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Abstract

This paper develops a real business cycle model with eight fundamental shocks and
one “equity sentiment shock” that captures belief-driven fluctuations. I solve for the
time series of shock realizations that allow the model to exactly replicate the observed
time paths of U.S. macroeconomic variables and asset returns over the past six decades.
The representative agent’s perception that movements in equity value are partly driven
by sentiment is close to self-fulfilling. The model-identified sentiment shock is strongly
correlated with other fundamental shocks and implies “pessimism”relative to fundamental
equity value in steady state. Counterfactual scenarios show that the sentiment shock
and shocks that appear in the law of motion for capital (representing financial frictions)
have large impacts on the levels of macroeconomic variables and the size of the equity
risk premium. Other shocks have large impacts on the growth rates of macroeconomic
variables. Four of the model-identified shocks help to predict the equity risk premium or
the bond term premium in the next quarter. Overall, the results support a narrative in
which a large number of correlated shocks have combined to deliver the historical outcomes
observed in U.S. data.
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1 Introduction

The macroeconomics literature has not reached a consensus in identifying the most impor-

tant shocks driving U.S. business cycles. Chari, Kehoe, and McGrattan (2007) conclude that

productivity and labor supply shocks are the most important. Smet and Wouters (2007) find

that shocks to productivity and wage mark-ups account for most of the fluctuations in output

over the medium- to long-run. Justiniano, Primiceri, and Tambalotti (2010) conclude that an

“investment shock”which appears in the law of motion for capital is the main driver of fluc-

tuations in hours, output, and investment. Christiano, Motto, and Rostagno (2014) conclude

that “risk shocks” (defined as the time-varying volatility of firms’idiosyncratic productivity

realizations) are the most important business cycle shocks. Miao, Wang, and Xu (2015) find

that a “sentiment shock”(which influences the size of a rational stock price bubble) together

with productivity and labor supply shocks are the most important business cycle shocks. An-

geletos, Collard, and Dellas (2018) argue that “confidence shocks” (which are orthogonal to

fundamental shocks and arise from agents’non-rational beliefs in the superior accuracy of their

own productivity signals) are the main drivers of business cycles. In a follow-up paper, An-

geletos, Collard, and Dellas (2020) identify the “main business cycle shock”as a demand shock

that does not strictly rely on nominal rigidity, consistent with a confidence- or sentiment-type

shock.

In contrast to the studies mentioned above, this paper considers data on both the equity

risk premium and the bond term premium while seeking to identify the main drivers of U.S.

business cycles and asset returns.1 As noted by Campbell, Pflueger, and Viceira (2020),

an integrated model of macroeconomics and asset pricing imposes valuable discipline on any

model that seeks to explain the observed data. I show that a rich combination of correlated

shocks, rather than a small number of orthogonal shocks, are needed to fully replicate the

patterns of U.S. business cycles and asset returns.

The framework for the analysis is a real business cycle model with eight fundamental

shocks and one “equity sentiment shock” that captures belief-driven fluctuations. The eight

fundamental shocks influence the representative agent’s risk aversion coeffi cient, the disutility

of labor supply, the productivity of three separate inputs that appear in the law of motion

for capital, capital’s share of income, the productivity of hours worked, and the real value of

coupon payments from a long-term bond.

Inclusion of the equity sentiment shock is motivated by a large literature that documents

links between movements in equity prices and measures of investor or consumer sentiment.2

1 In estimating their model, Christiano, Motto, and Rostogno (2014) consider data on the value of the stock
market, credit to nonfinancial firms, the credit spread of bond yields, and the term spread of bond yields. They
evaluate their model using data on the cross-sectional dispersion of firm-level stock returns. In estimating their
model, Miao, Wang, and Xu (2015) consider data on the value of the stock market and the Chicago Fed’s
National Financial Conditions Index (NFCI).

2See, for example, Schmeling (2009), Greenwood and Shleifer (2014), Huang, et al. (2014), Adam, Marcet,
and Beutel (2017), and Lansing, LeRoy, and Ma (2020), among others.
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Numerous studies find evidence of a significant empirical link between non-fundamental eq-

uity price movements and the resulting investment decisions by firms.3 Recently, Bhandari,

Borovička, and Ho (2019) and Bianchi, Ludvigson, and Ma (2020) present evidence that sur-

vey forecasts of economic activity fluctuate between optimism and pessimism and that these

forecast fluctuations appear to be important drivers of the associated macroeconomic variables.

I postulate that the representative agent makes use of a sentiment measure to construct

a conditional forecast involving future equity value. Due to the self-referential nature of

the model and the near-unity slope of the intertemporal first order condition, the agent’s

perception that movements in equity value are partly driven by sentiment is close to self-

fulfilling. The agent’s forecast errors for equity value are nearly identical those implied by a

hypothetical model-consistent forecast.

Three out of the nine model shocks, including the equity sentiment shock, can be classified

as demand shocks. The remaining six shocks, including the labor disutility shock, can be

classified as supply shocks. The model builds on the setup in Lansing (2019) to include three

additional fundamental shocks. These include a time-varying risk aversion coeffi cient, a shock

that influences the productivity of “investor effort” in the production of new capital, and a

shock that influences the real value of bond coupon payments. The additional shocks allow

the model to exactly replicate quarterly U.S. data for the real return on equity (including

dividends) and the real returns on both 1-period and long-term bonds. In so doing, the model

exactly replicates quarterly U.S. data for the equity risk premium and the bond term premium.

As an alternative to estimation, I calibrate the model’s parameters so that the steady state

matches the U.S. data in 1972.Q3– a period when U.S. macroeconomic ratios are close to their

long-run means. The time series of the nine stochastic shocks are “reverse-engineered”so that

the model exactly replicates the observed time paths of eleven macroeconomic variables and

asset returns (only nine of which are independent).

The steady-state value of the model-identified sentiment shock is negative, implying that

sentiment is “pessimistic” relative to fundamental equity value in steady state. This feature

allows the model to replicate the equity risk premium in the data while maintaining a low level

of risk aversion. Shifting up the entire sequence of sentiment shocks by a constant amount

to achieve a higher steady state value in 1972.Q3 serves to reduce (and eventually eliminate)

the model’s mean equity risk premium and the mean bond term premium. I demonstrate

analytically how a pessimistic equity market forecast can serve to magnify the equity risk

premium.4 The model-identified risk aversion coeffi cient fluctuates between 0.57 and 1.19.

Intuitively, the sentiment shock allows the model to replicate the volatile U.S. equity return

3See, for example, Chirinko and Schaller (2001), Goyal and Yamada (2004), Gilchrist, Himmelberg, and
Huberman (2005), and Campello and Graham (2013).

4Previous studies have shown that incorporating some form of in-sample pessimism about fundamentals or
future equity values can magnify the equity risk premium in standard asset pricing models. See, for example,
Reitz (1988), Cecchetti, Lam, and Mark (2000), Abel (2002), Cogley and Sargent (2008), Barro (2009), Bidder
and Dew-Becker (2016), and Adam and Merkel (2019), among others.
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while the mildly time-varying risk aversion coeffi cient allows the model to replicate the U.S.

risk free rate of return.

As a preview of the results, Figure 1 plots the model-identified sentiment shock together

with the University of Michigan’s consumer sentiment index. The correlation coeffi cient be-

tween the two series is 0.68. Both series, in turn, are strongly correlated with a stock market

valuation ratio defined as the nominal market capitalization of the Standard & Poor’s (S&P)

500 stock index divided by a measure of nominal output. The correlation coeffi cient between

the model-identified sentiment shock and the S&P 500 valuation ratio is 0.70.

The sentiment shock also exhibits a strong positive correlation with the model-identified

risk aversion coeffi cient. More optimistic sentiment together with higher risk aversion leads to

a correlated increase in all macroeconomic variables. Equity value increases but bond prices

decline (implying an increase in bond yields). Taken together, the combination of these two

highly correlated shocks allows the model to capture the features observed during a typical

economic boom or recovery.

Given the nine model-identified shock series, I perform counterfactual scenarios that omit

one or more shock realizations while leaving the other shock realizations in place. The purpose

of the exercise is to identify which shock (or set of shocks) have the largest quantitative impact

on a given model variable. Forecast error variance decompositions are problematic here because

the model-identified shock innovations are not orthogonal to each other. As an alternative,

I compute the mean absolute gaps (measured in percent or percentage points) between the

counterfactual paths and the corresponding U.S. data paths. The counterfactual scenarios

show that the equity sentiment shock and shocks that appear in the law of motion for capital

(representing financial frictions) have the largest impacts on the levels of investment, the

capital stock, and equity value. The labor disutility shock has the largest impacts on the

levels of output, consumption, and hours worked. To gauge the relative importance of the

various shocks for higher frequency movements, I compute the mean absolute gaps using 4-

quarter growth rates instead of the levels of the variables. In this case, the factor distribution

shock has the largest impact on output growth while the risk aversion shock has the largest

impact on consumption growth. The labor disutility shock has the largest impact on hours

growth.

Omitting realizations of the financial frictions implied by the capital law of motion shocks

serves to significantly magnify the equity risk premium and the bond term premium. In

contrast, omitting realizations of the equity sentiment shock (but maintaining pessimism in

steady state) serves to shrink these same premia.

Previous studies by Greenwald, Lettau, and Ludvigson (2014) and Lansing (2015) using

concentrated capital ownership models (i.e., capital owners versus workers) identify a large

role for factor distribution shocks in explaining the equity risk premium in U.S. data. In

contrast, omitting realizations of the factor distribution shocks in the representative agent

model employed here serves only to mildly shrink the mean equity risk premium relative to
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the baseline model. This example shows that conclusions regarding the relative importance of

various shocks for macroeconomic or financial variables can be model-specific.

Simple forecasting regressions show that higher values of the sentiment shock, implying

more optimism, predict a lower equity risk premium in the next quarter, consistent with the

empirical results of Huang, et al. (2014). Higher values of the multiplier shock in the law of

motion for capital predict a higher equity risk premium. Higher values of the labor disutility

shock predict a smaller bond term premium. A positive investor effort shock predicts both a

higher equity risk premium and a higher bond term premium.

In discussing the diffi culty of identifying a “main business cycle shock,”Angeletos, Collard,

and Dellas (2020) acknowledge (p. 3054) that “In principle, any of the reduced-form objects

contained in our anatomy may map into a uninterpretable combination of multiple theoretical

shocks...”The results presented here show that multiple theoretical shocks are indeed necessary

to fully explain the historical patterns of U.S. business cycles and asset returns.

Layout. The remainder of this paper is organized as follows. Section 2 describes the model
and the manner in which I introduce equity sentiment. Section 3 describes the identification

of parameter values and shock realizations so that the model exactly replicates quarterly U.S.

data from 1960.Q1 to 2019.Q4. Section 4 presents quantitative exercises, including counterfac-

tual scenarios that omit one or more shock realizations. Section 5 concludes. The Appendix

provides details of the model solution, the shock identification procedure, and the data sources

and methods.

2 Model

The framework for the analysis is a real business cycle model that includes eight fundamen-

tal shocks and one “equity sentiment shock” that captures belief-driven fluctuations. The

representative agent’s decision problem is to maximize

Ê0

∞∑
t=0

βt

[
log (ct − κtCt)−D exp (ut)

(h1,t + h2,t)
1+γ

1 + γ

]
, (1)

subject to the budget constraint

ct + it = wth1,t + rtkt, (2)

where ct is consumption, h1,t is hours worked in the production of output, h2,t is hours worked

in the production of new capital (called investor effort), it is investment, wt is the real wage

per hour, rt is the real rental rate per unit of capital, and kt is the stock of physical capi-

tal. All quantities are measured in per person terms. The parameter β > 0 is the agent’s

subjective time discount factor. The symbol Êt represents the agent’s subjective expectation,

conditional on information available at time t. Under rational expectations, Êt corresponds
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to the mathematical expectation operator Et evaluated using the objective distribution of all

shocks, which are assumed known to the rational agent.

