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Abstract

The Calvo pricing model that lies at the heart of many New Keynesian business cycle
models has been roundly criticized for being inconsistent both with time series data on
in�ation and with micro-data on the frequency of price changes. In this paper I develop
a new pricing model whose structure can be interpreted in terms of menu costs and infor-
mation gathering/processing costs, that usefully recognizes both criticisms. The resulting
Phillips curve encompasses the partial-indexation model, the full-indexation model, and
the Calvo model, and can speak to micro-data in ways that these models cannot. Tak-
ing the Phillips curve to the data, I �nd that the share of �rms that change prices each
quarter is about 60 percent and, perhaps re�ecting the importance of information gather-
ing/processing costs, that price indexation is important for in�ation dynamics.
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1 Introduction

New Keynesian business cycle models have become the dominant framework for studying the

design and conduct of monetary policy. The models formalize the rigidities and market im-

perfections that govern their behavior and are micro-founded, which permits welfare analysis

and makes policy experiments conducted within them less susceptible to the Lucas (1976)

critique. Prominent examples in the New Keynesian tradition include Rotemberg and Wood-

ford (1997), Clarida, Galí, and Gertler (1999), McCallum and Nelson (1999), Walsh (2003),

and Woodford (2003). One of the most important components in these models is the New

Keynesian Phillips curve, the equation linking in�ation to marginal costs that provides a sta-

bilization role for monetary policy. The �micro-structure�that is most widely used to derive

the New Keynesian Phillips curve is the Calvo model1 (Calvo, 1983), and the de�ning feature

of this model is that only a �xed (Calvo-) share of �rms have the opportunity to optimize

their prices each period. This Calvo-share parameter governs the frequency with which �rms

change prices and determines the average duration between price changes.

Despite its popularity, the New Keynesian Phillips curve has attracted considerable criti-

cism. Some criticisms are empirical; Estrella and Fuhrer (2002) argue that the New Keynesian

Phillips curve provides a poor description of in�ation dynamics because it asserts a correlation

structure among in�ation, the change in in�ation, and marginal costs that prevents it from

replicating the hump-shaped responses that are widely recognized to characterize in�ation�s

behavior following shocks. Similarly, Rudd and Whelan (2006) argue that the New Keynesian

Phillips curve is incapable of describing in�ation dynamics and suggest that there is little ev-

idence of the type of forward-looking behavior required by the model. Other criticisms focus

on whether estimates of the New Keynesian Phillips curve are economically plausible. In this

vein, a prominent criticism is that Calvo-shares estimated from the New Keynesian Phillips

curve imply a level of price rigidity that is inconsistent with micro-data on the frequency of

price adjustment. For example, Eichenbaum and Fisher (2007) estimate the Calvo-share to

be around 0:85 for the United States, which implies that only 15 percent of �rms change their

prices each quarter and that �rms change prices once every 20 months on average. But after

examining Bureau of Labor Statistics data on price changes � the very price data that go

into the consumer price index and the personal consumption expenditures price index � Bils

1Roberts (1995) shows that Rotemberg�s (1982) quadratic price adjustment costs model and Taylor�s (1980)
overlapping nominal wage contracts model give rise to closely related speci�cations, so the issues discussed in
this paper apply equally to these models. Gertler and Leahy (2008) derive the New Keynesian Phillips curve
from a state-contingent pricing microfoundation.
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and Klenow (2004) and Nakamura and Steinsson (2008) report that, excluding temporary

sales, the average duration between price changes for the expenditure-weighted median good

is 5:5 months and 8:6 months, respectively. The disparity between estimates of the Calvo-

share and micro-evidence on the frequency of price adjustment is worrisome, particularly since

models built around the New Keynesian Phillips curve are routinely used to address issues as

important as how to design a welfare-maximizing monetary policy.

In this paper, I develop a new model of price setting, building on Calvo (1983). An essential

feature of this model is that, although a share of �rms have the opportunity to change prices

each period, they do not necessarily make an optimal price change. Instead, among those

�rms that change prices a fraction makes an optimal price change, while the remainder employ

an indexation pricing strategy. In this model, �rms, each period, �nd themselves randomly

distributed among the three pricing states: a �rm can keep their price unchanged; a �rm can

index their price; or a �rm can set its price optimally. Importantly, all three pricing states

are internalized by price-setting �rms.

Why is this price-setting environment attractive? Where traditional models of price

adjustment have emphasized physical costs to changing prices, such as menu costs, as the

source of price rigidity (Mankiw, 1985), recent literature has emphasized the costs that �rms

face when gathering (Mankiw and Reis, 2002) and processing (Sims, 2003; Woodford, 2008) the

information they require in order to set prices optimally. In fact, some evidence suggests that

costs to gathering and processing information and company managerial and organizational

issues (Zbaraki, Ritson, Levy, Dutta, and Bergin, 2004; Zbaraki, Levy, and Bergin, 2007) may

be much more important for price setting than traditional menu cost factors. An attractive

aspect of the price-setting environment developed in this paper is that it provides a vehicle

through which both costs can play a role. Menu costs � which are incurred whether or not a

price change is optimal � are associated with the share of �rms that can change prices. When

these menu costs are large, a smaller share of �rms is likely to change their prices. Similarly,

costs to gathering and processing information are associated with the share of price changers

that use price indexation. When the costs to gathering and processing information are high,

a larger share of price-changing �rms might resort to an indexation-based pricing strategy.

After describing the model, I derive its associated Phillips curve, highlighting its connec-

tions to the New Keynesian Phillips curve and to the full- and partial-indexation Phillips

curves. Speci�cally, I show that these alternatives are all special cases of the Phillips curve

I derive. Subsequently, I develop a small-scale New Keynesian business cycle model and
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estimate speci�cations based on the Phillips curve I derive, the Calvo Phillips curve, the full-

indexation Phillips curve, and the Galí-Gertler Phillips curve (Galí and Gertler, 1999). The

results are striking. First, whereas estimates of the New Keynesian Phillips curve imply an

average duration between price changes that is clearly inconsistent with Bureau of Labor Sta-

tistics price data, the model I develop does much better. In fact, my results place the share

of �rms that change prices each quarter at about 60 percent, suggesting relatively frequent

price adjustment. Second, although �rms change prices frequently, I �nd that the data want

the majority of these �rms use price indexation, consistent with the view that factors such as

information gathering/processing costs may be extremely important for price setting.

This paper is related to the interesting study by Dupor, Kitamura, and Tsuruga (2008),

who develop a Phillips curve that integrates sticky information (Mankiw and Reis, 2002) with

sticky prices (Calvo, 1983). Dupor, Kitamura, and Tsuruga (2008) assume that the �xed

share of �rms that can update their prices each period is independent of the �xed share of

�rms can update their information set to derive a Phillips curve that contains a role for both

menu costs and information-gathering costs. They show that their speci�cation is related

closely to a hybrid New Keynesian Phillips curve, but with an additional term to allow for the

distribution of information across �inattentive��rms. Despite its similar motivation, their

estimation suggests that only 14 percent of �rms change their prices each quarter, but that

42 percent of �rms update their information sets. Empirically, therefore, their speci�cation,

much like the Calvo Phillips curve, implies relatively infrequent price adjustment and suggests

that menu costs may be more important for �rms pricing than information-gathering costs.

