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Abstract

This paper derives a general class of intrinsic rational bubble solutions in a Lucas-type
asset pricing model. I show that the rational bubble component of the price-dividend
ratio can evolve as a geometric random walk without drift, such that the mean of the
bubble growth rate is zero. Driftless bubbles are part of a continuum of equilibrium
solutions that satisfy a period-by-period no-arbitrage condition. I also derive a near-
rational solution in which the agent�s forecast rule is under-parameterized. The near-
rational solution generates intermittent bubbles and other behavior that is quantitatively
similar to that observed in long-run U.S. stock market data.
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Nowhere does history indulge in repetitions so often or so uniformly as in Wall
Street. When you read contemporary accounts of booms or panics the one thing that
strikes you most forcibly is how little either stock speculation or stock speculators
today di¤er from yesterday. The game does not change and neither does human
nature.
From the thinly-disguised biography of legendary speculator Jesse Livermore,

by E. Lefevére (1923, p. 180).

1 Introduction

Stories involving speculative bubbles can be found throughout history in various countries and
asset markets.1 The dramatic rise in U.S. stock prices during the late 1990s, followed similarly
by U.S. house prices during the mid 2000s, are episodes that have both been described as
bubbles. The term �bubble�was coined in England in 1720 following the famous price run-up
and crash of shares in the South Sea Company. The run-up led to widespread public enthusiasm
for the stock market and a proliferation of highly suspect companies attempting to sell shares
to investors. One such venture notoriously advertised itself as �a company for carrying out an
undertaking of great advantage, but nobody to know what it is.�The epidemic of fraudulent
stock-o¤ering schemes led the British government to pass the so-called �Bubble Act�in 1720,
which was o¢ cially named �An Act to Restrain the Extravagant and Unwarrantable Practice
of Raising Money by Voluntary Subscription for Carrying on Projects Dangerous to the Trade
and Subjects of the United Kingdom.�2

Numerous empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have
demonstrated that stock prices appear to exhibit �excess volatility�when compared to the
discounted stream of ex post realized dividends.3 Bubble models o¤er a potential explanation
for excess volatility because they allow stock prices to become detached from fundamentals.
So-called �rational bubble�models say that agents are fully cognizant of the fundamental asset
price, but nevertheless they may be willing to pay more than this amount. This can occur
if expectations of future price appreciation are large enough to satisfy the rational agents�s
required rate of return. In the typical rational bubble model, the stock price grows faster than
dividends (or cash �ows) in perpetuity, i.e., the price-dividend ratio exhibits positive drift. This
is clearly an unrealistic prediction for long-run stock market behavior. Indeed, Hall (2001, p.
3) dismisses the idea that �intelligent people [would] believe that the value of a stock will
become larger and larger in relation to all other quantities in the economy.�A more elaborate
model assumes that the bubble will periodically crash according to some universally known
probability function, but this is an ad hoc feature that is determined completely outside of
the model.4 Notwithstanding these criticisms, LeRoy (2004, p.784) maintains that �[rational]
bubbles are a viable candidate for an explanation for the volatility of asset prices, even if it is

1See, for example, the collection of papers in Hunter, Kaufman, and Pomerleano (2003).
2See Gerding (2006).
3Shiller (2003) provides an update on this literature.
4Rational bubble models with exogenous crash probablities include Blanchard (1979), Blanchard and Watson

(1982), Evans (1991), Fukata (1998), and Van Norden and Schaller (1999), among others.
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not entirely clear how bubbles should be modeled.�
This paper derives a rational bubble solution that is less susceptible to some of the above

criticisms. The framework for the analysis is a standard Lucas (1978) type asset pricing
model. For any given value of risk aversion, I show that there are two distinct rational bubble
solutions for which the bubble component of the price-dividend ratio evolves as a geometric
random walk without drift, such that the unconditional mean of the bubble growth rate is zero.
Under each solution, the volatility of bubble innovations depends exclusively on fundamentals,
i.e., the bubble is �intrinsic� in the terminology of Froot and Obstfeld (1991). Starting from
an arbitrarily small positive value, a driftless rational bubble expands and contracts over
time in a irregular, wholly endogenous fashion. Although the price-dividend ratio remains
non-stationary, the equilibrium trajectory is less explosive than a bubble with positive drift.
I show that driftless rational bubbles are part of a continuum of equilibrium solutions that
satisfy a period-by-period no-arbitrage condition. The positive-drift bubble solution derived
by Froot and Obstfeld (1991) can be recovered as a special case along this continuum.

Rational bubble models assume that agents always know the size of the bubble� to the
point of constructing separate forecasts for the fundamental and bubble components of the
asset price. An agent with limited computational resources may be inclined to construct only a
single forecast that predicts the movement of the total asset price (fundamental plus bubble).
As noted by Nerlove (1983, p. 1255): �Purposeful economic agents have incentives to eliminate
errors up to a point justi�ed by the costs of obtaining the information necessary to do so.�
Furthermore, rational bubble models are silent on how agents would coordinate on a particular
rational bubble solution among a continuum of available solutions. To address such concerns,
I solve for a near-rational equilibrium in which the agent�s forecast rule for the total asset
price is based on a geometric random walk without drift. The innovations to the random walk
are linked to observable fundamentals, namely, consumption/dividend growth. The agent�s
forecast rule is similar in form to the corresponding rational forecast, but it involves fewer
parameters. The parameters of the agent�s forecast rule are chosen to match the moments of
observable data. Using a real-time learning algorithm, I demonstrate that the near-rational
solution is learnable.

The actual law of motion for the near-rational price-dividend ratio turns out to be station-
ary, highly persistent, and nonlinear. The agent�s forecast errors exhibit near-zero autocorre-
lation at all lags, making it di¢ cult for the agent to detect a misspeci�cation of the subjective
forecast rule. Unlike a rational bubble, the near-rational solution allows the asset price to
occasionally dip below its fundamental value. Under mild risk aversion, the near-rational
solution generates pronounced low-frequency swings in the price-dividend ratio, positive skew-
ness, excess kurtosis, and time-varying volatility� all of which are present in long-run U.S.
stock market data.

An additional contribution of the paper is to demonstrate an approximate analytical solu-
tion for the fundamental asset price that employs a nonlinear change of variables. The behavior
of the changed variable is well-captured by a simple exponential function, as opposed to the
high-order polynomial function employed in the approximate solution derived by Calin, et. al
(2005). I show that the exponential approximation yields results that are very close to the
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exact theoretical solution derived by Burnside (1998) for the case of autocorrelated dividend
growth.

The near-rational asset pricing solution developed here is related to a large body of research
that seeks to explain stock market behavior using some type of distorted belief mechanism
or misspeci�ed forecast rule in a representative agent framework. Examples along these lines
include Barsky and Delong (1993), Timmerman (1996), Barberis, Shleifer, and Vishney (1998),
Cecchetti, Lam, and Mark (2000), Abel (2002), Lansing (2006, 2009), Branch and Evans
(forthcoming), and Bullard, Evans, and Honkapohja (forthcoming), among others. Bubble
models that involve the interaction of rational and non-rational agents in the same economy
include Delong et al. (1990), Brock and Hommes (1998), Abreu and Brunnermeier (2003),
and Scheinkman and Xiong (2003).

Another related paper in one by Adam, Marcet, and Nicolini (2008), who also develop a
near-rational asset pricing solution. The authors introduce bounded-rationality in the form of
learning to account for several quantitative features of U.S. stock market data, including the
high volatility and persistence of the price-dividend ratio. In their model, the representative
agent constructs separate forecasts for dividend growth and for price growth. The agent has
rational expectations regarding dividend growth, but the agent employs a momentum-based
forecast rule for price growth. Given su¢ cient data, the learning algorithm for price growth
eventually converges to the fundamental solution. In contrast, I consider a solution where the
agent constructs a forecast for a composite variable that depends on both prices and dividends.
The functional form of the agent�s forecast rule is motivated by the form of the driftless rational
bubble solution. Since the agent�s forecast rule does not nest the fundamental solution as a
special case, the long-run equilibrium continues to exhibit excess volatility.

The paper is organized as follows. First, I describe the model and the approximate funda-
mental solution. I then demonstrate the existence of a continuum of nonstationary, intrinsic
rational bubble solutions and highlight some special cases along the continuum. Next, I de-
velop a stationary, near-rational asset pricing solution that involves a parsimonious forecast
rule which is parameterized by matching the moments of observable data. Finally, using nu-
merical simulations, I show that the near-rational solution performs well in matching features
of long-run U.S. stock market data.