To allow for time-varying risk aversion, I assume that the representative agent derives

utility from individual consumption ct measured relative to a reference level that depends

on the amount of aggregate consumption per person Ct, which is viewed by the agent as

exogenous.5 The reference level of consumption is often defined in terms of Ct−1 or ct−1 as

opposed to Ct.6 But in the continuous-time limit, there is no distinction between the values

of Ct or Ct−1. Defining the reference level in terms of Ct has the advantage of reducing the

number of endogenous state variables and simplifying the equilibrium solution of the model.

The time-varying parameter κt determines the agent’s coeffi cient of relative risk aversion

ηt according to the relationship

ηt ≡ −ct
Ucc(ct, Ct)

Uc(ct, Ct)
,

= −ct
−1/ (ct − κtCt)2

1/ (ct − κtCt)
=

1

1− κt
, (3)

where I have imposed the equilibrium condition ct = Ct in the second line of the expression.

The agent’s time-varying risk aversion coeffi cient evolves according to the following stationary

law of motion

ηt = η
ρη
t−1 η

1−ρη exp (εη,t) ,
∣∣ρη∣∣ < 1, εη,t ∼ NID

(
0, σ2ε,η

)
, (4)

which ensures ηt > 0. The parameter ρη governs the persistence of the risk aversion coeffi cient

and εη,t is a normally and independently distributed (NID) innovation with mean zero and

variance σ2ε,η. The steady state level of risk aversion is given by η. For the quantitative analysis,

I will employ η = 1 such that κ = 0.

The agent supplies labor to productive firms in the amount h1,t. Following Zhu (1995),

the agent also supplies “investor effort”in the amount h2,t that contributes to the production

of new physical capital, as described further below. The disutility of total labor supplied

h1,t+h2,t is governed by the second term in (1), where D > 0, and γ ≥ 0. The Frisch elasticity

of labor supply is given by 1/γ. As γ →∞, the model reduces to one with fixed labor supply.
Following Hall (1997), I allow for a “labor disutility shock”ut that shifts the intratemporal

trade-off between consumption and leisure. In support of this idea, Kaplan and Schulhofer-

Wohl (2018) find that labor disutility, as measured by “feelings about work” from surveys,

has shifted in significant ways since 1950.7 The labor disutility shock evolves according to the

5Maurer and Meier (2008) find strong empirical evidence for “peer-group effects”on individual consumption
decisions using panel data on US household expenditures.

6See, for example, Otrok, Ravikumar and Whiteman (2002), Beaubrun-Diant and Tripier (2005), Christiano,
Motto, and Rostagno (2014), and Lansing (2015).

7More generally, the shock ut could also be intrepreted as a “labor wedge”that captures fluctuations in the
effective tax rate on labor income.
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following stationary AR(1) process.

ut = ρuut−1 + εu,t, |ρu| < 1, εu,t ∼ NID
(
0, σ2ε,u

)
. (5)

The representative agent derives income by supplying labor and capital services to identical

competitive firms. Firms produce output according to the technology

yt = Ak αtt [exp (zt) h1,t]
1−αt , A > 0, (6)

zt = zt−1 + µ + εz,t, εz,t ∼ NID
(
0, σ2ε,z

)
, (7)

αt = α
ρα
t−1 α

1−ρα exp (εα,t) , |ρα| < 1, εα,t ∼ NID
(
0, σ2ε,α

)
. (8)

In equation (6), zt represents a “labor productivity shock” that evolves as a random walk

with drift. The drift parameter µ > 0 determines the trend growth rate of output per person

in the economy. Stochastic variation in the production function exponent αt represents a

“factor distribution shock,”along the lines of Young (2004), Ríos-Rull and Santaeulàlia-Llopis

(2010), Lansing (2015), and Lansing and Markiewicz (2018). The logarithm of αt evolves as

a stationary AR(1) process.

Profit maximization by firms yields the factor prices

wt = (1− αt) yt/h1,t, (9)

rt = αt yt/kt, (10)

which together imply yt = wth1,t + rtkt. From equation (10), stochastic variation in αt allows

the model to replicate fluctuations in the U.S. capital share of income. Given the time series

for αt, stochastic variation in zt allows equation (6) to replicate fluctuations in U.S. output.

Resources devoted to investment together with investor effort contribute to the production

of new physical capital according to the following law of motion

kt+1 = B exp (vt) k
1−δt−ϕt
t iδtt [exp (zt) h2,t]

ϕt , B > 0, (11)

vt = ρvvt−1 + εv,t, |ρv| < 1, εv,t ∼ NID
(
0, σ2ε,v

)
, (12)

δt = δ
ρδ
t−1 δ

1−ρδ exp (εδ,t) , |ρδ| < 1, εδ,t ∼ NID
(
0, σ2ε,δ

)
, (13)

ϕt = ϕ
ρϕ
t−1 ϕ

1−ρϕ exp (εϕ,t) ,
∣∣ρϕ∣∣ < 1, εϕ,t ∼ NID

(
0, σ2ε,ϕ

)
, (14)

where the shocks vt, δt, and ϕt can be interpreted as capturing financial frictions that impact

the supply of new capital and the price of claims to existing capital. A study by Greenwood,

Hercowitz, and Huffman (1988) was the first to demonstrate that shocks of this sort can be an

important driving force for business cycle fluctuations.8 The log-linear formulation of equation

(11) captures the presence of capital adjustment costs.9

8Other examples along these lines include Ambler and Paquet (1994), Justiniano, Primiceri, and Tambalotti
(2010), Waggoner and Zha (2011), and Furlanetto and Seneca (2014).

9Lansing (2012) shows that equation (11) with h2,t = 0 maps directly to a log-linear approximate version of
the law of motion for capital employed by Jermann (1998).
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Following Cassou and Lansing (1997) and Lansing and Markiewicz (2018), I allow for a

“multiplier shock” vt that evolves as a stationary AR(1) process. Stochastic variation in vt
allows equation (11) to replicate the time path of U.S. private nonresidential fixed assets. The

variable δt is an “investment shock” that represents stochastic variation in the elasticity of

new capital with respect to new investment. Analogous to equation (6), the productivity of

investor effort is influenced by the labor productivity shock zt. The variable ϕt is an “investor

effort shock” that that represents stochastic variation in the elasticity of new capital with

respect to investor effort. The logarithms of δt and ϕt evolve as stationary AR(1) processes.

The first-order conditions with respect to ct, h1,t, h2,t, and kt+1 are given by

λt = 1/ (ct − κtCt) = ηt/ct, (15)

D exp (ut) (h1,t + h2,t)
γ = λtwt, (16)

D exp (ut) (h1,t + h2,t)
γ = λtϕtit/ (δth2,t) , (17)

λtit/ (δtkt+1) = β Êtλt+1
[
rt+1 +

(
1− δt+1 − ϕt+1

)
it+1/ (δt+1kt+1)

]
, (18)

where λt is the Lagrange multiplier on the budget constraint (2). In equation (15), I have

imposed the equilibrium relationships ct = Ct and ηt = 1/(1− κt). In deriving equation (18),
I start by using the capital law of motion (11) to eliminate it from the budget constraint (2).

Combining equations (9), (16), and (17) yields the following expression for total hours

worked ht ≡ h1,t + h2,t:

h1,t + h2,t︸ ︷︷ ︸
ht

=

{
ηt

D exp (ut)

[
(1− αt)

yt
ct

+
ϕt
δt

it
ct

]}1/(1+γ)
. (19)

Given the time series for the shocks αt, ηt, δt, and ϕt, stochastic variation in ut allows equation

(19) to replicate the time path of U.S. hours worked per person.

Since kt+1 is known at time t, equation (18) can be rewritten as follows

it/δt︸︷︷︸
ps,t

= Êt {Mt+1[αt+1yt+1 −
(
1 + ϕt+1/δt+1

)
it+1︸ ︷︷ ︸

dt+1

+ it+1/δt+1︸ ︷︷ ︸
ps,t+1

]}, (20)

where Mt+1 ≡ β
(
ηt+1/ηt

)
(ct+1/ct)

−1 is the equilibrium stochastic discount factor. Notice

that in steady state, the stochastic discount factor is given by M ≡ β exp(−µ), which does

not depend on the steady state value η.

The rewritten first-order condition (20) is in the form of a standard asset pricing equation

where ps,t = it/δt represents the market value of the agent’s equity shares in the firm. The

equity shares entitle the agent to a perpetual stream of dividends dt+1 starting in period t+1.

From equations (16) and (17), we have ϕtit/δt = wth2,t. Dividends in period t can therefore

be written as dt = αtyt− it−wth2,t, which shows that the shadow wage bill for investor effort
subtracts from the residual cash flow that can be paid out as dividends. Equity shares are

assumed to exist in unit net supply.
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Stochastic variation in δt allows the model to replicate fluctuations in U.S. investment

conditional on U.S. equity value. Stochastic variation in ϕt allows the model to replicate fluc-

tuations in U.S. dividends. Stochastic variation in an “equity sentiment shock”st (introduced

below) allows ps,t in the model to replicate fluctuations in the real market value of the S&P 500

stock index. In so doing, the model’s real equity return, given by rs,t = (ps,t + dt)/ps,t−1 − 1,

replicates the real return on the S&P 500 stock index.

In addition to equity shares, the representative agent can purchase default free, privately-

issued bonds that exist in zero net-supply. One-period discount bonds purchased at the price

pb,t yield a single payoff of one consumption unit per bond in period t+ 1. Long-term bonds

(consols) purchased at the ex-coupon price pc,t yield a perpetual stream of stochastically-

decaying coupon payments (measured in consumption units) starting in period t + 1. The

equilibrium prices of the bonds are determined by the following first-order conditions

pb,t = EtMt+1, (21)

pc,t = EtMt+1[1 + δc exp(ωt+1) pc,t+1], (22)

where I have imposed Êt = Et so that the agent’s bond market forecasts are consistent with the

actual laws of motion of the objects being forecasted. Consequently, departures from model-

consistent expectations are restricted to the equity market and these departures turn out to

be very small. The quantity δc,t+1 ≡ δc exp(ωt+1) is the decay rate of the coupon received

in period t + 1. The parameter δc ∈ [0, 1) is the steady state decay rate which influences

the Macauly duration of the bond, i.e., the present-value weighted average maturity of the

bond’s cash flows.10 The shock ωt captures stochastic variation in the real value of the bond

coupon payment (for example, due to surprise inflation) and evolves according to the following

stationary AR(1) process

ωt = ρω ωt−1 + εω,t, |ρω| < 1, εω,t ∼ NID
(
0, σ2ε,ω

)
.

The risk free rate of return is given by rb,t+1 = 1/EtMt+1 − 1, which is known at time t.

Fluctuations in the risk aversion coeffi cient ηt influence Mt+1 and thereby allow the model to

replicate the real return on a 3-month U.S. Treasury bill. The risky return on the long-term

bond is given by rc,t+1 = (1+δc exp(ωt+1) pc,t+1)/pc,t−1. Given the model-implied time series

for Mt+1, fluctuations in the coupon decay rate shock ωt allow the model to replicate the real

return on a long-term U.S. Treasury bond.

