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ABSTRACT:

Covariance matrix forecasts of financial asset returns are an important component of
current practice in financial risk management. A wide variety of models, ranging from matrices
of simple summary measures to covariance matrices implied from option prices, are available for
generating such forecasts. In this paper, we evaluate the relative accuracy of different covariance
matrix forecasts using standard statistical loss functions and avalue-at-risk (VaR) framework.
This framework consists of hypothesis tests examining various properties of VaR models based
on these forecasts as well as an evaluation using a regulatory loss function.

Using aforeign exchange portfolio, we find that implied covariance matrix forecasts
appear to perform best under standard statistical loss functions. However, within the economic
context of aVaR framework, the performance of VaR models depends more on their
distributional assumptions than on their covariance matrix specification. Of the forecasts
examined, simple specifications, such as exponentially-weighted moving averages of past
observations, perform best with regard to the magnitude of VaR exceptions and regulatory capital
requirements. These results provide empirical support for the commonly-used VaR models
based on simple covariance matrix forecasts and distributional assumptions.
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I. Introduction

The modeling of the second moments of asset returns has been amajor field of study in
finance over the last twenty years. Although regularitiesin the variances of asset returns were
noted by Mandelbrot (1963), the explosion in volatility modeling can generally be traced to the
work of Engle (1982) and Bollerslev (1986)." Research in the area of volatility models has
expanded in many directions and has led to a wide variety of modeling techniques, both
univariate for individual assets and multivariate for asset portfolios.

Most of this research has focused on the in-sample fit of volatility models by proposing
alternative model specifications and model diagnostic tools, such as the news-impact curve
proposed by Engle and Ng (1993). A smaller amount of research has focused on the evaluation
of out-of-sample volatility forecasts. These studies use forecast evaluation techniques to
examine out-of-sample model performance in the hope of providing further guidance on model
specification. Infact, model evaluations of this sort could be of greater practical importance
since they can make specific recommendations to the users of volatility models.?

In this paper, we eval uate the out-of-sample performance of covariance matrix forecasts
from multivariate volatility models based on different model specifications and information sets.
The evaluation techniques used here and in the literature can generally be placed into two
categories. The statistical category consists of loss functions based on distance measures, such as
mean squared error. The economic category consists of techniques tied to specific uses of second
moment forecasts, such as asset allocation, option trading and portfolio hedging. Although we
use statistical techniques, we employ a value-at-risk (VaR) framework that should be more
relevant to financial risk managers. For example, regulatory capital requirements for the market
risk exposure of commercia banks are now explicitly based on VaR estimates and include an
explicit penalty for model inaccuracy.® Our goal isto provide insight on which covariance

matrix forecasts generate the best performing VaR estimates from this perspective.

! seeBollerslev, Engle and Nelson (1994) as well as Diebold and Lopez (1995) for detailed surveys.
2 See Diebold and Lopez (1996) for further discussion on forecast eval uation techniques.

3 See Basle Committee on Banking Supervision (1996a,b).
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The VaR framework we use consists of two sets of evaluation techniques. Thefirst set
focuses on the statistical properties of VaR estimates derived from VaR models based on
alternative covariance matrix forecasts. Specificaly, the binomial test of correct unconditional
coverage, which isimplicitly incorporated into the aforementioned bank capital requirements, is
used to examine 1%, 5%, 10% and 25% VaR estimates. The test for correct conditional coverage
developed by Christoffersen (1998) and multinomial extensions of these tests, which can
examine severa VaR estimates at the same time, are also used to examine these VaR estimates.

Finally, the normal transform test developed by Berkowitz (1999) is used to evaluate the VaR
models’ forecasts of portfolio return distributions.

The second set of techniques focus on the magnitude of the losses experienced when VaR
estimates are exceeded, clearly an issue of interest to financial institutions and their regulators.
To determine whether the magnitudes of observed exceptions are in keeping with the model
generating the VaR estimates, Berkowitz (1999) proposes a hypothesis test based on the
truncated normal distribution. To examine the performance of the competing covariance matrix
forecasts with respect to regulatory capital requirements, we use the regulatory loss function
implied by the U.S. implementation of market risk amendment to the Basel Capital Accord. This
loss function penalizes a VaR model for poor performance by using a capital charge multiplier
based on the number of VaR exceptions; see Lopez (1999) for further discussion.

In this paper, we examine a portfolio of foreign exchange rates. With regard to the
statistical loss functions, our results indicate that covariance matrix forecasts as implied from
option prices appear to perform best. However, with respect to the more economically
meaningful VaR framework, these forecasts do not perform as well. Our results for the testing of
the competing VaR estimates’ statistical properties indicate that the choice of the underlying
distributional assumption for the VaR model is more important than that of the covariance matrix
specification. In fact, only limited inference on the relative forecast performance of these
specifications is available using these hypothesis tests.

However, the second set of VaR evaluation techniques do permit such inference.
Specifically, the covariance matrix forecasts that perform best under these criteria are the naive

specifications, such as exponentially-weighted moving averages of past observations. In fact,



VaR estimates based on portfolio variance forecasts that completely ignore covariance matrix
forecasts perform quite well under this criteria. For example, asimple VaR model based on an
exponentially-weighted measure of portfolio variance and the standard normal distribution
generates the lowest regulatory capital requirements. Overall, these empirical results provide
evidence in support of the simple VaR models that are commonly used in practice.

The paper is structured as follows. Section Il provides a short literature review of the
statistical and economic evaluation of covariance matrix forecasts from multivariate volatility
models. Section |11 describes the eight covariance matrix specifications and the statistical 10ss
functions used in this study. Section IV describes the 40 VaR models analyzed and presents the
results for the first four sets of hypothesis tests that make up the VaR evaluation framework.
Section V describes and presents the results for the final set of hypothesis tests and the regulatory
loss function based on the quantity and magnitude of VaR exceedances. Section VI concludes.

[l. Literature Review

As highlighted by Kroner and Ng (1998), the estimation of time-varying covariances and
implicitly of the entire covariance matrix between asset returnsis crucia for asset pricing,
portfolio selection and risk management. To that end, awide variety of multivariate volatility
models have been proposed. For example, Bollerslev, Engle and Wooldridge (1988) proposed
the diagonal GARCH model in which the individual variances and covariances are standard
GARCH processes, and Engle and Kroner (1995) proposed the BEKK representation of the
GARCH model, which more readily imposes the condition of positive definiteness on the
estimated covariance matrices. Inthefield of risk management, exponentially-weighted moving
averages of past portfolio returns are commonly used as a smple model of asset variances and
covariances; see J.P. Morgan (1996). In addition, asset variances and covariances as implied
from option prices are available for these purposes.

