]
ηt+1.
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B.2 Solution when xt is observed but not ξt

Consider now that only the composite shock xt in (44) is observable and that its decom-

position into components of ξt is not. Knowledge about (44)–(45) can still be used to

infer probable values for ξt through the application of the Kalman filter on the observed

values of xt. In turn, these inferences can be used to compute Et[xt+h] for any h. To

this end, denote the best estimate of ξt based on information up to time t as ξ̂t|t and

the best linear forecast for ξt+1 as ξ̂t+1|t. Further, Pt+1|t is the mean-squared error of

that forecast. The following recursions obtain for these quantities:

ξ̂t|t = ξ̂t|t−1 +Kt

(
xt −Θξ̂t|t−1

)
; (50)

ξ̂t+1|t = ρξ̂t|t = ρξ̂t|t−1 + ρKt

(
xt −Θξ̂t|t−1

)
; (51)

Kt = Pt|t−1Q
′ (QPt|t−1Q

′)
−1

; (52)

Pt+1|t = (ρ−KtΘ)Pt|t−1(ρ′ −Θ′K ′t) +Q; (53)

Before proceeding, notice that (50) can be rewritten

ξ̂t|t = KtΘξ̂t + [I −KtΘ] ξ̂t|t−1;

= Aξ̂t +Bξ̂t|t−1 (54)

We can now use (50)–(53) in computations involving expectations of future values of

exogenous shocks above: (46) and (47) become

VuΨd(F )Et(xt) = VuΨd,0xt + VuΨd,1Et(xt+1) + VuΨd,2Et(xt+2) + . . .

= VuΨd,0Θξt + VuΨd,1Θξ̂t+1|t + VuΨd,2Θξ̂t+2|t + . . .

= VuΨd,0Θξt + VuΨd,1Θρξ̂t|t + VuΨd,2Θρ2ξ̂t|t + . . .

≡ ϕd,ξξt + ϕd,ξ̂ ξ̂t|t; (55)

Ψf (F )Et(xt) = Ψf,0xt + Ψf,1Et(xt+1) + Ψf,2Et(xt+2) + . . .

= Ψf,0Θξt + Ψf,1Θξ̂t+1|t + Ψf,2Θξ̂t+2|t + . . .

= Ψf,0Θξt + Ψf,1Θρξ̂t|t + Ψf,2Θρ2ξ̂t|t + . . .

≡ ϕf,ξξt + ϕf,ξ̂ ξ̂t|t. (56)
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Again, use (54) and (55) to help solve (43) forward, equation by equation to get

ut = νξξt + νξ̂ ξ̂t|t−1. (57)

The solution for ut allows us to express λt as a function of predetermined variables kt

and exogenous shocks ξt, as follows:

λt = −V −1
uλ Vukkt + V −1

uλ νξξt + V −1
uλ νξ̂ ξ̂t|t−1. (58)

Further the “stable” part of (39) is again used to find a dynamic solution for the

evolution of the predetermined variables kt; and (40) can then be used to find the

solution for ft. In the end, the complete solution has the following form:
ft

λt

kt

xt

 =


Πfk Πfξ Πfξ̂

Πλk Πλξ Πλξ̂

I 0 0

0 Θ 0


 kt

ξt

ξ̂t


 kt+1

ξt+1

ξ̂t+1

 =

 Mkk Mkξ Mkξ̂

0 ρ 0

0 ρA ρB


 kt

ξt

ξ̂t

+

 0

θ

0

 ηt+1.

Note that, in effect, we have added ξ̂t|t as an additional vector of dynamic variables to

the original solution and taken into account its impact on the other variables through

the matrices Πfξ̂, Πλξ̂ and Mkξ̂. Further details about the solution method can be

obtained from the authors.

C Constant-gain learning: Derivation

This appendix demonstrates that for estimating a linear regresion that maximizing the

following likelihood function

LLT = (1− χT )LLT−1−χT
(

1

2
ln 2π + 0.5 log ‖Vt‖+ (pt − Ept)V −1

t (pt − Ept)
)

(59)

is equivalent to least squares learning as described in Evans and Honkapohja (2001).
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In this section, we adopt the notation of Evans and Honkapohja. For the following

linear model

yi = c′xi + ε,

the recursive least squares algorithm in Evans and Honkapohja is defined as

ct = ct−1 + κtR
−1
t xt−1

(
yt − c

′

t−1xt−1

)
;

Rt = Rt−1 + κt

(
xt−1x

′

t−1 −Rt−1

)
.

Note that the algorithm is first defined as

κt = t−1

which is standard OLS, but a generalization with a constant gain is also discussed, viz,

κt = κ.