10The perpetual stream of coupon payments is given by: 1, δc exp(ωt+1), δ
2
c exp(ωt+1 +ωt+2), δ

3
c exp(ωt+1 +

ωt+2 + ωt+3)...
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2.1 Fundamental equity value

Defining the risk adjusted equity value-consumption ratio (a stationary variable) as xt ≡
ηtps,t/ct = ηtit/(δtct), the first order condition (20) becomes

xt = β Êt
{
ηt+1αt+1 yt+1/ct+1 +

(
1− δt+1 − ϕt+1

)
xt+1

}
= β Êt{ηt+1αt+1 +

[
1− δt+1 (1− αt+1)− ϕt+1

]
xt+1︸ ︷︷ ︸

≡ qt+1

}, (23)

where I have substituted in for Mt+1 and collected terms dated t on the left side. In the

second line, I use the budget constraint (2) at time t+1 and the definition of xt+1 to make the

substitution yt+1/ct+1 = 1+δt+1xt+1/ηt+1. At this point, it is convenient to define a nonlinear

change of variables such that qt+1 represents the composite stationary variable that the agent

must forecast.11 The agent’s first-order condition (23) becomes xt = β Êtqt+1. Now using the

definition of qt to make the substitution xt = (qt − αtηt) / [1− δt (1− αt)− ϕt] we obtain the
following transformed version of the agent’s first order condition

qt = ηtαt + [1− δt (1− αt)− ϕt]βÊtqt+1. (24)

The fundamental equity value is obtained by solving equation (24) under the assumption

of rational expectations such that Êtqt+1 = Etqt+1. As shown in Appendix A, a log-linear

approximate version of the fundamental solution is given by

qft = q f
[
ηt
η

]γη [αt
α

]γα [δt
δ

]γδ [ϕt
ϕ

]γϕ
, (25)

where q f ≡ exp[E log(qft)] and γη, γα, γδ, and γϕ are solution coeffi cients that depend on model

parameters. Given the value of qft , we can recover the fundamental equity value-consumption

ratio as
pfs,t
ct

=
(qft − αt)/ηt

1− δt (1− αt)− ϕt
, (26)

which shows that pfs,t/ct will only move in response the four fundamental shocks ηt, αt, δt,

and ϕt.

2.2 Introducing equity sentiment

Numerous empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have

shown that equity prices appear to exhibit excess volatility when compared to fundamentals,

as measured by the discounted stream of ex post realized dividends.12 To capture the notion

11This nonlinear change of variables technique and the associated solution method is also employed in Lansing
(2010, 2016) and Lansing and LeRoy (2014).
12Lansing and LeRoy (2014) provide a recent update on this literature.
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of sentiment-driven excess volatility, I postulate that the representative agent’s perceived law

of motion (PLM) for the composite variable qt in the first-order condition (24) allows for the

possibility of departures from the fundamental value qft . Specifically, the agent’s PLM takes

the form

qt = qft exp (st) , (27)

st = s + ρs(st−1 − s) + εs,t, |ρs| < 1, εs,t ∼ NID
(
0, σ2ε,s

)
, (28)

where the sentiment shock st evolves as a stationary AR(1) process. The PLM predicts that

log(qt/q
f
t) is increasing in st, where qt is the actual value observed in the data and q

f
t is the

value predicted by fundamentals from equation (25).13

Given the PLM (27), the agent’s subjective forecast can be computed as follows

Êtqt+1 = Etq
f
t+1 exp

[
s+ ρs(st − s) + σ2ε,s/2

]
,

= q f exp(γ2ησ
2
ε,η/2 + γ2ασ

2
ε,α/2 + γ2δσ

2
ε,δ/2 + γ2δσ

2
ε,ϕ/2 + s+ σ2ε,s/2)︸ ︷︷ ︸

≡ q

×
[
ηt
η

]ρηγη [αt
α

]ραγα [δt
δ

]ρδγδ [ϕt
ϕ

]ρϕγϕ
exp[ρs(st − s)], (29)

where Etqft+1 is the rational “fundamentals-only”forecast that is computed from equation (25).

From equation (29), we see that the equity sentiment shock st and its associated parameters

introduce a wedge between the agent’s subjective forecast and the fundamentals-only forecast

that would prevail under rational expectations.14 The basic structure of equation (29) is

consistent with the findings of Frydman and Stillwagon (2018). Using survey data of investors’

expectations about future stock returns, they present evidence that expectations are jointly

driven by fundamentals and behavioral factors.15

Substituting the agent’s subjective forecast (29) into the first order condition (24) yields the

actual law of motion (ALM) for qt. The first order condition is “self-referential,”meaning that

the actual value of qt depends in part on the agent’s subjective forecast Êtqt+1. When ηt ' 0,

equation (24) resembles a rational bubble condition for which there exists a continuum of

self-fulfilling solutions.16 But even when ηt > 0, the actual value of qt can closely approximate

13Yu (2013) introduces a persistent sentiment shock that acts as a wedge between the actual versus perceived
laws of motion for consumption growth in an endowment economy.
14The theoretical model presumes that the eight fundamental shocks are uncorrelated with each other. But in

the quantitative exercise applied to U.S. data, the model-identified fundamental shocks turn out to be correlated
with other fundamental shocks. The fundamentals-only forecast ignores these shock correlations, implying that
this forecast is only boundedly rational in the quantitative excercises.
15Equation (29) can also be mapped into a version of the diagnostic expectations (DE) setup employed by

Bordalo, et al. (2021). Under DE, we would have Êtqt+1 = Etq
f
t+1+θt(Etq

f
t+1−q f), where θt is a time-varying

parameter that governs the degree of over- or under-reaction to expected movements in fundamental equity
value.
16Lansing (2010) provides examples of rational bubble solutions in an endowment economy.
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the value predicted by the PLM (27) if the slope coeffi cient applied to Êtqt+1 in equation (24)

is close to 1.0. This near-unity property of the slope coeffi cient is satisfied in the quantitative

version of the model. Consequently, the agent’s perception that movements in equity value

are partly driven by sentiment is close to self-fulfilling. As I will show, the agent’s subjective

forecast errors are close to white noise with near-zero mean, providing no obvious signal that

the sentiment-based forecast rule (29) is misspecified.

Given the realized value of qt, we can recover the equity value-consumption ratio as

ps,t
ct

=
(qt − αt)/ηt

1− δt (1− αt)− ϕt
, (30)

where qt = q (ηt, αt, δt, ϕt, st) . Hence in equilibrium, ps,t/ct will be partly driven by senti-

ment because the agent’s subjective forecast (29) makes use of the sentiment variable. Using

equation (30), we can recover the risk adjusted equity value-consumption ratio as

xt ≡
ηtps,t
ct

=
ηtit
δtct

=
qt − αt

1− δt (1− αt)− ϕt
. (31)

Alternatively, since xt = β Êtqt+1, we can recover xt by multiplying the agent’s subjective

forecast (29) by β.

2.3 Equilibrium macroeconomic variables and asset returns

Given xt = x (ηt, αt, δt, ϕt, st) from equation (31), the equilibrium values of the other macro-

economic variables can be computed using the following equations

ht =

[
(1− αt)(ηt + δt xt) + ϕtxt

D exp (ut)

]1/(1+γ)
, (32)

h1,t =

[
(1− αt)(ηt + δt xt)

(1− αt)(ηt + δt xt) + ϕtxt

]
ht, (33)

h2,t =

[
ϕt xt

(1− αt)(ηt + δt xt) + ϕtxt

]
ht, (34)

yt = Ak αtt [exp (zt) h1,t]
1−αt , (35)

ct =

[
ηt

ηt + δt xt

]
yt, (36)

it =

[
δt xt

ηt + δt xt

]
yt, (37)

dt = αt yt − (1 + ϕt/δt)it, (38)

where I have made use of equation (19) and the budget relationships yt/ct = 1 + δt xt/ηt, and

it/ct = δt xt/ηt.
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The equilibrium paths of ps,t and dt pin down the real equity return rs,t. The equilibrium

paths of the bond prices pb,t and pc,t are obtained by solving equations (21) and (22). The

solutions, which pin down the real bond returns rb,t and rc,t, are contained in Appendix B.

3 Parameter values and model-identified shocks

Figure 2 plots the U.S. data versions of ten model variables. The sources and methods used

to construct these variables, plus the long-term bond return, are described in Appendix D.

Figure 3 plots the U.S. data versions of the ratios ct/yt, it/yt, kt/yt, and ps,t/yt. From Figure

3, we see that the U.S. macroeconomic ratios are all close to their long-run means in 1972.Q3.

As an alternative to estimation, I choose parameters so that the steady-state, trend, or ergodic

mean values of the model variables are exactly equal to the values observed in the data in

1972.Q3.17

The steady state value η = 1 implies κ = 0 such that the representative agent’s utility

function exhibits no habit component in steady state. The value of γ is chosen to deliver an

aggregate Frisch labor supply elasticity of 1/γ = 1. This value is consistent with the empirical

evidence presented by Kneip, Merz, and Storjohann (2020). Using panel data on German men

from 2000 to 2013, they estimate an aggregate Frisch elasticity that ranges between 0.85 and

1.06. Given a time endowment normalized to one, the value of the parameter D achieves the

steady state target h1,t + h2,t = 0.3, implying that the representative agent spends about one-

third of available time pursuing market work or investor effort. The values of the parameters

A and B achieve the steady state targets of kt/yt = 9.212 and kt+1/kt = exp(µ), as implied

by equations (6) and (11). Table 1 summarizes the model parameter values.

Table 1. Model parameter values

Parameter Value Description/Target
η 1 Risk aversion coeffi cient = 1 in 1972.Q3
γ 1 Frisch labor supply elasticity = 1/γ = 1.
α 0.361 Capital income share = 0.361 in 1972.Q3.
A 1.001 kt/yt = 9.212 with zt = 0 in 1972.Q3.
δ 0.069 it/yt = 0.287 in 1972.Q3.
ϕ 0.008 dt/yt = 0.040 in 1972.Q3.
B 1.345 B(it/kt)

δt [exp(zt)h2,t/kt]
ϕt = exp(µ) in 1972.Q3.

D 10.489 h1,t + h2,t = 0.3 in 1972.Q3.
s −0.211 ps,t/yt = 4.171 in 1972.Q3.
β 1.0003 rb,t = 0.431% in 1972.Q3.
δc 0.932 rc,t = 0.869% in 1972.Q3.

The model-implied values of ps,t/yt and rb,t in 1972.Q3 depend on numerous model para-

meters, including s, β, and the various shock variances (for details, see Appendices A and B).
17Meenagh, Minford, and Wickens (2021) provide a critique of Bayesian and maximum likelihood methods

of estimating macroeconomic models. They show that both methods can deliver significantly biased estimates
of the true model’s parameter values.
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Given candidate values for the shock variances, the values of s and β are determined iteratively

until the model-implied values of ps,t/yt and rb,t in 1972.Q3 match the corresponding values

in U.S. data and the shock variances have converged. The resulting value s = −0.211 implies

that equity sentiment is “pessimistic”relative to fundamental value in steady state. As noted

in the introduction, this feature allows the model to replicate the mean equity risk premium

in the data without the need for high levels of risk aversion. In section 4.3, I examine the

sensitivity of the model’s mean asset returns to alternative values of s.18

Given the parameter values in Table 1, I solve for the sequences of shock realizations

that allow the calibrated model to exactly replicate the observed time paths of eleven U.S.

macroeconomic variables and asset returns. These include the ten time series plotted in Figure

2 plus the real return on a long-term U.S. Treasury bond. Of these eleven time series, only

nine are independent since yt = ct + it and rs,t = (ps,t + dt)/ps,t−1 − 1. The model has nine

independent shocks, so each shock series is uniquely identified.19 The nine model shocks

are: st (equity sentiment), ηt (risk aversion coeffi cient), ut (labor disutility), vt (capital law

multiplier), δt (capital law exponent on investment), ϕt (capital law exponent on investor

effort), αt (factor distribution), zt (labor productivity), and ωt (bond coupon decay rate).

Details of the shock identification procedure are contained in Appendix C.

Table 2 shows the values of the shock parameters implied by the identification exercise. All

nine shocks exhibit very strong persistence—a typical result in the business cycle literature.20

The strong persistence allows variables that are presumed stationary in the model (e.g., hours

worked per person, capital’s share of income, and the equity value-consumption ratio) to be

able to replicate the sustained upward or downward trends observed in U.S. data. Of the nine

total shocks, three can be classified as demand shocks while the remaining six can be classified

as supply shocks. I classify the labor disutility shock as one that affects labor supply.