Given the wide variety of volatility models, akey question is how best to choose among
them. Most studies evaluating the performance of volatility models have focused on the in-

sample analysis of univariate models, although several have examined their out-of-sample



performance using statistical and economic loss functions.* A smaller number of studies have
examined the in-sample and out-of-sample performance of multivariate volatility models using
economic loss functions, particularly with respect to hedging strategies. For example, Cechetti,
Cumby and Figlewski (1988) find that a time-varying covariance matrix is necessary in order to
construct an optimal hedge ratio between Treasury bonds and bond futures, while Kroner and Ng
(1998) find that the choice of multivariate volatility model can result in very different estimates
of the optimal hedge ratio for a stock portfolio.> Furthermore, Gibson and Boyer (1998) find that
find standard time-series model s produce better correlation forecasts than simple moving average
models for the purpose of stock-index option pricing and trading.
With respect to financial risk management, current practice places much emphasis on
value-at-risk (VaR) measures, which generally indicate the amount of portfolio value that could
be lost over a given time period with a specified confidence level.® A limited amount of research
has been done to evaluate the forecast performance of multivariate volatility models within a
VaR framework. For example, Hendricks (1996) provides the most extensive evaluation of
aternative VaR models using a portfolio of foreign exchange rates, although he does not
examine covariance forecasts. Several papers, such as Alexander and Leigh (1996), Jackson,
Maude and Perraudin (1997) as well as Davé and Stahl (1996), examine VaR models for several
asset portfolios using different multivariate volatility models. These comparisons are generally
based on the number of VaR exceptions within observation periods mandated by bank regulators.
In this paper, we examine VaR estimates from a much wider variety of multivariate volatility

models, ranging from naive averages to standard time-series models to option-implied models.

4 See Pagan and Schwert (1990); Engle, Hong, Kane and Noh (1993); West, Edison and Cho (1993); West
and Cho (1994); Engle, Kane and Noh (1996); Bollerdev and Ghysels (1996); Bollerdev and Mikkelsen (1996);
and Lopez (2000).

® For studies of optimal commodity hedges, see Baillie and Myers (1991); Myers (1991); and Bera, Garcia
and Roh (1997). For studies of optimal foreign exchange futures hedges, see Kroner and Claessens (1991); Kroner
and Sultan (1993); and Ghose and Kroner (1994). For studies of optimal interest rate futures hedges, see Park and
Bera (1987); Cecchetti, Cumby and Figlewski (1988); and Gagnon and Lypny (1995). For studies of optimal stock
index hedges, see Park and Switzer (1995); Tong (1996); and Kroner and Ng (1998). Chan, Kareski and
Lakonishok (1999) examine various factor models for the covariance matrix of stock portfolio returns using
portfolio measures such as the global minimum variance portfolio and minimum tracking error volatility.

® See Jorion (1997) aswell as Duffie and Pan (1997) for detailed surveys.
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Our evaluation is based purely on out-of-sample, covariance matrix forecasts and employs both

statistical loss functions and a VaR framework that expands upon those in previous studies.

[11. Covariance Matrix Forecasts and Statistical L oss Functions

A. Covariance matrix forecasts

In this paper, we examine the covariance matrix forecasts for a portfolio of foreign
currencies. Specificaly, we examine an equally-weighted dollar-denominated portfolio of the
Deutschemark (DEM) and Japanese yen (JPY) over the period from January 3, 1980 to April 2,
1997. We use the in-sample period from January 3, 1980 to September 29, 1990 (2804
observations) to estimate the parameters of the multivariate models as needed, and we evaluate
the models’ one-step-ahead covariance matrix forecasts over the out-of-sample period from
October 2, 1990 through April 2, 1997 (1679 observations).

Let Y,,, denote the (2x1) vector consisting of the DEM/USD and JPY/USD spot
exchange rates, angl,, = In(YHl). L&y, be the first difference of.y, which is the vector
of exchange rate returns. Our analysis does not indicate the presence of any significant

conditional mean dynamics in these sefiéhus, we examine the mod&y,,, =¢,,,,  Where

€411Q; =Dy [O.H 1, Dy, is a bivariate probability distribution and,Hs the (2x2) matrix

_ mll,t+1 hlz,t+1 l
Ht+l - h D
12,t+1 22,t+1 |:|
For our analysis, we impose the portfolio weighting vector w = [1, 1], suck that w’e,,,

and X, [Q; ~ Dz(O,thl) , where Dis an univariate probability distribution amd,,; =w'H,w.

Note that x,, can be expressed &s,; =./h;,,Z,,, , where~D(0,).

" For both series, the in-sample mean is zero. The correlegram for the JPY series does not indicate any
ARMA dynamics, i.e., the p-value for the portmanteau statistic is 12.3% at 20 lags and 38.8% at 40 lags. The
correlegram for the DEM seriesindicates a small MA(6) effect; the p-value for the portmanteau statistic is 2.7% at
20 lags and 4.3% at 40 lags. Oncethis effect is removed, the p-value for the portmanteau statistic is 27.8% at 20
lags and 44.1% at 40 lags. However, given the uncommon nature of this MA term, weignoreit in our analysis.
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We examine three categories of covariance matrix forecasts: simple averages, time-series
models and covariance matrices implied from option prices. Thefirst category is based on
different averages of the products of past exchange rate changes. The first specification is simply
that the covariance matrix remains constant over the out-of-sample period and is equal to thein-
sample period’s unconditional covariance matrix; ik,,=C = é’is € [(2804 We also
consider two time-varying specifications that differ only in thjelwelghts applied in the averages.
The historical average model equally weights the past 120 observations, such that
H., = Elf € EleO 8 The exponentlally-welghted moving average (EWMA) model is based
on weights that decline exponentially; i.8l,+1=(1-1) z A _gion whiers a calibrated
parameter. For our analysis, we chbs@.94, which |2 a commonly used value; see J.P. Morgan
(1996) as well as Walter and Lopez (2000).