I begin by describing the New Keynesian Phillips curve and illustrating the empirical

disparity between the Calvo-share and the frequency of price adjustment implied by micro-

data. Section 3 outlines the economic environment that underlies my model and derives

the associated Phillips curve. Section 4 compares the model to the Calvo model, the full-

indexation model, and the partial-indexation model and proves its isomorphism with the

partial-indexation model. Section 5 develops a small-scale New Keynesian business cycle

model suitable for estimation, describes the data, and discusses the estimation strategy. Sec-

tion 6 presents and interprets the estimates and compares them to those obtained from alter-

native pricing models. Section 7 concludes.
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2 The New Keynesian Phillips curve and price rigidity

As noted in the introduction, the centerpiece to much business cycle and policy analysis is the

New Keynesian Phillips curve

b�t = �Etb�t+1 + (1� �) (1� ��)
�

cmct; (1)

where b�t and cmct represent the percentage point deviation of in�ation, �t, and the percent
deviation of real marginal costs, mct, around their zero-in�ation nonstochastic steady state

values, respectively. An economic environment that gives rise to this Phillips curve is one

in which �rms are monopolistically competitive, renting capital and labor and setting their

prices to maximize pro�ts subject to a constant elasticity of substitution demand curve, a

Cobb-Douglas production technology, and a price rigidity, á la Calvo (1983).2 In equation

(1), � 2 (0; 1) is the subjective discount factor and � 2 (0; 1) is the Calvo-share, the share of
�rms that cannot optimize their prices each period.

With regard to suitable values for �, a touchstone in the literature is Blinder (1994), who

surveyed �rms on the frequency of their price changes. Based on Blinder�s (1994) survey,

Rotemberg and Woodford (1997) set � = 0:66, which implies an average duration between

price changes of nine months. But many calibration studies have assumed that prices change

somewhat less frequently than this. For example, Erceg, Henderson, and Levin (2000) and

Liu and Phaneuf (2007) each set � = 0:75, implying an average duration between price changes

of 12 months.

Among studies that estimate �, a popular approach is to apply a generalized method of

moments estimator to the moment condition3

Et

��b�t � �b�t+1 � (1� �) (1� ��)
�

cmct� zt� = 0; (2)

where zt is a vector containing econometric instruments. This is the approach taken by Galí

and Gertler (1999), Galí, Gertler, and López-Salido (2001), Eichenbaum and Fisher (2004),

Jung and Yun (2005), and Ravenna and Walsh (2006). An alternative method is to iterate

forward over equation (1) and combine the result with an evolution process for real marginal

costs to produce an estimable expression relating in�ation to real marginal costs (Sbordone,

2Gertler and Leahy (2008) provide an alternative derivation that is based on state-contingent pricing.
3An alternative moment condition that is often used is equation (2) multiplied through by �. Some of the

estimates shown in Table 1 come from this alternative moment condition.
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2002). A range of estimates of � for the U.S., all obtained from the moment condition

(equation (2)), are displayed in Table 1.4

Table 1: Estimates of the New Keynesian Phillips Curve
Study Sample �

Galí & Gertler (1999) 1960:1 �1997:4 0:829� 0:884
Galí, Gertler & López-Salido (2001) 1970:1 �1998:4 0:845� 0:867

Sbordone (2002) 1960:2 �1997:1 0:792
Eichenbaum & Fisher (2004) 1959:1 �2001:4 0:87� 0:91

Jung & Yun (2005) 1967:1 �2004:4 0:910
Ravenna & Walsh (2006) 1960:1 �2001:1 0:758� 0:911

The estimates of � shown in Table 1 vary from a low of 0:758 to a high of 0:911. While

� = 0:758 is broadly on par with the value used in calibration studies, a value such as � = 0:911

is much larger than either the values used in calibration exercises or the value implied by

Blinder�s (1994) study. The average value for � in Table 1 is in the order of 0:85, suggesting

that �rms only change prices once every 20 months. The estimates in Table 1 highlight what

has become an important criticism of the New Keynesian Phillips curve, which is that estimates

of � are too large, implying average durations between price changes that are inconsistent with

micro-evidence on the frequency of price adjustment (Bils and Klenow, 2004; Nakamura and

Steinsson, 2008).5

2.1 Strategic complementarity and �rm-speci�c capital

One way to resolve the apparent inconsistency between macro- and micro-estimates of the

frequency of price adjustment is to change the pricing environment to allow for factors such

as strategic complementarity (Woodford, 2003) and/or �rm-speci�c capital (Sbordone, 2002).

These changes add one or more structural parameters to the coe¢ cient on real marginal costs,

thereby permitting greater �exibility with respect to the choice of �. Unfortunately, because

these modi�cations leave the Phillips curve�s structure unchanged, they cannot, in isolation,

overcome the criticism that the New Keynesian Phillips curve provides a poor description of

in�ation dynamics (Estrella and Fuhrer, 2002; Rudd and Whelan, 2006).

4All of the estimates reported in Table 1 have been made consistent with a Cobb-Douglas production
technology and rental markets for capital and labor, facilitating comparison across studies by making the
estimates invariant to particular assumptions about the steady state markup and labor�s share of income.
However, the values shown may di¤er from those reported in the original papers as a consequence. With
respect to Sbordone�s estimates, the best-�tting speci�cation in Sbordone (2002, Table 2) has a coe¢ cient on
real marginal costs equaling 1

18:3
. Using Sbordone�s assumption about the discount factor and assuming a

rental market for capital, the implied value for � is 0:792.
5Of course, there are other notable studies that look at micro-data on the frequency of price adjustment,

including Cecchetti (1986), Carlton (1986), and Kashyap (1995).
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3 A new pricing model

Firms are assumed to be monopolistically competitive and to produce according to a constant-

returns-to-scale production technology subject to a downward-sloping demand schedule. In

the spirit of Calvo (1983), not all �rms can change their prices each period, and, in the spirit

of Christiano, Eichenbaum, and Evans (2005), not all price changes that do occur are chosen

optimally. However, unlike Calvo (1983), in which �rms either set their prices optimally or

keep their prices unchanged, and unlike Christiano, Eichenbaum, and Evans (2005), in which

�rms either set their prices optimally or index their prices to past in�ation, in the model

developed here �rms are randomly allocated among three pricing states. Depending on draws

from two independent Bernoulli distributions, a �rm either sets its price optimally, sets its

price using an indexation rule, or keeps its price unchanged. Informally, the parameters

that govern the share of �rms allocated to each pricing state can be interpreted in terms of

menu costs and the costs associated with gathering and processing the information needed

to set prices optimally. To identify this model in subsequent discussion, I refer to it as the

generalized-Calvo model.

The model developed below is also related to one developed by Galí and Gertler (1999);

the two models share the three distinct pricing strategies outlined above. However, there

are several important di¤erences between the two models. One important di¤erence is that

�rms in the generalized-Calvo model internalize the three pricing strategies when optimizing

their price. In contrast, optimizing �rms in the Galí-Gertler model behave like those in the

Calvo (1983) model. Thus, where all �rms are identical and are allocated randomly among

pricing states in the model developed here, in the Galí-Gertler model there are two distinct

types of �rm: Calvo price-setters and rule-of-thumb price-setters. Another di¤erence is that

where the Galí-Gertler model contains rule-of-thumb price-setters the model developed below

is built around price indexation.