Table 2. Model-identified shocks

Shock Type Values
Equity sentiment, st Demand ρs = 0.9270 σε,s = 0.0752
Risk aversion coeffi cient, ηt Demand ρη = 0.8510 σε,η = 0.0742

Labor disutility, ut Supply ρu = 0.8661 σε,u = 0.0753
Capital law multiplier, vt Supply ρv = 0.9716 σε,v = 0.0363
Capital law exponent on investment, δt Supply ρδ = 0.9796 σε,δ = 0.0819
Capital law exponent on investor effort, ϕt Supply ρϕ = 0.9800 σε,ϕ = 0.1326

Factor distribution, αt Supply ρα = 0.9806 σε,α = 0.0128
Labor productivity, zt Supply µ = 0.0052 σε,z = 0.0222
Bond coupon decay rate, ωt Demand ρω = 0.9886 σε,ω = 0.0050

Figure 4 plots the nine model-identified shock series. By construction, all shocks are equal
18 In a similar framework with only six fundamental shocks, Lansing (2019) sets s = 0. That version of the

model cannot replicate the U.S. equity risk premium or the risk free rate of return.
19For similar shock identification exercises, but in the context of different models, see Lansing and Markiewicz

(2018), Gelain, Lansing, and Natvik (2018), and Buckman, et al. (2020).
20See, for example, Christiano, Motto, and Rostagno (2014, p. 44).
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to their steady state or trend values in 1972.Q3.21 The equity sentiment shock st mimics

movements the U.S. equity valuation ratio, as shown earlier in Figure 1. The sentiment shock

reaches its maximum value in 1998.Q2, near the peak of the NASDAQ technology stock boom.

The two lowest values for the sentiment shock occur during the recession quarters of 1982.Q3

and 2009.Q2, respectively.

The risk aversion coeffi cient ηt fluctuates between 0.57 and 1.19, with a standard deviation

of 0.12. The minimum value occurs in 1982.Q3 and the maximum values occurs in 2001.Q4.

Movements in ηt are positively correlated with movements in st. This correlation pattern allows

the model to match the comovement of U.S. macroeconomic variables over the business cycle

and the low volatility of the risk free rate relative to the equity return.

The labor disutility shock ut exhibits a net downward trend over time, allowing the model

to match the net upward trend of total hours worked per person ht in the data. The net

upward trend in ht occurs despite the net downward trend in labor’s share of income resulting

from the increase in the factor distribution shock αt.Movements in ut are positively correlated

with movements in st and ηt. This correlation pattern allows the model to match both the

amplitude and comovement of macroeconomic variables over the business cycle.

The capital law multiplier shock vt is positively correlated the other two capital law of

motion shocks δt and ϕt. Consequently, vt is almost perfectly negatively correlated with the

quantity 1− δt − ϕt, representing the exponent on kt in the capital law of motion (11). This
correlation pattern allows the model to match the smooth time path of kt in the data while

simultaneously matching the more-volatile time paths of it and ps,t. Fluctuations in the investor

effort shock ϕt allow the model to match the time path of dt in the data.

The factor distribution shock αt, representing capital’s share of income, fluctuates around

its steady state value until experiencing a sustained upward trend starting around 2005. As

described in Appendix D, αt is measured as one minus the ratio of employee compensation to

gross value added of the corporate business sector. The labor productivity shock zt evolves

close to trend from around 1970 until the onset of Great Recession in 2008. The shock remains

well below trend at the end of the data sample in 2019.Q4. Movements in αt are negatively

correlated with movements in zt.

Finally, the bond coupon decay rate shock ωt exhibits a net upward trend over time.

This pattern allows the model to match the net increase in the U.S. real bond return that

derives mainly from the secular decline in U.S. inflation. Movements in ωt also allow the

model to capture the shifting correlation pattern between returns on bonds versus equities, as

documented by Campbell, Pflueger, and Viceira (2020).

Table 3 shows the contemporaneous cross correlations for the various shocks in first-

difference form so as to mitigate the influence of the underlying shock trends. There is a

strong positive correlation between movements in ∆st, ∆ηt, and ∆ut. There is also a strong

21The trend value of zt is constructed as zt = zt−1 + µ, where µ is the sample mean of ∆zt and zt = zt = 0
in 1972.Q3.
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positive correlation between movements in ∆vt, ∆δt, and ∆ϕt. The first group of shocks is

negatively correlated with the second group. Movements in ∆αt and ∆zt exhibit a strong

negative correlation, but these two shocks are mostly weakly correlated with the other shocks.

Movements in ∆ωt are weakly correlated with all other shocks.

Table 3. Contemporaneous cross correlations

Shock ∆st ∆ηt ∆ut ∆vt ∆δt ∆ϕt ∆αt ∆zt ∆ωt
∆st 1.00 0.95 0.93 −0.68 −0.50 −0.53 −0.07 0.20 0.12
∆ηt 1.00 0.97 −0.47 −0.28 −0.37 −0.04 0.18 0.25
∆ut 1.00 −0.47 −0.32 −0.32 −0.05 0.23 0.25
∆vt 1.00 0.90 0.74 0.10 −0.10 0.34
∆δt 1.00 0.44 −0.06 0.06 0.25
∆ϕt 1.00 0.45 −0.38 0.35
∆αt 1.00 −0.90 0.01
∆zt 1.00 0.05
∆ωt 1.00

Note: Correlation coeffi cients computed for the sample period from 1960.Q2 to 2019.Q4.

4 Quantitative Analysis

4.1 Impulse response functions

Figure 5 plots impulse response functions from the model. The left column panels show the

effects of a one standard deviation positive innovation to the equity sentiment shock, implying

more optimism. The innovation causes an immediate increase in output, hours worked, and

investment. But since the capital stock cannot respond immediately, the initial increase in

output is not suffi cient to allow both consumption and investment to increase on impact.

Consumption drops on impact, but then increases as the capital stock starts rising in response

to higher investment. Equity value increases but bond prices decline.

The middle column panels of Figure 5 show the effects of a one standard deviation negative

innovation to the risk aversion coeffi cient, implying less risk aversion. The innovation causes

an immediate increase in investment and investor effort, but hours worked in the production of

output declines, causing a temporary drop in output and consumption until the capital stock

starts rising in response to higher investment. All asset values increase in response to lower

risk aversion.

Recall from Table 3 that ∆st exhibits a strong positive correlation with ∆ηt. The right

column panels of Figure 5 show the effects of simultaneous positive innovations to both st and

ηt. More optimistic sentiment together with higher risk aversion delivers a correlated increase

in all macroeconomic variables. Equity value increases but bond prices decline (implying an

increase in bond yields). Taken together, the combination of these two highly correlated shocks

allows the model to capture the features observed during a typical economic boom or recovery.

The combination of more optimistic sentiment and higher risk aversion may seem at odds
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during an economic boom. But higher risk aversion induces a shift towards current consump-

tion that is facilitated by an increase in hours worked in the production of output, i.e., the

mirror image of the response functions shown in the middle column panels of Figure 5. Rising

consumption and hours worked in production are typical features of an economic boom.

Table 3 shows that ∆ut is positively correlated with ∆st and ∆ηt. Although not shown,

adding a simultaneous positive innovation to ut for the exercise in the right column panels of

Figure 5 serves to dampen the correlated upward movements in the macroeconomic variables

and equity value. The positive correlations among these three shocks allows the model to

replicate both the amplitude and comovement of fluctuations in macroeconomic variables over

the business cycle.

4.2 Actual versus perceived law of motion

Figure 6 provides insight into the near self-fulfilling nature of the agent’s perceived law of

motion (27). The top left panel plots the equilibrium quantity log(qt/q
f
t) versus the value of the

equity sentiment shock st. The eight fundamental shocks are all set to their steady state values.

The agent’s perceived law of motion predicts that log(qt/q
f
t) should increase with st along the

45-degree line with slope = 1. The actual law of motion implies that log(qt/q
f
t) increases

along a line with slope ' 0.9. For any given value of st, the value of log(qt/q
f
t) predicted by

the two lines are nearly the same. For example when st = s, the perceived law of motion

predicts log(qt/q
f
t) = −0.211 whereas the actual law of motion predicts log(qt/q

f
t) = −0.196.

The close approximation of the PLM to the ALM occurs because the slope coeffi cient applied

to the agent’s subjective forecast Êtqt+1 in the first order condition (24) is always close to 1,

as plotted in the top right panel of Figure 6. Consequently, the agent’s subjective forecast has

a very strong influence on the actual value of qt.

The bottom left panel of Figure 6 separates the actual law of motion for equity value ps,t
into two parts: (1) the fundamental component pfs,t, and (2) the sentiment-driven component

given by ps,t − pfs,t.22 The value s = −0.211 implies pessimism relative to fundamental equity

value in steady state. Consequently, the sentiment-driven component of equity value fluctuates

almost entirely in negative territory except for two quarters during 1998. But if measured

relative to s, then equity sentiment can be viewed as becoming more optimistic during the late

1990s (coinciding with the NASDAQ technology stock boom) and becoming more pessimistic

during the years 2008 and 2009 (coinciding with the Great Recession). Since 2010, equity

sentiment has become more optimistic, contributing to the increase in actual equity value.

The bottom right panel of Figure 6 plots the agent’s subjective forecast errors, as measured

by errt ≡ qt − Êt−1qt, where qt evolves according to the actual law of motion and Êt−1qt
is computed using the lagged version of equation (29). Table 4 summarizes the properties

of the forecast errors together with those generated by a model-consistent forecast and a

22The actual law of motion for ps,t is computed by multiplying equation (30) by ct. The fundamental com-
ponent is computed by multiplying equation (26) by ct.
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fundamentals-only forecast.23

Table 4. Properties of forecast errors

Statistic
Subjective
Forecast

Model-consistent
Forecast

Fundamentals-only
Forecast

Mean (errt) 0.05 −0.07 −1.70√
Mean(err2t ) 0.56 0.55 1.88

Corr(errt, errt−1) −0.18 −0.16 0.60
Corr(errt, errt−2) 0.07 0.07 0.64
Corr(errt, errt−3) 0.08 0.08 0.63

Notes: Forecast errors are computed for the sample period 1960.Q2 to 2019.Q4 using the model

together with the identified shock parameters in Table 2. The mean value of qt in the data is 5.06.

Table 4 shows that the agent’s subjective forecast errors are close to white noise with near-

zero mean, giving no obvious signal that the sentiment-based forecast rule (29) is misspecified.

The hypothetical model-consistent forecast delivers a slightly lower root mean squared forecast

error of 0.55 versus 0.56 for the subjective forecast. Hence, there is little room for the represen-

tative agent to improve forecasting performance by employing more sophisticated econometric

methods to discover the actual law of motion for qt.24

The fundamentals-only forecast performs very poorly when attempting to predict the ac-

tual value of qt. This is because the representative agent’s use of the sentiment-based forecast

rule serves to shift the moments of qt. From the perspective of any individual agent, switching

to the fundamentals-only forecast would appear to severely reduce forecast accuracy, so there

is no incentive to switch.25

4.3 Effect of steady state sentiment

The value s = −0.211 implies that sentiment is pessimistic relative to fundamental equity value

in steady state. As noted earlier, this feature allows the model to replicate the equity risk

premium in the data while maintaining a low level of risk aversion. Table 5 shows the sensitivity

of the model’s mean asset returns to higher values of sentiment. Specifically, I construct a

counterfactual shock scenario that shifts up the entire sequence of model-identified sentiment

shocks by a constant amount so as to achieve the steady state value s ′ > s in 1972.Q3. The

sequences of the eight fundamental shocks are unchanged from the baseline model.