2 The Model

Equity shares are priced using the frictionless pure exchange model of Lucas (1978). There is
a representative agent who can purchase shares to transfer wealth from one period to another.
Each share pays an exogenous stream of stochastic dividends in perpetuity.

The agent�s problem is to maximize

E0

1X
t=0

�t
�
c1��t � 1
1� �

�
; (1)

subject to the budget constraint

ct + ptst = (pt + dt) st�1; ct; st � 0 (2)
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where ct is the agent�s consumption in period t; � is the subjective time discount factor,
and � is the coe¢ cient of relative risk aversion (the inverse of the intertemporal elasticity of
substitution). When � = 1; the within-period utility function can be written as log (ct) : The
symbol Et represents the mathematical expectation operator evaluated using the objective
distribution of dividend growth. The symbol pt denotes the ex-dividend price of the equity
share, dt is the dividend, and st is the number of shares held in period t:

The growth rate of dividends xt � log (dt=dt�1) is governed by the following stochastic
process

xt = x+ � (xt�1 � x) + "t; "t � N
�
0; �2"

�
; (3)

where j�j < 1: The mean growth rate is x and the variance is �2"=(1� �2).
The �rst-order condition that governs the agent�s share holdings is given by

pt = Et

"
�

�
ct+1
ct

���
(pt+1 + dt+1)

#
: (4)

Equation (4) can be rearranged to obtain

1 = Et [Mt+1Rt+1] ; (5)

where Mt+1 � � (ct+1=ct)�� is the stochastic discount factor and Rt+1 = (pt+1 + dt+1) =pt is
the gross return from holding the equity share from period t to t+1: De�ning the price-dividend
ratio as yt � pt=dt; the gross equity return can be written as

Rt+1 =

�
yt+1 + 1

yt

�
exp (xt+1) : (6)

Following Lucas (1978), equity shares are assumed to exist in unit net supply. Market
clearing therefore implies st = 1 for all t: Substituting this equilibrium condition into the
budget constraint (2) yields, ct = dt for all t: In equilibrium, equation (4) can now be written
as

yt = Et [� exp (�xt+1) (yt+1 + 1)] ; (7)

where � � 1 � �: Equation (7) shows that the price-dividend ratio in period t depends on
the agent�s joint forecast of next period�s dividend growth rate xt+1 and next period�s price-
dividend ratio yt+1: It is convenient to transform equation (7) using a nonlinear change of
variables to obtain

zt = � exp (�xt) [Etzt+1 + 1] ; (8)

where zt � � exp (�xt) (yt + 1) : Under this formulation, zt represents a composite variable
that depends on both the growth rate of dividends and the price-dividend ratio. Equation (8)
shows that the value of zt in period t depends on the agent�s conditional forecast of that same
variable. By making use of the de�nition of zt; equation (7) can be written as yt = Etzt+1:

Hence, the equilibrium price-dividend ratio is simply the conditional forecast of the composite
variable zt+1:5

5The appendix outlines a version of the model that allows ct 6= dt:
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3 Fundamental Solution

The fundamental value of the share price is uniquely pinned down by the agent�s rational
forecast of the discounted stream of future dividends. Equation (8) can be iterated forward to
substitute out zt+1+k for k = 0; 1; 2; ::: Applying the law of iterated expectations and imposing
a transversality condition yields the following present-value pricing equation

zft = � exp (�xt)Et
�
1 + � exp (�xt+1) + �2 exp (�xt+1 + �xt+2) +

�3 exp (�xt+1 + �xt+2 + �xt+3) :::
	
; (9)

where zft is the fundamental value of the composite forecast variable. Following Burnside
(1998), the expectation of the in�nite sum in (9) can be explicitly evaluated to yield the
following exact analytical solution

zft = � exp (�xt)

(
1 +

1X
i=1

�i exp [�i + i (xt � x)]
)
; (10)

�i = �xi+
�2�2"

2 (1� �2)

"
i�

2�
�
1� �i

�
1� � +

�2
�
1� �2i

�
1� �2

#
; (11)

i =
��
�
1� �i

�
1� � : (12)

Given zft ; we can recover the fundamental price-dividend ratio by applying the de�nitional
relationship yft = ��1 exp (��xt) zft � 1: This procedure yields the result that yft is equal to
the in�nite sum inside the curly brackets in equation (10). In the special case when � = 0; we
have i = 0 such that y

f
t is constant.

6

In model simulations, computation of the (truncated) in�nite sum in equation (10) for
each realization of xt is quite time consuming. Moreover, equation (10) does not lend itself
to analytical moment calculations for the asset pricing variables of interest. To avoid these
drawbacks, the following proposition presents an approximate analytical solution for zft :

Proposition 1. An approximate analytical solution for the fundamental value of the composite
forecast variable is given by

zft = exp [a0 + a1 (xt � x)] ;

where a1 solves the following nonlinear equation

a1 =
�

1� �� exp
h
�x+ 1

2 (a1)
2 �2"

i ;
6Throughout the paper, I use Greek letters such as �; ; and �; to represent constants implied by exact

analytical solutions and English letters such as a; b; k; and m to represent constants implied by approximate
analytical solutions.
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and a0 � E
�
log
�
zft
��
is given by

a0 = log

8<: � exp (�x)

1� � exp
h
�x+ 1

2 (a1)
2 �2"

i
9=; ;

provided that 1 > � exp
h
�x+ 1

2 (a1)
2 �2"

i
:

Proof : See appendix.

Two values of a1 satisfy the nonlinear equation. The inequality restriction selects the value
of a1 with lower magnitude to ensure that the point of approximation exp (a0) is positive: The
approximate solution in Proposition 1 is much simpler in structure than the one derived by
Calin, et. al (2005) for their corresponding model with no habit formation. These authors
numerically approximate the law of motion of the changed variable qft � exp (���xt) yft using
a polynomial of the form�

dt
dt�1

���(1��)�pft
dt

�
| {z }

qft

= ba0 + 8X
i=1

bai (xt � x)i ; (13)

which involves a total of nine Taylor-series coe¢ cients.7 In contrast, Proposition 1, analytically
approximates the law of motion of the changed variable zft � � exp (�xt)

�
yft + 1

�
using the

exponential form

�

�
dt
dt�1

�1���pft
dt
+ 1

�
| {z }

zft

= exp [a0 + a1 (xt � x)] ; (14)

which involves only two Taylor-series coe¢ cients, a0 and a1: The approximation in Proposi-
tion 1 exploits the curvature of the exponential function rather than relying on a high-order
polynomial in (xt � x) to capture curvature.

We can recover an approximate solution for the fundamental price-dividend ratio by ap-
plying the equilibrium relationship yft = Etz

f
t+1; yielding

yft = Etz
f
t+1 = exp

�
a0 + a1� (xt � x) +

1

2
(a1)

2 �2"

�
: (15)

The above equation illustrates why it is di¢ cult for the fundamental solution to capture the
high volatility and persistence of the price-dividend ratio observed in the data. The equation
shows that yft will be constant if either a1 or � is equal to zero. Proposition 1 shows that a1
will be close to zero for risk coe¢ cients near unity, representing logarithmic utility. The value
of � is pinned down by the autocorrelation of consumption growth, which is also close to zero
in long-run U.S. data. To generate high volatility and persistence in yft ; the model requires
a large risk coe¢ cient combined with a persistent process for consumption/dividend growth.

7See Calin, et. al (2005), Table 1, p. 977.
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Alternatively, volatility and persistence in the model can be magni�ed by allowing deviations
from full-rationality. For example, Barsky and Delong (1993) assume that agents construct a
time-varying estimate of the parameter x using an exponentially-weighted moving average of
past observed growth rates. They show that the perception of shifting mean growth rates can
generate long swings in the model price-dividend ratio.

Figure 1 compares the approximate and exact analytical solutions for two di¤erent cal-
ibrations of the model. Throughout the paper, the agent�s discount factor is set equal to
� = 0:958; a reasonable value for annual time periods. In panel (a), the risk coe¢ cient is
set equal to � = 1:5 and the consumption growth process is calibrated to match the mean,
standard deviation, and �rst-order autocorrelation of U.S. annual data for the growth of real
per capita consumption of nondurables and services from 1890 to 2004.8 This procedure yields
x = 0:0206; �" = 0:0354; and � = �0:1: In panel (b), the risk coe¢ cient is increased to � = 10
while the persistence parameter for consumption growth is increased to � = 0:5; with the value
of �" adjusted downward to maintain the same volatility of consumption growth as in panel
(a).

