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Abstract

In recent decades, long-term interest rates around the world have fallen to historic lows.

We examine this decline using a dynamic term structure model of Canadian nominal and

real yields with adjustments for term, liquidity, and inflation risk premiums. Canada

provides a useful case study that has been little examined despite its established indexed

debt market, negligible distortions from monetary quantitative easing or the zero lower

bound, and no sovereign credit risk. We find that since 2000, the steady-state real interest

rate has fallen by more than 2 percentage points, long-term inflation expectations have

edged down, and real bond and inflation risk premiums have fluctuated but shown little

longer-run trend. Therefore, the drop in the equilibrium real rate appears largely to

account for the lower new normal in interest rates.
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1 Introduction

The secular decline in global long-term nominal interest rates over the past few decades has

been the subject of much discussion and research. Indeed, the possibility of a lower new

normal for interest rates has been at the center of key economic, financial, and policy debates

about the transformation of the economy and bond market dynamics. Still, the source and

permanence of the gradual decline in interest rates remains unresolved. Therefore, in this

paper, we estimate a novel dynamic term structure model on a largely overlooked source of

data to provide a new perspective on the underlying nature of recent low long-term interest

rates.

Accounting for the decline in long-term interest rates requires assessing the relative im-

portance of nominal inflationary forces, real economic factors, and risk premiums in pushing

down yields. In the 1980s and 1990s, falling inflation expectations played a substantial role

in lowering long-term yields, but more recently, actual inflation as well as survey-based mea-

sures of longer-run inflation expectations have been relatively more stable (e.g., Bauer and

Rudebusch, 2020). The source of the general decline in interest rates since 2000 could reflect

a variety of longer-run real-side factors—such as slower productivity growth and an aging

population (e.g., Rachel and Smith, 2015, and Christensen and Rudebusch, 2019). These

shifts in economic fundamentals can push down nominal and real yield curves by lowering

the steady-state level of the safe short-term real interest rate—the so-called equilibrium or

natural or neutral rate of interest. Many researchers have used macroeconomic models and

data to try to pin down the equilibrium real rate. We follow Christensen and Rudebusch

(2019, henceforth CR) and use financial models for this purpose—although we use a more

general formulation that accounts for nominal as well as real factors.1 Declining term, infla-

tion risk, and liquidity risk premiums could also play a role in reducing long-term yields, and

one advantage of a financial modeling approach is that it allows for explicit risk premiums

to account for the new lower normal in interest rates. In particular, as price inflation has

become better anchored at low levels in many countries, the inflation risk premium has likely

declined (e.g., Wright, 2011, and Bauer et al., 2014).

Our analysis assesses the relative contribution of each of the various components to lower

yields. We employ Canadian government bond prices, which provides a new—or at least, a

relatively under-studied—perspective on the lower new normal for interest rates. Besides its

novelty, a Canadian case study has several other advantages. First, Canada has deep and

liquid markets for government debt. Also, the Bank of Canada has not engaged in uncon-

ventional monetary policies such as large-scale asset purchases (also known as quantitative

1Our finance-based approach has several advantages relative to macro-based estimates. Most notably, our
measure does not depend on obtaining a correct, complete, and stable specification of the macroeconomic
dynamics of output and inflation, as described in CR.
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easing) unlike most other major central banks. As a consequence, Canadian bond yields have

not been directly affected by such policies (although indirect spillover effects from QE in

other countries is a possibility). Arguably then, the Canadian government bond market offers

a purer, less-managed setting for analyzing these questions than the euro area, Japan, the

U.K., or the U.S., where such policies have been implemented for extended periods. Also, as

the underlying factors depressing long-term interest rates are likely global in nature—such as

worldwide demographic shifts or disinflationary pressures—the Canadian government bond

market may well be about as informative as any other major sovereign bond market. Fur-

thermore, the Canadian government holds a AAA credit rating with a stable outlook from all

major rating agencies, which also contrasts with most of its G7 peers. Therefore, there is no

credit risk to account for in our Canadian bond price data, which is an additional advantage.

Finally, the Canadian government has been issuing inflation-indexed debt since 1991, and

Canada therefore offers a relatively long history of both nominal and real yields, only rivaled

by U.K. and U.S. samples.2

We examine a sample of Canadian nominal government bond yields along with prices of

Canadian government Real Return Bonds (RRBs), which have coupon and principal payments

indexed to the Canadian Consumer Price Index (CPI). The indexed debt provides compen-

sation to investors for the erosion of purchasing power due to price inflation with prices that

can be expressed directly in terms of real yields. We assume that the embedded longer-term

expectations in these asset prices reflect financial market participants’ views about the steady

state of the Canadian economy including the natural rate of interest and the long-run level

of inflation (i.e., the perceived Bank of Canada inflation target). Still, the use of RRBs for

measuring the steady-state short-term real interest rate and inflation level does pose empirical

challenges. One problem is that despite the long history and fairly large notional amount of

outstanding RRBs, these securities potentially face appreciable liquidity risk as they tend to

have smaller trading volumes and wider bid-ask spreads than Canadian nominal government

securities. Presumably, investors require a premium for bearing the liquidity risk associated

with holding RRBs, but the extent and time variation of this liquidity premium is unknown

and apparently unresearched. This contrasts with numerous studies of the liquidity risk asso-

ciated with U.S. Treasury Inflation-Protected Securities (TIPS) (e.g., Campbell et al., 2009,

Pflueger and Viceira, 2016, and CR).

To estimate the natural rate of interest and long-term inflation expectations in the presence

of liquidity and real and nominal term premiums, we use an arbitrage-free dynamic term

structure model of nominal and real yields augmented with a liquidity risk factor. The

identification of the liquidity risk factor comes from its unique loading for each individual

2A long sample allows for robust estimation of the models’ objective factor dynamics, which are important
for many of our conclusions. See Bauer et al. (2012) for a detailed discussion of the related finite-sample bias
problem and its impact on yield curve model estimation.
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RRB security as in Andreasen et al. (2020, henceforth ACR). Similar to ACR, our analysis

combines a standard sample of nominal yields with the prices of individual RRBs. The

underlying mechanism for identifying liquidity risk assumes that, over time, an increasing

proportion of the outstanding inventory of each RRB is locked up in buy-and-hold investors’

portfolios. Given forward-looking investor behavior, this lock-up effect means that a particular

bond’s sensitivity to the market-wide liquidity factor will vary depending on how seasoned

the bond is and how close to maturity it is. In a careful study of nominal U.S. Treasuries,

Fontaine and Garcia (2012) also find a pervasive liquidity factor that affects all bond prices

with loadings that vary with the maturity and age of each bond. By observing a cross section

of RRB prices over time—each with a different time-since-issuance and time-to-maturity—

we can identify the overall RRB liquidity factor and each bond’s loading on that factor.

This technique is particularly useful for analyzing inflation-indexed debt when only a limited

sample of bonds may be available as in our case.3,4

As in ACR, the frictionless Canadian nominal and real yields follow the model of nominal

and real yields introduced in Christensen et al. (2010, henceforth CLR), referred to through-

out as the CLR model. We estimate CLR models and their liquidity-augmented extension,

denoted CLR-L models. The theoretical arbitrage-free formulation of the CLR-L model also

provides identification of a time-varying real term premium in the pricing of RRBs. Identify-

ing the liquidity and term premiums allows us to estimate the underlying frictionless real rate

term structure and the natural rate of interest, which we measure as the average expected

real short rate over a five-year period starting five years ahead as in CR.

Our preferred estimate of the natural rate of interest, r∗t , is shown in Figure 1 along

with measures of the ten-year nominal and real Canadian government bond yields. Both

nominal and real long-term yields have trended down together over the past two decades,

and this concurrence suggests little net change in inflation expectations or the inflation risk

premium, which is supported by our results as evidenced by the estimated ten-year expected

inflation also shown in the figure. Instead, the estimated equilibrium real rate is identified

as the primary driver of the long-term yield declines since it has fallen from above 2 percent

to below -0.25 percent during this period. Accordingly, our results show that much of the

4-percentage-point decline in longer-term Canadian bond yields represents a reduction in the

natural rate of interest, while ten-year inflation expectations are estimated to have declined

3Finlay and Wende (2012) examine prices from a limited number of Australian inflation-indexed bonds but
do not account for liquidity.

4We do not account for the liquidity risk in the Canadian nominal bond yields for two reasons. First,
our focus is on the real yield aspect of our joint models of nominal and real yields, which is less sensitive to
liquidity bias in nominal yields. Second and more importantly, Andreasen et al. (2019) find that pricing in
the regular Canadian government bond market appears to be very efficient, which suggests that the liquidity
premiums of standard fixed-coupon bonds are likely to be small. This may reflect the fact that the Bank of
Canada occasionally buys back seasoned nominal bond series and replaces them with new bond series, which
helps maintain liquidity in the secondary market for these bonds.
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Figure 1: Long-Term Nominal and Real Yields and an Estimate of Ten-Year Ex-

pected Inflation and r∗

Illustration of (i) the ten-year nominal Canadian government bond yield from the Bolder et al. (2004)

database maintained by staff at the Bank of Canada, (ii) the fitted ten-year real Canadian government

bond yield from the CLR model with a diagonal specification of KP and Σ, (iii) our preferred CLR-L

model estimate of the ten-year expected inflation, and (iv) our preferred CLR-L model estimate of the

equilibrium real short rate, r∗t , i.e., the 5-to-10 year risk-neutral real rate.

only about 1 percentage point. Our model estimates also suggest that this situation is unlikely

to reverse quickly in the years ahead.

Furthermore, we find that the average liquidity premiums embedded in the yields of RRBs

exhibit notable time variation reaching highs of close to 40 basis points around the peak of the

global financial crisis in the fall of 2008. However, since 2012, the average liquidity premium

has been in a fairly narrow, slightly negative range. For the entire sample, the estimated RRB

liquidity premiums have averaged -2.6 basis points. This can be compared to the results of

ACR, who report that the average liquidity premium in U.S. TIPS is estimated at 34 basis

points for the 1997-2013 period. The difference in liquidity premium levels across the TIPS

and the Canadian RRB markets is likely to be due to the much greater relative liquidity

of nominal versus indexed U.S. Treasury securities compared to the more modest liquidity

advantage of Canadian fixed-coupon government securities over Canadian RRBs.

In line with the existing literature on TIPS, we rely on a joint modeling of the nominal

and real yield curves (e.g., CLR, Abrahams et al., 2016, and D’Amico et al., 2018). Although

these joint specifications can also be used to estimate the steady-state real rate similar to our

analysis, this earlier work has emphasized only the measurement of inflation expectations and

risk. Importantly, our methodology requires a stable dynamic relationship between the pricing

factors of both nominal and real bonds. This assumption is particularly demanding during

the period from 2009 to 2015 when the U.S. Federal Reserve kept the overnight federal funds

rate at its effective zero lower bound, which drove Canadian short-term yields to historical
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lows as well. As a consequence, the dynamic interactions of Canadian short- and medium-

term nominal yields were likely affected (see Swanson and Williams, 2014 and Christensen

and Rudebusch, 2015, for discussions). However, given that this issue lies outside the scope

of this paper, we leave it for future research to explore that further.5

The analysis in this paper relates to several important literatures. Most directly, it speaks

to the burgeoning literatures on measurement of both the natural rate of interest and long-

term inflation expectations. Second, our estimates of the real yield curve that would prevail

without trading frictions have implications for asset pricing analysis on the true slope of the

real yield curve. Finally, our results relate to research on financial market liquidity. Indeed,

the RRB liquidity premiums we estimate may serve as a benchmark for assessing liquidity

premiums in other fixed-income markets in Canada and elsewhere.

The remainder of the paper is structured as follows. Section 2 contains the data descrip-

tion, while Section 3 provides a description of the no-arbitrage term structure model we use

and presents the empirical results. Section 4 analyzes our market-based estimates of long-term

inflation expectations and the natural rate before Section 5 concludes. An online appendix

contains additional technical model details, robustness checks, and estimation results.

2 Canadian Government Bond Data

This section describes the Canadian government bond data used in our model estimation.

As for the size of the Canadian government bond market, at the end of December 2019, the

total outstanding notional amount of marketable bonds issued by the government of Canada

was CAD 580.1 billion of which CAD 65.3 billion, or 11.3 percent, represented RRBs.6 The

Canadian government bond market is equivalent to about 25% of Canadian nominal GDP,

and the Canadian government holds a AAA rating with a stable outlook by all major rating

agencies.

2.1 Nominal Bonds

The Bank of Canada produces daily zero-coupon yield curves from a subset of the available

universe of Canadian government fixed-coupon bonds using an “exponential spline model.”7

The database starts in January 1986 and is updated every Thursday with a two-week re-

porting lag. Note that, while the database contains the time series of maturities in quarterly

5We did estimate a shadow-rate version of the CLR-L model that respects the zero lower bound for nominal
yields and found that our results were generally robust.

6This information is available at http://www.bankofcanada.ca/markets/government-securities-
auctions/goc-t-bills-and-bonds-outstanding/

7See Bolder et al. (2004) for a description of these data, which can be accessed at
http://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/. See Diez de los Rios (2015) for another
empirical application using these data.
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Figure 2: Canadian Nominal Government Bond Yields

Illustration of the Canadian government zero-coupon bond yields constructed by staff at the Bank of

Canada with maturities of three months, two years, five years, ten years, and thirty years. The data

series are monthly covering the period from January 31, 1991, to December 31, 2019.

increments from three months to thirty years, we limit our focus to a representative sample

with the following eleven fixed maturities: 0.25, 0.5, 1, 2, 3, 5, 7, 10, 15, 20, and 30 years.

Furthermore, we limit the sample to monthly data covering the period from January 31, 1991,

to December 31, 2019, where the start date matches the launch of the RRB market in 1991.8

Figure 2 shows time series of the zero-coupon yields with maturities of three months, two

years, five years, ten years, and thirty years. First, we note the downward trend of the general

yield level since 1991. The ten-year yield dropped from above 10 percent to below 2 percent

over the shown period. Second, as in U.S. Treasury yield data, there is clear business cycle

variation in the shape of the yield curve around this lower trend.