3.1 Basic structure

The economy is populated by a unit-measure continuum of monopolistically competitive �rms.

The i�th �rm, i 2 [0; 1], produces its di¤erentiated product according to the Cobb-Douglas
production technology

yt (i) = [e
ut lt (i)]

� kt (i)
1�� ; (3)
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� 2 (0; 1), where eut is an aggregate labor-augmenting technology shock and yt (i), lt (i), and
kt (i) denote the i�th �rm�s output, labor, and capital, respectively. Firms rent capital and hire

labor in perfectly competitive markets and, because they face identical factor prices, employ

capital and labor in the same ratio and share the same real marginal cost, i.e., mct (i) = mct,

8 i 2 [0; 1].
A �nal good, Yt, is produced from the outputs of the monopolistically competitive �rms

according to the Dixit and Stiglitz (1977) constant-returns-to-scale production technology

Yt =

�Z 1

0
yt (i)

��1
� di

� �
��1
; (4)

where � 2 (1;1) is the elasticity of substitution between intermediate goods. Final goods are
used for consumption and investment and are sold to households in a perfectly competitive

market. E¢ cient production of the �nal good implies that the demand schedule for the i�th

�rm�s output takes the form

yt (i) = Yt

�
Pt (i)

Pt

���
; (5)

where Pt (i) is the price charged by the i�th �rm and Pt is the aggregate price index, the price

of the �nal good.

Each period a �xed proportion of �rms, 1 � �, � 2 [0; 1), are able to change prices.

However, not all �rms that change prices do so optimally. Within the share of �rms that

change prices, a �xed proportion, 1 � !, ! 2 [0; 1), change their prices optimally, while the
remaining proportion, !, set their prices using the indexation rule

Pt (i) = (1 + �t�1)Pt�1 (i) ; (6)

where �t denotes the in�ation rate of the �nal good. Unlike the Calvo model, in which �rms

either set their prices optimally or keep their prices unchanged, here �rms are distributed

among three pricing states. Speci�cally, each period a measure equaling � of �rms do not

change their prices, a measure equaling ! (1� �) of �rms change their prices using the in-
dexation rule, and a measure equaling (1� !) (1� �) of �rms set their prices to maximize
expected discounted pro�ts, with �rms falling randomly into one of these three pricing states

independently of their history of price changes.

To interpret this pricing structure, note that � and ! can each be associated informally

with a distinct cost impinging on the �rm�s pricing decision. The �rst set of costs, menu costs,

are borne by �rms when they change prices, regardless of whether the price change is optimal
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or not; these costs are associated with �. The second set of costs are those connected to

the information gathering (Mankiw and Reis, 2002) and information processing (Sims, 2003)

needed to determine the optimal price; these costs are associated with !. Importantly, �,

which represents a cost to changing prices, determines the share of �rms that change prices,

not the share of �rms that set their prices optimally. Because estimates of the frequency of

price adjustment obtained from micro-data, such as Bils and Klenow (2004) and Nakamura

and Steinsson (2008), are based on observed price changes, their �ndings are best interpreted

as estimates of �, the proportion of �rms that change prices, rather than as estimates of

(1� !) (1� �), the proportion of �rms that change prices optimally.
The Phillips curve derived below is obtained by approximating the model around a zero-

in�ation steady state. In Appendix B, I treat the more general case in which the approximation

is taken around a non-zero-in�ation steady state and show that plausible values for steady state

in�ation do not have a large e¤ect on the Phillips curve�s coe¢ cients.

3.2 The Dixit-Stiglitz aggregate price

With the indexation rule given by equation (6), I show in Appendix A that the aggregate

price, the price of the �nal good, equals

Pt �
�Z 1

0
Pt (i)

1�� di

� 1
1��
;

=
h
(1� �) (1� !)P �t 1�� + ! (1� �) (1 + �t�1)

1��
P
1��
t�1 + �P

1��
t�1

i 1
1��
; (7)

where P �t is the price chosen by �rms that can set their price optimally.
6 Log-linearizing

equation (7) around a zero-in�ation steady state, the quasi-di¤erence in aggregate in�ation is

related to the optimal relative price according to

b�t = ! (1� �)
� + ! (1� �)b�t�1 + (1� !) (1� �)� + ! (1� �) bp�t ; (8)

where bp�t denotes the percent deviation in p�t from p� = 1. Conditional on bp�t , equation (8)
implies that the correlation between in�ation and its lag is an increasing function of ! and a

decreasing function of �. Further, conditional on lagged in�ation, equation (8) implies that

the correlation between �t and bp�t is a decreasing function of � and !.
6Because real marginal costs are the same for all �rms, in a symmetric equilibrium, �rms that can set their

price optimally will all choose the same price.
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3.3 The pricing decision

I assume that !+� > 0, ruling out the case where all prices are �exible, but not ruling out the

case where all �rms change prices (� = 0) or the case where all price-changing �rms optimize

(! = 0). With this assumption, in period t+ 1 a �rm that cannot optimize its price between

period t and period t+ 1 will expect to charge the price

Pt+1 (i) = Pt (i)

�
! (1� �)

� + ! (1� �) (1 + �t) +
�

� + ! (1� �)

�
;

� Pt (i)St+1; (9)

where the two terms in equation (9) correspond to the two non-optimizing pricing states, with

each state weighted by its conditional probability. Iterating forward over equation (9), a �rm

that cannot optimally set its price will expect in period t+ j to charge the price

Pt+j (i) = Pt (i)
Yj

k=1
St+k: (10)

Turning to the decision problem facing �rms that can choose their price, in light of equation

(10) these �rms will choose Pt (i) to maximize

Et
1X
j=0

(��)j
�t+j
�t
Yt+j

24 Pt (i)Qj
k=1 St+k

Pt+j

!1��
�mct+j

 
Pt (i)

Qj
k=1 St+k

Pt+j

!��35 ; (11)

where � � �+ ! (1� �) denotes the share of �rms that cannot optimize their prices and �t is
a shadow price representing the marginal utility of consumption in period t.

Di¤erentiating equation (11) with respect to Pt (i), the resulting �rst-order condition is

Et
1X
j=0

(��)j
�t+j
�t
yt+j (i)

24p�t (i)
�Qj

k=1 St+k

�
Qj
k=1 (1 + �t+k)

� �

(�� 1)mct+j

35 = 0; (12)

which, when log-linearized around a zero-in�ation steady state, yields

bp�t = ��Etbp�t+1 + ���Et�t+1 � ! (1� �)�
�t

�
+ (1� ��) cmct: (13)

Equation (13) establishes that, in addition to real marginal costs and its expected future price,

the �rm�s pricing decision is shaped by current and expected future in�ation. Because � is

increasing in both � and !, it is clear from equation (13) that increases in � and ! raise the

importance of future prices and lower the importance of current real marginal costs for the

price chosen today.
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3.4 The Phillips curve

To derive the Phillips curve, I combine equations (8) and (13) to obtain the expression

b�t =
! (1� �)

� + !(1� �) (1 + �)b�t�1 + � [� + ! (1� �)]
� + !(1� �) (1 + �)Etb�t+1

+
(1� !) (1� �) (1� ��)
� + !(1� �) (1 + �) cmct: (14)

Equation (14) has the form of a hybrid New Keynesian Phillips curve. Notice that the pricing

parameters, � and !, a¤ect both the lead-lag structure of in�ation and the coe¢ cient on

real marginal costs. Speci�cally, it is not di¢ cult to see that an increase in ! raises the

coe¢ cient on lagged in�ation and lowers the coe¢ cients on future in�ation and real marginal

costs. Similarly, an increase in � raises the coe¢ cient on future in�ation and lowers the

coe¢ cients on lagged in�ation and real marginal costs. Importantly, then, in�ation dynamics

are informative of the extent and nature of the price rigidity and, moreover, a decline in the

coe¢ cient on real marginal costs need not imply higher menu costs (and greater price rigidity);

it may, instead, imply higher information gathering/processing costs.