In panel (a) of Figure 1, the approximate solution is virtually indistinguishable from the
exact fundamental solution. For this calibration, the standard deviation of the fundamental
price dividend ratio is tiny� only 0.03 versus a whopping 13.8 in long-run U.S. data. In panel
(b), where the model calibration is less plausible, the price dividend ratio is more volatile, but
still well below the U.S. value. In this case, the approximate solution is somewhat less accurate,
exhibiting a root mean squared percentage error of 7.8 %. Collard and Juillard (2001) also �nd
that approximation errors increase with risk aversion and the persistence of the consumption
growth process. A more accurate approximation could be obtained by increasing the order
of the polynomial that appears inside the exponential function on the right-side of equation
(14). Experiments with the model show that a quadratic polynomial inside the exponential is
successful in reducing the approximation error to nearly zero for the calibration of panel (b).

As shown in the appendix, the approximate fundamental solution can be used to derive
the following expressions for the unconditional moments of the asset pricing variables

E
h
log
�
yft

�i
= a0 +

1
2 (a1)

2 �2"; (16)

V ar
h
log
�
yft

�i
=
(a1�)

2 �2"
1� �2 ; (17)

E
h
log
�
Rft+1

�i
= � log (�) + �x � 1

2 (a1)
2 �2", (18)

V ar
h
log
�
Rft+1

�i
=

�
�2

1� �2 + (a1)
2 + 2�a1

�
�2": (19)

Given equations (16) through (19), the unconditional moments of yft and R
f
t+1 can be computed

8Long-run annual data for U.S. consumption and U.S. stock market variables are from Robert Shiller�s
website: http://www.econ.yale.edu/~shiller/.
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by making use of the properties of the log-normal distribution.9

4 Rational Bubble Solutions

The present-value pricing equation (9) imposes a no-arbitrage condition across all future time
periods whereas equation (8) imposes a no-arbitrage condition only from period t to t + 1:
Since equation (8) does not enforce a transversality condition, it admits solutions where zt can
deviate from the fundamentals-based value. These so-called �rational bubble�solutions have
been proposed as a way to account for the empirical observation that stock prices appear to be
excessively volatile relative to a discounted stream of dividends or cash �ows. The underlying
assumption is that agents are forward-looking, but not to the extreme degree implied by the
transversality condition.

Tirole (1982, 1985), Santos and Woodford (1997), Kamigashi (1998), and Montrucchio
and Pivileggi (2001) all discuss the many theoretical caveats that govern the existence of
rational bubbles in an intertemporal competitive equilibrium. A basic intuition is that rational
bubbles can usually be ruled out for the simple reason that, if a bubble existed, then an
in�nitely-lived agent could achieve a gain by permanently selling shares at the bubble price
and then foregoing dividends on those shares. Since the rational bubble solution assumes
st = 1 for all t; the solution fails to maximize in�nite-horizon utility as implicitly required
by the rational equilibrium concept. In light of such arguments, the term �rational bubble�
should perhaps be considered a misnomer. Nevertheless, so-called rational bubbles can still be
viewed as a possible descriptive model of asset pricing, even if these solutions do not maximize
in�nite-horizon utility. Along these lines, LeRoy (2004, p. 801), remarks �It is a testament to
economists�capacity for abstraction that they have accepted without question that an intricate
theoretical argument against bubbles has somehow migrated from the pages of Econometrica
to the �oor of the New York Stock Exchange.�

The forecast variable zt that appears in equation (8) can be disaggregated as follows

zt = zft + zbt ; (20)

where zft satis�es the present-value pricing equation (9) and hence also satis�es (8). The bubble
component of the forecast variable is de�ned as zbt � � exp (�xt) y

b
t ; where y

b
t is the bubble

component of the price-dividend ratio. Substituting equation (20) into (8) yields the following
expectational di¤erence equation that governs the evolution of the bubble component

zbt = � exp (�xt)Etz
b
t+1: (21)

Together, equations (8) and (21) imply

Etzt+1| {z }
yt

= Etz
f
t+1| {z }
yft

+ Etz
b
t+1| {z }
ybt

; (22)

which shows that Etzt+1 is the sum of two separate forecasts that pertain to the fundamental
and bubble components, respectively.

9 If a random variable wt is log-normally distributed, then E (wt) = exp
�
E [log (wt)] +

1
2
V ar [log (wt)]

	
and

V ar (wt) = E (wt)
2 fexp (V ar [log (wt)])� 1g :
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4.1 Continuum of Intrinsic Rational Bubbles

The typical rational bubble solution requires the equity price to grow faster than dividends
in perpetuity, i.e., the bubble component of the price-dividend ratio exhibits positive drift.
The following proposition shows that positive-drift bubbles are actually a special case along a
continuum of rational bubble equilibria.

Proposition 2. There exists a continuum of intrinsic rational bubbles of the form

zbt = zbt�1 exp [�0 + �1 (xt � x) + �2 (xt�1 � x)] ; zb0 > 0;

where �0; �1; and �2 are any three constants that satisfy the following two equilibrium condi-
tions

1
2 (�1)

2 �2" + � x + log (�) + �0 = 0;

�2 = � (��1 + �) :

Proof : See appendix.

The proof of Proposition 2 shows that the results are the same, regardless of whether the
agent is assumed to make use of the contemporaneous or lagged realization of zbt when forming
the rational expectation Etzbt+1: A continuum of solutions exists because the agent�s forecast
rule for Etzbt+1 is overparameterized, relative to what is needed to satisfy the intertemporal
no-arbitrage condition (21).10

Given zbt ; we can recover the bubble component of the price-dividend ratio by applying
the de�nitional relationship ybt = �

�1 exp (��xt) zbt ; yielding

ybt = ybt�1 exp [�0 + (�1 � �) (xt � x)� ��1 (xt�1 � x)] ; yb0 > 0; (23)

where I have made the substitution �2 = � (��1 + �). From equation (23), we see that the
rational bubble must always be positive and must exist from the �rst day of trading onwards,
as noted originally by Diba and Grossman (1988). De�ning the stochastic bubble drift rate as
�bt � log

�
ybt =y

b
t�1
�
; we have

E
�
�bt

�
= �0 = � log (�) � � x � (�1)

2 �2"
2

; (24)

V ar
�
�bt

�
=
h
(�1 � �)2 + (��1)2 � 2�2�1 (�1 � �)

i �2"
1� �2 : (25)

The bubble is �intrinsic�because solution is driven solely by fundamentals; there are no
extraneous sunspot variables. The �rst equilibrium condition relates the drift rate �0 to the
fundamental response parameter �1: The second equilibrium condition relates �1 to the other

10Even higher degrees of overparameterization could of course be considered by introducing additional terms
such as �3 (xt�2 � x) inside the exponential function in the law of motion for zbt :
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fundamental response parameter �2: If �0 � 0, the magnitude of �1 must be larger to satisfy
the �rst equilibrium condition. Intuitively, an increase in the magnitude of �1 raises the value
of Etzbt+1 via Jensen�s inequality, thereby allowing equation (21) to be satis�ed with a zero or
negative drift rate.

4.2 Special Cases

If we impose an arbitrary restriction on either �0; �1; or �2; then the values of the remaining two
constants are pinned down by the two equilibrium conditions in Proposition 2. For example,
by imposing �0 = (�1 + �2) x; we can recover a generalized version of the intrinsic rational
bubble solution derived by Froot and Obstfeld (1991). These authors considered the special
case of � = 0 and � = 0 (such that � = 1).11 The Froot-Obstfeld intrinsic rational bubble
takes the form

ybt = ybt�1 exp [(�1 � �) xt � ��1 xt�1] ; yb0 > 0;

=
�

�

"
d�1��t

d ��1t�1

#
; (26)

where dt is the level of real dividends, � is an arbitrary positive constant that determines yb0 ;
and �1 is a root of the quadratic equation

1
2 (�1)

2 �2" + �1x (1� �) + log (�) = 0: (27)

The quadratic equation (27) that determines the value of �1 has two roots� one positive
and one negative. The positive root is associated with an expanding bubble �0 > 0 while the
negative root is associated with a collapsing bubble �0 < 0: A collapsing bubble will become
vanishingly small as t!1; so attention is typically restricted to the positive root.12 Starting
from an arbitrarily small positive value yb0 > 0, the positive root solution predicts that price-
dividend ratio yt = yft + y

b
t will increase without bound, never returning to the vicinity of the

fundamental value yft :
Figure 2 plots the U.S. price-dividend ratio from 1871 to 2008 together with an estimated

exponential time trend. The estimated annual drift rate is 0.010 (s.e. = 0.0009). If this trend
were to continue inde�nitely, as implied by a rational bubble with drift, then the U.S. ratio
would double every 72 years.