Finally, regarding the important question of a lower bound, the Bank of Canada has yet to

lower its conventional policy rate to zero, and the bond yields in the data have remained well

above zero throughout the sample period. Thus, we employ an unconstrained Gaussian model

rather than models that respect the zero lower bound (e.g., Christensen and Rudebusch, 2015,

and Andreasen and Meldrum, 2019).

2.2 Real Bonds

Since 1991, the Canadian government has issued RRBs, which have semi-annual interest

payments that are adjusted for inflation in the changes in the all-items Canadian CPI without

8Although we rely on constructed synthetic nominal zero-coupon bond yields instead of bond prices, An-
dreasen et al. (2019) provide evidence that this conventional approach to term structure modeling delivers
satisfactory estimates of investors’ expectations and risk premiums, which is the focus of our paper.
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No. Issuance Total notional
Real return bond

obs. Date amount amount

(1) 4.25% 12/1/2021 240 12/10/1991 n.a. 8,508
(2) 4.25% 12/1/2026 240 12/7/1995 n.a. 8,165
(3) 4% 12/1/2031 240 3/8/1999 400 8,669
(4) 3% 12/1/2036 199 6/9/2003 400 7,758
(5) 2% 12/1/2041 151 6/4/2007 650 8,044
(6) 1.5% 12/1/2044 115 5/31/2010 700 9,098
(7) 1.25% 12/1/2047 73 12/2/2013 700 8,530
(8) 0.5% 12/1/2050 31 6/5/2017 700 6,516

Table 1: Sample of Canadian Government Real Return Bonds

The table reports the characteristics, first issuance date and amount, and total notional amount

outstanding as of December 31, 2019 in millions of Canadian dollars for the sample of Canadian

government real return bonds. Also reported are the number of monthly observation dates for each

bond during the sample period from January 31, 2000, to December 31, 2019.
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Figure 3: Maturity Distribution of Canadian Government Real Return Bonds

Illustration of the maturity distribution of the available universe of Canadian government real return

bonds. The solid grey rectangle indicates the sample used in the empirical analysis, where the sample

is restricted to start on January 31, 2000, and end on December 31, 2019.

seasonal adjustment.9 These bonds have all been thirty-year bonds and are issued only once

every 3-4 years. As a consequence, there is a limited universe of RRBs with a total of eight

9Coté et al. (1996) and Reid et al. (2004) are early studies comparing RRB and conventional Canadian
nominal bond yields.
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Figure 4: Yield to Maturity of Canadian Government Real Return Bonds

Illustration of the yield to maturity of the Canadian real return bonds considered in this paper covering

the period from January 31, 2000, to December 31, 2019.

outstanding at the end of our sample. Due to the limited number of RRBs in the early

years and their correspondingly narrow maturity range, we start our sample of RRB prices

in 2000. Table 1 contains the contractual details of all eight RRBs as well as the number of

monthly observations of each in our sample, while the time-varying maturity distribution of

the eight RRBs in our sample is illustrated in Figure 3, where each security is represented by

a downward-sloping line showing its remaining years to maturity at each date.

Figure 4 shows the yields to maturity for all eight RRBs. The significant persistent decline

in real yields over this 20-year period is clearly visible. Canadian long-term real yields were

close to 4 percent in the early 2000s and have dropped to close to zero by the end of our

sample. One empirical question is to what extent this decline represents a drop in the natural

real rate or is driven by other factors such as liquidity or other risk premiums.

Before turning to model estimation, we examine RRB bid-ask spreads to provide support

for the ACR approach to identify liquidity premiums. Figure 5 shows two series of bid-ask

spreads for Canadian RRBs, one represents the bid-ask spread of the first ever RRB issued

in 1991, the other tracks the bid-ask spread of the most recently issued (on-the-run) RRB—a

sequence of different underlying RRBs. Both series are smoothed four-week averages and

measured in basis points. Similar to what ACR document for U.S. TIPS, the RRB bid-ask

spreads are wider for more seasoned securities than for recently issued securities. Rational,

forward-looking investors are aware of these dynamics and the fact that future market liquidity

of a given security is likely to be below its current market liquidity. This gives rise to liquidity

premiums in the security price that serve as compensation for assuming the risk that it may
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Figure 5: Bid-Ask Spreads of Canadian Real Return Bonds

Illustration of the four-week moving average of bid-ask spreads of Canadian RRBs constructed as

explained in the main text. The series are daily covering the period from May 31, 2012, to December

31, 2019.

be difficult to sell the security back to the market in the future at a satisfactory price and

without incurring higher transaction costs. This pattern in observed measures of current

market liquidity of RRBs is consistent with the factor loading of the liquidity risk factor in

our approach that is intended to model the effects on current RRB prices of expected future

market liquidity conditions.

3 Model Estimation and Results

In this section, we first detail the CLR-L model that serves as the benchmark in our analysis

before we describe the restrictions imposed to achieve econometric identification of the model.

We then compare its estimates to those from the CLR model without a liquidity adjustment.

Finally, we describe the RRB liquidity premium implied by the estimated CLR-L model.

3.1 The CLR-L Model

To begin, let Xt = (LN
t , St, Ct, L

R
t ,X

liq
t ) denote the state vector of the five-factor CLR-L

model. Here, LN
t and LR

t denote the level factor unique to the nominal and real yield curve,

respectively, while St and Ct represent slope and curvature factors common to both yield

curves. Finally, X liq
t represents the added liquidity factor.
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The instantaneous nominal and real risk-free rates are defined as

rNt = LN
t + St, (1)

rRt = LR
t + αRSt. (2)

Note that the differential scaling of the real rates to the common slope factor is captured by

the parameter αR.

The risk-neutral dynamics of the state variables used for pricing are given by




dLN
t

dSt

dCt

dLR
t

dX
liq
t




=




0 0 0 0 0

0 λ −λ 0 0

0 0 λ 0 0

0 0 0 0 0

0 0 0 0 κQliq










0

0

0

0

θQliq




−




LN
t

St

Ct

LR
t

X
liq
t







dt+Σ




dW
LN ,Q
t

dW
S,Q
t

dW
C,Q
t

dW
LR,Q
t

dW
liq,Q
t




,

where Σ is assumed to be a diagonal matrix as per Christensen et al. (2011).

Based on the Q-dynamics above, nominal zero-coupon bond yields preserve a Nelson and

Siegel (1987) factor loading structure

yNt (τ) = LN
t +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AN (τ)

τ
, (3)

where AN (τ) is a convexity term that adjusts the functional form in Nelson and Siegel (1987)

to ensure absence of arbitrage (see Christensen et al., 2011).

On the other hand, due to the lower liquidity in the market for real bonds, real yields are

sensitive to liquidity pressures. As a consequence, the pricing of RRBs is not performed with

the standard real discount function, but rather with a discount function that accounts for the

liquidity risk:

r
R,i
t = rRt + βi(1− e−λL,i(t−ti0))X liq

t = LR
t + αRSt + βi(1− e−λL,i(t−ti0))X liq

t ,

where ti0 denotes the date of issuance of the specific real bond and βi is its sensitivity to the

variation in the liquidity factor. Furthermore, the decay parameter λL,i is assumed to vary

across securities as well.

ACR show that the net present value of one consumption unit paid by real bond i at time

t+ τ has the following exponential-affine form

Pt(t
i
0, τ) = E

Q
t

[
e−

∫ t+τi

t
rR,i(s,ti

0
)ds
]

= exp
(
B1(τ)L

N
t +B2(τ)St +B3(τ)Ct +B4(τ)L

R
t +B5(t, t

i
0, τ)X

Liq
t +A(t, ti0, τ)

)
,

10



which implies that the model belongs to the class of Gaussian affine term structure models.

Note also that, by fixing βi = 0 for all i, we recover the CLR model.

Now, consider the whole value of the real bond i issued at time ti0 with maturity at t+ τ i

that pays an annual coupon CR semi-annually. Its price is given by10

P
R,i

t (ti0, τ
i, CR) = CR(t1 − t)EQ

t

[
e−

∫ t1
t rR,i(s,ti0)ds

]
+

N∑

j=2

CR

2
EQ

t

[
e−

∫ tj
t rR,i(s,ti0)ds

]

+EQ
t

[
e−

∫ t+τi

t
rR,i(s,ti

0
)ds
]
.

Unlike U.S. TIPS, Canadian RRBs have no embedded deflation protection option, which

makes their pricing straightforward. The only minor omission in the bond price formula

above is that we do not account for the lag in the inflation indexation of the real bond payoff,

but the potential error should be modest in most cases, see Grishchenko and Huang (2013)

and D’Amico et al. (2018) for evidence in the case of the U.S. TIPS market.

Finally, within the CLR-L model described above, nominal bonds are assumed to have a

minimum of liquidity risk, which is consistent with the empirical findings of Andreasen et al.

(2019). Therefore, they are valued using the standard nominal zero-coupon yield described

in equation (3).

So far, the description of the CLR-L model has relied solely on the dynamics of the state

variables under the Q-measure used for pricing. However, to complete the description of

the model and to implement it empirically, we will need to specify the risk premiums that

connect the factor dynamics under the Q-measure to the dynamics under the real-world (or

historical) P-measure. It is important to note that there are no restrictions on the dynamic

drift components under the empirical P-measure beyond the requirement of constant volatility.

To facilitate empirical implementation, we use the essentially affine risk premium specification

introduced in Duffee (2002). In the Gaussian framework, this specification implies that the

risk premiums Γt depend on the state variables; that is,

Γt = γ0 + γ1Xt,

where γ0 ∈ R5 and γ1 ∈ R5×5 contain unrestricted parameters, see online Appendix A.

10This is the clean price that does not account for any accrued interest and maps to our observed RRB
prices.
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Thus, the resulting unrestricted five-factor CLR-L model has P-dynamics given by




dLN
t

dSt

dCt

dLR
t

dX
liq
t




=




κP11 κP12 κP13 κP14 κP15

κP21 κP22 κP23 κP24 κP25

κP31 κP32 κP33 κP34 κP35

κP41 κP42 κP43 κP44 κP45

κP51 κP52 κP53 κP54 κP55










θP1
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.

This is the transition equation in the extended Kalman filter estimation of the CLR-L model.

3.2 Model Estimation and Econometric Identification

While nominal yields have a standard affine formulation given by equation (3), RRB prices

are nonlinear functions of the state variables. Due to this nonlinearity of the RRB pricing

formulas, the model cannot be estimated with the standard Kalman filter. Instead, we use

the extended Kalman filter as in Kim and Singleton (2012), see ACR for details. To make the

fitted errors comparable across RRBs of various maturities, we follow ACR and scale each

bond price by its duration. Thus, the measurement equation for the real bond prices takes

the following form:

P
R

t (t
i
0, τ

i)

DR
t (τ

i)
=

P̂R
t (ti0, τ

i)

DR
t (τ

i)
+ ε

R,i
t ,

where P̂R
t (ti0, τ

i) is the model-implied price of real bond i and DR
t (τ

i) is its duration, which

is fixed and calculated before estimation. See Andreasen et al. (2019) for evidence supporting

this formulation of the measurement equation.

Since the liquidity factor is a latent factor that we do not observe, its level is not identified

without additional restrictions. As a consequence, we let the first Canadian government real

return bond issued, that is, the thirty-year real return bond with 4.25% coupon issued on

December 10, 1991, with maturity on December 1, 2021, have a unit loading on the liquidity

factor, that is, βi = 1 for this security. This choice implies that the βi sensitivity parameters

measure liquidity sensitivity relative to that of the thirty-year 2021 RRB.

Furthermore, we note that the λL,i parameters can be hard to identify if their values are

too large or too small. As a consequence, we impose the restriction that they fall within the

range from 0.0001 to 10, which is without practical consequences as demonstrated by ACR.

Also, for numerical stability during the model optimization, we impose the restriction that

the βi parameters fall within the range from 0 to 250, which turns out not to be a binding

constraint at the optimum.

Finally, we assume that all nominal yield measurement equations have i.i.d. fitted errors

with zero mean and standard deviation σN
ε . Similarly, all RRB price measurement equations

12



Maturity CLR CLR-L
in months Mean RMSE Mean RMSE

3 -2.53 15.63 -3.66 12.58
6 -1.97 6.51 -1.98 4.98
12 0.97 10.69 2.40 10.81
24 3.16 13.66 5.38 11.71
36 2.81 11.07 4.43 8.51
60 -0.47 8.21 -0.92 5.80
84 -3.21 10.10 -5.04 9.47
120 -4.85 9.60 -7.04 10.37
180 1.70 11.80 0.91 10.81
240 7.99 21.06 8.53 20.12
360 -5.04 20.10 -4.49 20.60

All maturities -0.13 13.34 -0.13 12.38

Table 2: Pricing Errors of Nominal Yields

This table reports the mean pricing errors (Mean) and the root mean-squared pricing errors (RMSE)

of nominal yields in the CLR and CLR-L models estimated with a diagonal specification of KP and

Σ.

have fitted errors that are assumed to be i.i.d. with zero mean and standard deviation σR
ε .

3.3 Estimation Results

This section presents our benchmark estimation results. In the interest of simplicity, focus

is in this section devoted to a version of the CLR-L model where KP and Σ are diagonal

matrices. As shown in ACR, these restrictions have hardly any effects on the estimated liq-

uidity premium for each RRB, because it is identified from the model’s Q-dynamics, which

is independent of KP and only display a weak link to Σ through the small convexity adjust-

ment in yields. Furthermore, we stress that we relax this assumption in Section 4 when we

analyze estimates of long-term inflation expectations and r∗t , which are indeed sensitive to

the specification of the models’ P-dynamics.

Given that the CLR-L model includes standard nominal Canadian government zero-

coupon bond yields, it seems natural to first explore how well it fits nominal yields. Table

2 documents that it provides a very satisfying fit to all nominal yields, where the overall

root mean-squared error (RMSE) is just 12.38 basis points. The corresponding CLR model

without a liquidity factor gives broadly a similar fit with an overall RMSE of 13.34 basis

points.11 Thus, accounting for the liquidity disadvantage of RRBs does not affect the ability

of the CLR-L model to match nominal yields, which is consistent with the results in ACR.

The impact of accounting for liquidity risk is, however, more apparent in the RRB market.