4 Some interesting special cases

It is interesting to relate the Phillips curve derived above to other speci�cations in the liter-

ature. If I set ! = 0, eliminating the pricing state in which �rms index, then equation (14)

collapses to b�t = �Etb�t+1 + (1� �) (1� ��)
�

cmct; (15)

which is equivalent to the purely forward-looking New Keynesian Phillips curve associated

with the Calvo (1983) model, equation (1). Similarly, if I set � = 0, eliminating the pricing

state in which �rms do not change prices, then equation (14) simpli�es to

b�t = 1

1 + �
b�t�1 + �

1 + �
Etb�t+1 + (1� !) (1� �!)

! (1 + �)
cmct; (16)

which is equivalent to the Christiano, Eichenbaum, and Evans (2005) full-indexation Phillips

curve.

Because equation (14) encompasses both the Calvo (1983) model and the Christiano,

Eichenbaum, and Evans (2005) model, it is natural to ask whether there might also be mathe-

matical connections between it and the Smets and Wouters (2003) partial-indexation Phillips

curve, which also encompasses these two speci�cations. To address this question, note that,
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when approximated around a zero-in�ation steady state, the partial-indexation Phillips curve

is given by b�t = �

1 + ��
b�t�1 + �

1 + ��
Etb�t+1 + (1� ��) (1� �)

(1 + ��) �
cmct; (17)

where � 2 [0; 1] represents the indexation parameter and � 2 (0; 1) represents the share of �rms
that can optimize their prices each period. As Smets and Wouters (2003) discuss, the model

that underlies equation (17) is closely related to the Calvo (1983) model, with the modi�cation

that those �rms that do not optimize their prices change their prices in proportion to lagged

aggregate in�ation.

Proposition 1 To a �rst-order (log-) approximation about a zero-in�ation steady state, the

generalized-Calvo Phillips curve, equation (14), and the partial-indexation Phillips curve, equa-

tion (17), are isomorphic.

Proof. De�ne � � !(1��)
�+!(1��) and � � � = � + ! (1� �), then the partial-indexation Phillips

curve can be written as

b�t =

!(1��)
�+!(1��)

1 + �
�

!(1��)
�+!(1��)

�b�t�1 + �

1 + �
�

!(1��)
�+!(1��)

�Etb�t+1
+

(1� !) (1� �) (1� ��)h
1 + �

�
!(1��)
�+!(1��)

�i
[� + ! (1� �)]

cmct: (18)

After some simple cancellations, equation (18) becomes

b�t =
! (1� �)

� + ! (1� �) (1 + �)b�t�1 + �

� + ! (1� �) (1 + �)Etb�t+1
+
(1� !) (1� �) (1� ��)
� + ! (1� �) (1 + �) cmct;

which has the same structure as the generalized-Calvo Phillips curve. Now, by inspection,

for all ! 2 [0; 1) and � 2 [0; 1) that satisfy ! + � > 0, then � 2 [0; 1] and � 2 (0; 1), which
establishes that the generalized-Calvo Phillips curve is a special case of the partial-indexation

Phillips curve. Conversely, de�ne � � � (1� �) and ! � ��
1��(1��) , which imply � = �, then

the generalized-Calvo Phillips curve can be written as

b�t =
��

� (1� �) + �� (1 + �)b�t�1 + � [� (1� �) + ��]
� (1� �) + �� (1 + �)Etb�t+1

+
(1� �) (1� ��)

� (1� �) + �� (1 + �)cmct;
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which in turn simpli�es to

b�t = �

1 + ��
b�t�1 + �

1 + ��
Etb�t+1 + (1� �) (1� ��)

(1 + ��) �
cmct: (19)

Equation (19) has the same structure as the partial-indexation Phillips curve. With respect

to the parameter spaces, again by inspection, for all � 2 [0; 1] and � 2 (0; 1), then ! 2 [0; 1)
and � 2 [0; 1) and � + ! > 0, which establishes that the partial-indexation Phillips curve is a
special case of the generalized-Calvo Phillips curve. Since each speci�cation is a special case

of the other they must be isomorphic.

Proposition 1 establishes that the generalized-Calvo Phillips curve and the partial-indexation

Phillips curve are mathematically equivalent, and this equivalence also has a natural intu-

ition. The parameter � in the partial-indexation model has as its counterpart the convolution
!(1��)
�+!(1��) in the generalized-Calvo model. To appreciate why these two parameters play the

same role, observe that the numerator of !(1��)
�+!(1��) is the share of �rms that index to lagged

in�ation and the denominator is the share of �rms that are either indexing to lagged in�ation

or indexing to a zero in�ation rate. In terms of the contribution to in�ation being made

by the non-optimizing �rms, the convolution !(1��)
�+!(1��) can be thought of as the weight on

lagged in�ation in a weighted average of lagged in�ation and zero in�ation, which is naturally

equivalent to the weight on lagged in�ation in a model with partial indexation. Similarly,

it should be clear that the term (1�!)(1��)
�+!(1��) regulates the relationship between in�ation and

the optimal relative price (see equation (8)) in the same way that (1��)
� does in the partial-

indexation model and that these two expressions are equal when � = � + ! (1� �), which is
intuitive because � is the share of �rms that do not optimize in the partial-indexation model

and � + ! (1� �) is the share of �rms that do not optimize in the generalized-Calvo model.

5 System estimation

To estimate the generalized-Calvo Phillips curve I embed it within a small-scale dynamic sto-

chastic general equilibrium (DSGE) model and estimate the resulting system using likelihood

methods. The DSGE model is standard so I present the key equations, leaving the deriva-

tions to appendices. With ct denoting consumption, Rt denoting the short-term nominal

interest rate, and gt denoting an aggregate consumption preference shock, the log-linearized

consumption Euler equation is given by (see Appendix C)

bct = 


1 + 

bct�1 + 1

1 + 

Etbct+1 � (1� 
)

�
(Rt � Et�t+1 � �� gt) ; (20)
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where 
 2 (0; 1) is the (external) habit parameter, � 2 (0;1) is the coe¢ cient of relative risk
aversion, and � = � ln (�) is the discount rate. Combining the production technology, the

resource constraint, and the household labor supply decision, real marginal costs are given by

(see Appendix D)

cmct = ��+ �

(1� 
)

�bct � �


(1� 
)bct�1 � (1 + �)ut � gt; (21)

where � 2 (0;1) is the Frisch labor supply elasticity.
With respect to the nominal interest rate, I assume that Rt is set according to

Rt = (1� �r) [�+ (1� ��)� + ��Et�t+1 + �cbct] + �rRt�1 + �t; (22)

which is a standard forward-looking Taylor-type rule, essentially the same as the speci�cation

studied by Clarida, Galí, and Gertler (1998, 2000). Equation (22) postulates that the central

bank responds with inertia to future expected in�ation and, through consumption, to the state

of the business cycle. Expected future in�ation rather than current or lagged in�ation enters

the rule to capture the fact that central banks consider the economy�s future evolution when

conducting monetary policy.