For the baseline calibration used in panel (a) of Figure 1, the positive root solution of
equation (27) is �1 = 1:806: The solution yields a mean drift rate rate of 0.051 from equation
(24), which implies a doubling time of only 14 years. A smaller predicted drift rate and a
longer predicted doubling time could be obtained by increasing the calibrated value of �:

Froot and Obstfeld (1991, p. 1190) acknowledge that �It is di¢ cult to believe that the
market is literally stuck for all time on a path along which price-dividend ratios eventually

11Bidarkota and Dupoyet (2007) generalize the Froot-Obstfeld solution to allow for non-Gaussian shocks.
12The sum and product of expanding and collapsing bubble components can also be valid solutions to equation

(21). Ikeda and Shibata (1992) examine bubble solutions of this type.
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explode.�They argue, however, that explosive price-dividend ratios would not necessarily be
observed over a �nite sample period. Wu (1997) �nds empirical support for the Froot-Obstfeld
model in accounting for the volatility of the real S&P 500 index over the period 1871 to
1992. Dri¢ ll and Sola (1998) augment the Froot-Obstfeld model to allow for regime-switching
dividends. They argue that the incremental explanatory contribution of the expanding bubble
component is low, relative to the regime-switching fundamentals. Their data set only extends
through 1988, however, and thus does not include the dramatic, bubble-like rise in the U.S.
price-dividend ratio that appears towards the end of the sample in Figure 2.

Once again starting from Proposition 2 but now imposing the restriction �0 = 0; we
obtain the following intrinsic rational bubble solution where the mean drift rate is zero by
construction.

ybt = ybt�1 exp [(�1 � �) (xt � x) � ��1 (xt�1 � x)] ; yb0 > 0;

where �1 = �

s
2 log (1=�)� 2� x

�2"
: (28)

For the baseline calibration, the roots are �1 = � 9:214: From equation (25), the volatility
of the stochastic drift rate depends not only on �1; but also on the risk coe¢ cient �. The
positive root solution has higher volatility than the negative root solution for � > 1; but the
reverse is true for � < 1: Both solutions exhibit more volatility as risk aversion increases.

Other rational bubble solutions can be constructed by imposing the restriction that either
�1 or �2 is zero, or say, by imposing �1 = �2: The volatility of the bubble drift rate V ar

�
�bt
�

can be minimized by imposing �1 = �: A so-called �time bubble�occurs when V ar
�
�bt
�
= 0:

If � = 0; a time bubble can be constructed by setting �1 = �: If � 6= 0 and � = 1 (such that
� = 0), a time bubble can be constructed by setting �2 = 0:

5 A Near-Rational Asset Pricing Solution

All of the rational bubble solutions derived in the previous section imply non-stationary be-
havior of the price-dividend ratio. The solutions require the representative agent to construct
both a fundamental forecast Etzft+1 and bubble forecast Etz

b
t+1 each period. Furthermore, the

model is silent on how agents would coordinate on a particular rational bubble solution among
a continuum of available solutions.

As an alternative to a rational bubble, this section presents a near-rational asset pricing
solution that: (1) requires the agent to construct only a single forecast each period, (2) involves
a parsimonious forecast rule that is parameterized by matching the moments of the observable
data, and (3) yields a stationary, but highly persistent nonlinear law of motion for the price-
dividend ratio.

I assume that the agent�s perceived law of motion (PLM) for the total composite variable
zt = z

f
t + z

b
t is given by

zt = zt�1 exp [b (xt � x)] ; z0 > 0; (29)
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which is a geometric random walk without drift. The functional form of the PLM bears
similarity to the approximate fundamental solution from Proposition 1 and a driftless rational
bubble solution with �0 = 0 from Proposition 2. For an agent with limited computational
resources, equation (29) is and attractive candidate PLM because it allows for nonstationary
bubble behavior and involves only a single parameter b that can be readily estimated from
observable data. The estimated version of the PLM can be used to construct a single forecast
that predicts the movement of the total asset price (fundamental plus bubble).

In constructing the subjective forecast bEtzt+1; I assume that the agent cannot make use
of the contemporaneous realization zt; but rather uses the lagged realization zt�1: Use of the
lagged realization ensures that the forecast is �operational.�Since equation (8) implies that zt
depends on the agent�s own forecast, it is not clear how the agent could make use of zt when
constructing the forecast in real-time. A lagged information assumption is commonly used in
adaptive learning models because it avoids simultaneity in the determination of the actual and
expected values of the forecast variable.

As in a rational solution, I assume that the representative agent is endowed with the
knowledge of the stochastic process for dividends. The underlying assumption is that enough
time has elapsed for the agent to correctly identify the stochastic process from observable
data. With the above assumptions, the PLM can be iterated ahead two periods to compute
the following subjective forecast:

bEtzt+1 = zt�1 exp
�
b (1 + �) (xt � x) + 1

2b
2�2"
�
; (30)

where the exponential term can be interpreted as a time-varying extrapolation factor applied
to the most recent observation.13 For comparison, a rational forecast in the presence of a
driftless bubble (�0 = 0) would take the form

Etzt+1 = exp
h
a0 + a1� (xt � x) + 1

2 (a1)
2 �2"

i
| {z }

Etzft+1

+ zbt�1 exp
n
[�1 (1 + �) + �2] (xt � x) + �2 (xt�1 � x) + 1

2 (�1)
2 �2"

o
| {z }

Etzbt+1

: (31)

where, for symmetry, I have assumed that the rational bubble forecast Etzbt+1 makes use of the
lagged realization zbt�1: Notice that the rational bubble forecast also involves the application of
a time-varying extrapolation factor to the recent observation zbt�1: Not counting x; �; and �"
which are presumed known, the rational forecast rule (31) involves four separate parameters
(a0; a1; �1; and �2) ; as opposed to the subjective forecast rule (30) which involves only a
single parameter b: An agent with limited computational resources might be inclined to adopt
the more parsimonious forecast rule (30).

13Lansing (2006) considers a model in which the agent�s PLM is given by zt = zt�1 exp (vt) ; where vt �
N
�
0; �2

v

�
is a perceived exogenous shock that is unrelated to consumption/dividend growth. In this case, the

extrapolation factor is constant rather than time-varying.
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Substituting the subjective forecast rule (30) into equation (8) in place of a rational forecast
yields the following actual law of motion (ALM):

zt = � exp (�xt)
�
zt�1 exp

�
b (1 + �) (xt � x) + 1

2b
2�2"
�
+ 1
	
; (32)

which is nonlinear and autoregressive. The corresponding ALM for the price-dividend ratio yt
can be recovered from the above expression by making use of the near-rational equilibrium rela-
tionship yt = bEtzt+1; where bEtzt+1 is given by equation (30) with zt�1 = � exp (�xt�1) (yt�1 + 1) :
This procedure yields

yt = (yt�1 + 1)� exp
�
b (1 + �) (xt � x) + �xt�1 + 1

2b
2�2"
�
; (33)

which is also nonlinear and autoregressive. The stationarity properties of the price-dividend
ratio depend on the value of the forecast parameter b: For comparison, equation (29) can be
converted into the following PLM for the price-dividend ratio

yt = (yt�1 + 1) exp [(b� �) (xt � x) + � (xt�1 � x)] � 1; (34)

which is similar, but not identical, to the form of the ALM (33).

5.1 Near-Rational Equilibrium

This section derives a near-rational, �restricted perceptions equilibrium�in which the forecast
parameter b is pinned down using the moments of observable data.14 Since the agent�s PLM
(29) implies that zt is nonstationary, it is natural to assume that the agent�s forecast rule is
parameterized to match the covariance of � log (zt) and xt, where � log (zt) � log (zt=zt�1) :

The PLM implies that b is given by

b =
Cov [� log (zt) ; xt]

V ar (xt)
; (35)

where both Cov [� log (zt) ; xt] and V ar (xt) can be computed from observable data. An
analytical expression for the observable covariance can be derived using the following log-
linear approximation to the nonlinear ALM (32):

zt ' z kt�1 z
1�k exp [m (xt � x)] ; (36)

where k; m; and z � exp (E [log (zt)]) are Taylor-series coe¢ cients. If k = 1 and m = b;

then the approximate ALM (36) will coincide exactly with the PLM (29). Straightforward
computations yield the following expressions for the Taylor-series coe¢ cients

k = � exp
�
�x+ 1

2b
2�2"
�
; (37)

m = � + b (1 + �)� exp
�
�x+ 1

2b
2�2"
�
; (38)

z =
� exp (�x)

1� � exp
�
�x+ 1

2b
2�2"
� ; (39)

14The restricted perceptions equilibrium concept is described in Evans and Honkapohja (2001, Chapter 13).
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which all depend in a nonlinear way on the subjective forecast parameter b: The approximate
law of motion of � log (zt) can be computed directly from equation (36), which in turn yields
the following expression for the relevant covariance

Cov [� log (zt) ; xt] =

�
(1� �)m
1� �k

�
V ar (xt) ; (40)

which is nonlinear in b via the expressions for k and m: Details are contained in the appendix.
Equations (35) and (40) can be combined to form the following de�nition of equilibrium.