11Unreported results further show that omitting RRB prices in the estimation gives basically the same
satisfying fit of nominal yields.

13



Pricing errors Estimated parameters
RRB security CLR CLR-L CLR-L

Mean RMSE Mean RMSE βi SE λL,i SE

(1) 4.25% 12/1/2021 2.06 5.71 0.07 2.32 1.00 n.a. 5.02 0.76
(2) 4.25% 12/1/2026 0.02 3.56 0.58 2.16 1.12 0.02 0.37 0.17
(3) 4% 12/1/2031 -0.77 3.09 -0.15 2.10 0.88 0.05 9.97 0.36
(4) 3% 12/1/2036 -0.79 3.89 0.14 1.63 0.63 0.07 9.97 0.35
(5) 2% 12/1/2041 -0.64 4.00 0.41 1.95 0.44 0.12 9.99 0.37
(6) 1.5% 12/1/2044 1.32 3.21 0.28 2.04 0.34 0.17 0.16 0.27
(7) 1.25% 12/1/2047 0.30 2.72 0.25 2.38 0.35 0.14 9.97 0.45
(8) 0.5% 12/1/2050 2.74 4.05 0.20 2.01 0.08 0.22 4.26 0.70

All RRB yields 0.25 4.02 0.21 2.08 - - - -
Max LEKF 25,747.17 26,376.85 - -

Table 3: Pricing Errors of RRBs and Estimated Parameters for Liquidity Risk

This table reports the mean pricing errors (Mean) and the root mean-squared pricing errors (RMSE)

of RRBs in the CLR and CLR-L models estimated with a diagonal specification of KP and Σ. The

errors are computed as the difference between the RRB market price expressed as yield to maturity

and the corresponding model-implied yield. All errors are reported in basis points. Standard errors

(SE) are not available (n.a.) for the normalized value of β1.

The first two columns in Table 3 show that the RRB pricing errors produced by the CLR

model indicate a good fit, with an overall RMSE of 4.02 basis points. The following two

columns reveal a substantial improvement in the pricing errors when correcting for liquidity

risk, as the CLR-L model has a very low overall RMSE of just 2.08 basis points. Hence,

accounting for liquidity risk leads to a notable improvement in the ability of our model to

explain RRB market prices.

The final columns of Table 3 report the estimates of the specific parameters attached to

each RRB. We note that all RRBs in our sample are exposed to liquidity risk, as the βis

are significantly different from zero at the conventional 5 percent level except for the most

recently issued RRB thanks to its low number of observations. Although the estimated values

of λL,i vary notably across securities, this does not imply major differences in the sensitivity of

the RRBs to the liquidity factor as shown in Figure 6. The liquidity adjustment for all RRBs

is increasing in t due to the strong mean-reversion in X
liq
t under the Q-measure (κQliq = 2.39

according to Table 4). Thus, liquidity risk operates as a traditional slope factor within the

CLR-L model, although its steepness varies across the universe of RRBs.

The remaining estimated model parameters are provided in Table 4, which shows that the

dynamics of the four frictionless factors are very similar across the CLR and CLR-L models,

both under the P- and the Q-measure. We draw the same conclusion from Figure 7, which

plots the estimated factors in the two models. The differences tend to be short-lived and

barely noticeable. For that reason it is also the case that the frictionless instantaneous real

14
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Figure 6: The Term Structure of Liquidity Risk

This figure shows the term structure of liquidity risk, where βi is omitted to facilitate the comparison.

That is, we report
(1−exp{−κ

Q

liq
(T−t)})

κ
Q

liq
(T−t)

− exp
{
−λL,i (t− t0)

} 1−exp{−(κQ

liq
+λL,i)(T−t)}

(κQ

liq
+λL,i)(T−t)

for the yield

related to the ith RRB as implied by the estimated version of the CLR-L model with a diagonal

specification of KP and Σ.

rates rRt = LR
t + αRSt are almost indistinguishable across the two models as documented in

panel (f) of Figure 7. Finally, panel (e) shows the estimated liquidity factor X
liq
t , which is

unique to the CLR-L model.

3.4 The Estimated RRB Liquidity Premium

We now use the estimated CLR-L model to extract the liquidity premium in the RRB mar-

ket. To compute this premium we first use the estimated parameters and the filtered states
{
Xt|t

}T
t=1

to calculate the fitted RRB prices
{
P̂

RRB,i
t

}T

t=1
for all outstanding securities in our

sample. These bond prices are then converted into yields to maturity
{
ŷ
c,i
t

}T

t=1
by solving

the fixed-point problem

P̂
RRB,i
t = C(t1 − t) exp

{
−(t1 − t)ŷc,it

}
+

n∑

k=2

C

2
exp

{
−(tk − t)ŷc,it

}
(4)

+ exp
{
−(T − t)ŷc,it

}
,

for i = 1, 2, ..., nRRB , meaning that
{
ŷ
c,i
t

}T

t=1
is approximately the real rate of return on the ith

RRB if held until maturity (see Sack and Elsasser 2004). To obtain the corresponding yields

without correcting for liquidity risk, a new set of model-implied bond prices are computed

from the estimated CLR-L model but using only its frictionless part, i.e., using the constraints

that X liq

t|t = 0 for all t as well as σ55 = 0 and θ
Q
liq = 0. These prices are denoted

{
P̃

RRB,i
t

}T

t=1

and converted into yields to maturity ỹ
c,i
t using (4). They represent estimates of the prices
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(f) The instantaneous real rate

Figure 7: Estimated State Variables

Illustration of the estimated state variables and instantaneous real rate from the CLR and CLR-L

models estimated with a diagonal specification of KP and Σ.
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CLR CLR-L
Parameter

Est. SE Est. SE

κP11 0.0088 0.0477 0.0082 0.0508
κP22 0.3158 0.1927 0.3350 0.1890
κP33 0.5497 0.2001 0.8521 0.2353
κP44 0.0392 0.0758 0.0199 0.0407
κP55 - - 0.5822 0.2068
σ11 0.0059 0.0001 0.0055 0.0001
σ22 0.0116 0.0003 0.0122 0.0003
σ33 0.0213 0.0008 0.0223 0.0009
σ44 0.0040 0.0000 0.0036 0.0001
σ55 - - 0.0460 0.0071
θP1 0.0732 0.0596 0.0695 0.0521
θP2 -0.0286 0.0086 -0.0255 0.0087
θP3 -0.0163 0.0071 -0.0200 0.0052
θP4 0.0302 0.0066 0.0321 0.0063
θP5 - - 0.0190 0.0241
λ 0.2900 0.0029 0.4001 0.0054
αR 0.6223 0.0069 0.6495 0.0188

κ
Q
liq - - 2.3916 0.3490

θQliq - - -0.0009 0.0001

σy 0.0015 6.90 × 10−6 0.0014 5.60 × 10−6

σTIPS 0.0006 7.39 × 10−6 0.0003 4.95 × 10−6

Table 4: Estimated Dynamic Parameters

The table shows the estimated dynamic parameters for the CLR and CLR-L models estimated with a

diagonal specification of KP and Σ.

that would prevail in a world without any financial frictions. The liquidity premium for the

ith RRB is then defined as

Ψi
t ≡ ŷ

c,i
t − ỹ

c,i
t . (5)

Figure 8 shows the average RRB liquidity premium Ψ̄t across the outstanding RRB at

a given point in time. The average estimated RRB liquidity premium clearly varies notably

over time with a maximum of 39 basis points achieved at the peak of the financial crisis and

a low of -22 basis points in the spring of 2013. For the entire period it has an average of -2.60

basis points with a standard deviation of 9.66 basis points.

Finally, in online Appendix C, we demonstrate that the RRB liquidity premiums are

robustly estimated based on the ACR approach, positively correlated with other measures of

financial market frictions, and insensitive to the specification of the mean-reversion matrix

KP.

In summary, these results allow us to conclude with great confidence that changes in

RRB liquidity premiums are not a factor behind the persistent decline in Canadian long-
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Figure 8: Average Estimated Real Bond Liquidity Premium

Illustration of the average estimated real return bond liquidity premium for each observation date

implied by the CLR-L model. The real return bond liquidity premiums are measured as the esti-

mated yield difference between the fitted yield-to-maturity of individual real return bonds and the

corresponding frictionless yield-to-maturity with the liquidity risk factor turned off. The average real

return liquidity premium is shown with a solid black horizontal line. The data cover the period from

January 31, 2000, to December 31, 2019.

term interest rates observed in Figure 1. Still, thanks to their significant time variation, it is

important to account for the liquidity premiums in our analysis as we show in the following

section.

4 A Lower New Normal for Canadian Interest Rates?

In this section, we first present our definition of breakeven inflation (BEI) and the natural

real rate before we go through a careful model selection process to find a preferred specifica-

tion of the CLR-L model’s objective P-dynamics. We then use this preferred CLR-L model

to account for liquidity and term premiums in RRB prices and obtain estimates of both

investors’ long-term inflation expectations and expected real short rates along with the asso-

ciated measure of the equilibrium real rate. Furthermore, we assess itsrobustness to various

additional specification choices and the inclusion of inflation forecasts from surveys of profes-

sional forecasters. Finally, we compare our natural real rate estimate to other market-based

and macro-based estimates from the literature and consider the persistence of forces that may

be pushing long-term interest rates lower.
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4.1 Definition of BEI and the Natural Rate

To begin the analysis in this section, we note that BEI is defined as

BEIt(τ) ≡ yNt (τ)− yRt (τ) = πe
t (τ) + φt(τ), (6)

that is, the difference between nominal and real yields of the same maturity, and can be

decomposed into the sum of expected inflation πe
t (τ) and the inflation risk premium φt(τ).

CLR show that the market-implied average rate of inflation expected at time t for the

period from t to t+ τ is

πe
t (τ) = −

1

τ
lnEP

t

[
Πt

Πt+τ

]
= −

1

τ
lnEP

t

[
e−

∫ t+τ

t
(rNs −rRs )ds

]

and the associated inflation risk premium for the same time period is

φt(τ) = −
1

τ
ln

(
1 +

covPt

[
MR

t+τ

MR
t

, Πt

Πt+τ

]

EP
t

[
MR

t+τ

MR
t

]
× EP

t

[
Πt

Πt+τ

]
)
,

where Πt is the price level and MR
t is the real stochastic discount factor.

This last equation highlights that the inflation risk premium can be positive or negative.

It is positive if and only if

covPt

[
MR

t+τ

MR
t

,
Πt

Πt+τ

]
< 0.

That is, the riskiness of nominal bonds relative to real bonds depends on the covariance

between the real stochastic discount factor and inflation, and is ultimately determined by

investor preferences.

Furthermore, our working definition of the equilibrium real rate of interest r∗t is taken

from CR and given by

r∗t =
1

5

∫ t+10

t+5
EP

t [r
R
t+s]ds, (7)

that is, the average expected real short rate over a five-year period starting five years ahead

where the expectation is with respect to the objective P-probability measure. As noted in the

introduction, this 5yr5yr forward average expected real short rate should be little affected by

short-term transitory shocks. Alternatively, r∗t could be defined as the expected real short

rate at an infinite horizon. However, this quantity will depend crucially on whether the factor

dynamics exhibit a unit root. As is well known, the typical spans of time series data that are

available do not distinguish strongly between highly persistent stationary processes and non-

stationary ones. Our model follows the finance literature and adopts the former structure, so
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Alternative Goodness of fit statistics
specifications logL k p-value BIC

(1) Unrestricted KP 26,429.97 56 n.a. -52,532.22
(2) κP43 = 0 26,429.70 55 0.46 -52,537.53
(3) κP43 = κP13 = 0 26,429.05 54 0.25 -52,542.08
(4) κP43 = κP13 = κP53 = 0 26,428.93 53 0.62 -52,547.69
(5) κP43 = . . . = κP15 = 0 26,428.16 52 0.21 -52,552.01
(6) κP43 = . . . = κP12 = 0 26,427.48 51 0.24 -52,556.50
(7) κP43 = . . . = κP32 = 0 26,427.20 50 0.45 -52,561.79
(8) κP43 = . . . = κP35 = 0 26,426.18 49 0.15 -52,565.60
(9) κP43 = . . . = κP31 = 0 26,425.76 48 0.36 -52,570.61
(10) κP43 = . . . = κP34 = 0 26,425.69 47 0.71 -52,576.33
(11) κP43 = . . . = κP24 = 0 26,422.06 46 < 0.01 -52,574.92
(12) κP43 = . . . = κP21 = 0 26,420.45 45 0.07 -52,577.55
(13) κP43 = . . . = κP52 = 0 26,418.89 44 0.08 -52,580.28

(14) κP43 = . . . = κP45 = 0 26,412.75 43 < 0.01 -52,573.86
(15) κP43 = . . . = κP14 = 0 26,405.65 42 < 0.01 -52,565.51
(16) κP43 = . . . = κP25 = 0 26,395.39 41 < 0.01 -52,550.84
(17) κP43 = . . . = κP23 = 0 26,394.22 40 0.13 -52,554.35
(18) κP43 = . . . = κP42 = 0 26,389.94 39 < 0.01 -52,551.64
(19) κP43 = . . . = κP41 = 0 26,383.43 38 < 0.01 -52,544.48
(20) κP43 = . . . = κP51 = 0 26,378.05 37 < 0.01 -52,539.57
(21) κP43 = . . . = κP54 = 0 26,376.85 36 0.12 -52,543.02

Table 5: Evaluation of Alternative Specifications of the CLR-L Model

There are twenty-one alternative estimated specifications of the CLR-L model. Each specification is

listed with its maximum log likelihood (logL), number of parameters (k), the p-value from a likelihood

ratio test of the hypothesis that it differs from the specification above with one more free parameter,

and the Bayesian information criterion (BIC). The period analyzed covers monthly data from January

31, 1991, to December 31, 2019.

strictly speaking, our infinite-horizon steady state expected real rate is constant. However,

we do not view our data sample as having sufficient information in the ten-year to infinite

horizon range to definitively pin down that steady state, so we prefer our definition with a

medium- to long-run horizon.