The second category of covariance matrix forecasts consists of multivariate GARCH
models. These models use the same information set as the first category, but impose specific
forms of variance dynamics. The first model is specified as the bivariate GARCH(1,1) process

suggested by Bollerslev, Engle and Wooldridge (1988), which is

(hy ., O B’JMB gxn 0 0 ED €1 D [IBM 0 00h,d
12, [ g*)lzm t0 a, O [[fltszt[j"'mo B O 12, [

%‘22,t+1% @022 ﬁ QO 0 Ay aa EZ,t H EO 0 Bzz %122; E
This specification suggests that the three componentg,c#dth have separate time dynamics;
we denote it as GARCH-DVEC. The second model is a bivariate GARCH(1,1) process using the
BEKK specification suggested by Engle and Kroner (1998). This specification guarantees the
positive definiteness of the fitted and forecasted covariance matrices without ignoring possible
cross-variable interactions. For a lag order of one, the BEKK representation is

— |]'}‘)12 O D])‘)fl le E_'_ gxfl alZ %E 8ft 81,t82,t %fl alZ E_'_ %jﬁl BlZ %H %jﬁl BlZ
t

Ho=0" N
t [0, (*)52 Mo 00§2D [P Oy OFar eg,t ¥, 0,0 a PBxO 21 BzzD

® The choice of 120 days is based on previous studies; see Hendricks (1996) as well as Walter and Lopez
(2000). This specification obviously could be generalized to N days.

® Foster and Nelson (1996) as well as Fleming et al. (2000) find similar values for the exponentia decay
parameter using nonparametric estimation techniques.



we denote this specification as GARCH-BEKK.™ For both of these models, rolling estimation is
used; that is, we more closely approximate actual forecasting practice by estimating the models’
parameters using just the 1,000 observations prior to the date on which the forecastis made.

The third category of covariance matrix forecasts we examine is based on the implied
variances and covariances derived from option pffcésplied volatilities are derived from
option prices by inverting the appropriate option pricing model, which is the Garman-Kohlhagen
model (Garman and Kohlhagen, 1983) for foreign exchange options. This option pricing formula
modifies the Black-Scholes model to account for foreign interest rates. An implied volatility can
be interpreted as the market’'s assessment of the underlying asset’s volatility over the remaining
life of the option and is said to provide a “forward-looking” estimate of asset volatility. Thus, we
examine such implied moments since they are based on different information sets than those used
for the time-series models.

Implied covariance is defined as the covariance between two variables as implied by the
price of a single option or the prices of several options. In our case, options on the exchange
rates in currency trios are commonly traded, and the implied correlation between two exchange
rates derived from implied volatilities is calculated as follGwiet y, 5., represent the log of
the daily exchange rate between currencies A and B at time t+1. In terms of a third currency C
and in the absence of arbitragg s ., = Yaci1 ~ Yacia Focusing, 0., = AYagi1 ,
we havee, g 1 = Excra ~ Smicpy  SINCar(eyg)=Var(ey o)+ Var(egc)-2Coveyc eg c)

the implied covariance can be calculate from the three implied variance as

19 The lag order of one restricts the model in such away that not as many vech (or diagonal)
representations as possible are nested. Engle and Kroner (1993) state the necessary and sufficient conditions for
achieving full generality within the BEKK model aswell as for excluding the possibility of observationally
equivalent representations.

1 The parameter estimates and in-sampl e diagnostics are available from the authors upon request.

2 The options prices used in this paper were provided by a prominent bank trading in the over-the-counter
market for foreign exchange options. These implied volatilities are for at-the-money forward straddles, a
combination of a European call option and a European put option with the strike prices set at the forward rate.

3 Note that Carr and Madan (1999) propose an aternative implied covariance forecast based on a
synthetic covariance contract created by static positions in options on all three currency futures and dynamic trading
in the underlying futures themsel ves.



COVIV(SA/C’ €BIC >t,T - %(VarIV<SA/C )t,T * Var|v<38/c )t,T - Vaer('gA/B )t,T )

Note that option maturities, denoted as T, are certainly longer than the one-step-ahead forecasts
that we will be working with. However, since the option pricing model assumes that the second
moments are constant over the life of the option, we generate one-day forecasts by assuming that
the daily innovations are independent and dividing the implied variances by T. Further note that
the H,,, forecast consisting of these implied second moments will be positive definite.

The other two implied model specifications we examine are based on combining certain
implied moments with those from other specifications. It iscommonly found that forecast
performance can be improved by combining information sets. Although a model nesting both the
time-series and option price information sets would be preferable, in this paper, we simply splice
implied moments into the EWMA matrix.* Specifically, we construct an H,,, series with
implied variances and EWMA covariances and an H,,, serieswith EWMA variances and implied
covariances; these two covariance matrix specifications are denoted as EWMA-IVAR and
EWMA-ICQOV, respectively. Of course, these matrices are not guaranteed to be positive definite,
and for our dataset, they are not 2% and 8% of the time, respectively. In such cases, we smply
Impose a zero covariance to insure positive definiteness.

The final set of forecasts we examine are not based on covariance matrix specifications at
al. Zangari (1997) argues that a quicker and still useful approach to generating VaR measuresis
to ignore covariance matrix forecasts and focus on the time-varying volatility of the aggregate
portfolio (h,., in our notation). This approach significantly reduces the computational time
needed to generate VaR measures without possibly reducing their overall accuracy. To examine
this possibility, we examine the EWMA and the GARCH(1,1) specifications of the portfolio
variance as aternative specifications of h, ., and denote them as port. EWMA and port. GARCH,
respectively. These models provide another benchmark with which to evaluate covariance

matrix forecasts; that is, whether they are necessary at all for generating accurate VaR measures.

4 Such an univariate, nested model is proposed by Kroner, Kneafsey and Claessens (1995) as well as
Amin and Ng (1997). Manfredo et al. (1999) propose a simple combining technique based on linear regression.
We have begun work along these lines for multivariate models.

8



B. Statistical L oss Functions

Severa statistical loss functions have been used to eval uate the out-of-sample forecast
performance of univariate models; see Bollerslev and Ghysels (1996) for a short summary. In
this paper, we use several |oss functions to evaluate the two univariate volatility forecasts hy, ..,
and hy,,,,, the covariance forecast h,,,,, and the portfolio volatility forecast h,, .