5.1 Bayesian estimation

With the parameters of model represented by �, p (�) is the prior density for �, p
�
fz1tgT2 j�

�
is the conditional data density, and p

�
�j fz1tgT2

�
is the posterior density of the parameter

density conditional on the data and the model. As always with Bayesian estimation, interest

centers on the posterior density, which from Bayes�s theorem, is given by

p
�
�j fztgT2

�
=
p
�
fztgT2 j�

�
p (�)

p
�
fztgT2

� : (23)

To draw from the posterior density, I use the random walk chain Metropolios-Hastings

algorithm. Ten overdispersed chains of length 60; 000 were constructed, from which the �rst

10; 000 �burn-in�draws were discarded, leaving a total of 500; 000 usable draws. Convergence

of the chains was determined using diagnostics developed by Gelman (1995) and Geweke

(1992).

To calculate the marginal data density, or marginal likelihood,

p
�
fztgT2

�
=

Z
�
p
�
fztgT2 j�

�
p (�) d�; (24)
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which is the probability of observing the data given the model, I use Geweke�s (1999) modi�ca-

tion of the Gelfand and Dey (1994) method. As equation (24) shows, the marginal likelihood

is evaluated by averaging the conditional data density with respect to the prior density.

5.2 Data

To estimate the model, I use U. S. data spanning the period 1982:1 �2007:2, which excludes

the period of nonborrowed reserves targeting that occurred in the early 1980s and the recession

that began in late-2007 associated with the collapse in the U. S. housing market, but otherwise

re�ects the time during which Paul Volcker, Alan Greenspan, and Ben Bernanke were Federal

Reserve chairmen. I use the quarterly average of the federal funds rate to measure Rt, use

100 � ln
�
Ct=C

T
t

�
to measure the consumption gap, where Ct is real consumption and CTt

is trend consumption,7 and use 400 � ln (Pt=Pt�1), where Pt is the personal consumption
expenditure (PCE) price index, to measure in�ation.

5.3 Priors

Aside from the parameters describing the shock processes, the key model parameters are � =

f�; �; 
; �; �; �; !; �; ��; �c; �rg. The priors for these behavioral parameters are summarized

in Table 2a.

Table 2a: Priors for Structural Parameters
Parameter Distribution Mean Std Dev. 90% Interval

� Normal 2:50 0:50 [1:68; 3:32]

 Beta 0:75 0:10 [0:57; 0:90]
� Gamma 2:00 2:00 [0:10; 5:99]
� Normal 2:00 0:75 [0:76; 3:23]
� Beta 0:66 0:20 [0:49; 0:82]
! Uniform 0:50 0:29 [0:05; 0:95]
� Normal 3:00 0:50 [2:18; 3:82]
�� Normal 1:50 0:20 [1:17; 1:83]
�c Normal 1:00 0:20 [0:67; 1:33]
�r Beta 0:75 0:10 [0:57; 0:90]

Brie�y, the priors for � and � have means equaling 2:50 and 3:00 percent, respectively, at

annual rates. The priors for 
 and �r are each Beta distributions with means equaling 0:75.

The prior for the in�ation indexation parameter, !, is a uniform distribution over the unit

interval while that for the frequency of price adjustment, �, re�ecting the results in Nakamura

and Steinsson (2008), has a Beta distribution that is centered on 0:66. The prior for the

7Trend consumption was constructed using the Hodrick-Prescott �lter with � = 1; 600.
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coe¢ cient of relative risk aversion, �, has a Gamma distribution with a mean equaling 2:00

and, to re�ect the wide range of estimates in the literature, a relatively large standard deviation

of 2:00. Based on Smets and Wouters (2007), the prior for the labor-supply elasticity, �, has

a Normal distribution with a mean equaling 2:00 and a standard deviation of 0:75.

The prior for the shock process is implemented as follows. First, the solution to the

rational expectations model is written in the form

zt = h+Hzt�1 + "t; (25)

where "t = Gvt are reduced-form shocks. The priors for the elements in � =E
h
"t"

0
t

i
are

summarized in Table 2b.

Table 2b: Priors for Reduced-Form Shocks
Parameter Distribution Mean Std Dev. 90% Interval

�1 Inverted Gamma 1:00 0:20 [0:72; 1:36]
�2 Inverted Gamma 0:50 0:20 [0:27; 0:87]
�3 Inverted Gamma 0:70 0:20 [0:44; 1:07]

cov("1"2) Normal 0:00 0:20 [�0:33; 0:33]
cov("1"3) Normal 0:00 0:20 [�0:33; 0:33]
cov("2"3) Normal 0:00 0:20 [�0:33; 0:33]

5.4 DSGE model estimates

Table 3 presents the estimates of the DSGE model parameters. The table displays the

posterior mean, median, and mode, and a 90 percent probability interval for the Bayesian

estimation. Also shown is the (log-) marginal likelihood (log-ML).

Table 3: Bayesian Estimates of the generalized-Calvo Model
Parameter Post. Mean Post. Median Post. Mode 90% Interval

� 2:566 2:569 2:601 [1:982; 3:141]

 0:886 0:887 0:895 [0:823; 0:940]
� 7:252 6:722 5:443 [2:979; 13:23]
� 2:086 2:078 2:085 [0:881; 3:301]
� 0:397 0:396 0:399 [0:259; 0:539]
! 0:964 0:965 0:967 [0:941; 0:981]
� 3:270 3:256 3:329 [2:743; 3:844]
�� 1:634 1:628 1:634 [1:355; 1:934]
�c 1:079 1:080 1:083 [0:773; 1:386]
�r 0:871 0:872 0:872 [0:839; 0:902]

log-ML �324:655

The Bayesian estimates of the rate of time preference, �, are about 2:6. This estimate

is consistent with those of the equilibrium real interest rate (Laubach and Williams, 2003)
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and place the quarterly discount factor at just over 0:99, in line with values widely used

in calibration exercises. Looking at the utility function parameters, the habit formation

parameter, 
, is estimated to be about 0:89, implying that habit formation is important and

that there is considerable inertia in consumption. Elsewhere, estimates of 
 vary widely.

Smets and Wouters (2005) estimate 
 = 0:69, Smets and Wouters (2007) estimate 
 = 0:71,

Altig, Christiano, Eichenbaum, and Linde (2004) estimate 
 = 0:65, Giannoni and Woodford

(2003) estimate 
 = 1:00, while the results in Smets (2003) and Cho and Moreno (2005) imply

that 
 equals 0:79 and 1:00, respectively. Calibration exercises often set 
 to 0:80 (McCallum

and Nelson, 1999). Turning to �, estimates in the literature are also wide-ranging. The

Bayesian estimation returns a posterior median for � that is about 6:7. Elsewhere, Fuhrer

(2000) obtains � = 6:11 while Kim (2000) obtains � = 14:22. Using Bayesian methods, Smets

and Wouters (2005) get � = 1:62 for the posterior median, while Levin, Onatski, Williams, and

Williams (2006) report � = 2:19 for the posterior mean. At the other end of the spectrum,

Rotemberg and Woodford (1997) estimate � = 0:16, Amato and Laubach (2003) estimate

� = 0:26, and Giannoni and Woodford (2003) estimate � = 0:75. The posterior mean of the

labor supply elasticity, �, is about 2:1, which compares to the value 1:83 estimated by Smets

and Wouters (2007) and the value 1:49 estimated by Levin, Onatski, Williams, and Williams

(2006). Based on their reading of micro-data, Chang and Kim (2005) argue that � should be

greater than 2:0 and set �, in their model, to 2:5.