4.2 Model Selection

For decompositions of BEI and estimation of the natural real rate and associated inflation,

nominal, and real risk premiums, the specification of the mean-reversion matrix KP is critical

as noted earlier. To select the best fitting specification of the model’s real-world dynamics, we

use a general-to-specific modeling strategy in which the least significant off-diagonal parameter

of KP is restricted to zero and the model is re-estimated. This strategy of eliminating the

least significant coefficient is carried out down to the most parsimonious specification, which
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 KP
·,5 θP Σ

KP
1,· 0.2975 0 0 -0.4498 0 0.0683 σ11 0.0056

(0.1124) (0.1671) (0.0101) (0.0001)
KP

2,· 0 0.4178 -0.5924 0 0.2092 -0.0230 σ22 0.0116

(0.1890) (0.1184) (0.0837) (0.0070) (0.0003)
KP

3,· 0 0 0.8260 0 0 -0.0142 σ33 0.0226

(0.2387) (0.0049) (0.0010)
KP

4,· -1.6112 -0.3190 0 2.4960 -0.0879 0.0351 σ44 0.0037

(0.1968) (0.0833) (0.3040) (0.0258) (0.0065) (0.0001)
KP

5,· 13.1560 0 0 -20.7164 0.8814 0.0582 σ55 0.0494

(0.3865) (0.4127) (0.2359) (0.0284) (0.0104)

Table 6: Estimated Dynamic Parameters of the Preferred CLR-L Model

The table shows the estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix for the

preferred CLR-L model according to the BIC. The estimated value of λ is 0.3900 (0.0056), while αR =

0.5416 (0.0206), κQ
liq = 1.8097 (0.3765), and θQliq = -0.0018 (0.0003). The maximum log likelihood

value is 26,418.89. The numbers in parentheses are the estimated parameter standard deviations.

has a diagonal KP matrix. The final specification choice is based on the value of the Bayesian

information criterion (BIC) as in Christensen et al. (2014).12

The summary statistics of the model selection process are reported in Table 5. The BIC

is minimized by specification (13), which has a KP matrix given by

KP
BIC =




κP11 0 0 κP14 0

0 κP22 κP23 0 κP25

0 0 κP33 0 0

κP41 κP42 0 κP44 κP45

κP51 0 0 κP54 κP55




.

The estimated parameters of the preferred specification are reported in Table 6. The

estimated Q-dynamics used for pricing and determined by (Σ, λ, αR, κ
Q
liq, θ

Q
liq) are close

to those reported in Table 4 for the CLR-L model with diagonal KP. This implies that

both model fit and the estimated RRB liquidity premiums from the preferred CLR-L model

are similar to those already reported and therefore not shown. Furthermore, the estimated

objective P-dynamics in terms of θP and Σ are also qualitatively similar to those reported in

Table 4. Finally, we note that the liquidity factor matters for the expected excess return of

nominal bonds through κP25 in addition to its effect on RRB pricing, while the slope factor is

important for the expected return of both nominal bonds and RRBs. This comes about both

through its own direct effect on their pricing and through its dynamic interactions with the

12The the Bayesian information criterion is defined as BIC = −2 logL + k log T , where k is the number of
model parameters and T is the number of data observations. We have 348 nominal yield and 240 real yield
monthly observations. We follow CLR and interpret T as referring to the longest data series and fix it at 348.
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Figure 9: Ten-Year BEI Decomposition

Illustration of the ten-year fitted BEI implied by the CLR model, i.e. the model without adjustment

for the RRB liquidity premium, and its decomposition into (1) the fitted frictionless BEI, (2) the ten-

year expected inflation, and (3) the residual ten-year inflation risk premium based on the preferred

CLR-L model. Also shown is the ten-year inflation forecasts from the Consensus Forecasts.

other state variables.

4.3 Empirical BEI Decomposition

In this section, we describe the empirical decomposition of the ten-year BEI implied by our

estimation results.

The starting point for the decomposition is the fitted ten-year BEI rate from the CLR

model, which offers the cleanest and most straightforward fit of the raw bond data without

any adjustments. This measure of ten-year BEI is shown with a solid black line in Figure 9.

Now, the estimated ten-year frictionless BEI from the CLR-L model, which does not contain

any RRB liquidity risk premiums, is shown with a solid grey line. It fluctuates above and

below the ten-year fitted BEI as the estimated RRB liquidity premiums switch sign. Hence,

the difference between these two series represent an alternative measure of the RRB liquidity

premiums, which is different from the estimate in Figure 8 as the former has a constant

maturity.

As explained in Section 4.1, the CLR-L model also provides a decomposition of the esti-

mated ten-year frictionless BEI into an expected CPI inflation component and the associated

inflation risk premium shown with a solid red and green line, respectively.

The ten-year inflation risk premium is variable and mostly positive, but it did turn negative

briefly in late 2015 and early 2016 when global energy and commodity prices fell sharply.13 In

13Note that, due to the model’s Gaussian dynamics, the conditional variance of expected inflation is constant.
As a result, changes in the inflation risk premium reflect changes in the risk premiums within the model.
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addition, it experienced a temporary softening around the peak of the financial crisis in late

2008, when CPI inflation in Canada and elsewhere started to fall, see Christensen et al. (2012)

for a U.S. analysis of this episode. Many studies have found inflation risk premiums to be

positive on average and relatively stable, see Ang et al. (2008), Buraschi and Jiltsov (2005),

and Hördahl and Tristani (2014), among many others. Thus, we consider the estimated

inflation risk premium from the CLR-L model to be reasonable in terms of both its level and

time-series variation.

In comparison, the estimated ten-year inflation expectations are less variable, but char-

acterized by a persistent gradual decline since the mid-2000s when bond investors’ long-term

inflation expectations were close to the Bank of Canada’s two percent inflation target. By the

end of our sample these expectations had declined to 0.99 percent, or about a 1 percent drop.

This contrasts with the responses to the Consensus Forecasts survey of professional forecast-

ers, who twice a year are asked about their expectations for inflation over the following ten

years. The mean responses in each survey since 2000 are shown with blue crosses in Figure

9 and have remained very close to two percent throughout this period. As a consequence,

the forecasters view the decline in Canadian long-term BEI rates to be caused by declines in

the inflation risk premiums rather than declines in the expected inflation as implied by the

CLR-L model. In a robustness exercise below, we confirm this interpretation when we include

the Consensus Forecasts above in the CLR-L model estimation.

We see a few potential explanations for the persistent difference between the estimated

ten-year expected inflation and the corresponding projections from the professional forecast-

ers participating in the Consensus Forecasts surveys. First, professional forecasters can be

biased in their predictions. For example, Cieslak (2018) documents that professional fore-

casters systematically fail to predict recessions. As a result, they tend to underestimate the

related spikes in the unemployment rate and associated declines in the stance of monetary

policy. Second, they can be inattentive as noted by Andrade and Le Bihan (2013), who find

that professional forecasters can fail to update their forecasts even when new information has

arrived. A third possibility is that the investors trading in the Canadian bond markets repre-

sent a larger and more diverse group of people than the fairly limited number of professional

forecasters included in the surveys, in particular foreigners would seem to be underrepresented

in the latter. This could allow for a sustained wedge in the long-term inflation expectations of

the kind we find, which seems to be less well supported by the first two explanations. Lastly,

in support of our model estimate, we note that the year-over-year change in the Canadian CPI

averaged 2.30 percent from January 2000 to June 2008, while it only averaged 1.66 percent,

or 0.64 percent lower, over the period from July 2008 to December 2019. Thus, the decline

in the long-term inflation expectations implied by our preferred CLR-L model since 2000 is

close to the decline in actual CPI outcomes during that same period.
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Figure 10: CLR-L Model 5yr5yr Real Yield Decomposition

A few potential caveats are worth keeping in mind regarding these results. First, the

presented results are obtained assuming stationary dynamics, which is the standard in the

finance literature. Thus, there is no consideration of nonstationary unit-root dynamics as

in Christensen and Rudebusch (2012) or shifting end-point formulations as in Bauer and

Rudebusch (2020). Second, unlike survey forecasts that reflect real-time expectations, the

model-based measure of long-term inflation expectations represents a full-sample ”look-back”

estimate, which may affect the model’s view of inflation expectations in the past, although

our real-time exercise in Section 4.7 suggests that this only plays a minor role in our case.

4.4 Estimates of the Natural Rate

Our market-based measure of the natural rate is the average expected real short rate over a

five-year period starting five years ahead. This 5yr5yr forward average expected real short

rate should be little affected by short-term transitory shocks and well positioned to capture

the persistent trends in the natural real rate.14

Figure 10 shows the preferred CLR-L model decomposition of the 5yr5yr forward friction-

less real yield based on the standard definition of the real term premium

TPR
t (τ) = yRt (τ)−

1

τ

∫ t+τ

t

EP
t [r

R
s ]ds,

where yRt (τ) is the fitted real zero-coupon with maturity in τ years, see online Appendix A

for details. The solid grey line is the 5yr5yr forward real term premium, which has fluctuated

around a fairly stable level since 2000. In contrast, the estimate of the natural real rate of

14In online Appendix D, we show that the reported results are robust to using an alternative definition of
r
∗
t based on the 9yr1yr forward average expected real short rate.
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(a) Ten-year expected inflation
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Figure 11: Sensitivity of Ten-Year Expected Inflation and r∗ Estimates to KP Spec-

ification

interest implied by the CLR-L model—the black line—shows a gradual decline from above 2

percent in the early 2000s to below -0.25 percent by the end of the sample. Thus, much of the

downward trend in the 5yr5yr forward real yield is driven by declines in this measure of r∗t ,

while the corresponding real term premium has declined much less on net during this period.

4.5 Robustness Checks

In this section, we provide details on some of the robustness checks we have performed.

4.5.1 Sensitivity to P-Dynamics

To assess the sensitivity of our ten-year expected inflation and r∗t estimates to the specifica-

tion of the mean-reversion matrix KP, we compare them in Figure 11 to the corresponding

estimates from the CLR-L models with unrestricted and diagonal KP matrix. In panel (a)
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(a) Ten-year expected inflation
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Figure 12: Effect of Liquidity Adjustment on Estimates of Ten-Year Expected

Inflation and r∗

of the figure, we note some sensitivity of the ten-year expected inflation to the choice of KP

specification. Importantly, both of the alternative estimates suggest that long-term expected

inflation is even lower at the end of our sample than estimated by the preferred CLR-L model.

Thus, we view our results regarding the decline in long-term inflation expectations to be con-

servative based on this evidence. Furthermore, as can be seen from panel (b), our r∗t estimate

is not overly sensitive to this model choice given that all three series are very close to each

other throughout the sample.

4.5.2 Effect of Liquidity Adjustment

The effect on our estimates from accounting for liquidity premiums in RRB prices is the

subject of Figure 12. In panel (a), the black line is the estimate of the ten-year expected

inflation from the preferred CLR-L model, and the grey line is the estimate from the CLR
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model, which does not account for time-varying liquidity effects in RRB prices.15 While

the estimate from the CLR-L model indicates a persistent gradual decline in investors’ long-

term inflation expectations from an original level close to two percent in the early 2000s, the

estimate from the CLR model is very erratic starting from a level below zero in 2000 and

moving above two percent in the early 2010s. In panel (b), the black line is the estimate of

r∗t from the preferred CLR-L model, and the grey line is the estimate from the CLR model.

Accounting for the liquidity premiums in RRB prices leads to notable differences in the natural

rate estimate at times, and the mean absolute difference between the two estimates is 84 basis

points over the sample. Still, the general magnitude of the overall downtrend in the natural

interest rate is similar across the two specifications.

Overall, we find the differences in the estimates from the two models to be sizable. More

importantly, we consider the estimates from the CLR model to be unconvincing thanks to

their high volatility and unusual time-series pattern. This underscores the importance of the

RRB liquidity premium adjustment provided within the CLR-L model.

To summarize, based on the outcomes from the presented set of robustness checks, we

consider the output from our preferred CLR-L model to be robust and representative. As a

consequence, we feel comfortable relying on the output from this model in the remainder of

the paper.

4.6 Including Inflation Forecasts from Surveys

Many studies advocate the use of survey information as a key input into the estimation of

dynamic term structure models, see Chun (2011) and Kim and Orphanides (2012), amongst

many others, for detailed discussions. As noted by ACR, the CLR-L model framework is

sufficiently flexible to accommodate such augmentations in the information set. Therefore, in

this section, we explore the impact on our estimates of using the long-term inflation forecasts

from the Consensus Forecasts survey in our model estimations, and to keep the exposition

simple, we focus on the preferred CLR-L model studied in the previous sections.

We use the Consensus Forecasts survey for this exercise for three reasons. First and most

importantly, it offers a long history of forecasts of Canadian CPI inflation. Second, the fixed

structure of its survey questions is particularly suitable for model estimations like ours as we

explain below. Finally, we note that it tracks a panel of very qualified economic forecasters

with typically around 15 participating institutions. Thus, we consider these forecasts to be

reliable and of high quality despite the potential weaknesses noted in Section 4.3.

Given that our sample of RRBs is dominated by long-term bonds and given that our

definition of r∗t is centered around expectations at the five- to ten-year horizon, we focus on

15For the CLR model, we also go through a careful model selection process and use the BIC to determine a
preferred specification as described in online Appendix E.
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 KP
·,5 θP Σ

KP
1,· 0.2530 0 0 -0.3848 0 0.0672 σ11 0.0056

(0.1086) (0.1585) (0.0110) (0.0001)
KP

2,· 0 0.1483 -0.3756 0 0.2185 -0.0293 σ22 0.0115

(0.1282) (0.1024) (0.0437) (0.0090) (0.0002)
KP

3,· 0 0 1.2209 0 0 -0.0188 σ33 0.0231

(0.2372) (0.0037) (0.0010)
KP

4,· -1.5148 -0.2763 0 2.1156 -0.0711 0.0341 σ44 0.0036

(0.1998) (0.0598) (0.2921) (0.0212) (0.0071) (0.0001)
KP

5,· 12.9359 0 0 -20.9615 0.6440 0.0442 σ55 0.0467

(0.3898) (0.3804) (0.1902) (0.0247) (0.0091)

Table 7: Estimated Dynamic Parameters of the Preferred CLR-L Model with

Survey Forecasts

The table shows the estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix for the

preferred CLR-L model according to the BIC with survey forecasts included in the data sample. The

estimated value of λ is 0.3901 (0.0056), while αR = 0.5518 (0.0207), κQ
liq = 1.7923 (0.3414), and θQliq =

-0.0016 (0.0003). The maximum log likelihood value is 26,662.38. The numbers in parentheses are the

estimated parameter standard deviations.

the long-term CPI inflation forecasts that the participants are asked about twice a year (in

April and October) and convert them into ten-year inflation forecasts, denoted πCF (10). In

the model estimation, we compare them to the model-implied ten-year expected inflation by

adding an extra measurement equation:

πCF (10) = π̂e
t (10) + εCF

t ,

where εCF
t represents a measurement error that is assumed to be i.i.d. with zero mean and

standard deviation σCF
ε .