The most commonly used loss function, mean-squared error (MSE), is defined as
MSE,, = —Z wisi€yasj ~ Dy, HJ) , Wheree, ,,; and ¢,,; are the individua exchange rate returns
and hth+J isthe forecast of interest. If x=y, then we are examining one of the two volatility

forecasts, and if x=y, then we are examining the covariance forecast. For the portfolio variance,

T
MSE, _Il_Z(xt+j —hpvtﬂ.)z. Similarly, mean absolute error (MAE) loss function is defined as
=1
1 T
MAE,, :?z € t+€y1sj ~ Nyyisj| @D MAE ——Z|xpt+j ol LI
=1

The MSE and MAE loss functions penalize forecast errors symmetrically. Although this
may be appropriate for covariance forecasts that may be negative, these loss functions are not as
appropriate for variance forecasts, which should always be positive. Two loss functions that
provide alternatlve asymmetric penalty functi onsare the logarithmic loss function,

LL,, == z (In(& 018 yos) = Iy )) , and the heteroskedasticity-adjusted MSE

X,t+j“y,t+]

- d
(HMSE), HMSE, == CE, 1+ i€y -10. Notethat the LL loss function cannot be used for
’ TZ Xy, t+] ﬁ

covariance forecasts because they may be negative. The LL loss function assigns proportionally
higher weights to incorrect forecasts when the observed variance proxy islow. Thefina

statistical 1oss function employed is based on the Gaussian quasi-maximum likelihood function

L
commonly used to estimate GARCH models; i.e., GMLE,, :%Z ﬁn(hxy,t+J X“' Eyas) ﬁ Of

xy t+j

course, for the portfolio returns, we substitute in the observed portfolio return x,,, and the
forecasted portfolio variance h,,,.

Under agiven loss function, the forecasts generating the lowest value can be said to be



the most accurate. However, whether this outcome is statistically significant or an artifact of the
dataset isnot clear. Diebold and Mariano (1995) propose a statistical test of this hypothesis. For
aparticular loss function and second moment, we generate the time series of differences between
the loss function values of a set of forecasts and the forecasts that minimized the loss function
over the sample period. If the two forecasts perform equally well, then the mean of this
difference should be zero. If wergject this null hypothesis, then the forecast with the lower loss
function value is the more accurate forecast. The asymptotic Diebold-Mariano statistic is simply

s- 9 2 Now,

whered is the sample mean of the difference series‘sénd is a consistent estimate of its

variance.

C. Empirical results

For our specified portfolio, the statistical loss function results are summarized in Table 1.
Panels A and B show the results for the individual variance forecasts. For this dataset, the
implied variances perform relatively well, especially under the MSE, HMSE and GMLE loss
functions. In these six cases, the one-step-ahead implied forecasts significantly minimize the loss
functions with respect to the other forecasts, except for the GMLE case for DEM variance
forecasts. However, the statistical significance of this result varies across the two variances. For
the JPY case, the null hypothesis of equal loss function values is clearly rejected for all
competing forecasts, while for the DEM case, the null hypothesis is not as strongly rejected.
Panel C presents the results for the covariance forecasts, which show that the implied forecasts
again generally minimize the MSE, HMSE and GMLE loss functions in a significant way.

For the MAE and LL loss functions, the EWMA forecasts perform best as the minimizing
forecasts in three of the four variance cases, but not always in a statistically significant way. In
fact, GARCH-BEKK forecasts perform almost as well and are the minimizing covariance
forecasts.

Panel D presents the results for the portfolio variance forecasts. Once again, the implied

forecasts perform best for the MSE, HMSE and GMLE loss functions, although not in a
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consistently significant way. For the MAE and LL loss functions, the portfolio EWMA forecasts
generate the lowest values, but only inthe LL caseisthisresult statistically significant. These
results indicate that simple portfolio variance forecasts are useful under certain statistical loss
functions, but that forecasts based on covariance matrix specifications generally perform as well
or better.

In summary, statistical loss functions provide a useful, preliminary analysis of variance,
covariance and portfolio variance forecasts. Our results indicate that the second moment
forecasts implied by option prices generally outperform time-series forecasts for these loss
functions, although the degree of statistical significance varies. Our findings are generally in line
with those of Jorion (1995) for univariate exchange rates; see Figlewski (1997) for a survey of
comparisons between implied and time-series forecasts. However, as suggested by Bollerslev et
al. (1994) and Lopez (2000), economic loss functions that explicitly incorporate the costs faced
by volatility forecast users provide the most meaningful forecast evaluations. In the next section,

we examine the performance of the covariance matrix forecasts within a value-at-risk framework.

V. Value-at-Risk Framework: Definitions, M odels, Hypothesis Tests and Results

A. Definitions

As discussed by Hsieh (1993), in the presence of volatility dynamics, conditional
densities based on covariance matrix forecasts should provide a better description of short-term
asset price movements than unconditional densities. Thisimproved description could be
particularly important for elements of financial risk management, such as hedge ratios and the
capital allocations needed to cover possible portfolio losses. In this paper, we focus on value-at-
risk (VaR) estimates, an increasingly common tool for financial risk management. Specificaly,
we examine the accuracy of several VaR models based on different covariance matrix
specifications and conditional densities.

VaR models are characterized by their forecasted distributions of k-period-ahead portfolio
returns. Generalizing our notation from before, let x,,, denote the k-period-ahead portfolio return

inlog terms. Conditiona on the information available at timet, x,,, isarandom variable with

distribution f,; that is, x,,, |Q, ~f,,.. Thus, VaR model mis characterized by f.,, its
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forecast of f,,,. A VaR estimateis a specified quantile of the forecasted return distribution over a
given holding period. The VaR estimate at timet derived from model m for a k-period-ahead

return, denoted VaR,,(k,a), isthe critical value that corresponds to the lower o percent tail of

fwe Thus, VaR (k,d) =F!

mt+k

(0( / 100) ,where F,.., istheinverse of the cumulative

distribution function corresponding to f ...