As s ′ increases, the equity return rs,t and the long-term bond return rc,t both decline, while

the risk free rate rb,t rises. Increased optimism serves to shrink (and eventually eliminate)

23The actual law of motion for qt is obtained by substituting the agent’s subjective forecast (29) into the first
order condition (24). The model-consistent forecast is constructed from a log-linearized version of the actual
law of motion for qt. The fundamentals-only forecast is constructed using the fundamental solution (25).
24The forecast error statistics in Table 4 are influenced by the small sample properties of the U.S. data. In

long-run model simulations, the model-consistent forecast delivers a mean forecast error of −0.01, a root mean
squared forecast error of 0.57, and a forecast error autocorrelation of 0.00. The corresponding values for the
subjective forecast are 0.04, 0.59, and −0.01, respectively.
25Lansing (2006) explores the concept of “forecast lock-in”using a simple asset pricing model.
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both the mean equity risk premium and the mean bond term premium. For example, when

sentiment is neutral in steady state such that s ′ = 0, the mean equity risk premium relative

to rb,t is −0.18% per quarter. In contrast, the baseline model with s = −0.211 delivers a mean

equity risk premium of 1.64% per quarter.

Table 5. Effect of steady state sentiment on mean asset returns

Steady state sentiment rs,t rb,t rc,t rs,t − rb,t rs,t − rc,t rc,t − rb,t
s = −0.211, Baseline model 2.04 0.41 1.11 1.64 0.93 0.71
s ′ = −0.1 1.40 0.76 1.24 0.65 0.16 0.49
s ′ = 0 0.89 1.07 1.36 −0.18 −0.47 0.29
s ′ = 0.1 0.45 1.40 1.49 −0.95 −1.04 0.09
s ′ = 0.211 0.01 1.76 1.63 −1.74 −1.60 −0.12

Notes: Each number is the mean quarterly return (measured in percent) from 1960.Q2 to 2019.Q4

under a given steady state value of the equity sentiment shock in 1972.Q3. The top row shows the mean

quarterly returns in U.S. data that are matched in the baseline model with the shock realizations st.
Other rows use the shock realizations s′t = st + (s ′ − s), such that s′t = s ′ in 1972.Q3.

It is straightforward to demonstrate analytically how a pessimistic equity market forecast

can magnify the equity risk premium. The equity market first order condition (20) can be

written as

ps,t/dt = Êt [Mt+1 (dt+1/dt) (1 + ps,t+1/dt+1)] , (39)

where ps,t/dt is the equity value-dividend ratio and dt+1/dt is the gross growth rate of divi-

dends. Defining zs,t ≡Mt (dt/dt−1) (1 + ps,t/dt) , the first-order condition (39) becomes

ps,t/dt = Êtzs,t+1, (40)

which shows that the equity value-dividend ratio is simply the agent’s subjective forecast of

the composite variable zs,t+1. Substituting pst/dt = Êtz
s
t+1 into the definition of zs,t yields the

following transformed version of the equity market first order condition

zs,t = Mt (dt/dt−1) (1 + Êtzs,t+1). (41)

The gross stock return can now be written as

1 + rs,t+1 =

(
1 + ps,t+1/dt+1

ps,t/dt

)
dt+1
dt

=
zs,t+1

Êtzs,t+1

1

Mt+1
, (42)

where I have eliminated ps,t/dt using equation (40) and eliminated ps,t+1/dt+1 + 1 using the

definition of zs,t evaluated at time t+ 1.

Combining equation (42) with the first order condition for 1-period bonds (21) yields the

following ratio of the gross equity return to the gross risk free rate:

1 + rs,t+1
1 + rb,t+1

=
zs,t+1

Êtzs,t+1

EtMt+1

Mt+1
. (43)
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Taking logs of both sides of equation (43) yields the following compact expression for the

realized equity risk premium:

log (1 + rs,t+1)− log(1 + rb,t+1) = log(zst+1/ Êtz
s
t+1) − log(Mt+1/EtMt+1). (44)

Pessimism implies that the agent’s subjective forecast Êtzs,t+1 is consistently below the

realization zs,t+1, thus serving to increase the magnitude of the first term in equation (44).

Moreover, as shown in Appendix B, the steady state value s enters negatively into the expres-

sions for both Mt+1 and EtMt+1. A more negative value of s serves to increase EtMt+1 and

thereby lower the risk free rate of return via a precautionary savings effect.

4.4 Counterfactual shock scenarios

Along the lines of figures presented by Chari, Kehoe, and McGrattan (2007), Figures 7 and 8

display counterfactual shock scenarios for four model variables: ct, ht, kt, and ps,t. In Figure 7,

I omit one or more shock realizations (as indicated) while leaving the other shock realizations

in place.26 In Figure 8, I add one or more shock realizations when no other shock realizations

are present. The purpose of these scenarios is to identify which shock (or set of shocks) has

the largest quantitative impact on a given model variable. In Figure 7, a large gap between

the counterfactual path and the U.S. data path (solid blue line) implies that the omitted

shock plays an important role in allowing the model variable to replicate the path of the

corresponding U.S. variable. In Figure 8, a small gap between the counterfactual path and

the U.S. data path implies that the added shock plays an important role.

From Figures 7 and 8, we see that the quantitative impact of a given shock can be large

for one variable but small for another variable. The fact that some model-identified shocks are

highly correlated with other shocks makes it diffi cult to isolate the quantitative importance

of an individual shock, or even a subset of shocks like those that appear in the law of motion

for capital. Put another way, all nine shocks work together in allowing the model to exactly

replicate the U.S. data.

Forecast error variance decompositions are often used to assess the relative importance of

different shock innovations in the context of vector autoregressions (Gorodnichenko and Lee

2019). But in these applications, the shock innovations are first orthogonalized, typically via a

Choleski decomposition. Forecast error variance decompositions are problematic here because

the model-identified shock innovations are not orthogonal to each other, as evidenced by the

results in Table 3.27 The existence of nontrivial covariances among the shock innovations

prevents a clear separation of the variance contribution coming from a given innovation. For

26Specifically, I set the given shock realization equal to its steady state or trend value each period. But any
shock variance terms that appear in the model’s equilibrium solution remain in place.
27The cross correlations among the shock innovations are very similar to the cross correlations among the

shock first-differences.
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example, the model-consistent forecast error for output growth can be written as

log (yt+1/yt)− Et log (yt+1/yt) = a1εs,t+1 + a2εη,t+1 + a3εu,t+1 + a4εα,t+1 + a5εδ,t+1

+a6εϕ,t+1 + a7εz,t+1, (45)

where ai for i = 1 to 7 are Taylor-series coeffi cients.28 Taking the variance of the right-side of

equation (45) yields 7 variance terms given by σ2ε,s + σ2ε,η + σ2ε,α+ ... and 21 covariance terms

given by 2Cov(εs,t+1, εη,t+1) + 2Cov(εs,t+1, εα,t+1) + 2Cov(εs,t+1, εu,t+1) + ... Depending on

the sign, each covariance term can either magnify or shrink the contribution of a given shock

innovation to the total variance of the forecast error.

As an alternative to forecast error variance decompositions, I compute the mean absolute

gaps (measured in percent for levels of variables or percentage points for growth rates or asset

returns) between the counterfactual paths that omit one or more shock realizations and the

corresponding U.S. data paths. The results of the gap computations are shown in Tables 6, 7,

and 8, where boldface indicates the largest mean absolute gap for each macroeconomic variable

or asset return.

In Table 6, the equity sentiment shock and the capital law of motion shocks have the

largest impacts on the variables it, kt, and ps,t. The labor disutility shock has the largest

impacts on the variables yt, ct, and ht.29 The factor distribution shock has sizable impacts on

the variables yt, ct, and it. The risk aversion shock has relatively mild impacts on the levels

of all macroeconomic variables. This is because ηt fluctuates over the narrow range of 0.57 to

1.19 in the baseline model.

Table 6. Mean absolute gaps: Levels of macroeconomic variables

Shock scenario yt ct it ht kt ps,t
Baseline model = U.S. data 0 0 0 0 0 0
No equity sentiment shock 8.51 4.52 23.0 3.57 20.9 23.0
No risk aversion shock 2.22 4.58 4.71 4.50 3.83 4.71
No labor disutility shock 10.7 10.7 10.7 11.0 10.4 10.7
No capital law of motion shocks 7.94 6.28 17.8 2.67 20.0 31.5
No factor distribution shock 9.37 8.15 12.9 0.43 9.87 12.9
No labor productivity shock 8.18 8.18 8.18 0 9.79 8.18

Notes: Each number is the mean absolute gap (measured in percent) between the path of the

model variable under a given scenario that omits one or more shock realizations and the path of

the corresponding U.S. variable. Boldface indicates the largest mean absolute gap for each variable.

The gap measures in Table 6 do not distinguish between high frequency versus low fre-

quency movements in the U.S. macroeconomic variables. The goal of the shock identification

exercise is to replicate all movements in the U.S. data, not just those associated with business

28Equation (45) does not include a term involving εv,t+1 because yt+1/yt depends on kt+1 which in turn
depends on vt (but not vt+1) from equation (11).
29 In this case, the gaps for numerous macroeconomic variables are exactly the same at 10.7%. This result is

due to log utility which delivers simple proportional relationships among some macroeconomic variables.
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cycle frequencies. To gauge the relative importance of the various shocks for higher frequency

movements, Table 7 shows the mean absolute gaps between the 4-quarter growth rates of the

counterfactual paths and the 4-quarter growth rates of the corresponding U.S. data paths.30

The factor distribution shock has the largest impact on the growth rate of yt. The risk aversion

shock has the largest impact on the growth rate of ct. The equity sentiment shock and the

capital law of motion shocks have the largest impacts on the growth rates of it, kt, and ps,t.

The labor disutility shock has the largest impact on the growth rate of ht. Overall, the results

in Tables 6 and 7 point to the diffi culty of identifying the most important shock, or set of

shocks, for explaining movements in macroeconomic variables.

Table 7. Mean absolute gaps: 4-quarter growth rates of macroeconomic variables

Shock scenario yt ct it ht kt ps,t
Baseline model = U.S. data 0 0 0 0 0 0
No equity sentiment shock 1.54 2.24 6.75 1.67 3.30 6.75
No risk aversion shock 2.06 3.58 2.47 2.86 0.89 2.47
No labor disutility shock 2.50 2.50 2.50 3.93 0.85 2.50
No capital law of motion shocks 1.54 1.60 3.98 0.73 3.68 10.1
No factor distribution shock 2.96 2.36 4.67 0.17 2.06 4.67
No labor productivity shock 2.41 2.41 2.41 0 2.19 2.41

Notes: Each number is the mean absolute gap (measured in percentage points) between the

4-quarter growth rate of the model variable under a given scenario that omits one or more

shock realizations and the 4-quarter growth rate of the corresponding U.S. variable. Boldface

indicates the largest mean absolute gap for each variable’s 4-quarter growth rate.

Table 8 shows the mean absolute gaps for asset returns, Shocks that appear in the capital

law of motion (representing financial frictions) and the equity sentiment shock have largest

impacts on the size of the equity risk premium relative to both bond returns. The capital

law of motion shocks also have a large impact on the bond term premium as does the coupon

decay shock (by construction).