Table 7 reports the estimated dynamic parameters from this exercise. In comparing them

to those reported in Table 6 for the benchmark model using financial market information only,

we note that the estimated Q-dynamics are practically indistinguishable. This implies that

the fit of the model including the survey information is practically identical to that reported

in Tables 2 and 3 and therefore not shown.

Figure 13 shows the results for the ten-year BEI decomposition and the r∗t estimate.

First, for the ten-year expected inflation derived from the ten-year BEI decomposition and

illustrated in panel (a) of the figure, we note that the preferred CLR-L model has sufficient

flexibility that it is able to fit the survey forecasts almost perfectly once they are included in

the model estimation, while producing essentially the same fit to the bond data. This implies

that the ten-year frictionless BEI is almost indistinguishable from the corresponding series

shown in Figure 9. One important consequence of this result is that the decline in long-term
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(a) Ten-year BEI decomposition
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Figure 13: Sensitivity of Ten-Year BEI Decomposition and r∗ Estimate to Including

Survey Forecasts

In panel (a) the ten-year fitted BEI implied by the CLR model, i.e. the model without adjustment

for the RRB liquidity premium, is decomposed into (1) the fitted frictionless BEI, (2) the ten-year

expected inflation, and (3) the residual ten-year inflation risk premium based on the preferred CLR-

L estimated with the ten-year Consensus inflation forecasts also shown in the figure along with the

realizations of the year-over-year Canadian CPI inflation. Panel (b) shows the sensitivity of the r∗t
estimate to the inclusion of the ten-year Consensus inflation forecasts. In both panels, the data cover

the period from January 31, 2000, to December 31, 2019.

BEI rates is now explained by declines in the inflation risk premium given that long-term

inflation expectations under this model assumption have remained stable as in the surveys.

To assess the sensitivity of our r∗t estimate to the inclusion of the survey information, we

compare our benchmark r∗t estimate to that from the augmented model, both of which are

shown in Figure 13(b). As can be seen from the figure, our r∗t estimate is slightly higher with

survey forecasts included in the model estimation, but remains highly positively correlated

with our preferred benchmark estimate.
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(a) Five-year expected inflation
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(b) 5yr5yr expected inflation

Figure 14: Five- and Ten-Year Expected Inflation Sensitivity to Including Survey

Forecasts

In panel (a) the ten-year fitted BEI implied by the CLR model, i.e. the model without adjustment

for the RRB liquidity premium, is decomposed into (1) the fitted frictionless BEI, (2) the ten-year

expected inflation, and (3) the residual ten-year inflation risk premium based on the preferred CLR-

L estimated with the ten-year Consensus inflation forecasts also shown in the figure along with the

realizations of the year-over-year Canadian CPI inflation. Panel (b) shows the sensitivity of the r∗t
estimate to the inclusion of the ten-year Consensus inflation forecasts. In both panels, the data cover

the period from January 31, 2000, to December 31, 2019.

At this point, we find it relevant to discuss a potential drawback from including survey

inflation forecasts in the model estimation. The starting point for our critique is provided

in Figure 14, which compares the model-implied expected five-year and 5yr5yr expected

inflation from the preferred CLR-L model with and without survey forecasts used in the

model estimation.

First and most importantly, the contrast between the stability of the ten-year expected in-

flation and the outsized variance of the five-year and 5yr5yr expected inflation is unconvincing.
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It is inconceivable that the unobserved true process for the term structure of investors’ infla-

tion expectations would exhibit this dynamic behavior. In comparison, the term structure of

investors’ inflation expectations implied by the CLR-L model estimated without survey fore-

cast is characterized by a consistent mild upward slope. Furthermore and equally important,

in the model estimation without the survey forecasts, we see a consistent declining pattern

in the time series across all medium- to long-term forecast horizons. This is a point not

emphasized in the papers advocating the use of survey forecasts in the estimation of dynamic

term structure models, including Kim and Orphanides (2012) and DKW.

Lastly, as for the survey inflation forecasts, they are practically identical at the five-year,

ten-year, and 5yr5yr horizons and essentially constant at two percent without any notable

changes the past twenty years despite a number of unprecedented economic developments

during this period, including the global financial crisis. Thus, their extremely stable pattern

also comes across as somewhat suspicious and unconvincing. As a consequence, we view the

CLR-L model estimated with the survey data as biased and overly influenced by the survey

information. In contrast, we consider the CLR-L model without the survey data to offer

a neutral way to decompose the variation in the bond data and provide readings on bond

investors’ inflation expectations that may differ from those reported in the surveys for the

reasons listed earlier.

4.6.1 Evidence from the U.S.

As for established term structure models that include survey information, we are only aware of

one, namely the DKW model maintained at the Federal Reserve Board. It is estimated using

nominal and real yields from the Gürkaynak et al. (2007, 2010) databases (also maintained by

staff at the Federal Reserve Board). Importantly, it includes the median one- and ten-year CPI

inflation forecasts from the quarterly Survey of Professional Forecasters (SPF) administered

by the Federal Reserve Bank of Philadelphia.16

Figure 15 shows the five- and ten-year CPI inflation forecasts from the DKW model and

the SPF. There are a few takeaways from these figures. First, despite including relatively

stable survey forecasts there is a notable softening in the model-implied long-term inflation

expectations, and this softening is particularly surprising at the ten-year horizon given the

fact that the ten-year survey forecasts are actually included in the model estimation.

Equally importantly, the softening of the model-implied inflation expectations relative

to the SPF forecasts started to become notable and persistent at some point during 2011,

which coincides with the time when our CLR-L model-implied inflation expectations started

to trend lower relative to the Canadian survey forecasts.

16The data is from an update provided at the website of Kim et al. (2019) and pulled as of April 6, 2020.
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(a) Five-year expected inflation
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(b) Ten-year expected inflation

Figure 15: Five- and Ten-Year Expected Inflation from a U.S. Model

Panel (a) shows the five-year expected inflation from the DKW model with a comparison to the

median five-year CPI inflation forecasts from the Survey of Professional Forecasters. Panel (b) shows

the corresponding series at the ten-year horizon. The data from the DKW model is daily covering the

period from June 30, 2005 to December 31, 2019, while the SPF forecasts are quarterly from August

11, 2005 to November 11, 2019.

Finally, at the five-year forecast horizon, which is not included in the model estimation,

we do see larger deviations between the model and survey forecasts similar to what we report

for the Canadian data.

At a minimum, these results further highlight that the inclusion of survey information

in the model estimation is not innocent and merits justification as well as a comprehensive

examination of its implications for all relevant model output.
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(a) Ten-year expected inflation
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Figure 16: Accuracy of Real-Time Estimates of Ten-Year Expected Inflation and

r∗

4.7 Real-Time Analysis

A well-known criticism of macro-based estimates of both expected inflation and the natural

real rate is that they can exhibit significant variation as additional and revised data become

available, although Laubach and Williams (2016) demonstrate that the Laubach and Williams

(2003) estimate of the natural real rate has been robust in real time at least since 2005.

All else equal, finance-based estimates should be less subject to this line of criticism as

the key model input, namely the observed bond prices, are available in real time and not

subject to any revisions. However, finance-based estimates could still vary as the sample

length increases, for example the estimated persistence of the state variables may change,

and this could be particularly relevant in the current environment where the general level

of interest rates has been declining for the past two decades. To dispel such concerns, we
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Figure 17: Comparison with a U.S. Market-Based Estimate of r∗

estimate the preferred CLR-L model in real time starting in 2011 through December 2019.

This allows us to generate real-time estimates of the ten-year expected inflation and r∗t and

compare them to the corresponding full sample “look back” estimates, which is done in Figure

16. Although we do see some discrepancies between the estimates as we go back through time,

these results show that both the ten-year expected inflation and the r∗t estimates from our

preferred CLR-L model are reliable in real time and can be used for policy analysis, which is

indeed very encouraging.

4.8 Comparison of Estimates of the Natural Rate

In this section, after having documented the robustness of our estimate of the natural real

rate to multiple model and implementation choices, we compare it to other existing estimates

of the equilibrium or natural interest rate in the literature. To start, we compare the r∗t

estimate from the CLR-L model to the U.S. finance-based estimate obtained by CR using

solely the prices of U.S. TIPS. These two market-based estimates of the natural rate are

shown in Figure 17. Their high positive correlation and similar downward trend are both

evident. Also, they share the common feature that their most pronounced declines the past

two decades happened before and after, but not during the global financial crisis. These

observations combined suggest that the factors depressing both Canadian and U.S. interest

rates are likely to be global in nature and not particularly tied to developments surrounding

the financial crisis.

Now, we turn to the crucial comparison of our finance-based estimate of r∗t with an

estimate based on macroeconomic data. Figure 18 shows the r∗t estimate from our preferred

CLR-L model along with the macro-based estimate of r∗ from HLW, which is the filtered

estimate generated by applying the approach described in Laubach and Williams (2003) to
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Figure 18: Comparison with a Macro-Based Estimate of r∗

Canadian macroeconomic series. The macro-based estimate shown in the figure starts in

1985—15 years earlier than the CLR-L model estimate. However, in the 1980s and 1990s, the

macro-based estimate appears to be stationary and remains close to 3 percent the whole time.

This is consistent with the received wisdom of that era in monetary economics that viewed

the natural rate as effectively constant—for example, as assumed in the large Taylor rule

literature. It is only in the early 2000s that a decided downtrend begins in the macro-based

r∗t estimate. This decline starts about the same time as we start our sample of RRBs which

is quite a fortuitous coincidence for our purposes. Accordingly, even though our estimation

sample is limited to the period since 2000, the evidence suggests that this is the precise sample

of most relevance for discerning shifts in the equilibrium real rate.

Finally, we note that the Bank of Canada publishes an annual analysis of the level of

the neutral rate in Canada. The most recent release of this analysis described in Carter et

al. (2019) indicates an estimate between 2.25 and 3.25 percent for the neutral rate using three

different macro-based approaches. Assuming inflation at 2 percent in the long run consistent

with the Bank of Canada’s inflation target, this would translate into a range between 0.25 and

1.25 percent for the natural real rate. That is more than 0.5 percent above our r∗t estimate

at the end of our sample, which is -0.25 percent. Therefore, if our estimate is true, it would

suggest that the policy rate in Canada as of December 2019 (1.75 percent) is essentially at

neutral or slightly above it.

4.9 Projections of Expected Inflation and the Natural Rate

In light of the intense debate among researchers, investors, and policymakers about whether

there is a new lower normal for interest rates, we analyze the outlook for long-term infla-

tion expectations and the natural rate based on the preferred CLR-L model. We follow the

35



2000 2005 2010 2015 2020 2025 2030

0
1

2
3

R
at

e 
in

 p
er

ce
nt

Ten−year expected inflation, CLR−L model      
Ten−year expected inflation, median projection     
Ten−year expected inflation, 90% confidence band    

(a) Ten-year expected inflation
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Figure 19: Ten-Year Projections

approach of Christensen et al. (2015) and simulate 10,000 factor paths over a ten-year hori-

zon conditioned on the shapes of the nominal and real yield curves and investors’ embedded

forward-looking expectations as of the end of our sample (that is, using estimated state vari-

ables and factor dynamics as of December 31, 2019). The simulated factor paths are then

converted into forecasts of ten-year expected inflation and r∗t . Figure 19 shows the median

projection and the 5th and 95th percentile values for the simulated ten-year expected inflation

and natural rate over a ten-year forecast horizon.17

The median projections of both ten-year expected inflation and r∗t show only a very

gradual modest reversal of the declines the past two decades, and in the case of r∗t the median

projection remains negative until after 2028. The upper 95th percentile rises more rapidly

while the lower 5th percentile represents outcomes with the natural rate trending persistently

lower into ever deeper negative territory and remaining there over the entire forecast horizon.

17Note that the lines do not represent paths from a single simulation run over the forecast horizon; instead,
they delineate the distribution of all simulation outcomes at a given point in time.
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The underlying stationarity of the CLR-L model is clear in these conditional forecasts. Of

course, like most estimates of persistent dynamics, the model will likely suffer from some

finite-sample bias in the estimated parameters of its mean-reversion matrix KP, which would

imply that it does not exhibit a sufficient amount of persistence—as described in Bauer et

al. (2012). In turn, this would suggest (all else equal) that the outcomes below the median

in each panel are more likely than a straight read of the simulated probabilities indicate, and

correspondingly those above the median are less likely than indicated. As a consequence, we

view the projections in Figure 19 as upper bound estimates of the true probability distribution

of the future path for ten-year expected inflation and the natural real rate. As a result, we

consider it even more likely that both measures will remain at or near their current new lows

for the foreseeable future.

Finally, our market-based estimate of r∗t appears relevant to the debate about the source

of the decline in the equilibrium real rate. In particular, although our measure of the real

rate fluctuated a bit at the start of the global financial crisis, our average r∗t estimate in 2010

is not much different than in 2007. This relative stability before and after the financial crisis

suggests that flight-to-safety and safety premium explanations of the lower equilibrium real

rate are unlikely to be key drivers of the downtrend in global interest rates (as proposed by

Hall, 2016, among others). Instead, our estimates appear more broadly consistent with many

of the explanations that attribute the decline in the natural rate to real-side fundamentals

such as changing demographics (e.g., Carvalho et al., 2016, Favero et al., 2016, and Gagnon

et al., 2016).