VaR estimates are now commonly used as measures of exposure to financial market
fluctuations. In fact, under the auspices of the Basel Committee on Banking Supervision, the
capital requirements for the market risk exposure of large banks are now explicitly based on their
VaR estimates for aten-day holding period (k = 10) and 99 percent coverage (o = 1). The
formulafor determining the capital requirements includes a multiplication factor that explicitly
links the accuracy of the underlying VaR model to a bank’s capital requirement. (This loss
function is discussed further in section V.) Thus, a VaR framework should provide financial
institutions with a meaningful economic framework in which to evaluate the accuracy of

covariance matrix forecasts.

B. Modds

VaR models can be used to generate distribution forecasts for k-step-ahead portfolio
returns, but we examine one-step-ahead VaR estimates in accordance with common practice and
our previous analysis. Let Vaf) denote the% VaR estimate from model m generated at
time t for period t+1. Although VaR models can be constructed in many ways, a common
approach (and the one used in this paper) is to specify the variance dynapacelithe
distributional form of f,,, separately: In this analysis, we examine the eight covariance matrix
specifications and two portfolio variance specifications from before and specify four different

distributional forms for a total of 40 VaR models.

> Theintuition for specifying aVaR model as a separate portfolio variance (whether based on a modeled
covariance matrix or portfolio variance) and a distributional assumption arises from the two-step procedure
proposed by Engle and Gonzal ez-Rivera (1991). In that study, an univariate variance process was estimated under
the normal assumption in order to generate standardized residuals, whose empirical distribution is then fitted using a
nonparametric technique. We use asimplified version of their approach here. Note that an alternative approach is
to estimate the parameters of a multivariate volatility model using a distributional form other than the multivariate
normal. However, such distributional forms are difficult to specify and use in estimation.
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Thefirst distributional form we examine is the standard normal, the one most commonly
used for risk management purposes. The second distributional form is the t-distribution with an
estimated number of degrees of freedom, which affects the tail thickness of the distribution. The
t-distribution is specified as

f(x)= r(VT”)rG) ((v- D) (1 bt (v-2))
wherev > 2 isthe degrees of freedom. This parameter was estimated on the in-sample
standardized residuals for the ten model specifications and was generally found to be
approximately 13, which is the value used in the subsequent analysis.

The third distributional form is the generalized t-distribution, proposed by McDonald and
Newey (1988) and used by Bollerslev, Engle and Nelson (1994). The generalized t-distribution
has two shape parameters that directly influence the tail thickness and the width of the center of
the distribution. Thisdistribution is specified as

n

Zhgtilqﬂn B(i ' qj(l+|xt+1|/(qbnh;t/fl))qwn |

fn(Xen) =

where n and g are the shape parameters, n > 0, g > 0, nq > 2, B is the beta function and
b= (T (a)F(1/n)/T(3/n)r(q-2/ n))ll2 isascale factor that makes the conditional variance of
X1 €qual hy,,. These shape parameters were estimated on the in-sample standardized residuals
for the ten portfolio variances and were generally found to be approximately n = 2.5 and q = 1,
which are the values used in the subsequent analysis. The last distributional form we examineis
the simple, unsmoothed nonparametric distribution of portfolio returns, which is the distribution
used in the so-called “historical simulation” approach for generating VaR estimates. Although
nonparametric densities are available, we examine the unsmoothed distributions of the in-sample
standardized residuals arising from the EWMA covariance matrix specification. We chose this
model since it is commonly used for risk management purposes.
The VaR estimates corresponding to these VaR models are generated as follows. By

definition, Pr(x,,, <VaR,,(a))=a , which is equivalent to
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where F,;, here denotes the cumulative distribution of the standardized residuas z,,,, under VaR

model m. Using the inverse of F,,, we have

VaRmt((y\/m - Fnﬁl(a)

or equivaently, VaR, (a)=,/h,,F*(a). Thus, the VaR estimates for our 40 models are based
on the product of the forecasted portfolio standard deviations and the appropriate quantile from
their assumed distributional form. Table 2 contains the quantiles for the four distributional

assumptions used in this analysis.

C. Hypothesis Testsand Empirical Results
In this section, we describe the first three hypothesis tests used to evaluate the
performance of the VaR models based on competing covariance matrix forecasts. Thefirst two
tests evaluate the unconditional and conditional «% coverage of the competing sets of VaR
estimates. In addition, we expand these binomial tests to multinomial form to simultaneously
examine more elements of the VaR models’ distribution forecasts. The fourth hypothesis test

evaluates the entire distribution forecast using the models’ empirical quantiles.

1a). Evaluation of VaR estimates based on unconditional and conditional coverage

Assuming that VaR estimates and their underlying model are accurate, exceptions or
occasions whenx < VaR,,(a) can be modeled as independent draws from a binomial
distribution with a probability of occurrence equabitpercent. Accurate VaR estimates should
exhibit the property that their unconditional covera;ge x/T, where x is the number of

exceptions, equatspercent. The likelihood ratio statistic for testing whether o is
LR, = Zloga*(1 - &)™) - loglo* = (1 - a)T)],
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which has an asymptotic »*(1) distribution.*

The LR test is an unconditional test of the coverage of VaR estimates since it simply
counts exceptions over the entire period without reference to the information available at each
point intime. However, if the underlying portfolio returns exhibit time-dependent
heteroskedasticity, the conditional accuracy of VaR estimates is probably a more important issue.
In such cases, VaR models that ignore such variance dynamics will generate VaR estimates that
may have correct unconditional coverage, but at any given time, will have incorrect conditional
coverage.

To address thisissue, Christoffersen (1998) proposed conditional tests of VaR estimates
based on interval forecasts. VaR estimates are essentially interval forecasts of the lower one
percent tail of f,,,, the one-step-ahead return distribution. The LR, test used hereis atest of
correct conditional coverage. For agiven VaR estimate, the indicator variable | ., for whether
an exception occurred is constructed as

1if x,, < VaR (o)

mt+1

0if x,,, > VaR_(a)

t+1

Since accurate VaR estimates have correct conditional coverage, thel .., series must exhibit both
correct unconditional coverage and serial independence. The LR test isajoint test of these
properties, and the relevant test statisticis LR . = LR . +LR, ,, which is asymptotically
distributed »*(2).