We need to prove that the solution to maximizing the recursive liklihood function

is equivalent to this recursive least squares algorithm. As such, we first defined the

likelihood at time 1 as

LL1 = −χ1

(
1

2
ln 2π + 0.5 log ‖V1‖+ (p1 − Ep1)V −1

1 (p1 − Ep1)

)
,

we can show that our equation is equivalent to the following weighted likelihood func-

tion:

LLT = −
T∑
t=1

T∏
j=t

(1− χj)χt
(

1

2
ln 2π + 0.5 log ‖V1‖+ (pt − Ept)V −1

t (pt − Ept)
)

Now, we first change the notation to match Evans and Honkapohja

Ept = c′xt

and that

Vt = V

and V is known. The standard approach is that maximizing the weighted likelihood
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LLT is equivalent to minimizing the sum of squared residuals

SST =
T∑

t−=1

T∏
j=t

(1− κj)κt (yt − c′xt) (yt − c′xt)

where we have replaced pt and χj to match the notation in Evans and Honkapohja.

The solution to the minimization problem is cT where

cT = arg minSST

= arg min
T∑

t−=1

T∏
j=t

(1− κj)κt (yt − c′xt) (yt − c′xt))

Now, we need to establish that this cT is equivalent to the solution of the algorithm in

Evans and Honkapohja (2001)

ct = ct−1 + κtR
−1
t xt−1

(
yt − φ

′

t−1xt−1

)
,

Rt = Rt−1 + κt

(
xt−1x

′

t−1 −Rt−1

)
.

For ease of notation, we assume that yt and xt are scalars but the proof where x is

a vector would be straightforward. Note that by definition the solution to our recursive

least squares solution is calculated using the well-known weighted least squares solution

cT = arg minSST

=

T∑
t−=1

T∏
j=t

(1− κj)κtxtyt

T∑
t−=1

T∏
j=t

(1− κj)κtx2
t

.

To prove equivalence, we first define

R1 = κ1x
2
1
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then we can show that

RT =
T∑

t−=1

T∏
j=t

(1− κj)κtx2
t

= (1− κT )
T−1∑
t−=1

T−1∏
j=t

(1− κj)κtx2
t + κTx

2
T

= RT−1 + κT
(
x2
T −RT−1

)
,

which is the second equation in Evans and Honkapohja (2001). Next we have that

CT =

(1− κT )
T−1∑
t−=1

T−1∏
j=t

(1− κj)κtxtyt + κTxTyT

RT

= CT−1
RT−1

RT

+ κTR
−1
T xTyT

= CT−1
(1− κT )RT−1

RT

+ κTR
−1
T xTyT

= CT−1
(1− κT )RT−1 − κTx2

T

RT

+ κTR
−1
T xTyT

= CT−1 + κTR
−1
T xT (yT − xTCT−1)

which is the first equation in Evans and Honkapohja (2001), completing our proof.
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Table 1: Bivariate Model Estimates

Unrestricted Restricted
eτt = 0 ePt = 0

φτ 0.809 - 0.899
0.020 - 0.008

στ 0.132 - 0.182
0.013 - 0.012

σP 0.102 0.177 -
0.007 0.011 -

φξ -0.674 0.716 0.984
0.626 0.063 0.014

σξ 0.003 0.075 0.047
0.007 0.005 0.003

Std Dev of ξt 0.004 0.108 0.263
Likelihood Ratio Test - 132 27.6
95% Critical Value - 5.99 3.84

Note: Observed variables are change in log front month oil futures quote and the log difference between
one-year-ahead and front-month futures prices. Estimation results are for the sample period 1989:Q1
to 2019:Q4. Standard errors are reported in italics. Critical values are based on the chi-squared
distribution with 2 and 1 degrees of freedom, respectively.
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Table 2: Model Estimation - Targeted and Simulated Moments

Moment Targeted Simulated

Panel A: Early 2000s

frac σ2
∆p

0.10 0.10

σ(Inv.)/σ(Y ) 6.00 7.01
ρ(Y, Y−1) 0.82 0.65
ρ(Inv., Spot) −0.40 -0.47
ρ(Spot, Y ) −0.07 -0.07

Panel B: Late 2000s

frac σ2
∆p

0.50 0.48

σ(Inv.)/σ(Y ) 5.00 4.67
ρ(Y, Y−1) 0.85 0.70
ρ(Inv., Spot) -0.45 -0.44
ρ(Spot, Y ) 0.10 0.10