5 Conclusion

Given the historic downtrend in yields in recent decades, many researchers have investigated

the factors pushing down interest rates. Much of this work has focused on the steady-state

level of the safe short-term real interest rate based on macroeconomic models and U.S. data.

Instead, we consider a finance-based decomposition of interest rates from empirical dynamic

term structure models estimated on a sample of standard Canadian nominal bond yields

combined with the prices of Canadian inflation-indexed bonds. By adjusting for both RRB

liquidity premiums and nominal and real term premiums, we uncover investors’ expectations

for the underlying frictionless real short rate for the five-year period starting five years ahead.

This measure of the natural rate of interest exhibits a gradual decline over the past two decades

that accounts for about two thirds of the general decline in Canadian yields. Specifically, as of

the end of December 2019, the CLR-L model estimate of r∗t is -0.25 percent, a decline of almost

2 and a half percentage points since the beginning of 2000. Furthermore, model projections

that exploit the estimated factor dynamics suggest that this measure of the natural rate is
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more likely than not to remain near its current low level for the foreseeable future.

Equally important, our joint model of nominal and real yields also produces estimates of

investors’ inflation expectations and associated inflation risk premiums. Here, we find that

a decline in investors’ long-term inflation expectations of about a full percentage point has

further contributed to the decline in Canadian long-term bond yields. Again, our model-based

projections indicate that this trend is unlikely to reverse in the foreseeable future, which may

be a concern for the Bank of Canada in terms of achieving its price stability goal in the long

run.

For monetary policy analysis, the proposed finance-based approach to estimate both infla-

tion expectations and the natural real rate also offers notable advantages as they are available

in real-time and not subject to data revision unlike estimates based on macroeconomic data.

Since our measures are based on the forward-looking information priced into the active RRB

market and can be updated at daily frequency, they could serve as an important input for

real-time monetary policy analysis.

For future research, our methods can be further expanded along an international dimen-

sion. With a significant degree of capital mobility, the natural rate will depend on global

saving and investment, so the joint modeling of inflation-indexed bonds in several countries

could be informative similar to HLW. Finally, our measure could be incorporated into an ex-

panded joint macroeconomic and finance analysis—particularly with an eye towards further

understanding the determinants of the lower new normal for interest rates. In this regard,

Bauer and Rudebusch (2020) show that accounting for fluctuations in the natural rate sub-

stantially improves long-range interest rate forecasts and helps predict excess bond returns.
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A Identifying the Natural Rate of Interest with Bonds

In this appendix, we first describe how nominal and real bond yields can be decomposed into

underlying nominal and real short-rate expectations components and residual nominal and

real term premiums in a world without any frictions to trading. The model of frictionless

dynamics is fundamental to our empirical analysis in the paper.

A.1 Decomposing Nominal and Real Yields with Frictionless Models

We begin our analysis assuming a world in which there are no frictions to the trading of

financial claims, i.e., there are no bid-ask spreads and any financial claim can be traded

in arbitrarily small or large amounts without affecting its price. As a consequence, financial

market prices contain no liquidity premiums as there is no liquidity risk to be rewarded. Under

such ideal conditions, nominal and real yields vary either because fundamental factors in the

economy have changed or because investors have altered their perceptions of, or aversions to,

the risks that those economic fundamentals represent.

An arbitrage-free term structure model of nominal and real yields can be used to decom-

pose nominal and real yields into the sum of the corresponding short-rate expectations and

associated term premiums. We follow Merton (1974) and assume a continuum of nominal

and real zero-coupon bonds exists with no frictions to their continuous trading. To begin

the model description, define the nominal and real stochastic discount factors, denoted MN
t

and MR
t , respectively. The no-arbitrage condition enforces a consistency of pricing for any

security over time. Specifically, the price of a nominal bond that pays one dollar in τ years

and the price of a real bond that pays one consumption unit in τ years must satisfy the

conditions that

PN
t (τ) = EP

t

[
MN

t+τ

MN
t

]
and PR

t (τ) = EP
t

[
MR

t+τ

MR
t

]
,

where PN
t (τ) and PR

t (τ) are the observed prices of the zero-coupon, nominal and real bonds

for maturity τ at time t and EP
t [.] is the conditional expectations operator under the real-world

(or P-) probability measure.

Our working definition of the equilibrium real rate of interest r∗t is

r∗t =
1

5

∫ t+10

t+5

EP
t [r

R
t+s]ds, (1)
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that is, the average expected real short rate over a five-year period starting five years ahead

where the expectation is with respect to the objective P-probability measure. As noted in

the paper, this 5yr5yr forward average expected real short rate should be little affected by

short-term transitory shocks.

In the empirical analysis, we rely on the market prices of nominal and real bonds to

construct this market-based measure of the natural rate. In doing so, it is important to

acknowledge that financial market prices do not reflect objective P-expectations as in equation

(1). Instead, they reflect expectations adjusted with the premiums investors demand for

being exposed to the underlying risks. We follow the usual empirical finance approach that

models bond prices with latent factors, here denoted as Xt, and the assumption of no residual

arbitrage opportunities.1 We assume that Xt follows an affine Gaussian process with constant

volatility, with dynamics in continuous time given by the solution to the following stochastic

differential equation (SDE):

dXt = KP(θP −Xt) + ΣdW P
t ,

where KP is an n × n mean-reversion matrix, θP is an n × 1 vector of mean levels, Σ is an

n× n volatility matrix, and W P
t is an n-dimensional Brownian motion. The dynamics of the

nominal and real stochastic discount factors are given by

dMN
t /MN

t = −rNt dt− Γ′
tdW

P
t ,

dMR
t /MR

t = −rRt dt− Γ′
tdW

P
t ,

and the instantaneous, risk-free nominal and real short rates, rNt and rRt , are assumed affine

in the state variables

rNt = δN0 + δN1 Xt,

rRt = δR0 + δR1 Xt,

where δN0 ∈ R, δR0 ∈ R, δN1 ∈ Rn and δR1 ∈ Rn. The risk premiums, Γt, are also affine

Γt = γ0 + γ1Xt,

1Ultimately, of course, the behavior of the stochastic discount factor is determined by the preferences of
the agents in the economy, as in, for example, Rudebusch and Swanson (2011).
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where γ0 ∈ Rn and γ1 ∈ Rn×n.

Duffie and Kan (1996) show that these assumptions imply that zero-coupon nominal and

real yields are also affine in Xt:

yNt (τ) = −
1

τ
AN (τ)−

1

τ
BN(τ)′Xt,

yRt (τ) = −
1

τ
AR(τ)−

1

τ
BR(τ)′Xt,

where AN (τ), AR(τ), BN (τ), and BR(τ) are given as solutions to the following system of

ordinary differential equations

dBN (τ)

dτ
= −δN1 − (KP +Σγ1)

′BN (τ), BN (0) = 0,

dAN (τ)

dτ
= −δN0 +BN(τ)′(KPθP − Σγ0) +

1

2

n∑

j=1

(
Σ′BN(τ)BN (τ)′Σ

)
j,j
, AN (0) = 0,

dBR(τ)

dτ
= −δR1 − (KP +Σγ1)

′BR(τ), BR(0) = 0,

dAR(τ)

dτ
= −δR0 +BN (τ)′(KPθP − Σγ0) +

1

2

n∑

j=1

(
Σ′BR(τ)BR(τ)′Σ

)
j,j
, AR(0) = 0.

Thus, the AN (τ), AR(τ), BN (τ), and BR(τ) functions are calculated as if the dynamics of

the state variables had a constant drift term equal to KPθP−Σγ0 instead of the actual KPθP

and a mean-reversion matrix equal to KP+Σγ1 as opposed to the actual KP.2 The difference

is determined by the risk premium Γt and reflects investors’ aversion to the risks embodied

in Xt.

Finally, we define the nominal and real term premiums as

TPN
t (τ) = yNt (τ)−

1

τ

∫ t+τ

t

EP
t [r

N
s ]ds, (2)

TPR
t (τ) = yRt (τ)−

1

τ

∫ t+τ

t

EP
t [r

R
s ]ds. (3)

That is, the nominal term premium is the difference in expected nominal return between a

buy and hold strategy for a τ -year nominal bond and an instantaneous rollover strategy at

the risk-free nominal rate rNt . The real term premium has a similar interpretation, but in real

2The probability measure with these alternative dynamics is frequently referred to as the risk-neutral, or
Q, probability measure since the expected return on any asset under this measure is equal to the risk-free real
rate rt that a risk-neutral investor would demand.
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terms. This model thus allows us to decompose nominal and real yields into their respective

term premium and short-rate expectations components.

A.2 A Frictionless Arbitrage-Free Model of Nominal and Real Yields

Building on the insights from the general theoretical discussion in the previous section, we

need an accurate model of the instantaneous nominal and real rate, rNt and rRt , in order to

precisely measure nominal and real term premiums. With that goal in mind we choose to focus

on the tractable affine dynamic term structure model of nominal and real yields introduced in

Christensen et al. (2010, henceforth CLR) and briefly summarized below. We emphasize that

even though the model is not formulated using the canonical form of affine term structure

models introduced by Dai and Singleton (2000), it can be viewed as a restricted version of

the canonical Gaussian model.3

The CLR model of nominal and real yields represents an extension of the three-factor,

arbitrage-free Nelson-Siegel (AFNS) model developed by Christensen et al. (2011, hence-

forth CDR) for nominal yields. In the CLR model, the state vector is denoted by Xt =

(LN
t , St, Ct, L

R
t ), where LN

t is the level factor for nominal yields, St and Ct represent slope

and curvature factors common to both nominal and real yields, and LR
t is the level factor for

real yields.4 The instantaneous nominal and real risk-free rates are defined as

rNt = LN
t + St, (4)

rRt = LR
t + αRSt. (5)

Note that the differential scaling of the real rates to the common slope factor is captured

by the parameter αR. To preserve the Nelson and Siegel (1987) factor loading structure in

the yield functions, the risk-neutral (or Q-) dynamics of the state variables are given by the

3These restrictions can be derived explicitly, see online Appendix B for details.
4Chernov and Mueller (2012) provide evidence of a hidden factor in the nominal yield curve that is observable

from real yields and inflation expectations. The CLR model accommodates this stylized fact via the LR
t factor.
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stochastic differential equations:5




dLN
t

dSt

dCt

dLR
t




=




0 0 0 0

0 −λ λ 0

0 0 −λ 0

0 0 0 0







LN
t

St

Ct

LR
t




dt+Σ




dW
LN ,Q
t

dW
S,Q
t

dW
C,Q
t

dW
LR,Q
t




, (6)

where Σ is the constant covariance (or volatility) matrix.6 Based on this specification of

the Q-dynamics, nominal zero-coupon bond yields preserve the Nelson-Siegel factor loading

structure as

yNt (τ) = LN
t +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AN (τ)

τ
, (7)

where the nominal yield-adjustment term is given by

AN (τ)

τ
=

σ2
11

6
τ2 + σ2

22

[ 1

2λ2
−

1

λ3

1− e−λτ

τ
+

1

4λ3

1− e−2λτ

τ

]

+σ2
33

[ 1

2λ2
+

1

λ2
e−λτ −

1

4λ
τe−2λτ −

3

4λ2
e−2λτ +

5

8λ3

1− e−2λτ

τ
−

2

λ3

1− e−λτ

τ

]
.

Similarly, real zero-coupon bond yields have a Nelson-Siegel factor loading structure expressed

as

yRt (τ) = LR
t + αR

(
1− e−λτ

λτ

)
St + αR

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AR(τ)

τ
, (8)

where the real yield-adjustment term is given by

AR(τ)

τ
=

σ2
44

6
τ2 + σ2

22(α
R
S )

2
[ 1

2λ2
−

1

λ3

1− e−λτ

τ
+

1

4λ3

1− e−2λτ

τ

]

+σ2
33(α

R
S )

2
[ 1

2λ2
+

1

λ2
e−λτ −

1

4λ
τe−2λτ −

3

4λ2
e−2λτ +

5

8λ3

1− e−2λτ

τ
−

2

λ3

1− e−λτ

τ

]
.

To complete the description of the model and to implement it empirically, we will need

to specify the risk premiums that connect these factor dynamics under the Q-measure to the

dynamics under the real-world (or physical) P-measure. It is important to note that there

are no restrictions on the dynamic drift components under the empirical P-measure beyond

5As discussed in CDR, with unit roots in the two level factors, the model is not arbitrage-free with an
unbounded horizon; therefore, as is often done in theoretical discussions, we impose an arbitrary maximum
horizon.

6As per CDR, Σ is a diagonal matrix, and θQ is set to zero without loss of generality.
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the requirement of constant volatility. To facilitate empirical implementation, we use the

essentially affine risk premium specification introduced in Duffee (2002). In the Gaussian

framework, this specification implies that the risk premiums Γt depend on the state variables;

that is,

Γt = γ0 + γ1Xt,

where γ0 ∈ R4 and γ1 ∈ R4×4 contain unrestricted parameters.

Thus, the resulting unrestricted four-factor CLR model has P-dynamics given by




dLN
t

dSt

dCt

LR
t




=




κP11 κP12 κP13 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

κP41 κP42 κP43 κP44










θP1

θP2

θP3

θP4




−




LN
t

St

Ct

LR
t







dt+Σ




dW
LN ,P
t

dW
S,P
t

dW
C,P
t

dW
LR,P
t




.

This is the transition equation in the Kalman filter estimation of the CLR model.

B Mapping from the Canonical A0(4)Model to the CLRModel

In this appendix, we build on the classification of ATSMs introduced in Dai and Singleton

(2000) and detail the connection between the canonical A0(4) model of nominal and real

yields and its counterpart CLR model. It should be noted that implicit in the description is

the usage of the extended affine risk premium specification of Cheridito et al. (2007), which

for Gaussian A0(N) models is equivalent to the essentially affine risk premium specification

introduced in Duffee (2002). By limiting the focus to affine risk premium specifications, the

models preserve affine factor dynamics under both probability measures and the invariant

affine transformations of Dai and Singleton (2000) apply.