Regarding the policy-rule parameters, the Bayesian estimates place the implicit in�ation

target at around 3:3 percent. These estimates of � are very similar to those obtained by

Clarida, Galí, and Gertler (2000), while being slightly higher than that obtained by Favero

and Rovelli (2003), who estimate � to be 2:63 percent. I estimate the coe¢ cient on expected

future in�ation to be about 1:6, the coe¢ cient on the consumption gap to be about 1:1, and

the coe¢ cient on lagged interest rates to be about 0:85. These coe¢ cients are all consistent

with other estimated Taylor-type rules (see Clarida, Galí, and Gertler (2000) and Dennis

(2006, 2009)); they indicate an activist, but inertial, approach to monetary policy and rule

out sunspot behavior.

With respect to pricing behavior, the two key parameters are � and !. The Bayesian

estimation has the distribution for � centered on about 0:40, with a 90 percent probability

interval covering 0:26 to 0:54. These estimates place the frequency of price adjustment

somewhere around 0:60, suggesting relatively frequent price adjustment and that menu costs

are perhaps not a huge impediment to a �rm changing its price. At the same time, the estimate
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of ! is large, implying that most �rms that change prices do so using indexation. Together,

the estimates of � and ! are consistent with the view that information gathering/processing

costs are more important for pricing behavior than menu costs.

5.5 Partial-indexation Phillips curve estimates

Proposition 1 shows how estimates of the partial-indexation Phillips curve can be used to shed

light on the values of � and ! in the generalized-Calvo Phillips curve; a range of estimates for

the U.S are reported in Table 4.8

Table 4: Estimates of � and ! from the Partial-Indexation Phillips Curve
Study Estimator Sample � � � !

Sahuc (2004) GMM 1970:1 �2002:4 0:87 0:68 0:28 0:82
Smets and Wouters (2005) Bayesian 1974:1 �2002:2 0:87 0:66 0:30 0:82

Rabanal and Rubio-Ramírez (2005) Bayesian 1960:1 �2001:4 0:90 0:76 0:22 0:87
Jondeau and Le Bihan (2005) GMM 1970:1 �1999:4 0:88 0:46 0:47 0:77
Smets and Wouters (2007) Bayesian 1966:1 �2004:4 0:76 0:24 0:58 0:43

Del Negro and Schorfheide (2008) Bayesian 1982:4 �2005:4 0:78 0:19 0:63 0:40
Dennis (2009) FIML 1983:1 �2004:2 0:88 0:69 0:27 0:83

The key result that emerges from Table 4 is that estimates of � and ! inferred from es-

timates of the partial-indexation Phillips curve are relatively consistent with those for the

generalized-Calvo model shown in Table 3, even though they are obtained from DSGE models

that are quite di¤erent from the one I estimate. Speci�cally, the estimates of � in Table 4 are

spanned by the interval 0:22 �0:63, and generally re�ect quite rapid price adjustment. Simi-

larly, other than those obtained by Smets and Wouters (2007) and Del Negro and Schorfheide

(2008), the estimates of ! in Table 4 indicate that the share of �rms that index prices is large.

6 Alternative pricing speci�cations

In this section I estimate three additional Phillips curve speci�cations and consider the results

in light of the generalized-Calvo model estimated above. With the remainder of the model

continuing to be given by equations (20)� (22), I estimate the New Keynesian Phillips curve,

equation (15), the full-indexation Phillips curve, equation (16), and a hybrid Phillips curve

8As earlier, where necessary, the estimates in Table 4 have been made consistent with a Cobb-Douglas
production technology and rental markets for capital and labor.
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developed by Galí and Gertler (1999), which is given by

�t =
!

� + ! [1� � (1� �)]�t�1 +
��

� + ! [1� � (1� �)]Et�t+1

+
(1� !) (1� �) (1� ��)
� + ! [1� � (1� �)] cmct: (26)

Although � and ! carry the same interpretation in the Galí and Gertler (1999) model as they

do in the generalized-Calvo model, the �rm�s optimization problem is quite di¤erent. Thus,

while similar in the variables it depends upon, equation (26) is otherwise quite dissimilar to

the generalized-Calvo Phillips curve, equation (14).

Table 5 presents median estimates of the parameters in the three alternative pricing spec-

i�cations discussed above.9 As noted previously, these alternative pricing speci�cations are

estimated jointly with equations (20)� (22).

Table 5: Bayesian Estimates of Alternative Pricing Speci�cations
Parameter Calvo Full Indexation Galí-Gertler

� 2:536 2:511 2:583

 0:889 0:885 0:888
� 8:219 6:118 6:008
� 2:025 2:164 2:060
� 0:973 � 0:960
! � 0:961 0:629
� 3:491 3:064 3:180
�� 1:621 1:620 1:620
�c 1:047 1:085 1:090
�r 0:867 0:864 0:868

log-ML �343:985 �329:167 �326:579

Setting the estimates of � and ! aside for the moment, the estimates of the remaining

structural parameters are all reasonably consistent across the three speci�cations and consis-

tent with those reported in Table 3. With respect to the two pricing parameters, estimates

from the Calvo model, the full-indexation model, and the Galí-Gertler model all suggest that

the share of �rms that set their price optimally each quarter is small. However, where

the Calvo model suggests that the majority of �rms keeps their prices unchanged, the full-

indexation model suggests that the same majority index their prices to lagged in�ation. The

Galí-Gertler model suggests that while the majority of �rms keeps their prices unchanged

each period, about 63 percent of those that do change their prices do so by rule of thumb.

9For the model containing the partial-indexation Phillips curve, the prior for � and � was a Beta distribution
with mean of 0:5 and standard deviation of 0:2. The prior for the remaining parameters was the same as that
reported in Tables 2a and 2b.
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Clearly, although the Galí-Gertler model and the generalized-Calvo model both highlight the

importance of rule-of-thumb pricing or price indexation for in�ation dynamics, they tell very

di¤erent stories regarding the frequency of price adjustment. Speci�cally, the Galí-Gertler

model indicates that more than 90 percent of �rms keep their price unchanged each quarter

whereas the generalized-Calvo model places this share at closer to 40 percent.

7 Conclusion

The Calvo-based New Keynesian Phillips curve has been widely criticized for being economi-

cally implausible, for being inconsistent with micro-data on the frequency of price adjustment,

and for being unable to account for the persistence in in�ation. Popular alternatives, such as

the full-indexation model and the partial-indexation model, are much better able to explain

the persistence in in�ation, but, because they assume that all prices change every period, they

too are unable to match micro-evidence on the frequency of price changes. These criticisms

are important because New Keynesian business cycle models are increasingly used to study

issues such as how monetary policy should be conducted to maximize welfare, and the nature

of these policies hinge critically on precisely how and why prices are rigid. More generally,

they challenge whether the leading New Keynesian models of price adjustment provide a use-

ful and economically sensible description of in�ation dynamics. Against this background, the

main contribution of this paper is to present a pricing model that can usefully speak to these

criticisms.