The LR, statistic is the likelihood ratio statistic for the null hypothesis of serial
independence against the alternative of first-order Markov dependence.’” The likelihood function

¢ The finite sample distribution of the LR, statistic as well as the othersin this study are of interest in
actual practice; see Lopez (1999a,b). For example, with respect to size, the finite sample distribution of LR, for
specified (o, T) values may be sufficiently different from ay?(1) distribution that the asymptotic critical values may
be inappropriate. Asfor the power of thistest, Kupiec (1995) shows how this test has alimited ability to
distinguish among alternative hypotheses and thus has low power in the typical samples of size 250 used for risk
management purposes. However, since 1679 observations are used in this exercise, the asymptotic distributions for
all of the test statistics are used.

17" As discussed in Christoffersen (1998), several other forms of dependence, such as second-order Markov
dependence, can be specified. For the purposes of this paper, however, first-order Markov dependence is used.
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under this alternative hypothesisis L, = (1-m, )Tmnoil(l—nn )Tl"nlf, where the T;; notation

denotes the number of observationsin state j after having been in state i the period before,
Moy = Toa/(Too*Toy) @d myy = Ty /(Ty+Tyy ). Under the null hypothesis of independence,
Ty, = Ty, = , and the relevant likelihood functionis L, = (1-m)™® "z ™= where

w = (To Ty, )/250. Thetest statistic LR, = Z[IogLA - IogLO] has an asymptotic (1)

distribution.

1b). LR, and LR test resultsfor VaR estimates

Table 3 reports the percentage of exceptions observed for each of the 40 VaR models for
the 1%, 5%, 10% and 25% VaR estimates over the entire out-of-sample period. These summary
statistics are key components of the LR, and LR_ test results reported in Table 4. Both the
tables and the discussion below are framed with respect to the distributional assumption first and
then with respect to the relative performance of the eight covariance matrix forecasts and two
portfolio variance forecasts. Note that the LR, and LR test results are qualitatively similar.

Asshown in Panel A of Table 4, VaR models based on the standard normal distributional
assumption perform relatively well at the lower quantiles (1% and 5%) in that only afew
forecastsfail the LR, and LR, tests at the 5% significance level. However, almost al fail at the
higher quantiles (10% and 25%). Asshown in Panel B, VaR models based on the t(13)
distributional assumption perform well only for the 1% VaR estimates. This result indicates that
the tail thickness of this distributional assumption probably limitsits use to just the lowest VaR
coverage levels.

The results for the VaR models based on estimated generalized t-distribution reported in
Panel C indicate that all the covariance matrix specificationsfail at the lowest quantile, but
perform relatively well at the other quantiles. Thisresult suggests that the overall shape of this
distribution is better than the previous two, even though its lower 1% tail and the corresponding
VaR estimates are inaccurate. The nonparametric distribution resultsin Panel D indicate that
these VaR estimates basically do well across all four quantiles.

Although we can conclude that the two least restrictive distributional assumptions seem

to produce better VaR estimates, inference regarding the relative forecast accuracy of the eight
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covariance matrix specifications and two portfolio variance specificationsis limited. Asshown
in Panels A and B, no strong conclusions can be drawn across the forecasts using the normal or
t(13) distributional assumptions. In addition, little inference is possible under the generalized t-
distribution for two reasons. First, for the 1% VaR estimates, al the VaR models have an
exception rate that is too low due to the long lower tail of this distribution, and thus they fail the
hypothesistests. Second, for the three other quantiles, al the VaR models perform well, with the
exception of the portfolio EWMA specification. Similarly, under the nonparametric distribution,
most of the VaR models perform basically well, except for the constant and three implied
covariance matrix specifications.

In summary, these results indicate that the dominant factor in determining the relative
accuracy of VaR estimates with respect to coverage accuracy is the distributional assumption.
The specifications of the covariance matrix forecasts appear to be of second-order importance.
These results seem to provide support for the common industry practice of using the EWMA
covariance matrix specification in generating VaR estimates. However, it does not completely
explain why practitioners have generally settled on the standard normal distributional
assumption. Although it did perform well for the lower coverage levels that are usually of

Interest, the nonparametric distribution did better across the four levels examined.

2a). Multinomial form of the LR, and LR tests

By their very nature, VaR estimates focus specifically on just one quantile of the entire
forecasted distribution. However, for VaR model evaluation, one could examine several of the
model's VaR estimates at the same time. Such hypothesis tests provide a stricter test of coverage
accuracy since it is based on more information than binomial tests. The generalization of
binomial tests to multinomial tests is straightforward and is illustrated here for the trinomial case.
Accurate VaR estimates should exhibit the property of unconditional coverage,; i.e.,
(65, 8, ] = [%,/T, X,/T] = [ &, a,], where x and x are the number of exceptions for the first

and second set of VaR estimates, respectively. The appropriate likelihood ratio statistic is

LR, = 2[ |og(ajl a?(l—al—az)T’xfxz) - |og(a§1 oy (1—(11—(12)TX1X2)],
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which has an asymptotic ¥*(2) distribution. Thetrinomial LR, statistic has a similar structure
and an asymptotic ¥*(4) distribution.

2b). Trinomial LR, and LR test results
Table 5 presents the trinomial test results for two pairs of VaR estimates: the 1% and 5%
VaR estimates, and the 1% and 10% VaR estimates. These results are basically in line with the
univariate test results; the additional restrictionsimplied by the joint test should not and do not
overturn the univariate results. For example, since all the VaR models under the t(13)
assumption reject the binomial null hypotheses for the 5% VaR estimates, all the joint [1%, 5%]
tests rgject the joint hypotheses aswell. For thejoint [1%, 10%)] tests, al of the VaR models
based on the first three distributional assumptions strongly reject the joint null hypotheses,
mainly due to the rgjections of the binomial hypotheses by the 10% VaR estimates for the normal
and t(13) distributional assumptions and by the 1% VaR estimates for the generalized-t
assumption. However, under the nonparametric distributional assumption, several covariance
matrix specifications do not reject the joint null hypothesis of the LR . test since they do not
strongly reject the two binomial null hypotheses.
The conformity of the trinomial results to the binomial resultsisto be expected. By
testing the VaR estimates for additional properties, the trinomial tests provide a stricter analysis
of the VaR models’ distributional forecasts. Such analysis could be helpful to forecast users that
are not exclusively interested in just one of the lower quantiles of the forecasted distributions.
However, to fully examine the accuracy of the VaR models’ distribution forecasts, we use the

normal transform test proposed by Berkowitz (1999).