De�nition 1. A near-rational �restricted perceptions equilibrium� is de�ned as a perceived
law of motion (29), an approximate actual law of motion (36), and a subjective forecast rule
parameter b; such that the equilibrium value b is given by the �xed point of the nonlinear map

b = T (b) � (1� �) m (b)
1� � k (b) ;

where k (b) and m (b) are parameters of the approximate actual law of motion that depend on
b, as given by equations (37) and (38), provided that 0 � k (b) � 1:

In equilibrium, we require 0 � k (b) � 1 so that � log (zt) remains stationary, thereby
allowing Cov [� log (zt) ; xt] to be computed from observable data. If 0 � k (b) < 1; then
log (zt) and log (yt) are stationary.

The approximate ALM (36) can be used to derive the following analytical expressions for
the unconditional moments of the asset pricing variables

E [log (yt)] = log

�
k (b)

1� k (b)

�
; 0 � k (b) < 1; (41)

E [log (Rt+1)] = � log (�) + �x � 1
2b
2�2", (42)

where k (b) is given by equation (37). Notice that the expression for E [log (Rt+1)] has the
same form as the fundamental mean return E

�
log
�
Rft+1

��
given by equation (18), except that

(a1)
2 is replaced here by b2: At the baseline calibration, we have a1 = �0:457: As shown in the

next section, the near-rational equilibrium yields b = �3:695; which causes the near-rational
mean return to be below that of the fundamental mean return. This result can be traced
to a small degree of excess optimism in the near-rational forecast rule. Excess optimism has
an e¤ect on the mean return that is similar to increasing patience about future payo¤s via
a higher value for the discount factor �: The appendix outlines the derivation of analytical
expressions for the unconditional variances V ar [log (yt)] and V ar [log (Rt+1)] :

5.2 Numerical Solution for the Equilibrium

The complexity of the nonlinear map b = T (b) necessitates a numerical solution for the
equilibrium. Using the baseline calibration, panel (a) of Figure 3 plots plots T (b) over the range
�25 � b � 20: There are three �xed points. At the middle �xed point, we have b = �3:695:
From panel (b), we see that only the middle �xed point yields a stationary equilibrium such
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that 0 � k (b) < 1. When b = �3:695; the autoregressive root in the approximate ALM (36)
is k = 0:956: The corresponding response coe¢ cient on (xt � x) in the ALM is m = �3:680:
Recall that when k = 1 and m = b; the approximate ALM (36) coincides exactly with the
PLM (29). At the middle �xed point, we have k ' 1 and m ' b; such that the equilibrium
can be described as �near-rational.�

Making use of the approximate ALM (36) and the subjective forecast rule (30), the per-
centage forecast error observed by the agent is given by

errt+1 = log

 
zt+1bEtzt+1

!
;

= log

(
z kt z

1�k exp [m (xt+1 � x)]
zt�1 exp

�
b (1 + �) (xt � x) + 1

2b
2�2"
�) ; (43)

where k and m are given by equations (37) and (38). Recalling that z = exp (E [log (zt)]) ;

the above equation implies E (errt+1) = �b2�2"=2: At the equilibrium value b = �3:695; with
�" = 0:0354, we have E (errt+1) = �0:009: In contrast, the approximate fundamental solution
implies E

�
errft+1

�
= �0:0001 for the same calibration.

Equation (43) can be used to derive an analytical expression for the autocorrelation of
percentage forecast errors Corr (errt+1; errt) ; as outlined in the appendix. The value of
Corr (errt+1; errt) is plotted in panel (c) of Figure 3. At the equilibrium value b = �3:695;
the correlation coe¢ cient is 0:02: The near-zero autocorrelation of the forecast errors makes
it di¢ cult for the agent to detect a misspeci�cation of the subjective forecast rule (30). Panel
(d) of Figure 3 plots the root mean squared percentage forecast error (RMSPE), de�ned as�
E
�
err2t+1

��0:5 At the equilibrium value, we have RMSPE = 13:5 %: Since RMSPE could
be reduced by shrinking the magnitude of the subjective forecast parameter b; the agent can
be viewed as exhibiting overreaction to the fundamental term (xt � x) :15 The fundamental
solution implies RMSPE f = 1:62 % for the same calibration.

5.3 Real-Time Learning

Figure 4 illustrates the convergence properties of the near-rational equilibrium under real-time
learning. Recall that the �xed point of the nonlinear map b = T (b) is computed using the
approximate population covariance statistic Cov [� log (zt) ; xt] ; as given by equation (40).
This statistic presumes a �xed forecast parameter b: However, in a real-time learning environ-
ment where the forecast parameter evolves over time, the agent will only have knowledge of a
sample covariance which, in turn, is in�uenced by the trajectory of the forecast parameter.

The real-time learning algorithm makes use of the nonlinear ALM for zt; equation (32).
The forecast parameter bt�1 that is used in computing zt is estimated each period (starting
at t = 5) using equation (35) with an expanding window of data that runs through time
t � 1: The stochastic process for dividends (3) is presumed known by the agent. Figure 4
15Lansing (2009) considers the welfare cost of speculative overreaction in a production economy with endoge-

nous long-run consumption growth.
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plots twelve learning simulations of length 5000 periods using a starting value for the forecast
parameter that is set �5 above or below the theoretical equilibrium value for the �rst �ve
periods. The starting value z0 is computed from equation (39) with b = b0: The end-of-
simulation values are clustered in the range where the (approximate) theoretical map T (b)
lies very close to the 45-degree line. Given the shape of the map and the nonlinear form of the
ALM (32), a small amount of sampling variation in the covariance statistic can a¤ect the speed
of convergence and the end-of-simulation value. For the twelve learning simulations shown, the
average end-of-simulation value is �3:752; which is close to the theoretical equilibrium value
of b = �3:695 computed using the approximate ALM (36). The simulations demonstrate that
the near-rational equilibrium is learnable.

The technical condition that must be satis�ed for learnability (or �E-stability�) is T 0 (b) <
1:16 In the special case of iid consumption growth (� = 0) and logarithmic utility (� = 0) ; the
expression for T (b) reduces to

T (b) = b� exp
�
b2�2"=2

�
; (44)

which has three �xed points given by b = f 0; �
p
2 log (1=�) =�2" g: It is easy to check that

the middle �xed point b = 0 satis�es the learnability condition T 0 (b) = � < 1; while the
other two solutions yield T 0 (b) = 1 + b2�2" > 1 and hence are not stable under learning. By
continuity, these results extend to parameter combinations (�; �) that are su¢ ciently close
to (0; 0) and for starting values that lie in the basin of attraction of the middle �xed point.
For the baseline calibration with (�; �) = (�0:1; �0:5) ; the properties of the near-rational
equilibrium are qualitatively similar to the special case of (�; �) = (0; 0) :17

Numerical experiments with the model show that as consumption growth becomes more
persistent (� increases) or as the agent become more risk averse (� increases), satisfying the
learnability condition T 0 (b) < 1 may require the discount factor � to remain below a threshold
value. It is worth noting, however, that even when a parameter combination does not satisfy
T 0 (b) < 1; it would still be possible for the agent to estimate a value of b using a rolling window
of past data. In this case, the learning algorithm would never converge to a �xed point, but
rather, the estimated value of b would drift over time, acting as an additional source of excess
volatility.18

6 Model Simulations

Table 1 presents unconditional moments of asset pricing variables computed from a long-run
simulation of the model. The table also reports the corresponding statistics from U.S. data
over the period 1871 to 2008.19 The fundamental solution is simulated using the expressions

16For details, see Evans and Honkapohja (2001, p. 39).
17 I thank an anonymous referee for providing this insight.
18The learning algorithm may need to be modi�ed in this case to include a �projection facility,�which sets

bt = bt�1 if the estimation procedure delivers a result that falls outside the agent�s preconceived range of
economically reasonable values.
19The price-dividend ratio in year t is de�ned as the value of the S&P 500 stock index at the beginning of

year t+ 1; divided by the accumulated dividend over year t:
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in Proposition 1. Equations (26) and (28) are used to simulate the rational bubble solutions,
which are superimposed on top of the fundamental solution.20 For the rational bubble so-
lutions, the initial level of the bubble component yb0 is set equal to 1 % of the steady-state
fundamental price-dividend ratio. For the fundamental and near-rational solutions, the initial
condition is the corresponding steady-state price-dividend ratio.