After outlining the generalized-Calvo pricing model, I derive its Phillips curve and re-

late it to other speci�cations in the literature. Speci�cally, I prove that it encompasses the

Calvo Phillips curve, the full-indexation Phillips curve, and the partial-indexation Phillips

curve. This encompassing result, together with the fact that the full- and the partial-

indexation models counterfactually force all �rms to change their prices every period, makes

the generalized-Calvo Phillips curve particularly attractive for empirical applications. Taking

this as motivation, I build a small-scale New Keynesian business cycle model and estimate

versions of it on U.S. macroeconomic data.

The main empirical results are as follows. First, the estimates of the generalized-Calvo

model place the quarterly frequency of price adjustment at about 0:6. In this respect, the

generalized-Calvo model, unlike many other time-contingent pricing models, reveals a rela-

tively high frequency of price adjustment. Second, with around 60 percent of �rms changing

their prices each quarter and with the majority of these price-changing �rms resorting to in-
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dexation, the model estimates are consistent with the view that menu costs are a much less

important factor for price setting than information gathering/processing costs.

A Appendix: Aggregate prices

From the Dixit-Stiglitz aggregator, the price level is de�ned according to

Pt �
�Z 1

0
Pt (i)

1�" di

� 1
1�"

: (A1)

Recognizing that at any point in time �rms either set their price optimally, use price indexation,
or keep their price unchanged, equation (A1) is equivalent to

P 1�"t = (1� !) (1� �)P �1�"t + (1 + �t�1)
1�"
Z �+!(1��)

�
Pt�1 (i)

1�" di+

Z �

0
Pt�1 (i)

1�" di:

(A2)
Because the �rms that do not change their prices and that use indexation are chosen randomly,
equation (A2) is equivalent to

P 1�"t = (1� !) (1� �)P �1�"t + (1 + �t�1)
1�" ! (1� �)

Z 1

0
Pt�1 (i)

1�" di

+�

Z 1

0
Pt�1 (i)

1�" di;

= (1� !) (1� �)P �1�"t + ! (1� �) (1 + �t�1)1�" P 1�"t�1 + �P
1�"
t�1 : (A3)

Finally, equation (A3) implies

Pt =
h
(1� !) (1� �)P �1�"t + ! (1� �) (1 + �t�1)1�" P 1�"t�1 + �P

1�"
t�1

i 1
1�"

; (A4)

which is equation (7) in the text. If I assume, say, that there exists an initial period in which
there is no relative price dispersion, then it is straightforward to see that equation (A4) holds
for all t � 1.

Alternatively, by accounting for how �rms that either did not change prices today or that
used price indexation today have set prices in the past, and exploiting, �rst, that a �rm�s
pricing strategy is determined randomly, and, second, that as the initial period tends to �1
the share of �rms setting prices today that have never set their prices optimally converges
to zero (or that there exists an initial period in which there is no relative price dispersion,
making the summation in equation (A5) �nite), equation (A2) can be written as

P 1�"t = (1� !) (1� �)
1X
k=0

�Yk

l=1
[� + ! (1� �) (1 + �t+l�1)]

�
P �1�"t ; (A5)

which, under these assumptions, is convergent for all ! 2 [0; 1) and � 2 [0; 1). From equation
(A5), it follows that P 1�"t�1 is given by

P 1�"t�1 = (1� !) (1� �)
1X
k=0

�Yk

l=1

h
� + ! (1� �) (1 + �t+l�1)1�"

i�
P �1�"t�1 ; (A6)
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and combining equations (A5) and (A6) yields

P 1�"t �
h
� + ! (1� �) (1 + �t+l�1)1�"

i
P 1�"t�1 = (1� !) (1� �)P

�1�"
t ;

which implies

P 1�"t = (1� !) (1� �)P �1�"t +
h
� + ! (1� �) (1 + �t+l�1)1�"

i
P 1�"t�1 ;

= (1� !) (1� �)P �1�"t + ! (1� �) (1 + �t+l�1)1�" P 1�"t�1 + �P
1�"
t�1 ;

leading to

Pt =
h
(1� !) (1� �)P �1�"t + ! (1� �) (1 + �t+l�1)1�" P 1�"t�1 + �P

1�"
t�1

i 1
1�"

;

which, again, is equation (7) in the text.

B Appendix: The non-zero-in�ation steady state case

Let � 2 (�1; e�] denote the in�ation rate in the nonstochastic steady state. With p�t =
P �t
Pt

representing the optimal relative price, it follows from equation (A4) (equation (7) in the text)
that in a non-zero-in�ation steady state, the steady state optimal relative price, p�, is given
by

p� =

"
1� ! (1� �)� � (1 + �)"�1

(1� !) (1� �)

# 1
1�"

:

In order for the steady state optimal relative price to be positive (p� > 0), it must be the case
that

1� ! (1� �)� � (1 + �)"�1 > 0; (B1)

which, for � 2 (0; 1), leads to

e�1 < "�1� ! (1� �)
�

�( 1
"�1)

� 1
#
: (B2)

Equation (B1) implies that p� is increasing in � for � 2 (�1; e�1], and greater than one for
� 2 (0; e�1], less than one for � 2 (�1; 0), and equal to one for � = 0. Notably, because prices
are not fully �exible, on occasions when they can change prices, �rms respond to a positive
steady state in�ation rate by raising prices by more than they otherwise would have, with
in�ation then eroding these high relative prices over time. Of course, the extent to which
a positive steady state in�ation rate lifts the steady state optimal relative price is mitigated
by greater substitutability between goods and by greater price �exibility. Now, looking at
equation (B2), it is straightforward to see that e�1 is decreasing in ", which is intuitive because
greater substitutability between goods is incompatible with sticky prices unless steady state
in�ation is low. Similarly, for a given elasticity of substitution between goods, greater price
rigidity requires a lower steady state in�ation rate if the optimal relative price is to remain
well-de�ned.

Log-linearizing equation (A4) around a non-zero-in�ation steady state, the quasi-di¤erence
in aggregate in�ation is related to the optimal relative price according to

�t � � =
! (1� �)

! (1� �) + � (1 + �)"�1
(�t�1 � �)

+ (1 + �)

 
1� ! (1� �)� � (1 + �)"�1

! (1� �) + � (1 + �)"�1

! bp�t ; (B3)
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where bp�t denotes the percent deviation in p�t from p�. Equation (B3) is the analogue of
equation (8) in the text.