30Similar rankings of the relative importance of the various shocks are obtained if the gaps in Table 7
are constructed using detrended versions of the variables (obtained using the Hodrick-Prescott filter with a
smoothing parameter of 1600) rather than the 4-quarter growth rates of the variables.
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Table 8. Mean absolute gaps: Asset returns

Shock scenario rs,t rb,t rc,t rs,t − rb,t rs,t − rc,t rc,t − rb,t
Baseline model = U.S. data 0 0 0 0 0 0
No equity sentiment shock 4.03 0.44 1.62 4.09 5.58 1.76
No risk aversion shock 2.00 0.88 2.01 1.80 1.07 2.35
No labor disutility shock 1.77 1.01 1.03 2.14 0.77 1.44
No capital law of motion shocks 4.64 2.12 5.78 5.18 5.36 5.94
No factor distribution shock 1.94 0.12 0.52 1.89 2.43 0.56
No labor productivity shock 1.01 0.22 0.01 0.95 1.01 0.22
No bond coupon decay shock 0 0 5.81 0 2.01 5.81

Notes: Each number is the mean absolute gap (measured in percentage points) between the path of the

model return under a given scenario that omits one or more shock realizations and the path of the U.S.

return. Boldface indicates the largest mean absolute gap for each asset return.

Table 9 shows the mean asset returns for each counterfactual shock scenario. Overall,

the results portray a complex picture of the roles played by each of the various shocks in

generating the mean asset returns observed in U.S. data. Omitting realizations of the capital

law of motion shocks serves to significantly magnify the equity risk premium and the bond term

premium. In contrast, omitting realizations of the equity sentiment shock (but maintaining

s = −0.211 in steady state) serves to shrink these same premia. Omitting realizations of

the risk aversion shock serves to magnify the equity risk premium but shrink the bond term

premium. The same is true for the labor productivity shock, but the magnitudes of the shifts

are now smaller. Omitting realizations of the labor disutility shock serves to shrink both the

equity risk premium and bond term premium.

Table 9. Counterfactual mean asset returns

Shock scenario rs,t rb,t rc,t rs,t − rb,t rs,t − rc,t rc,t − rb,t
Baseline model = U.S. data 2.04 0.41 1.12 1.64 0.93 0.71
No equity sentiment shock 0.63 0.67 1.35 −0.04 −0.72 0.68
No risk aversion shock 3.00 1.06 1.30 1.93 1.70 0.23
No labor disutility shock 2.06 1.38 1.24 0.69 0.82 −0.13
No capital law of motion shocks 2.15 −1.70 0.73 3.84 1.42 2.42
No factor distribution shock 1.76 0.38 1.06 1.38 0.70 0.67
No labor productivity shock 2.23 0.58 1.11 1.65 1.12 0.53
No bond coupon decay shock 2.04 0.41 −0.84 1.64 2.88 −1.25

Notes: Each number is the mean quarterly return (measured in percent) from 1960.Q2 to 2019.Q4 under a

given scenario that omits one or more shock realizations. The top row shows the mean quarterly returns in

U.S. data that are matched by construction in the baseline model.

Previous studies by Greenwald, Lettau, and Ludvigson (2014) and Lansing (2015) using

concentrated capital ownership models (i.e., capital owners versus workers) identify a large

role for factor distribution shocks in explaining the equity risk premium in U.S. data. In con-

trast, Table 9 shows that omitting realizations of the factor distribution shock serves only to
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mildly shrink the equity risk premium (and the bond term premium) relative to the baseline

model. As demonstrated numerically by Lansing (2015, p. 83), the equity risk premium in

the concentrated capital ownership model is highly sensitive to the presence of factor distribu-

tion shocks because these shocks strongly impact the volatility of capital owners’consumption

growth. But in a representative agent framework, the same sequence of factor distribution

shocks has much less impact on the volatility of aggregate consumption growth, thereby mut-

ing the resulting impact on the equity risk premium. This example shows that conclusions

regarding the relative importance of various shocks for macroeconomic or financial variables

can be model-specific.

4.5 Cumulative growth impacts of individual shocks

Using data from 1952.Q1 to 2017.Q4, Greenwald, Lettau, and Ludvigson (2020) estimate a

concentrated capital ownership model with four types of orthogonal shocks that govern: (1)

capital’s share of income, (2) capital owners’degree of risk aversion, (3) capital owners’rate of

time preference (which influences the risk free rate of return), and (4) the growth rate of real

per capita output. They state (p. 3) “[N]either economic growth, risk premia, nor risk-free

interest rates has been the foremost driving force behind the [stock] market’s sharp gains over

the last several decades. Instead, the single most important contributor has been a string of

factor share shocks that reallocated the rewards of production without affecting the size of those

rewards.”

Table 10 shows the cumulative growth impacts of adding one or more shock realizations

when no other shock realizations are present. Each number is the cumulative growth rate

(in percent) starting from the common steady state value in 1972.Q3 and ending in 2019.Q4.

Boldface indicates the largest cumulative growth rate for each macroeconomic variable.

Table 10. Cumulative growth impacts, 1972.Q3 to 2019.Q4

Shock scenario yt ct it ht kt ps,t
Baseline model = U.S. data 179.6 193.1 146.0 13.4 181.1 326.9
Only equity sentiment shock 149.0 154.7 134.8 −1.27 121.3 134.8
Only risk aversion shock 166.0 160.4 180.0 −3.38 178.8 179.9
Only labor disutility shock 214.5 214.5 214.5 18.4 207.8 214.5
Only capital law of motion shocks 150.1 170.8 98.5 1.44 159.8 244.5
Only factor distribution shock 284.6 268.2 325.6 −1.54 327.6 325.6
Only labor productivity shock 107.2 107.2 107.2 0 107.2 107.2

Notes: Each number is the cumulative growth rate (in percent) starting from the model steady state in

1972.Q3 through 2019.Q4. Each scenario adds one or more shock realizations when no other shock

realizations are present. Boldface indicates the largest cumulative growth rate for each variable.

Adding realizations of the factor distribution shock αt delivers the largest cumulative

growth rate for all variables except total hours worked per person ht. Indeed, the factor

distribution shock alone delivers a 325.6% cumulative increase in real equity value ps,t, which
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is very close to the 326.9% cumulative increase observed in U.S. data. The intuition for this

result can be seen from Table 3 which shows that ∆αt is strongly negatively correlated with

∆zt. Adding a string of mostly positive factor distribution shock innovations from 1972.Q3

onward, while simultaneously omitting a string of mostly negative labor productivity shock

innovations, serves to produce large cumulative increases in all model variables except ht.

Despite different modeling choices and different assumptions regarding the orthogonality of

shocks, the results in Table 10 are qualitatively consistent with the findings of Greenwald,

Lettau, and Ludvigson (2020).

4.6 Predicting excess returns with model-identified shocks

A vast literature, pioneered by Fama and French (1988), examines the “predictability”of excess

returns on risky assets. Predictability is typically measured by the size of a slope coeffi cient

and the R-squared statistic in forecasting regressions. In the present context, such regressions

provide an alternative way of assessing the relative importance of the various shocks for the

equity risk premium or the bond term premium.

Table 11 shows the results of regressing the U.S. equity risk premium, as measured by

rst+1−rbt+1, on a constant and one model-identified shock at time, where each shock is dated at
time t. Table 12 shows the corresponding results for the U.S. bond term premium, as measured

by rct+1 − rbt+1. For ease of comparison across regressions, each shock series is first demeaned
and normalized by its standard deviation over the sample period 1960.Q2 to 2019.Q3.31

Table 11. Predicting the equity risk premium

Shock Slope coeffi cient t-statistic R2

st −1.230 −2.425 2.4%
ηt −0.915 −1.794 1.3%
ut −0.717 −1.403 0.8%
vt 1.093 2.148 1.9%
δt 0.506 0.988 0.4%
ϕt 1.446 2.864 3.4%
αt 0.833 1.631 1.1%

∆zt −0.388 −0.756 0.2%
ωc,t 0.831 1.626 1.1%

Notes: Each number is the slope coeffi cient from the following regression:

rst+1 − rbt+1 = c0 + c1 (shockt) + εt+1. Each model-identified shock
series is demeaned and normalized by its standard deviation over the sample

period 1960.Q2 to 2019.Q3. Boldface indicates significant at the 5% level.

In Table 11, the equity sentiment shock st and the shocks vt and ϕt that appear in the

capital law of motion are statistically significant in predicting the 1-quarter ahead equity

risk premium. More optimistic sentiment predicts a smaller equity risk premium in the next

31The sample period for the predictability regressions starts in 1960.Q2 because I use ∆zt as a shock regressor
instead of zt which exhibits a unit root in the theoretical model.
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quarter. This result is consistent with the findings of Huang, et al. (2014) who show that a

version of the investor sentiment index originally constructed by Baker and Wurgler (2007) is

a robust negative predictor of 1-month ahead excess stock returns. Lansing, LeRoy, and Ma

(2020) show that a variable which interacts the 12-month change in the University of Michigan

consumer sentiment index with lagged excess stock returns is a robust negative predictor of

1-month ahead excess stock returns. Higher values of vt or ϕt predict a larger equity risk

premium in the next quarter. This result is intuitive because higher values of these shocks

contribute to more capital at time t+ 1.

As detailed in Appendix C, the identification procedure for the shocks st, vt, and ϕt employs

U.S. data on equity value ps,t and equity dividends dt at time t. Hence, the predictive power

of the shocks st, vt, and ϕ for the equity risk premium is related to the well-documented fact

that the equity price-dividend ratio is a robust predictor of excess stock returns (Cochrane

2008). The results in Table 11 help to provide some insight into the microfoundations of the

price-dividend ratio’s predictive power.

Table 12 shows that more optimistic sentiment predicts a smaller bond term premium in

the next quarter, but this result is not statistically significant. The slope coeffi cients on the

labor disutility shock ut and the investor effort shock ϕt are both statistically significant, but

differ in sign. Higher values of ut serve to reduce hours worked in production, predicting a

smaller bond term premium in the next quarter. Higher values of ϕt serve to increase capital

at time t + 1, predicting a larger bond term premium in the next quarter. Interestingly,

the investor effort shock is the only shock with a statistically significant slope coeffi cient in

both Tables 11 and 12. By this metric, “investor effort” should perhaps be viewed as a key

fundamental driver of excess returns on risky assets.

Table 12. Predicting the bond term premium

Shock Slope coeffi cient t-statistic R2

st −0.610 −1.703 1.2%
ηt −0.606 −1.692 1.2%
ut −0.981 −2.766 3.1%
vt 0.583 1.626 1.1%
δt 0.235 0.653 0.2%
ϕt 0.823 2.308 2.2%
αt 0.450 1.251 0.7%

∆zt 0.149 0.414 0.1%
ωc,t 0.641 1.790 1.3%

Notes: Each number is the slope coeffi cient from the following regression:

rct+1 − rbt+1 = c0 + c1 (shockt) + εt+1. Each model-identified shock
series is demeaned and normalized by its standard deviation over the sample

period 1960.Q2 to 2019.Q3. Boldface indicates significant at the 5% level.
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4.7 Asset returns from stochastic simulations

As a final quantitative exercise, I compute asset returns from 100,000 stochastic simulations

of the baseline model, where each simulation is 239 quarters in length, i.e., the number of

quarters in the data from 1960.Q2 to 2019.Q4. For the simulations, the nine stochastic shocks

are uncorrelated with each other, as presumed by the theoretical model. The results of the

stochastic simulations are presented in Table 13.

Table 13. Distribution of asset returns

U.S. data Model simulations
Return Mean Median [25%, 75%] Mean Median [25%, 75%]

rs,t 2.04 2.87 [−2.38, 6.65] 1.77 1.27 [−5.28, 8.28]
rb,t 0.41 0.38 [−0.17, 0.90] 0.48 0.42 [−2.40, 3.30]
rc,t 1.12 0.54 [−2.61, 4.28] 4.35 1.13 [−13.4, 18.4]

Notes: Quarterly returns in percent. U.S. data sample is 1960.Q2 to 2019.Q4. Model

statistics are average values from 100,000 simulations, each 239 quarters in length.

The model’s 25% to 75% distribution bands are quite wide due to the highly persistent

nature of the model-identified shocks. This is particularly true for the distribution bands

surrounding the simulated long-term bond return rc,t. The bond coupon decay shock ωt has

an AR(1) coeffi cient of ρω = 0.9886, the largest of all nine shocks in Table 2. Moreover,

this shock enters directly into the definition of the long-term bond return given by rc,t+1 =

[1 + δc exp(ωt+1)pc,t+1]/pc,t − 1.