Panel C: Mid 2010s

frac σ2
∆p

0.30 0.30

σ(Inv.)/σ(Y ) 4.00 4.12
ρ(Y, Y−1) 0.87 0.70
ρ(Inv., Spot) -0.50 -0.50
ρ(Spot, Y ) 0.36 0.36

Note : frac σ2
∆p

refers to the fraction of the variance in spot price changes explained by permanent

shocks, as per the Kalman filter mechanism described in the paper. Inv. refers to (US) Oil Inventories
and Spot to the spot price of oil. Individual data series are logged and HP-filtered to produce the two
relative volatilities and the two correlations.
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Table 3: Estimated Parameter Values

Parameter Estimate

Early 2000s Late 2000s Mid 2010s

στo (s.d. trans. oil-supply shocks) 0.01 0.01 0.01
σPo (s.d. perm. oil-supply shocks) 0.0007 0.0024 0.0013
ρτo (autocorr. trans. oil-supply shocks) 0.82 0.83 0.69
στTFP (s.d. trans. oil-demand shocks) 0.0037 0.0026 0.0062
σPTFP (s.d. perm. oil-demand shocks) 0.001 0.0064 0.0035
ρτTFP (autocorr. tran. oil-demand shocks) 0.85 0.85 0.93

T

Note : Estimated values for the standard deviation of permanent oil-supply shocks (σoP ), 
the autocorrelation of transitory oil-supply shocks (ρτo ), the standard deviation of transi-
tory oil-demand (TFP) shocks (στ 

F P ), the standard deviation of permanent oil-demand 
(TFP) shocks (σTPF P ), and the autocorrelation of transitory oil-demand (TFP) shocks (ρτT F 

P ). Estimates are obtained by minimizing the distance between simulated and ob-served 
moments, via the Simplex algorithm.
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Table 4: Model Estimation - Implication for Kalman Filter Gain

Shock Attributed to Permanent Comp. Attributed to Transitory Comp.

Panel A: Early 2000s

Oil Supply 0.014 0.986
TFP 0.105 0.895

Panel B: Late 2000s

Oil Supply 0.234 0.766
TFP 0.923 0.077

Panel B: Mid 2010s

Oil Supply 0.134 0.867
TFP 0.490 0.510

Note : Implications for the Kalman filter’s gain under learning according to the parameter estimates
in Table ??. The table gives, for each historical episode, how much an unexpected innovation to oil
supply or to TFP will be attributed to its permanent (left column) or transitory components (right
column).
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Table 5: Impact of Learning on Macroeconomic Volatility

Moment Misperceiving the Late 2000s Misperceiving the Mid 2010s

σY 1.37 0.85
σfutures 0.84 1.17

Note : Business cycle characteristics of simulated data. Table entries are standard devia-
tions when using the previous episode’s Kalman filter gain, as a ratio of the corresponding 
figure when using the current gain.
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Table 6: Impact of Storage on Macroeconomic Volatility

Episode

Moment Simulated Early 2000s Late 2000s Mid 2010s

σY 0.92 0.95 0.97
σspot 0.50 0.61 0.48

Note : Business cycle characteristics of simulated data. Table entries are the standard 
deviations under the benchmark assumption of storage as a ratio of the corresponding 
value when abstracting from storage
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Figure 1: Oil Spot and Futures Prices
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1990s; 2000s and 2010s. All data reported from NYMEX.
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Figure 2: Estimates of Model Parameters: Baseline Model
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Figure 3: Estimated Importance of Permanent Shocks in var(4pt)
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Figure 4: Predicting Futures Prices
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Figure 5: Assessment of Model Performance
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filter estimates, relative to MSE of random walk alternative.
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Figure 6: Predicted Futures Prices: Constant-Gain Learning
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Figure 7: Estimates of Model Parameters: Bivariate Model
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Figure 8: Relative Importance the Risk Premium
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Figure 9: Predicted Futures Prices: Particle Filter
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observed futures and spot prices. Gray interval indicates 90 percent confidence interval around benchmark model’s
implied futures prices, constructed using a Monte Carlo simulation, under the assumption that estimated coefficients
are normally distributed and with a correction for Jensen’s inequality term.
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Figure 10: Predicted Futures Prices and Market Expectations
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reported over the previous 30 days for one-year-ahead spot price.
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Figure 11: Impact of Oil Supply Shocks: Full Information
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Figure 12: Impact of TFP Shocks under Full Information
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Figure 13: Impact of Oil Supply Shocks: Full Information versus Learning
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Figure 14: Impact of TFP Shocks: Full Information versus Learning
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Figure 15: The Impact of Oil Inventories
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