The top section of Table 1 shows that the near-rational solution does an excellent job of
matching the unconditional moments of the U.S. price-dividend ratio. The calibrated values
of � and � were chosen so that the near-rational solution comes close to matching the mean
and volatility of the U.S. price-dividend ratio.21 But the near-rational solution also does a
good job of matching the higher moments. In particular, the U.S. price-dividend ratio exhibits
positive skewness, excess kurtosis, and strong positive serial correlation. Positive skewness and
excess kurtosis suggest the presence of nonlinearities in the data. The near-rational solution
is able to capture these features due to the non-linear form of the ALM for yt; equation (33).
In contrast, the fundamental solution delivers low volatility, near-zero skewness, no excess
kurtosis, and weak negative serial correlation which is inherited directly from the consumption
growth process with � = �0:1. The rational bubble solutions imply that the price-dividend
ratio is non-stationary, so the corresponding moments do not exist.

The middle section of Table 1 compares unconditional moments for the drift rate of the
price-dividend ratio� a stationary variable for all model solutions. The mean drift rate in
U.S. data is 0.004 versus a drift rate of 0.05 for the Froot-Obstfeld solution.22 The �Driftless
Bubble 2�solution and the near-rational solution both produce a reasonably good match with
the moments in the data.

The last section of Table 1 compares unconditional moments for the equity return. Relative
to the fundamental solution, the mean return for the near-rational solution is slightly lower
(6.96 % versus 7.68 %), whereas the volatility of returns is higher (9.08 % versus 4.04 %). The
returns generated by the near-rational solution exhibit only a small amount of positive serial
correlation, albeit slightly stronger than in U.S. data.

Figure 5 plots simulated data for the di¤erent solutions of the model. The left-side panels
show the price dividend ratio yt = yft + y

b
t ; while the right-side panels show the net equity

return Rt � 1: The explosive price-dividend ratio in the Froot-Obstfeld solution with �1 > 0
can be seen in panel (a), which in the only panel to employ a logarithmic scale. In panel (b),
the equity return generated by the Froot-Obstfeld solution remains stationary and exhibits
time-varying volatility. In panels (c) and (e), the two driftless rational bubble solutions exhibit
what can be viewed as stylized bubbles and crashes, where the price dividend ratio undergoes
irregularly-spaced episodes of rapid expansions and contractions. Return volatility increases

20�Driftless Bubble 1�refers to the solution shown in equation (28) with �1 > 0; while �Driftless Bubble 2�
refers to the solution with �1 < 0:
21 If the model is recalibrated with � = 0 rather than � = �0:1; then the ability to match both of these

moments deteriorates because either � or � must be adjusted downward to ensure that the learnability condition
is satis�ed, as described in section 5.3.
22 In Table 1, the mean drift rate in U.S. data is estimated by taking the average of annual log changes. In

Figure 2, the mean drift rate is estimated by �tting an exponential time trend through the data. The latter
procedure yields a larger estimated drift rate.
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dramatically during these episodes, as shown in panels (d) and (f).

Table 1. Unconditional Moments

Model Simulations

Statistic
U.S. Data
1871 �2008

Funda-
mental

Froot-
Obstfeld

Driftless
Bubble 1

Driftless
Bubble 2

Near-
Rational

yt = pt=dt � � �
Mean 26.6 18.4 � � � 27.1

Std. Dev. 13.8 0.03 � � � 13.9
Skew. 2.20 �0:02 � � � 2.34
Kurt. 8.21 3.00 � � � 11.7

Corr. Lag 1 0.93 �0:11 � � � 0.97

log (yt=yt�1)
Mean 0.004 0.000 0.050 0.000 0.003 0.000

Std. Dev. 0.206 0.002 0.082 0.042 0.269 0.119
Skew. �0:12 0.03 �0:03 0.59 0.04 0.03
Kurt. 3.19 2.99 3.00 125.2 3.89 3.00

Corr. Lag 1 �0:07 �0:55 �0:03 �0:10 0.00 0.02

Rt � 1
Mean 7.84 % 7.68 % 8.06 % 7.66 % 6.59 % 6.96 %

Std. Dev 17.8 % 4.04 % 12.7 % 6.84 % 25.9 % 9.08 %
Skew. �0:05 0.09 0.33 3.69 0.95 0.28
Kurt. 2.87 3.02 3.21 92.7 5.40 3.13

Corr. Lag 1 0.04 �0:15 �0:06 �0:12 0.00 0.14

Note: Model statistics are based on a 12,000 period simulation after dropping 500 periods.
Parameter values: x = 0:0206; �" = 0:0354; � = �0:1; � = 1:5; and � = 0:958:

Table 2. 20-Year Rolling Volatility of Returns

Model Simulations

Std. Dev.
U.S. Data
1871 �2008

Funda-
mental

Froot-
Obstfeld

Driftless
Bubble 1

Driftless
Bubble 2

Near-
Rational

Min 20-Yr 12.5 % 1.77 % 3.06 % 1.77 % 0.93 % 4.41 %
Max 20-Yr 27.9 % 7.07 % 23.4 % 65.5 % 48.7 % 13.8 %
Full Sample. 17.8 % 4.04 % 12.7 % 6.84 % 25.9 % 9.08 %

Notes: Model statistics are based on a 12,000 period simulation after dropping 500 periods.
Parameter values: x = 0:0206; �" = 0:0354; � = �0:1; � = 1:5; and � = 0:958:
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In panel (g), the near-rational price-dividend ratio exhibits pronounced low-frequency
swings that are driven by random shocks impinging upon the highly-persistent, nonlinear
ALM (33). The near-rational solution can also generate periods where the price-dividend
ratio dips below the fundamental value. In contrast, a rational bubble solution requires the
price-dividend ratio to always remain above the fundamental.23 The timing of expanding and
contracting bubble episodes in panel (g) is somewhat similar to that generated by the driftless
rational bubble solution with �1 < 0 plotted in panel (e). Both solutions exhibit a negative
response coe¢ cient on the fundamental term (xt � x) in the corresponding law of motion.

The nonlinear nature of the exact ALM (33) gives rise to time-varying return volatility,
as shown in panel (h). Table 2 provides a quantitative comparison of the return volatilities in
U.S. data and the various model solutions. From 1871 to 2008, the 20�year rolling standard
deviation of U.S. returns varies from a minimum of 12.5% to a maximum of 27.9%. The
Froot-Obstfeld solution provides the best match with the data, followed by the near-rational
solution.

Table 3 provides a quantitative comparison of forecast errors between the fundamental and
near-rational solutions. As noted earlier, the fundamental solution delivers a lower RMSPE.
However, the near-rational forecast errors are close to white noise at all lags� giving no dis-
cernible indication to the agent that the subjective forecast rule (30) is misspeci�ed.

Table 3: Comparison of Percentage Forecast Errors

Model Simulations
Statistic Fundamental Near-Rational
E (errt+1) 0:000 �0:010�
E
�
err2t+1

��0:5
0:016 0:136

Corr (errt+1; errt) �0:01 0:02
Corr (errt+1; errt�1) �0:01 �0:02
Corr (errt+1; errt�2) �0:01 �0:01
Notes: Model statistics are based on a 12,000 period simulation after dropping 500 periods.
Parameter values: x = 0:0206; �" = 0:0354; � = �0:1; � = 1:5; and � = 0:958:

6.1 Empirical Tests

To provide a more direct empirical assessment of the near-rational solution, I regress the
PLM (34) in �rst-di¤erence form on U.S. data for the price-dividend ratio and per capita
consumption growth over the period 1891 to 2004. The regression implements a procedure
for estimating the parameter b; analogous to the agent�s use of the covariance expression (35)
in the model. For the regression, I impose � = 1:5 and x = 0:0206:24 The regression yields
b = �1:56 (s.e. = 0:50); which is in the ballpark of the theoretical value of b = �3:695:
23Weil (1990) notes that a positive rational bubble can cause the equilibrium asset price to dip below the ex

ante fundamental value if there is su¢ cient feedback from the bubble to either dividends or the discount rate.
24With these parameter restrictions, the regression equation becomes �log (yt + 1) =

(b+ 0:5) (xt � 0:0206) � 0:5 (xt�1 � 0:0206) ; where yt is the U.S. price-dividend ratio and xt is U.S.
per capita consumption growth.
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More generally, there is a vast literature on econometric tests for the presence of bubbles.
Some recent studies are closely related to the results presented here. Bohl and Siklos (2004)
and Coakley and Fuertes (2006) �t nonlinear time series models to U.S. stock market valua-
tion ratios over the period 1871 to 2001. Both studies �nd evidence that valuation ratios drift
upwards into bubble territory during bull markets, but these persistent departures from fun-
damentals are eventually eliminated via downward adjustments during bear markets. Recent
empirical tests for nonstationarity of the U.S. price-dividend ratio are inconclusive. Engsted
(2006) �nds support for a nonstationary rational bubble in U.S. data. In contrast, a study by
Koustas and Serletis (2005) rejects the rational bubble hypothesis in favor of mean-reverting
behavior for the U.S. price-dividend ratio. The near-rational solution derived here predicts
mean-reverting behavior for the price-dividend ratio.