Greenwald, Lettau, and Ludvigson (2020, p. 29) state: “[Our] estimates imply that the

high returns to holding equity in the post-war period have been driven, in large part, by a highly

unusual sample, one characterized by a long string of factors share shocks that redistributed

rewards from productive activity toward shareholders.”

The results in Table 13 lend support to the idea that the unique set of shock realizations

that account for the historical U.S. data sample have produced higher real equity returns than

should be expected going forward, based on the theoretical model. The mean and median

equity return computed from the model simulations are 1.77% and 1.27% per quarter, respec-

tively. Both statistics are below the corresponding values of 2.04% and 2.87% observed in the

U.S. data since 1960. While this discrepancy may simply reflect statistical sampling variation,

it is also partially attributable to the use of a model shock correlation structure that differs

considerably from that observed in the historical data sample. Going forward, if the shocks

hitting the U.S. economy behave more like those in the theoretical model, then the resulting

mean equity return (and the mean equity risk premium) may turn out to be lower than in the

past.
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5 Conclusion

Pigou (1927, p. 73) attributed business cycle fluctuations partly to “psychological causes”

which lead people to make “errors of undue optimism or undue pessimism in their business

forecasts.”Keynes (1936, p. 156) likened the stock market to a “beauty contest”where par-

ticipants devoted their efforts not to judging the underlying concept of beauty, but instead to

“anticipating what average opinion expects the average opinion to be.”More recently, Shiller

(2017) argues that investors’optimistic or pessimistic beliefs about the stock market are similar

to fads that can spread through the popular culture like an infectious disease.

This paper seeks to capture the flavor of these ideas by introducing an “equity sentiment

shock”in a standard real business cycle model with eight other fundamental shocks. Due to

the self-referential nature of the model, the agent’s perception that movements in equity value

are partly driven by sentiment is close to self-fulfilling. The agent’s forecast errors for equity

value are nearly identical those implied by a hypothetical model-consistent forecast. From the

perspective of an individual agent, switching to a fundamentals-only forecast would appear to

reduce forecast accuracy, so there is no incentive to switch.

I solve for the time series of shock realizations that allow the model to exactly replicate

the observed time paths of U.S. macroeconomic variables and asset returns over the past

six decades. The exercise is a transparent way of investigating which shocks are the most

important for explaining the movements of a given macroeconomic variable or asset return.

The model-identified sentiment shock is negative in steady state, implying pessimism rela-

tive to fundamental equity value. This feature allows the model to replicate the U.S. equity risk

premium while maintaining a low level of risk aversion. The sentiment shock exhibits a strong

positive correlation with the model-identified risk aversion coeffi cient. More optimistic senti-

ment together with higher risk aversion leads to a correlated increase in all macroeconomic

variables and equity value, thus capturing the features observed during a typical economic

boom or recovery.

Counterfactual scenarios with the model show that the equity sentiment shock and shocks

that appear in the law of motion for capital (representing financial frictions) have large impacts

on the levels of investment, the capital stock, and equity value. The labor disutility shock

has large impacts on the levels of output, consumption, and hours worked. With regard to

higher frequency movements, the factor distribution shock has the largest impact on output

growth while the risk aversion shock has the largest impact on consumption growth. The labor

disutility shock has the largest impact on hours growth.

Omitting realizations of the capital law of motion shocks serves to significantly magnify

the equity risk premium and the bond term premium. Omitting realizations of the equity

sentiment shock (but maintaining pessimism in steady state) serves to shrink these same

premia. Four of the model-identified shocks help to predict the equity risk premium or the

bond term premium in the next quarter.
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Rather than identifying a “main business cycle shock,”as described by Angeletos, Collard,

and Dellas (2020), the quantitative results presented here support a narrative in which a large

number of correlated shocks have combined to deliver the historical outcomes observed in U.S.

data.
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A Appendix: Fundamental equity value

This appendix provides details of the fundamental solution for qft shown in equation (25). First

imposing rational expectations and then log linearizing the right-side of the fundamentals-only

version of the first order condition (24) yields

qft = b0

[
ηt
η

]b1 [αt
α

]b2 [δt
δ

]b3 [ϕt
ϕ

]b4
Et

[
qft+1
q f

]b5
, (A.1)

where bi for i = 0 to 5 are Taylor-series coeffi cients and q f ≡ exp[E log(qft)]. The expressions

for the Taylor-series coeffi cients are

b0 = αη +
[
1− δ (1− α)− ϕ

]
β q f , (A.2)

b1 =
α η

α η +
[
1− δ (1− α)− ϕ

]
β q f

, (A.3)

b2 =
α
(
η + δβ q f

)
αη +

[
1− δ (1− α)− ϕ

]
β q f

, (A.4)

b3 =
−δ (1− α)β q f

αη +
[
1− δ (1− α)− ϕ

]
β q f

, (A.5)

b4 =
−ϕβ q f

αη +
[
1− δ (1− α)− ϕ

]
β q f

(A.6)

b5 =

[
1− δ (1− α)− ϕ

]
β q f

αη +
[
1− δ (1− α)− ϕ

]
β q f

, (A.7)

A conjecture for the fundamental solution takes the form of equation (25). The conjectured

solution is iterated ahead one period and then substituted into the right-side of equation (A.1)

together with the laws of motion for ηt+1, αt+1, δt+1 and ϕt+1 from equations (4), (8), (13)

and (14), respectively. After evaluating the conditional expectation and then collecting terms,

we have

qft = b0 exp
[(
γηb5

)2
σ2ε,η/2 + (γαb5)

2 σ2ε,α/2 + (γδb5)
2 σ2ε,δ/2 +

(
γϕb5

)2
σ2ε,ϕ/2

]
︸ ︷︷ ︸

= q f

×
[
ηt
η

]b1 + ρηγηb5︸ ︷︷ ︸
= γη ×

[αt
α

]b2 + ραγαb5︸ ︷︷ ︸
= γα ×

[
δt

δ

]b3 + ρδγδb5︸ ︷︷ ︸
= γδ ×

[
ϕt
ϕ

]b4 + ρϕγϕb5︸ ︷︷ ︸
= γϕ (A.8)

which yields five equations in the five solution coeffi cients q f , γη, γα, γδ, and γϕ. For the

baseline calibration, the resulting solution coeffi cients are q f = 7.184, γη = 0.263, γα = 1.094,

γδ = −0.631, and γϕ = −0.120.
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B Appendix: Equilibrium bond prices

This appendix outlines the solutions for the equilibrium bond prices pb,t and pc,t using equa-

tions (21) and (22). The equilibrium stochastic discount factor can be written as follows

Mt+1 = β
ηt+1
ηt
× ct/yt
ct+1/yt+1

× yt
yt+1

= β

[
ηt+1 + δt+1 xt+1

ηt + δt xt

]
yt
yt+1

, (B.1)

where I have made use of the equilibrium budget relationship ct/yt = ηt/(ηt + δt xt) from

equation (36).

Making use of equation (6), the term yt/yt+1 in equation (B.1) can be written as

yt
yt+1

=
exp(zt) k

αt
n,t h

1−αt
1,t

exp(zt+1) k
αt+1
n,t+1 h

1−αt+1
1,t+1

, (B.2)

where kn,t ≡ kt exp(−zt) is the normalized capital stock (a stationary variable). Starting from
equation (11), the law of motion for the normalized capital stock is given by

kn,t+1 = exp(zt − zt+1)B exp(vt) k
1−ϕt
n,t

[
it
yt

yt
kt

]δt
h
ϕt
2,t,

= exp(zt − zt+1)B exp(vt) k
1−ϕt−δt(1−αt)
n,t

[
δt xt

ηt + δt xt
Ah1−αt1,t

]δt
h
ϕt
2,t. (B.3)

Equations (33) and (34) can be used to substitute for h1,t, h1,t+1, and h2,t in equations (B.2)

and (B.3). Then, since xt depends on the equilibrium solution for qt, equation (31) can be used

to make the substitutions xt = x (ηt, αt, δt, ϕt, st) and xt+1 = x
(
ηt+1, αt+1, δt+1, ϕt+1, st+1

)
in equations (B.1) through (B.3). After these various substitutions, a log-linear approximation

of the stochastic discount factor takes the form

Mt+1 ' β exp(−µ)

[
ηt
η

]m1 [αt
α

]m2 [δt
δ

]m3 [ϕt
ϕ

]m4 [kn.t
kn

]m5
× exp [m6vt + m7ut + m8(st − s) + m9εη,t+1 + m10εα,t+1]

× exp [m11εδ,t+1 + m12εϕ,t+1 + m13εz,t+1 + m14εu,t+1 + m15εs,t+1] , (B.4)

where m1 through m15 are Taylor series coeffi cients and the laws of motions for the shocks

have been used to eliminate ηt+1, αt+1, δt+1, ϕt+1, zt+1, ut+1, and st+1. The steady state value

of kn is given by kt exp(−zt) in 1972.Q3, where zt is the trend value of zt constructed as
zt = zt−1 + µ such that µ is the sample mean of ∆zt and zt = zt = 0 in 1972.Q3.

Given equation (B.4), it is straightforward to compute pb,t = EtMt+1 and rb,t = 1/pb,t −
1. Since s enters negatively in equation (B.4), a more negative value of s, implying more
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pessimism, serves to increase EtMt+1 and thereby lower the risk free rate of return rb,t via a

precautionary savings effect.

The long-term bond pricing equation (22) can be approximated as follows

pc,t ' EtMt+1(1 + δc pc)

[
pc,t+1
pc

]bc
exp(bc ωt+1), (B.5)

where bc = δc pc/(1 + δc pc) is a Taylor series coeffi cient. A conjectured solution for equation

(B.5) takes the form

pc,t = pc

[
ηt
η

]n1 [αt
α

]n2 [δt
δ

]n3 [ϕt
ϕ

]n4 [kn.t
kn

]n5
× exp [n6vt + n7ut + n8(st − s) + n9ωt] (B.6)

The conjectured solution (B.6) is iterated ahead one period and then substituted into the

long-term bond pricing equation (B.5) together with the expression for Mt+1 from equation

(B.4). Collecting terms and then evaluating the expectation operator yields a set of ten

equations in the ten solution coeffi cients given by pc and n1 through n9. The ergodic mean

value pc depends on the coupon decay parameter δc and numerous shock variances. I solve

for the value of δc such that pc,t = pc = 20 in 1972.Q3. The target value of pc is arbitrary

and has no affect on the model-implied time series for the long-term bond return given by

rc,t = [1 + δc exp(ωt) pc,t]/pc,t−1 − 1.

C Appendix: Shock identification procedure

The time series for the factor distribution shock αt is directly pinned down by U.S. data

on capital’s share of income. Data for U.S. total hours worked per person ht are plotted in

Figure 2. By equating the right-sides of the two equilibrium conditions (16) and (17), the

model-implied time series for h1,t and h2,t are constructed using the following equations

h1,t = ht[1 + (ϕt/δt) (it/yt)/(1− αt)]−1 = ht

[
(1− αt)yt
yt − dt − it

]
, (C.1)

h2,t = ht − h1,t = ht

[
αtyt − dt − it
yt − dt − it

]
, (C.2)

where I have made use of wt = (1 − αt)yt/h1,t and dt = αtyt − (1 + ϕt/δt) it. The right-side

values of αt, ht, yt, dt, and it in equations (C.1) and (C.2) are given by the U.S. data plotted

in Figure 2.