Derivation of the restrictions imposed on the canonical representation of the A0(4) model

needed to get to a specification that has a distribution identical to the CLR model considered

in the paper starts from a general affine diffusion process represented by

dYt = K
Q
Y [θ

Q
Y − Yt]dt+ΣY dW

Q
t .

Now, consider the affine transformation TA : AYt+ η, where A is a nonsingular square matrix

of the same dimension as Yt and η is a vector of constants of the same dimension as Yt. Denote
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the transformed process by Xt = AYt + η. By Ito’s lemma, it follows that

dXt = AdYt = [AKQ
Y θ

Q
Y −AK

Q
Y Yt]dt+AΣY dW

Q
t

= AK
Q
Y A

−1[AθQY −AYt − η + η]dt+AΣY dW
Q
t

= AKQ
Y A

−1[AθQY + η −Xt]dt+AΣY dW
Q
t = KQ

X [θQX −Xt]dt+ΣXdWQ
t .

Thus, Xt is itself an affine diffusion process with parameter specification:

K
Q
X = AK

Q
Y A

−1, θ
Q
X = Aθ

Q
Y + η, and ΣX = AΣY .

A similar result holds for the dynamics under the P-measure.

As for the short rate process, there exists the following relationship:

rt = δY0 + (δY1 )
′Yt = δY0 + (δY1 )

′A−1AYt = δY0 + (δY1 )
′A−1[AYt + η − η]

= δY0 − (δY1 )
′A−1η + (δY1 )

′A−1Xt.

Thus, defining δX0 = δY0 − (δY1 )
′A−1η and δX1 = (δY1 )

′A−1, the short rate process is left

unchanged and may be represented in either way

rt = δY0 + (δY1 )
′Yt = δX0 + (δX1 )′Xt.

Because both Yt and Xt are affine latent factor processes that deliver the same distribution

for the short rate process rt, they are equivalent representations of the same fundamental

model; hence, TA is called an affine invariant transformation.

In the canonical representation of the subset of A0(4) affine term structure models con-

sidered here, the Q-dynamics are7




dY 1
t

dY 2
t

dY 3
t

dY 4
t




= −




κ
Y,Q
11

κ
Y,Q
12

κ
Y,Q
13

κ
Y,Q
14

0 κ
Y,Q
22

κ
Y,Q
23

κ
Y,Q
24

0 0 κ
Y,Q
33

κ
Y,Q
34

0 0 0 κ
Y,Q
44







Y 1
t

Y 2
t

Y 3
t

Y 4
t




dt+




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t

dW
4,Q
t




,

7Note that we follow Singleton (2006) and impose the identifying restrictions on the Q-dynamics, which
contrasts with the approach of Dai and Singleton (2000) where they are imposed on the P-dynamics.
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and the P-dynamics are left unconstrained




dY 1
t

dY 2
t

dY 3
t

dY 4
t




=




κ
Y,P
11

κ
Y,P
12

κ
Y,P
13

κ
Y,P
14

κ
Y,P
21

κ
Y,P
22

κ
Y,P
23

κ
Y,P
24

κ
Y,P
31

κ
Y,P
32

κ
Y,P
33

κ
Y,P
34

κ
Y,P
41

κ
Y,P
42

κ
Y,P
43

κ
Y,P
44










θ
Y,P
1

θ
Y,P
2

θ
Y,P
3

θ
Y,P
4




−




Y 1
t

Y 2
t

Y 3
t

Y 4
t






dt+




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







dW
1,P
t

dW
2,P
t

dW
3,P
t

dW
4,P
t




.

Finally, the instantaneous risk-free rate is

rt = δY0 + δY1,1Y
1
t + δY1,2Y

2
t + δY1,3Y

3
t + δY1,4Y

4
t .

This equation shows that we will be considering two cases jointly: (1) The case of nominal

yields discounted with the nominal risk-free rate rNt and (2) the case of real yields discounted

with the real risk-free rate rRt . Thus, the short rate processes in the canonical model are

rNt = δ
N,Y
0

+ δ
N,Y
1,1 Y 1

t + δ
N,Y
1,2 Y 2

t + δ
N,Y
1,3 Y 3

t + δ
N,Y
1,4 Y 4

t ,

rRt = δ
R,Y
0

+ δ
R,Y
1,1 Y 1

t + δ
R,Y
1,2 Y 2

t + δ
R,Y
1,3 Y 3

t + δ
R,Y
1,4 Y 4

t .

There are 35 parameters in this maximally flexible canonical representation of the A0(4)

class of models for nominal and real yields separately. Once we join the information set and

model rNt and rRt simultaneously, there are 40 parameters in the canonical A0(4) model and

we now present the parameter restrictions needed to arrive at the CLR model of nominal and

real yields with diagonal Σ matrix analyzed in the paper.

To begin, let the state vector be denoted by Xt = (LN
t , St, Ct, L

R
t ), where LN

t is the level

factor for nominal yields, St is the common slope factor, Ct is the common curvature factor,

and LR
t is the level factor for real yields.

The maximally flexible specification of the CLR model is




dLN
t

dSt

dCt

dLR
t




=




κP11 κP12 κP13 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

κP41 κP42 κP43 κP44










θP1

θP2

θP3

θP4




−




LN
t

St

Ct

LR
t







dt+Σ




dW
LN ,P
t

dW
S,P
t

dW
C,P
t

dW
LR,P
t




,
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while its Q-dynamics are given by




dLN
t

dSt

dCt

dLR
t




=




0 0 0 0

0 −λ λ 0

0 0 −λ 0

0 0 0 0







LN
t

St

Ct

LR
t




dt+Σ




dW
LN ,Q
t

dW
S,Q
t

dW
C,Q
t

dW
LR,Q
t




,

where Σ is a diagonal matrix

Σ =




σLN 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 σLR




.

The instantaneous nominal and real risk-free rates are defined as:

rNt = LN
t + St,

rRt = LR
t + αRSt.

This model has a total of 26 parameters; thus, 14 parameter restrictions need to be

imposed on the canonical A0(4) model with a joint representation of nominal and real yields.

It is easy to verify that the affine invariant transformation TA(Yt) = AYt + η with

A =




σLN 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 σLR




and η =




0

0

0

0




will convert the canonical representation into the CLR model as described above. For the

mean-reversion matrices, the relationship between the two representations is

KP
X = AKP

Y A
−1 ⇐⇒ KP

Y = A−1KP
XA,

KQ
X = AKQ

Y A
−1 ⇐⇒ KQ

Y = A−1KQ
XA.
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The equivalent mean-reversion matrix under the Q-measure is then

K
Q
Y =




1

σ
LN

0 0 0

0 1

σS
0 0

0 0 1

σC
0

0 0 0 1

σ
LN







0 0 0 0

0 λ −λ 0

0 0 λ 0

0 0 0 0







σLN 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 σLR




=




0 0 0 0

0 λ −λσC

σS
0

0 0 λ 0

0 0 0 0




.

Thus, eight restrictions need to be imposed on the upper triangular mean-reversion matrix

KQ
Y :

K
Y,Q
11

= K
Y,Q
12

= K
Y,Q
13

= K
Y,Q
14

= K
Y,Q
24

= K
Y,Q
34

= K
Y,Q
44

= 0 and K
Y,Q
33

= K
Y,Q
22

.

Furthermore, notice that KY,Q
23

will always have the opposite sign of KY,Q
22

and K
Y,Q
33

, but its

absolute size can vary independently of these two parameters. BecauseKP
X is an unconstrained

4× 4 matrix, there are no restrictions on KP
Y .

Finally, we can study the factor loadings in the affine function for the short rate processes.

In the CLR model, the nominal risk-free rate is rNt = LN
t + St, which is equivalent to

fixing

δ
N,X
0

= 0, δ
N,X
1

=




1

1

0

0




.

From the relation (δN,X
1

)′ = (δN,Y
1

)′A−1 it follows that

(δN,Y
1

)′ = (δN,X
1

)′A =
(

1 1 0 0
)




σLN 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 σLR




=
(

σLN σS 0 0
)
.
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For the constant term it holds that

δ
N,X
0

= δ
N,Y
0

− (δN,Y
1

)′A−1η ⇐⇒ δ
N,Y
0

= δ
N,X
0

= 0.

Thus, we have obtained three additional parameter restrictions

δ
N,Y
0

= 0 and δ
N,Y
1,3 = δ

N,Y
1,4 = 0.

In the CLR model, the real risk-free rate is rRt = LR
t +αRSt, which is equivalent to fixing

δ
R,X
0

= 0, δ
R,X
1

=




0

αR

0

1




.

From the relation (δR,X
1

)′ = (δR,Y
1

)′A−1 it follows that

(δR,Y
1

)′ = (δR,X
1

)′A =
(

0 αR 0 1
)




σLN 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 σLR




=
(

0 αRσS 0 σLR

)
.

For the constant term it holds that

δ
R,X
0

= δ
R,Y
0

− (δR,Y
1

)′A−1η ⇐⇒ δ
R,Y
0

= δ
R,X
0

= 0.

Thus, we have obtained another three additional parameter restrictions

δ
R,Y
0

= 0 and δ
R,Y
1,1 = δ

R,Y
1,3 = 0,

which brings the total to 14 parameter restrictions as required.
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C The RRB Liquidity Premium

In this appendix, we analyze the RRB liquidity premium implied by the estimated CLR-L

model. First, we formally define the RRB liquidity premium and study its historical evolution.

We then assess its robustness by comparing it to other liquidity premium estimates before we

end the section by relating the estimated liquidity premium to observable proxies of liquidity

risk.

C.1 The Estimated RRB Liquidity Premium

To compute the liquidity premium in the RRB market, we first use the estimated parame-

ters and the filtered states
{
Xt|t

}T

t=1
to calculate the fitted RRB prices

{
P̂

RRB,i
t

}T

t=1
for all

outstanding securities in our sample. These bond prices are then converted into yields to

maturity
{
ŷ
c,i
t

}T

t=1
by solving the fixed-point problem

P̂
RRB,i
t=1

= C(t1 − t) exp
{
−(t1 − t)ŷc,it

}
+

n∑

k=2

C

2
exp

{
−(tk − t)ŷc,it

}
(9)

+ exp
{
−(T − t)ŷc,it

}
,

for i = 1, 2, ..., nRRB , meaning that
{
ŷ
c,i
t

}T

t=1
is approximately the real rate of return on the ith

RRB if held until maturity (see Sack and Elsasser 2004). To obtain the corresponding yields

without correcting for liquidity risk, a new set of model-implied bond prices are computed

from the estimated CLR-L model but using only its frictionless part, i.e., using the constraints

that X liq

t|t = 0 for all t as well as σ55 = 0 and θ
Q
liq = 0. These prices are denoted

{
P̃

RRB,i
t

}T

t=1

and converted into yields to maturity ỹ
c,i
t using (9). They represent estimates of the prices

that would prevail in a world without any financial frictions. The liquidity premium for the

ith RRB is then defined as

Ψi
t ≡ ŷ

c,i
t − ỹ

c,i
t . (10)

Figure 1 shows the average RRB liquidity premium Ψ̄t across the outstanding RRB at

a given point in time. The average estimated RRB liquidity premium clearly varies notably

over time with a maximum of 39 basis points achieved at the peak of the financial crisis and

a low of -22 basis points in the spring of 2013. For the entire period it has an average of -2.60

basis points with a standard deviation of 9.66 basis points.
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Figure 1: Average Estimated Real Bond Liquidity Premium

Illustration of the average estimated real return bond liquidity premium for each observation date implied by

the CLR-L model. The real return bond liquidity premiums are measured as the estimated yield difference

between the fitted yield-to-maturity of individual real return bonds and the corresponding frictionless yield-

to-maturity with the liquidity risk factor turned off. The average real return liquidity premium is shown with

a solid black horizontal line. The data cover the period from January 31, 2000, to December 31, 2019.

C.2 Liquidity Premium Comparisons

Our benchmark CLR-L model has a standard affine specification for the nominal short rate,

which does not enforce the zero lower bound (ZLB). However, a large fraction of our sample

(2009-2017) is near the ZLB, and we therefore briefly explore whether our estimated liquidity

premium is robust to accounting for the ZLB through a shadow-rate extension of the CLR-L

model. We adopt an approach inspired by Black (1995) and replace rNt in equation (4) by rNt =

max
(
LN
t + St, 0

)
and solve for nominal yields using the approximation in Christensen and

Rudebusch (2015), but this B-CLR-L model is otherwise identical to the CLR-L model. We

also consider the CLR model extension offered by Christensen et al. (2016), who incorporate

stochastic volatility into the nominal and real level factors. We augment their model with

a liquidity factor as before and refer to it as the CLR-L-SV model. Figure 2(a) shows that

the estimated liquidity premiums from these two model alternatives are qualitatively similar

to our benchmark estimate from the CLR-L model. Thus, neither the presence of the ZLB

nor allowing for stochastic volatility seem to materially affect the estimated RRB liquidity

premiums similar to what Andreasen et al. (2020, henceforth ACR) report in the context of

U.S. Treasuries and TIPS.

Given the geographical proximity of Canada to the U.S., we next compare our average
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(a) Comparison with alternative models
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(b) Comparison with U.S. TIPS liquidity premium

Figure 2: Comparisons of the RRB Liquidity Premium

In panel (a) the average estimated real return bond liquidity premium implied by the CLR-L model is compared

with the corresponding series implied by the shadow-rate B-CLR-L model. In panel (b) the average estimated

real return bond liquidity premium implied by the CLR-L model is compared with the U.S. TIPS liquidity

premium series implied by the CLR-L model applied to U.S. TIPS prices as described in ACR. The data cover

the period from January 31, 2000, to December 31, 2019.

estimated RRB liquidity premium series with the average estimated U.S. TIPS liquidity

premium from an update of the analysis in ACR. We make three changes relative to the

estimation performed by ACR. First, we include all available TIPS and not just five- and ten-

year TIPS as in ACR to make the sample more comparable to our RRB sample in terms of

maturity composition. Second, we use monthly instead of weekly data to match our Canadian

data. Third, we update the sample with data through December 2019. The resulting average

TIPS liquidity premium is shown with a solid grey line in Figure 2(b). We note that the two

series share a number of broad trends. First, they both reach a peak in late 2002 followed by

a steady decline with a trough in 2005. Both series spike sharply at the peak of the financial
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crisis in the fall of 2008 followed by a gradual reversal in the immediate years after the crisis.