From equation (11), the pricing decision for �rms that can set their price optimally leads
to the �rst-order condition

Et
1X
j=0

(��)j
�t+j
�t
yt+j (i)

24p�t (i)
�Qj

k=1 St+k

�
Qj
k=1 (1 + �t+k)

� �

(�� 1)mct+j

35 = 0; (B4)

which, provided �� (1 + �) < 1, implies that the steady state relationship between real mar-
ginal costs and the optimal relative price is

mc =
"� 1
"

�
! (1� �)

� + ! (1� �) +
�

� + ! (1� �)
1� �� (1 + �)

1� ��

�
p�: (B5)

Equation (B5) reveals the steady state markup over real marginal costs as a function of
the model�s parameters. In a zero-in�ation steady state, the markup depends only on the
elasticity of substitution between goods and is given by 1

"�1 . More generally, equation (B5)
shows that in a non-zero-in�ation steady state the markup depends on �, �, !, and �, in
addition to ". Although the steady state markup continues to be an increasing function of ",
it is also an increasing function of the steady state in�ation rate.

The restriction that the parameters satisfy �� (1 + �) < 1, which is needed to ensure that
the model has a well-de�ned steady state, gives rise to the condition

e�2 < � 1

��

�
� 1; (B6)

indicating that e�2 is declining in the discount factor, �, and in the share of non-optimizing
�rms, �. Combining equations (B2) and (B6), e� is given by

e� = minfe�1; e�2g:
Log-linearizing equation (B4) around a non-zero-in�ation steady state and assuming sym-

metry yields�
�

1� �� +
! (1� �)

1� �� (1 + �)

� bp�t =

�
�

1� �� +
! (1� �)

1� �� (1 + �)

�
�� (1 + �)Etbp�t+1

+

�
�

1� �� +
! (1� �)

1� �� (1 + �)

�
��Et (�t+1 � �)

+

�
� (1� �� (1 + �))

1� �� + ! (1� �)
� cmct

� ! (1� �)��
1� �� (1 + �) (�t � �) ; (B7)

which is the analogue of equation (13) in the text.
The Phillips curve associated with this pricing structure can be obtained by combining

equations (B3) and (B7) in the usual way. Although the coe¢ cients in the resulting expression
are complicated functions of the model parameters, in terms of its general structure, the
generalized-Calvo Phillips curve is given by

�t � � = f (�; !; "; �; �)Et (�t+1 � �) + b (�; !; "; �; �) (�t�1 � �) + s (�; !; "; �; �) cmct;
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containing both forward- and backward-looking in�ation dynamics and having real marginal
costs as the driving variable. The relationship between the Phillips curve coe¢ cients, f , b,
and s, and the model parameters is complicated but straightforward to analyze numerically.

To this end, with � �xed at 0:99, the four panels in Figure 2 illustrate how f , b, and s vary
in response to changes in �, !, ", and �. For this exercise, I set � = 0:50, ! = 0:50, " = 11,
and � = 0:005 and consider independent variations in each parameter holding the remaining
parameters unchanged.

Figure 2: Sensitivity analysis

Figure 2 reveals two important results. First, the model coe¢ cients are sensitive to
variation in � and !, which implies that the Phillips curve is informative for these two pricing
parameters. Second, the model coe¢ cients are not especially sensitive to variation in " and
�, which implies that estimates of � and ! are likely to be robust to di¤erent assumptions
regarding " and �.

C Appendix: The household problem

Households choose consumption, ct, investment, it, their supply of labor, lt, and their holdings
of nominal money balances, mt, and bonds, bt, to maximize

Et
1X
j=0

�j

264egt (ct+j � 
Ct+j�1)1��
1� � +

�
mt+j

Pt+j

�1��
1� � �

l1+�t+j

1 + �

375 ; (C1)
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where f�; �; �g 2 (0;1), where 
 2 [0; 1), and where gt, gt � i:i:d:
�
0; �2g

�
, is an aggregate

consumption-preference shock, subject to the budget constraint

ct +
mt

Pt
+
bt
Pt
+ it = wtlt + rtkt +

(1 +Rt�1)

Pt
bt�1 +

mt�1
Pt

+
�t
Pt

and the capital accumulation equation

kt+1 = (1� �) kt + it;

where Rt denotes the nominal interest rate, wt denotes the consumption real wage, rt denotes
the real rental payment on capital, �t denotes the lump-sum pro�ts households earn from
dividend payments from �rms and the seigniorage revenues households receive from the gov-
ernment, and kt denotes the capital stock owned by the household. Equation (C1) allows for
habit formation, positing that what matters for households is their consumption in relation to
lagged aggregate consumption, Ct�1.

Since household consumption must always remain above the habit stock (ct � 
Ct�1) > 0,
additive habits are closely related to the notion that there is a subsistence level below which
a household�s consumption cannot fall. The �rst-order conditions for the Lagrangian, �,
associated with the household�s problem, include

@�

@ct
: egt (ct � 
Ct�1)�� � �t = 0; (C2)

@�

@lt
: �twt � l�t = 0; (C3)

@�

@bt
: � (1 +Rt)Et

��
Pt
Pt+1

�
�t+1

�
� �t = 0; (C4)

@�

@kt+1
: �Et [(rt+1 + 1� �)�t+1]� �t = 0: (C5)

Equation (C2) simply de�nes �t, the shadow price of capital, to equal the marginal utility of
consumption. Equation (C3) implies that households supply labor up to the point where the
marginal rate of substitution between consumption and leisure equals the consumption real
wage, wt. Equation (C4) shows that the bond market clears at an aggregate stock of zero
when the expected change in the shadow price of capital equals the ex ante real interest rate.
Finally, equations (C5) and (C4) imply that in equilibrium households are indi¤erent between
owning bonds and capital.

Combining equations (C2) and (C4), the log-linear consumption Euler equation is

bct = 


1 + 

bct�1 + 1

1 + 

Etbct+1 � (1� 
)

�
(Rt � Et�t+1 � �� gt) ;

which is equivalent to equation (20) in the text.

D Appendix: Aggregate real marginal costs

Cost minimization implies that �rms rent capital and labor such that

Wt

Pt
= mct (i)

�yt (i)

lt (i)
;
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implying that a �rms�real marginal costs depend on the ratio of the consumption real wage
to its marginal productivity of labor, i.e.,

mct (i) =
1

�

wtlt (i)

yt (i)
:

Of course, since all �rms face the same rental prices for capital and labor and are subject to
the same aggregate technology shock, they employ capital and labor in the same ratio and
share the same real marginal costs. Therefore,

mct (i) =
1

�

wtlt
yt
: (D1)

Log-linearizing equation (D1) implies

cmct ' bwt + blt � byt: (D2)

Equation (D2) establishes that, to a �rst-order log-linear approximation, aggregate real mar-
ginal costs depend on the consumption real wage and the aggregate marginal productivity of
labor.

The �rm-level production function is given by,

yt �
�Z 1

0
yt (i)

��1
� di

� �
��1

=

�Z 1

0

�
[eut lt (i)]

� kt (i)
1��
� ��1

�
di

� �
��1
;

which, when log-linearized yields

byt ' ut + blt + (1� �)�bkt � but � blt� : (D3)

To proceed further, I consider the limiting case in which � " 1 and the role of capital
in production tends to zero. Under this assumption the log-linearized resource constraint
is bct = byt. Combining equations (D2) and (D3) with (a log-linearized) equation (C3), the
expression for real marginal costs becomes

cmct = �byt � (1 + �)ut � b�t:
Now log-linearizing equation (C2) yields

b�t = � �

(1� 
) (bct + 
bct�1) + gt;
implying that real marginal costs equal

cmct = ��+ �

(1� 
)

�bct � �


(1� 
)bct�1 � (1 + �)ut � gt;
which is equation (21) in the text.
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