In reviewing the literature on empirical tests for the presence of bubbles, Gürkaynak (2007)
concludes that a su¢ ciently-rich fundamental model of asset prices can often �t the data
equally as well as any bubble model. Cochrane (2009) argues that the concept of a bub-
ble driven by irrational expectations of the future is observationally equivalent to a situation
where the risk premium required by rational agents is temporarily low.25 But actually these
two scenarios can be distinguished by examining agents�expectations about future returns.
Irrationally exuberant agents would forecast high future returns following a sustained price
run-up, whereas rational agents with temporarily low risk premiums would forecast low future
returns. Evidence from investor survey data seems to support the former scenario. Vissing-
Jorgenson (2004) �nds evidence of extrapolative expectations among investors; those who have
experienced high portfolio returns in the past tend to expect higher returns in the future. Am-
romin and Sharpe (2009) �nd that household investors expect higher future returns during
periods when macroeconomic conditions are expected to improve� a result which they con-
clude �is inconsistent with the view that stock market returns should compensate [rational]
investors for exposure to macroeconomic risks.�

7 Concluding Remarks

Theories involving departures from fully-rational behavior have long played a role in e¤orts
to account for the behavior of asset prices. Keynes (1936, p. 156) likened the stock market
to a �beauty contest�where participants devoted their e¤orts not to judging the underlying
concept of beauty, but instead to �anticipating what average opinion expects the average
opinion to be.�

There are many examples in history of asset prices exhibiting sustained run-ups that are
di¢ cult to justify on the basis of economic fundamentals. The typical transitory nature of
these run-ups should perhaps be viewed as a long-run victory for fundamental asset pricing
theory. Still, it remains a challenge for fundamental theory to explain the ever-present volatil-
ity of asset prices within a framework of e¢ cient capital markets. Rational bubbles are an
attractive modeling device because the framework allows asset prices to exceed fundamentals

25Speci�cally, he remarks (p. 2) that �Crying �bubble�is empty unless you have an operational procedure for
distinguishing them from rationally low risk premiums...�
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while imposing a no-arbitrage condition over short time horizons. In a rational bubble solu-
tion, an asset is valued not for its cash �ows, but rather for its potential to deliver capital
gain� a feature that seems to �t the prevailing psychology during historical bubble episodes.

This paper demonstrated the existence of a continuum of intrinsic rational bubble solutions
that satisfy a period-by-period no-arbitrage condition. When the mean drift rate of the bubble
is zero by construction, the short-term prospects for capital gain derive solely from the high
volatility of the bubble component. A driftless rational bubble exhibits irregularly-spaced
expansions and collapses that are wholly endogenous.

Strictly speaking, rational bubbles are not fully rational because the transversality con-
dition is not satis�ed. In a world where agents�computational resources are limited, further
movements away from full rationality would seem plausible. The near-rational asset pricing
solution developed here is based on a parsimonious and versatile forecast rule: a geometric
random walk without drift. Innovations to the geometric random walk are linked to consump-
tion/dividend growth. When the agent�s forecast rule is parameterized to match the moments
of observable data, the resulting forecast errors are close to white noise. The near-rational
solution does a good job of matching many quantitative features of U.S. stock market data
and allows the equity price to occasionally dip below the fundamental price.
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A Appendix: Derivations and Proofs

A.1 Separating Consumption from Dividends

The Lucas (1978) model implies ct = dt for all t: This section outlines a version of the model
that allows ct 6= dt: The agent�s �rst-order condition is

pt
dt
= Et

(
�

�
ct+1
ct

����dt+1
dt

��
pt+1
dt+1

+ 1

�)
: (A.1)

The separate growth rates of consumption and dividends are now given by

log (ct=ct�1) � xct = xc + �
�
xct�1 � xc

�
+ "t; "t � N

�
0; �2"

�
; j�j < 1; (A.2)

log (dt=dt�1) � xdt = xd +  (xct � xc) + vt vt � N
�
0; �2v

�
; (A.3)

where vt is uncorrelated with "t: As before, consumption growth is described by a univari-
ate AR(1) process. Deviations of dividend growth from consumption growth are governed
by the parameters xd; ; and �2v: The original Lucas model with ct = dt can be recov-
ered by setting xd = xc;  = 1; and �v = 0: For the model with ct 6= dt; these parame-
ters are calibrated to match three moments: (1) the unconditional mean of dividend growth
E [log (dt=dt�1)], (2) the contemporaneous correlation between dividend growth and consump-
tion growth Corr

�
xdt ; x

c
t

�
, and (3) the unconditional variance of dividend growth V ar

�
xdt
�
.

The resulting calibration formulas are

xd = E [log (dt=dt�1)] ; (A.4)

 = Corr
�
xdt ; x

c
t

� h
V ar

�
xdt

�
= V ar (xct)

i0:5
; (A.5)

�v =
h
V ar

�
xdt

�
� 2V ar (xct)

i0:5
: (A.6)

The agent�s �rst-order condition can be written in terms of the price-dividend ratio yt as
follows:

yt = Et

n
� exp

h
��xct+1 + xd + 

�
xct+1 � xc

�
+ vt+1

i
(yt+1 + 1)

o
;

= Et

ne� exp�e� ext+1� (yt+1 + 1)o ; (A.7)

where e� � � exp
�
xd � xc

�
; e� �  � �; ext � xct + vt=

e�:
Making use of the above de�nitions, equations (A.2) and (A.3) yield the following trans-

formed version of equation (3):

ext = xc + � (ext�1 � xc) + !t; !t � "t + (vt � �vt�1) =e�; (A.8)

where !t � N
�
0; �2!

�
; �2! = �

2
"+
�
1 + �2

�
�2v=

e� 2, and Corr (!t; !t�1) = ��=�e� 2�2"=�2v + 1 + �2� :
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Finally, we de�ne ezt � e� exp�e� ext� (yt + 1) to obtain the following transformed version of
equation (8): ezt = e� exp�e� ext� [Etezt+1 + 1] : (A.9)

Thus, by an appropriate change of variables, equations (A.8) and (A.9) retain the same
basic forms as equations (3) and (8), with the exception that the innovation !t is not iid, but
instead exhibits serial correlation. However, for small values of �; we can make the simplifying
assumption that Corr (!t; !t�1) ' 0: With this assumption, all of the paper�s theoretical
results will go through when expressed in terms of the transformed variables.

A.2 Proof of Proposition 1: Approximate Fundamental Solution

Iterating ahead the conjectured law of motion for zft and taking the conditional expectation
yields

Etz
f
t+1 = exp

h
a0 + �a1 (xt � x) + 1

2 (a1)
2 �2"

i
: (A.10)

Substituting the above expression into the �rst order condition (8) and then taking logarithms
yields

log
�
zft

�
= F (xt) = log (�) + �xt

+ log
n
exp

h
a0 + �a1 (xt � x) + 1

2 (a1)
2 �2"

i
+ 1
o
;

' a0 + a1 (xt � x) ; (A.11)

where a0 � E
�
log
�
zft
��
and a1 are Taylor-series coe¢ cients which are are given by

F (x) = a0 = log (�) + �x+ log
n
exp

h
a0 +

1
2 (a1)

2 �2"

i
+ 1
o

(A.12)

F
0
(x) = a1 = � +

�a1 exp
h
a0 +

1
2 (a1)

2 �2"

i
exp

h
a0 +

1
2 (a1)

2 �2"

i
+ 1

: (A.13)

Solving equation (A.12) for a0 yields

a0 = log

8<: � exp (�x)

1� � exp
h
�x+ 1

2 (a1)
2 �2"

i
9=; ; (A.14)

which can be substituted into equation (A.13) to yield the following nonlinear equation that
determines a1:

a1 = � + �a1� exp
h
�x+ 1

2 (a1)
2 �2"

i
: (A.15)