Finally, they are both close to their respective historical averages at the end of the sample.

This broadly similar underlying trend implies a high positive correlation (57%).

At the same time, it is also clear that each series has experienced a number of idiosyncratic

shocks not shared by the other. For example, the U.S. TIPS liquidity premium series shows

a clear dip during the Fed’s second large-scale asset purchase program, commonly known

as QE2, which included $26 billion in TIPS purchases. This is consistent with analysis in

Christensen and Gillan (2019). They argue that a central bank launching a large-scale asset

purchase program acts as a large committed buyer with unusual preferences in that it trades

strategically to raise asset prices. This temporarily increases the bargaining power of sellers

and lowers the liquidity premiums in the targeted securities while the program is in operation,

which explains the drop in the U.S. TIPS liquidity premiums during this period. As Canadian

RRBs were naturally excluded from the set of securities targeted by the Fed, the logic of this

QE liquidity transmission channel implies that the liquidity of RRBs should be practically

unaffected by these purchases, and our results are consistent with this view as the estimated

RRB liquidity premium does not respond to this shock to the U.S. TIPS market.

C.3 Observable Proxies for Liquidity Risk

We next show that the RRB liquidity premium is strongly related to observable proxies for

liquidity risk as well as factors that are fundamental determinants of the cash flow of RRBs.

The first variable we consider is the VIX options-implied volatility index, which represents

near-term uncertainty in the Standard & Poor’s 500 stock market index. Panel (a) of Figure

3 shows the expected positive correlation (55%) between the VIX and the RRB liquidity

premium, as high uncertainty tends to increase the risk attached to the future resale price

of any security and therefore also the required liquidity premium.8 The second variable is

the yield difference between the seasoned (off-the-run) ten-year U.S. Treasury as provided

by Gürkaynak et al. (2007) and the most recently issued (on-the-run) U.S. Treasury of the

same maturity from the H.15 series at the Federal Reserve Board of Governors. The on-

the-run security is typically the most traded security and therefore penalized the least in

terms of liquidity premiums, which explains the mostly positive spread. For our analysis, the

important thing to note is that if there is a wide yield spread between liquid on-the-run and

8See also Duffie et al. (2007) for a model on the positive relationship between uncertainty and liquidity.
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(a) The VIX options-implied volatility index
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(b) The U.S. Treasury on-the-run par-yield spread
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(c) Canadian CPI inflation
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(d) WTI oil price

Figure 3: Variables Explaining the Average RRB Liquidity Premium

In panel (a) the VIX for the S&P 500 is expressed in percentage, in panel (b) the yield spread is the difference

between the ten-year off-the-run Treasury par yield from Gürkaynak et al. (2007) and the ten-year on-the-run

Treasury par yield from the H.15 series at the Board of Governors, in panel (c) the year-over-year change in

the Canadian consumer price index measured in percent, and in panel (d) the WTI spot oil price measured in

U.S. dollars.

comparable seasoned U.S. Treasuries, we would expect liquidity premiums in the Canadian

bond market to also be elevated. As seen in Figure 3(b), this view is supported by the data as

the on-the-run liquidity premium in U.S. Treasuries is highly positively correlated (60%) with

the average RRB liquidity premium from our model. Our final two variables represent factors
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(1) (2) (3) (4) (5)

Intercept -15.692∗∗ -8.568∗∗ 1.416 -1.403 -11.034∗∗

(3.038) (1.251) (3.736) (2.674) (2.694)
VIX 0.672∗∗ 0.259∗

(0.173) (0.131)
On the run premium 0.509∗∗ 0.442∗∗

(0.122) (0.107)
Canadian CPI inflation -2.079 -2.779∗∗

(1.558) (0.925)
WTI oil price -0.019 0.057∗

(0.037) (0.027)
Adjusted R2 0.298 0.355 0.031 -0.001 0.457

Table 1: Regression Results

The table reports the results of regressions with the average estimated RRB liquidity premium as the depen-

dent variable and four explanatory variables that represent measures of financial market uncertainty, financial

market functioning, Canadian consumer price inflation, and energy prices, respectively. Standard errors com-

puted by the Newey-West estimator (with 3 lags) are reported in parentheses. Asterisks * and ** indicate

significance at the 5 percent and 1 percent levels, respectively.

that are fundamental to the cash flow of RRBs, namely Canadian CPI inflation and energy

prices as reflected in the WTI spot oil price. Still, we only see a modest negative correlation

between the estimated RRB liquidity premium and these two important variables. This

means that when energy prices go up and inflation is boosted as a result, the RRB liquidity

premiums tend to fall, likely because RRBs are desirable assets under those circumstances.

We now run standard linear regressions to more formally assess the relative importance

of each of these four variables. First, we run regressions with each explanatory variable in

isolation. The results reported in columns (1)-(4) of Table 1 confirm the characterizations

above about the ties between our RRB liquidity premium series and the four explanatory

variables. In particular, the on-the-run premium has the largest explanatory power, while

the RRB liquidity premium indeed only has a weak link with Canadian CPI inflation and the

WTI oil price.

The final column of Table 1 reports the results of regressing the average RRB liquidity

premium from our model on all four explanatory variables jointly. We find a significant effect

from the on-the-run premium that has the expected positive sign. On the other hand, the VIX

and WTI oil price coefficients are insignificant at the 5% level and hardly affect the adjusted

R2 of 0.46. While Canadian CPI inflation is significant when included in the multivariate

regression, we note that it has a lower significance than the on the run premium and the
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Figure 4: Sensitivity of Real Bond Liquidity Premium to Model Specification

Illustration of the average estimated real return bond liquidity premium for each observation date implied by

the CLR-L model estimated with the 21 different specifications of KP considered in Table 5 in the paper. Note

that Σ has a diagonal specification in all estimations. The real return bond liquidity premiums are measured

as the estimated yield difference between the fitted yield to maturity of individual real return bonds and the

corresponding frictionless yield to maturity with the liquidity risk factor turned off. The data cover the period

from January 31, 2000, to December 31, 2019.

univariate regression has limited explanatory power of the liquidity premium as measured by

the adjusted R2. These regressions show that our model-implied measure of liquidity risk has

a robust correlation with the on the run premium, which is commonly used proxy for liquidity

risk. We interpret this result as confirming that the strategy for identification of liquidity risk

proposed by ACR works well in the context of Canadian RRBs.

C.4 Sensitivity of the RRB Liquidity Premium to Model Specifications

In this appendix, we study the sensitivity of the estimated RRB liquidity premiums to the

choice of dynamic specification within the CLR-L model. To do so, we compare the different

RRB liquidity premium series we get from the model specifications considered as part of the

model selection procedure described in the paper.

We are interested in the variation in the average estimated RRB liquidity premium cal-

culated as described earlier for each of the specifications considered in Table 5 in the paper.

These 21 different liquidity premium series are shown in Figure 4 with the one generated

by the most parsimonious CLR-L model with diagonal KP and Σ matrices analyzed in this

appendix and highlighted with a thick solid red line and the one generated by the preferred
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Figure 5: CLR-L Model 9yr1yr Real Yield Decomposition

CLR-L model studied in Section 4 of the paper highlighted with a thick solid black line.

We note a fairly large dispersion across specifications early in our sample period when we

observe prices for only a small set of RRB. However, since 2004 the estimated RRB liquidity

premiums are practically indistinguishable across specifications. Therefore, overall our results

confirm the findings of ACR, namely that liquidity premiums estimated with their approach

are extracted primarily from the cross sectional information on each observation date with

relatively little sensitivity to the specification of the time series dynamics. Therefore, based on

this evidence, we limit the earlier regression analysis to the average RRB liquidity premium

estimated by the most parsimonious specification of the CLR-L model with diagonal KP and

Σ matrices as it is—with few exceptions—clearly representative of the liquidity premiums one

would estimate with other more flexible specifications.

D Alternative Definitions of r∗(t)

In this appendix, we consider an alternative definition of r∗t as the average expected real short

rate over a one-year period starting nine years ahead, i.e.,

r∗t =

∫ t+10

t+9

EP
t [r

R
t+s]ds.

Figure 5 shows the preferred CLR-L model decomposition of the 9yr1yr forward frictionless

real yield based on the equation above and compares it to our existing results. As can be seen

from the figure, this alternative definition of r∗t generates results, which that are very close
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Alternative Goodness of fit statistics
Specifications logL k p-value BIC

(1) Unrestricted KP 25,765.64 28 n.a. -51,367.42
(2) κP43 = 0 25,765.63 27 0.89 -51,373.25
(3) κP43 = κP41 = 0 25,765.63 26 1.00 -51,379.10
(4) κP43 = κP41 = κP31 = 0 25,765.29 25 0.41 -51,384.27
(5) κP43 = . . . = κP12 = 0 25,764.84 24 0.34 -51,389.23
(6) κP43 = . . . = κP32 = 0 25,764.39 23 0.34 -51,394.18
(7) κP43 = . . . = κP21 = 0 25,761.69 22 0.02 -51,394.63
(8) κP43 = . . . = κP13 = 0 25,761.21 21 0.33 -51,399.52
(9) κP43 = . . . = κP24 = 0 25,760.17 20 0.15 -51,403.30
(10) κP43 = . . . = κP23 = 0 25,760.15 19 0.84 -51,409.11

(11) κP43 = . . . = κP34 = 0 25,754.99 18 < 0.01 -51,404.64
(12) κP43 = . . . = κP14 = 0 25,750.15 17 < 0.01 -51,400.81
(13) κP43 = . . . = κP42 = 0 25,747.17 16 < 0.01 -51,400.70

Table 2: Evaluation of Alternative Specifications of the CLR Model

There are thirteen alternative estimated specifications of the CLR model. Each specification is listed with

its maximum log likelihood (logL), number of parameters (k), the p-value from a likelihood ratio test of

the hypothesis that it differs from the specification above with one more free parameter, and the Bayesian

information criterion (BIC). The period analyzed covers monthly data from January 31, 1991, to December

31, 2019.

to those obtained based on our adopted definition. Thus, the reported results are robust to

using alternative definitions of r∗t of this kind.

E Model Selection in the CLR Model

In this appendix, we go through a careful model selection procedure for the CLR model similar

to the one described in the main text for the CLR-L model.

For estimates of r∗t based on our definition, the specification of the mean-reversion matrix

KP is critical. To select the best fitting specification of the CLR model’s real-world dynam-

ics, we use a general-to-specific modeling strategy in which the least significant off-diagonal

parameter of KP is restricted to zero and the model is re-estimated. This strategy of eliminat-

ing the least significant coefficient is carried out down to the most parsimonious specification,

which has a diagonal KP matrix. As in the main text, the final specification choice is based

on the value of the Bayesian information criterion (BIC).

The summary statistics of the model selection process are reported in Table 2. The BIC

21



KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.0652 0 0 0.0820 -0.0092 Σ1,1 0.0059

(0.0812) (0.0836) (0.1182) (0.0001)
KP

2,· 0 0.2777 0 0 -0.0233 Σ2,2 0.0115

(0.1632) (0.0068) (0.0003)
KP

3,· 0 0 0.9711 -0.6461 0.0012 Σ3,3 0.0214

(0.2386) (0.3013) (0.0059) (0.0008)
KP

4,· 0 -0.1530 0 0.0045 0.0527 Σ4,4 0.0040

(0.0700) (0.0105) (0.0091) (0.0000)

Table 3: Estimated Parameters in the Preferred CLR Model

The estimated parameters for the mean-reversion matrix KP, the mean vector θP, and the volatility matrix Σ

in the CLR model preferred according to the BIC. The Q-related parameter is estimated at λ = 0.2902 (0.0029)

and αR = 0.6227 (0.0069). The maximum log likelihood value is 25,760.15. The numbers in parentheses are

the estimated standard deviations.

is minimized by specification (10), which has a KP matrix given by

KP
BIC =




κP11 0 0 κP14

0 κP22 0 0

0 0 κP33 κP34

0 κP42 0 κP44




.

The estimated parameters of this preferred specification are reported in Table 3. We note that

the nominal and real level factors are very persistent processes with near-unit root dynamics.

On the other hand, the common curvature factor is a volatile process that reverts to mean

fairly quickly, while the common slope factor has dynamic properties in between the two

extremes.

In Figure 6, we compare the estimate of the natural real rate from the preferred CLRmodel

to those derived from the estimated CLR model with unrestricted and diagonal KP matrix,

respectively. We note the great variability of the r∗t estimates across different specifications

of the CLR model. This shows that, when RRB liquidity risk is not accounted for, some of

this variation will make its way into the model’s fundamental factors and affect estimates of

important model output such as the outlook for real rates. This underscores that accounting

for liquidity risk can be of first-order importance even when the average size of the estimated

liquidity premiums is small as in our case.

A well-known criticism of macro-based estimates of both expected inflation and the natural

real rate is that they can exhibit significant variation as additional and revised data become
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Figure 6: The Sensitivity of Estimates of Ten-Year Expected Inflation and r∗ to

CLR Model Specification

available, although Laubach and Williams (2016) demonstrate that the Laubach and Williams

(2003) estimate of the natural real rate has been robust in real time at least since 2005.

All else equal, finance-based estimates should be less subject to this line of criticism as the

key model input, namely the observed bond prices, are available in real time and not subject

to any revisions. However, finance-based estimates could still vary as the sample length

increases, for example the estimated persistence of the state variables may change, and this

could be particularly relevant in the current environment where the general level of interest

rates has been declining for the past two decades. To dispel such concerns, we estimate the

preferred CLR model in real time starting in 2011 through December 2019. This allows us to

generate real-time estimates of the ten-year expected inflation and r∗t and compare them to

the corresponding full sample “look back” estimates, which is done in Figure 7. Although we
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(a) Ten-year expected inflation
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Figure 7: Accuracy of Real-Time Estimates of Ten-Year Expected Inflation and r∗

do see some discrepancies between the estimates as we go back through time, these results

show that both the ten-year expected inflation and the r∗t estimates from our preferred CLR

model are reliable in real time and can be used for policy analysis, which is indeed very

encouraging.
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