3a). Evaluation of theforecasted distributions using the normal transform test

Since VaR models are generally characterized by their distribution forecasts of portfolio
returns, several authors have suggested that evaluations should be based directly on these
forecasts. Such an evaluation would use all of the information available in the forecasts. The
object of interest in these evaluation methods is the observed quantilevhich is the quantile

under the distribution forecast.f, in which the observed portfolio returppactually falls; i.e.,
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X1
thl(xﬁl) = f f_..(x)dx.

If the underlying VaR model is accurate, then its aomm series should be independent and

uniformly distributed over the unit interval.

Several hypothesis tests have been proposed for testing these two properties.’® In this
paper, we use the likelihood ratio test proposed by Berkowitz (1999). To examine whether the
0.1 SEries exhibits these properties, the z,,,.,, seriesis generated by transforming the q,,,., series
with the inverse of the standard normal cumulative distribution function; i.€., zyy.1=0 gy +9).
If the VaR model is correctly specified, the z.,., series should be independent and identically
distributed as standard normals. This hypothesis can be tested against alternative specifications,

such as

‘mt+1~Hm = prn(th B lJm) N
where the parameters,[jp,,] are the conditional mean and AR(1) coefficient corresponding to
the z,., series and,,, is a normal random variable with mean zero and variafce . Under the

null hypothesis that both properties are prese@l];n,pm,c%ﬁz 10,017 . The appropriate LR

statistic iSLR gig = 2%.(um,pm,oﬁq)— L(0.0)3 , where ,
lJ.m
,
chgn} mi =Py T
2| o2, (1_2) 2
1 Pin Zom/(l pm)

The LR, statistic is asymptotically distributed(3).

2
Til(zmul - um - pmzmt)

= m

fad

1
'—(Hm,Pm:Um):‘?Og[

3b). LR, test results
Table 6 contains the normal transform test results for the 40 VaR models. The results
generally indicate that the implied covariance matrix specifications perform poorly, regardless of

the associated distributional assumption. Of the 12 VaR models using these specifications, all

18 Crnkovic and Drachman (1996) suggest that these two properties be examined separately and thus
propose two separate hypothesis tests. Diebold, Gunther and Tay (1998) propose the use of CUSUM statisticsto
test for these properties simultaneously.

19



but two (the EWMA-IV AR specification under the generalized-t and nonparametric
assumptions) reject the null hypothesis of correct distributional form. For the other VaR models,
the null hypothesisis not generally rejected, except for the t(13) distributional assumptions that
performed poorly with respect to previous test results.

These results provide further evidence that the distributional assumption appearsto drive
these forecast evaluation results and that the covariance matrix specification is of secondary
importance. In fact, other than the poor performance of the implied specifications, little
inference on the relative performance of these modelsis possible. This poor performance may
not be surprising given that implied volatilities are derived under the strict distributional
assumptions underlying the Garman-Kohlhagen model and may not be directly applicable for use
with other distributional assumptions. Furthermore, the basically equivalent performance of the
covariance matrix specifications and the portfolio variance specifications that abstract from
covariance matrix forecasts indicate that one may simplify the generation of VaR estimatesin

this way without sacrificing accuracy.

V. Analysisof VaR Exception Magnitudes and Capital Requirements

The evaluation of VaR models, both in practice and in the literature, has generally
focused on the frequency of exceptions and thus has disregarded information on their
magnitudes. However, as discussed by Hendricks (1996) and Berkowtiz (1999), the magnitudes
of exceptions should be of primary interest to the various users of VaR models. For example,
regarding bank capital requirements for market risk exposure, initial public documents stated that
“[w]lhen considering supervisory responses, [supervisory agencies] would take into account the
extent to which trading losses exceed the VaR amounts, since exceptions that greatly exceed VaR
amounts are of greater concern than are exceptions that exceed them only slightly.” (Federal
Register, 1996). In this section, we use two evaluation methods that focus on the magnitude of
the losses experienced when VaR estimates are exceeded. The first method uses a hypothesis
test developed by Berkowitz (1999) that explicitly examines the magnitude of VaR exceptions.
The second method is based on the regulatory loss function embodied in current market risk

capital requirements for large U.S. banks. These evaluation results permit inference on the
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relative performance of the various covariance matrix forecasts.

1a). Normal transform magnitudetest for VaR exceptions

Berkowitz (1999) proposes a hypothesis test for determining whether the magnitude of
observed VaR exceptions are consistent with the underlying VaR model. The key intuition is
that VaR exceptions are treated as continuous random variables and not converted into the binary
s Variable used for the binomial and multinomial tests. For this test, we focus on the
exceptions by treating non-exceptions as censored random variables. In essence, this test
provides a middle ground between the full distribution approach of the LR, test and the
frequency approach of the LR, and LR, tests.

Aswith the LR 4 test, the empirical quantile seriesis transformed into standard normal
Z,.1 Series. However, the ., values are treated as censored normal random variables, where
the censoring istied to the desired coverage level of the VaR estimates. Thus, z,,,, IS
transformed into v,.., as follows:
ifz_ . <®Ya)

z

mt+1 mt+1

Vmt+1 = . :
ifz ., > 0 ()
The conditional likelihood function for the right-censored observations of vy,,,.,; = O (i.e., for non-

exceptions) is

0o~ (o)~ O
(Yoot [ Zea 207 (0)) =1- ﬁcp(ziﬁ

where |}, ando,,, are the unconditional mean and standard deviation of theseries® The

conditional likelihood function fory,, = Z,,., IS that of a truncated normal distribution; i.e.,

_ f(z..
f (Vo |20 < @7 (@) = qu—(l(r;)lzu 0
b—""0
O (O 0

19 Note that this test does not examine the autocorrelation coefficient pm discussed before, since the
transformation z,,,.,, into the censored random variabley, ., disrupts the time sequence of the series. Thus, we only
examine the two unconditional moments of the z,,,, series.
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The unconstrained conditional Iog Iikelihood is ,
(ymt+1 _p'm) D D(D*l(a)_um D:D

:ym‘ézologﬁl Eiﬁm Zm Iog 2T[o ) —Zoi _Iogﬁdjﬁiom %

If the VaR model generating the empirical quantilesis correct, the v,.., series should be

identically distributed, and [j4 5,,] should equal [0, 1]. Thus, the relevant test statistic is