Given the model-implied time series for h1,t and h2,t, the times series for the shocks zt, δt,
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ϕt and vt are uniquely pinned down using the following equations:

zt =
[
log (yt)− log(Akαtt h

1−αt
1,t )

]
/(1− αt), (C.3)

δt = it/ps,t, (C.4)

ϕt = δt (αtyt − dt − it) /it (C.5)

vt = log (kt+1/kt)− log (B)− δt log (it/kt) + ϕt log [kt exp (−zt) /h2,t] , (C.6)

where the right-side values of the macroeconomic variables are given by the U.S. data plotted

in Figure 2. If a shock appears on the right side, then it takes on the value identified in a

previous equation.32

Starting from the equilibrium conditions (16), (23), (29), and (21), the time series of

realizations for the shocks ut, st, and ηt are determined iteratively by solving the following set

of simultaneous equations

ut = log {ηt(1− αt)/[(ct/yt) Dh1,t (h1,t + h2,t)
γ ]} , (C.7)

st = s− (1/ρs) (s+ σ2ε,s/2) + (1/ρs) log
[
ηt (ps,t/ct)/(βEt q

f
t+1)

]
, (C.8)

ηt = η
{
pb,tβ

−1 exp(µ) [αt/α]−m2 [δt/δ]
−m3 [ϕt/ϕ]−m4 [kn.t/kn]−m5

× exp
[
−m6vt −m7ut −m8(st − s)−m9σ

2
ε,η/2−m10σ

2
ε,α/2−m11σ

2
ε,δ/2

]
× exp

[
−m12σ

2
ε,ϕ/2−m13σ

2
ε,z/2−m14σ

2
ε,u/2−m15σ

2
ε,s/2

]}1/m1 , (C.9)

where pb,t is the inverse of the U.S. gross risk free rate of return in quarter t. The fundamentals-

only forecast Etqft+1 that appears in equation (C.8) is computed using the fundamental solution

(25), as shown in equation (29). The fundamentals-only forecast depends on the shocks ηt, αt,

δt, and ϕt. Various parameters and shock variances that appear in equations (C.8) and (C.9)

are initially undetermined, but influence the computed time series for ut, st, and ηt. These

parameters and shock variances include s, β, ρs, σε,s, σε,η, and σε,u. Starting from initial

guesses for the various parameters and shock variances, together with initial guesses for the

time series of ut, st, and ηt, equations (C.7) through (C.9) are iterated until convergence is

achieved. After each iteration, new guesses for the time series of ut, st and ηt are computed as

an exponentially-weighted moving average of the current and past values implied by equations

(C.7) through (C.9). In practice, convergence to 8 decimal points takes around 70 iterations.

To identify the bond coupon decay rate shock ωt, I first solve the equilibrium bond price

solution (B.6) for exp(ωt), yielding

exp (ωt) =
{
pc,t/pc[ηt/η]−n1 [αt/α]−n2 [δt/δ]

−n3 [ϕt/ϕ]−n4 [kn.t/kn]−n5

× exp [−n6vt − n7ut − n8(st − s)]}1/n9 , (C.10)

32Since the computation of vt requires data at time t+1, I set the end-of-sample shock value to vT = ρvvT−1,
where T = 2019.Q4.
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where pc,t = pc in 1972.Q3 such that ωt = 0. Next, I substitute equation (C.10) into the bond

return definition and then solve for pc,t, yielding

pc,t =
{
pc[ pc,t−1(1 + rc,t)/δc − 1/δc]

n9 [ηt/η]n1 [αt/α]n2 [δt/δ]
n3 [ϕt/ϕ]n4 [kn.t/kn]n5

× exp [n6vt + n7ut + n8(st − s)]}1/(1+n9) , (C.11)

where 1 + rc,t is the U.S. gross real bond return in quarter t. Given the time series for the

previously-identified shocks, equation (C.11) is used to construct the equilibrium time series for

pc,t for t > 1972.Q3, starting with pc,t−1 = pc. For t < 1972.Q3, equation (C.11) is inverted to

solve for pc,t−1 as a function of pc,t and the previously-identified shocks. Given the equilibrium

time series for pc,t from 1960.Q1 to 2019.Q4, equation (C.10) is used to recover the model-

implied time series for exp(ωt). The stochastic coupon decay rate is given by δc,t ≡ δc exp(ωt).

D Appendix: Data sources and methods

I start with data on nominal personal consumption expenditures on nondurable goods plus

services (Ct) , nominal private nonresidential fixed investment plus nominal personal consump-

tion expenditures on durable goods (It) , the corresponding price indices for each of the various

nominal expenditure categories that sum to Ct and It, and U.S. population. All of this data

are from the Federal Reserve Bank of St. Louis’FRED database. I define the nominal ratios

Ct/Yt and It/Yt, where Yt ≡ Ct + It. The nominal ratios capture shifts in relative prices. I

deflate Yt by an output price index constructed as the weighted-average of the price indices

for the various nominal expenditure categories that sum to Ct and It, where the weights are

the nominal expenditure ratios relative to Yt. After dividing by U.S. population, the level of

real output per person yt is normalized to 1.0 in 1972.Q3. The real per person series for ct and

it are then constructed by applying the nominal ratios Ct/Yt and It/Yt to the constructed yt
series. In this way, the real per person series for ct and it reflect the same resource allocation

ratios as the nominal per person series.

Data for ht are hours worked of all persons in the nonfarm business sector from FRED,

divided by U.S. population and then normalized to equal 0.3 in 1972.Q3.33

The data for kt are constructed using the historical-cost net stock of private nonresidential

fixed assets plus the historical-cost net stock of consumer durable goods, both in billions of

dollars at year end, from the Bureau of Economic Analysis (BEA), NIPA Table 4.3, line 1

and Table 8.3, line 1, respectively. The data are only available at annual frequency, so I first

create a quarterly series by log-linear interpolation. The nominal capital stock series is deflated

using the output price index described above and then divided by U.S. population. I normalize

the real per person series for kt to deliver a target value of it/kt = 0.0311 in 1972.Q3. The

target value is arbitrary given that the model parameters B and δ can be adjusted to hit any

desired target value. I choose the target value of it/kt to coincide with the steady state value

33The hours data are from https://fred.stlouisfed.org/series/HOANBS.
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implied by a model with no capital adjustment costs, such that it/kt = kt+1/kt−1 + δ′, where

δ′ = 0.025 is a typical quarterly depreciation rate for physical capital. For the normalization,

I employ the mean quarterly growth rate of the real capital stock per person series which

implies kt+1/kt = exp(0.0061) in steady state. I calibrate the value of A in the production

function (6) to yield yt = 1 in 1972.Q3 when kt is equal to the normalized capital stock and

zt = 0 in 1972.Q3. This procedure delivers a sample mean of kt/yt = 9.159 from 1960.Q1 to

2019.Q4.

Following Lansing (2015) and Lansing and Markiewicz (2018), capital’s share of income is

measured as 1 minus the ratio of employee compensation to gross value added of the corporate

business sector. Both series are from the BEA, NIPA Table 1.14, lines 1 and 4.

To construct data for ps,t, I start with the nominal market capitalization of the S&P 500

stock index from www.siblisresearch.com. The nominal market capitalization is deflated using

the output price index described above and then divided by U.S. population to create a series

for real equity value per person.

Quarterly data on the nominal end-of-quarter closing value of the S&P 500 stock index,

nominal dividends, the nominal risk free rate of return (based on a 3-month Trasury bill), and

the nominal return on a long-term Treasury bond (based on a maturity of 20 years) are from

Welch and Goyal (2008).34 The gross nominal return on the S&P 500 stock index in quarter t

is defined as (Pt +Dt/4) /Pt−1, where Pt is the end-of-quarter closing value of the index and

Dt is cumulative nominal dividends over the past 4 quarters. Gross nominal asset returns are

converted to gross real returns by dividing by 1 + πt where πt is the quarterly inflation rate

computed using the output price index described above. Given the gross real equity return

1 + rs,t and the constructed data for real equity value per person ps,t, I compute a consistent

series for real dividends per person as dt = (1 + rs,t)ps,t− ps,t−1. The gross nominal returns on
the 3-month Treasury bill and the long-term Treasury bond are similarly divided by 1 + πt to

obtain the gross real bond returns 1 + rb,t and 1 + rc,t. The University of Michigan consumer

sentiment index plotted in Figure 1 is from www.sca.isr.umich.edu/tables.html.

34Updated data through the end of 2019 are available from Amit Goyal’s website: www.hec.unil.ch/agoyal/.
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Figure 1: Measures of equity value and sentiment

Notes: The model-identified sentiment shock is strongly correlated with the University of Michigan’s consumer
sentiment index. The correlation coeffi cient between the two series is 0.68. Both series, in turn, are strongly
correlated with a stock market valuation ratio defined as the nominal market capitalization of the S&P 500
stock index divided by a measure of nominal output. The correlation coeffi cient between the sentiment shock
and the S&P 500 valuation ratio is 0.70. Data series are described in Appendix D.
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Figure 2: U.S. macroeconomic variables and asset returns

Notes: The baseline simulation exactly replicates the observed U.S. time paths of all ten variables plotted above
plus the real return on a long-term U.S. government bond from 1960 to 2019. Data series are described in
Appendix D.
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Figure 3: U.S. macroeconomic ratios

Notes: Parameter values are chosen so that the steady-state, trend, or ergodic mean values of model variables
correspond to the values observed in the data in 1972.Q3, a period when the ratios of U.S. macroeconomic
variables to output are close to their long-run means.
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Figure 4: Model-identified shocks

Notes: The figure plots the nine model-identified shock series. By construction, all shocks are equal to their
steady state or trend values in 1972.Q3. The equity sentiment shock st reaches its maximum value in 1998.Q2
and is positively correlated with the time-varying risk aversion coeffi cient ηt and the labor disutility shock ut.
The three capital law of motion shocks vt, δt, and ϕt are positively correlated with each other. The first group
of shocks is negatively correlated with the second group. Movements in the factor distribution shock αt are
negatively correlated with movements in the labor productivity shock zt.
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Figure 5: Impulse response functions

Notes: The left column panels show the effects of a positive innovation to the equity sentiment shock. The
middle column panels show the effects of a negative innovation to the risk aversion coeffi cient. In the data,
the sentiment shock exhibits a strong positive correlation with the risk aversion coeffi cient. The right column
panels show the effects of simultaneous positive innovations to both shocks. More optimistic sentiment together
with higher risk aversion leads to a correlated increase in all macroeconomic variables. Equity value increases
but bond prices decline (implying an increase in bond yields). Taken together, the combination of these two
highly correlated shocks allows the model to capture the features observed during a typical economic boom or
recovery.

43



Figure 6: Equity market variables

Notes: The representative agent’s perceived law of motion (27) predicts values for the quantity log(qt/q
f
t) that

are very close to those generated by the actual law of motion. This is because the slope of the equity market
first order condition (24) is always close to 1. Consequently, the agent’s perception that equity value is partly
driven by sentiment is close to self-fulfilling. The steady state value of the equity sentiment shock is s = −0.211,
implying pessimism relative to fundamental equity value. Consequently, the sentiment-driven component of
equity value, given by ps,t − pfs,t, fluctuates almost entirely in negative territory except for two quarters during
1998. The agent’s subjective forecast error qt − Êt−1qt exhibits an autocorrelation coeffi cient of −0.18 and a
mean value of 0.05.
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Figure 7: Counterfactual shock scenarios

Notes: The panels show the effects of omitting one or more shock realizations relative to the baseline model
that includes all shock realizations. A large gap between the counterfactual path and the U.S. data path (blue
line) implies that the omitted shock plays an important role in allowing the model variable to replicate the path
of the corresponding U.S. data variable.
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Figure 8: Individual shock scenarios

Notes: The panels show the effects of adding one or more shock realizations when no other shock realizations
are present. A small gap between the shock-induced path and the U.S. data path (blue line) implies that the
added shock(s) plays an important role in allowing the model variable to replicate the path of the corresponding
U.S. data variable.
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