Solving equation (A.15) for a1 yields the nonlinear equation shown in Proposition 1. There

are two solutions, but only one solution satis�es the condition � exp
h
�x+ 1

2 (a1)
2 �2"

i
< 1 such

that exp (a0) = exp
�
E log

�
zft
��
> 0: �
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A.3 Asset Pricing Moments: Fundamental Solution

This section brie�y outlines the derivation of equations (16) through (19).
Equation (16) follows directly from equation (15) by taking the unconditional expectation

of log
�
yft
�
: We have

log
�
yft

�
� E

h
log
�
yft

�i
= a1�1 (xt � x) ; (A.16)

which implies V ar
�
log
�
yft
��
= (a1)

2 �2V ar (xt) ; as given by equation (17).
The fundamental equity return can be written as

Rft+1 =

 
yft+1 + 1

yft

!
exp (xt+1) ;

=

 
zft+1

�Etzft+1

!
exp (�xt+1) ; (A.17)

where I have eliminated yft using the equilibrium relationship yft = Etz
f
t+1 and eliminated y

f
t+1

using the de�nitional relationship yft+1 + 1 = ��1 exp (��xt+1) zft+1: Substituting in zft+1 =
exp [a0 + a1 (xt � x)] from Proposition 1 and Etzft+1 from equation (15) and then taking the
unconditional expectation of log

�
Rft+1

�
yields equation (18). We have

log
�
Rft+1

�
� E

h
log
�
Rft+1

�i
= � (xt+1 � x) + a1"t+1; (A.18)

which in turns implies

V ar
h
log
�
Rft+1

�i
= �2V ar (xt) + (a1)

2 �2" + 2�a1Cov (xt; "t) : (A.19)

Substituting for V ar (xt) and Cov (xt; "t) in the above expression yields equation (19).

A.4 Proof of Proposition 2: Continuum of Intrinsic Rational Bubbles

First consider the case where the agent can make use of the contemporaneous realization zbt
when forming the rational expectation Etzbt+1: Iterating ahead the conjectured law of motion
for zbt by one period and then taking the conditional expectation yields

Etz
b
t+1 = z

b
t exp

h
�0 + (��1 + �2) (xt � x) + 1

2 (�1)
2 �2"

i
: (A.20)

Substituting the above expression into the no-arbitrage condition (21) and then taking loga-
rithms yields

0 = log (�) + �xt + �0 + (��1 + �2) (xt � x) + 1
2 (�1)

2 �2"; (A.21)

where log
�
zbt
�
has been cancelled from both sides. For equation (A.21) to hold, the constant

terms and the coe¢ cients on xt must separately sum to zero. Equilibrium therefore requires

1
2 (�1)

2 �2" � (��1 + �2)| {z }
� �

x + log (�) + �0 = 0; (A.22)

� + ��1 + �2 = 0; (A.23)
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which represent a system of two equations in three unknown constants �0; �1; and �2: The
solutions to equations (A.22) and (A.23) de�ne a continuum of intrinsic rational bubble equi-
libria.

Now consider the case where the agent can only make use of the lagged realization zbt�1
when forming Etzbt+1: Iterating ahead the conjectured law of motion for z

b
t by one period and

then substituting out zbt using the same law of motion yields

zbt+1 = z
b
t�1 exp f2�0 + [�1 (1 + �) + �2] (xt � x) + �2 (xt�1 � x) + �1"t+1g ; (A.24)

where I have eliminated (xt+1 � x) using the law of motion for consumption/dividend growth
(33). Taking the conditional expectation of the above expression yields

Etz
b
t+1 = z

b
t�1 exp

n
2�0 + [�1 (1 + �) + �2] (xt � x) + �2 (xt�1 � x) + 1

2 (�1)
2 �2"

o
: (A.25)

Substituting the above expression into the no-arbitrage condition (21) and then taking loga-
rithms yields

log
�
zbt

�
= log

�
zbt�1

�
+ log (�) + �xt + 2�0 + [�1 (1 + �) + �2] (xt � x)

+ �2 (xt�1 � x) + 1
2 (�1)

2 �2"; (A.26)

which can be compared to the following expression for the logarithm of the conjectured law
of motion:

log
�
zbt

�
= log

�
zbt�1

�
+ �0 + �1 (xt � x) + �2 (xt�1 � x) : (A.27)

Equation (A.26) will coincide exactly with equation (A.27) when the following equilibriums
conditions are satis�ed

log (�) + 2�0 � [�1 (1 + �) + 2�2]x+ 1
2 (�1)

2 �2" = �0 � (�1 + �2)x; (A.28)

� + �1 (1 + �) + �2 = �1; (A.29)

which are isomorphic to the equilibrium conditions (A.22) and (A.23). �

A.5 Asset Pricing Moments: Near-Rational Solution

Starting from the approximate ALM (36), the law of motion of � log (zt) can be written as:

�bzt = (k � 1) [bzt�1 � E (bzt)] +m (xt � x) ; (A.30)

where bzt � log (zt) : The above equation implies:
Cov (�bzt; xt) = (k � 1)Cov (bzt�1; xt) +mV ar (xt) : (A.31)

From (36), we have Cov (bzt�1; xt) = [�m=(1� �k)]V ar (xt) ; which can be substituted into
(A.31) to yield equation (40) in the text.
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The nonlinear ALM for the price-dividend ratio, equation (33), can be rewritten as follows:

yt = (yt�1 + 1)� exp
�
b (1 + �) (xt � x) + �xt�1 + 1

2b
2�2"
�
;

= (yt�1 + 1) k exp

��
m� �
k

�
(xt � x) + � (xt�1 � x)

�
; (A.32)

where I have eliminated b and b2 using the expressions for the Taylor series coe¢ cients k and
m; as given by equations (37) and (38). Taking logarithms of the above expression yields

byt = log [exp (byt�1) + 1] + log (k) + �m� �
k

�
(xt � x) + � (xt�1 � x) ;

' n0 + n1 [byt�1 � E (byt)] + �m� �
k

�
(xt � x) + � (xt�1 � x) ; (A.33)

where byt � log (yt) ; and n0 and n1 are Taylor series coe¢ cients. Straightforward computations
yield n0 = log [k= (1� k)] and n1 = k: The unconditional expectation of the above expression
yields E (byt) = n0; as given by equation (41).

Using equation (A.33), the unconditional variance can be computed as follows:

V ar (byt) = E
n
[byt � E (byt)]2o ;

=

�
1

1� k2

�"�
m� �
k

�2
+ �2 + 2

�
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k

�
��

#
V ar (xt) ;

+

�
2 (m� �) �+ 2�k

1� k2

�
Cov (byt; xt) ; (A.34)

where Cov (byt; xt) can also be computed from equation (A.33).
The equity return is given by

Rt+1 =

 
zt+1

� bEtzt+1
!
exp (�xt+1)

=
z kt z

1�k exp [m (xt+1 � x) + �xt+1]
�zt�1 exp

�
b (1 + �) (xt � x) + 1

2b
2�2"
� ; (A.35)

where I have substituted in the approximate ALM (36) and the subjective expectation (30).
Taking the unconditional expectation of bRt+1 � log (Rt+1) yields equation (42). From (A.35),
we have

bRt+1 � E � bRt+1� = k [bzt � E (bzt)]| {z }
k2[bzt�1�E(bzt)]+ km(xt�x)

� [bzt�1 � E (bzt)]
+ (m+ �) (xt+1 � x) � b (1 + �) (xt � x) ; (A.36)
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which can be used to compute an analytical expression for V ar
� bRt+1� :

From equation (43), the law of motion for the percentage forecast error is given by

errt+1 � E (errt+1) = �
�
1� k2

�
[bzt�1 � E (bzt)]

+ [km+m�� b (1 + �)] (xt � x) +m"t+1; (A.37)

where I have eliminated [bzt � E (bzt)] using the approximate ALM (36). Equation (A.37)
is used to compute Corr (errt+1; errt) = Cov (errt+1; errt) =V ar (errt+1) and RMSPE =�
E
�
err2t+1

��0:5 which are plotted in Figure 3.
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Figure 1: Approximate and exact solutions for fundamental price-dividend ratio.
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Figure 2: The annual drift rate in the U.S. price-dividend ratio is about 0.01.
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Figure 3: Properties of the near-rational equilibrium.
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Figure 4: Sampling variation in Cov [� log (zt) ; xt] a¤ects the real-time learning paths.
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Figure 5: Left panels: price-dividend ratio. Right panels: net equity return.
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