LR = 2[ m)~ Lmag(o,l)] , which is asymptotically distributed(2).

mag Um,

1b). Resultsof theLR,,, test

The results of the LR, tests for the four sets of VaR estimates are reported in Table 7.
Since this is a joint null hypothesis regarding the frequency of exceptions and their magnitudes,
we expect that it would be rejected for the cases in which the VaR estimates rejected the
binomial null hypothesis alone. This result occurs in only 82% of the cases (56 out of 68), but
the bulk of the unexpected non-rejections of the joint null hypothesis (9 out of 12) occur for the
1% VaR estimates, where the power of the binomial test is at its lowest. Overall, the two sets of
test results were in agreement in 46% of the cases (73 out of 160), and the joint null hypothesis
was rejected after the binomial null hypothesis was not rejected in another 47% of cases (75 of
160). Thus, the LR, results are consistent with the |.Results in 93% of the cases.

Focusing first on the distributional assumptions underlying the VaR models, Panel C
clearly indicates that, as before, the t(13) distributional assumption performs poorly, even for the
1% VaR estimates for which it did well before. However, as shown in the other three panels of
Table 7, the normal, generalized-t and nonparametric distributional assumptions perform
relatively well for the 1% VaR estimates.

Focusing on the different specifications of the portfolio variance forecasts, as with the
LR results, we find that the implied covariance matrix forecasts strongly reject thenuR
hypothesis in all 40 cases. Clearly, these covariance matrix forecasts perform poorly along many
dimensions in a VaR framework, in contrast to their performance under the purely statistical loss
functions. The covariance matrix specifications that performed best across the distributional

assumptions are the historical and EWMA specifications, while the GARCH specifications do
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well only for the 1% coverage level.
In summary, although distributional assumptions play arole, the LR, test permits more
inference on the covariance matrix forecasts and indicates that the simple average forecasts
appear to perform best, further validating the current practice of financial institutions. The
simple covariance matrix specifications performed better than the two portfolio variance
specifications in that the latter’s VaR estimates did not reject the joint null for only the lower
coverage measures. However, this is only weak evidence in favor of using VaR models based in

forecasted covariance matrices.

2a). Capital requirementsbased on VaR estimates

As mentioned before, current international bank regulations require that capital
requirements for the market risk exposures of large banks be based on the banks’ own VaR
estimates. Lopez (1999) describes the U.S. implementation of these capital requirements and
provides an explicit regulatory loss function that can be used to examine the relative performance
of the 40 VaR models. As before, we begin with the logged portfolio return

Xt+1 = WEr4q = WAIN(Yiag) = WiAIN(Yigaq) + WoAIN (Y1)

In order to determine the dollar value of the foreign exchange portfolio, we have

P$is1 =In(Yiag) =Wy In( Yoy ) +Woln(Yor ) = In(YltJrl""lYZtﬁLlW2 )
which implies thatY,,; = ;i Y2, and for our weighting vector [1,¥].; = Y1141 Y- Note
that a VaR estimate is expressed in dollar terms as the loss between the current portfolio value
and the portfolio value corresponding to it; thaVeR _ (k,a) is expressed in dollar terms as
VaRs$ (ko) = P§(1 - e'Fn?)

Under the current U.S. implementation of the market risk capital requirements, capital
charges are based on VaR estimates generated using a ten-day holding period (k = 10) and 99
percent coverage:= 1). In other words, a bank’s market risk capital charge is based on its own
estimate of the potential loss that would not be exceeded with one percent probability over the
subsequent two week period. The actual market risk capital that must be hold for time t+1,
denoted MRG,,,, is the larger of VaR$10,1) or a multiple of the average of the previous sixty

VaR#$,,(10,1) estimates; that is,
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MRC, . | - max[ VaR$, (10,1); S, * 6_102 VaR$, (10,1) ] + SR
where S, and SR, are amultiplication factor and an additional capital charge for the portfolio’s
idiosyncratic credit risk, respectively. In this study, we ignore the SR, capital charge.

Under the current framework, S, > 3, and it is a step function that depends on the
number of exceptions observed over the previous 250 trading days.?® The possible number of
exceptionsis divided into three zones. Within the green zone of four or fewer exceptions, aVaR
model is deemed “acceptably accurate” to the regulators, anen$ains at its minimum value
of three. Within the yellow zone of five to nine exceptiongjr®reases incrementally with the
number of exceptions. Within the red zone of ten or more exceptions, the VaR model is
deemed to be “inaccurate” for regulatory purposes, anth@eases to its maximum value of
four. The institution must also explicitly take steps to improve its risk management system.
Thus, banks look to minimize exceptions (in order to minimize the multiplier) without reporting

VaR estimates that are too large and raise the average term in the loss function.

2b). Results

As currently specified, this regulatory loss function is based on ten-day VaR estimates.
However, since we are examining one-step-ahead covariance matrix forecasts, we evaluate one-
day VaR estimates using this loss funcfibrf.able 8 presents the percentage of overlapping
250-day periods, of which there are 1430 in the out-of-sample period, for which a specific
number of exceptions (@4, <5, <9, <10) are observed for each of the 40 VaR models. Since in

no case are there more than 10 exceptions, we are never in the red zone, and none of the models

2 Note that the portfolio returns reported to the regulators, commonly referred to as the “profit & loss
numbers”, will usually not directly correspond tg,x The profit & loss numbers are usually polluted by the
presence of customer fees and intraday trade results, which are not captured in standard VaR models. No definitive
method of dealing with this discrepancy has been established.

2 In the yellow zone, the multiplier values for five through nine exceptions are 3.4, 3.5, 3.75 and 3.85,
respectively.

22 A common approach for generating ten-day VaR estimates is to scaled up one-day VaR estimates using
V1o, which assumes that the portfolio returns are independent and identically distributed. We examined the
performance of these simple ten-day VaR estimates under the regulatory loss function and not surprisingly found
the results to be qualitatively similar.
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would invoke serious regulatory concerns.

Given the better performance of the EWMA-normal model in the previous sections, we
chose its capital charges to be the standard against which the other models’ capital charges are
compared. Table 9 presents the percentage of the 1430 out-of-sample trading days for which the
MRC,,.., capital charges for the EWMA-normal model are less than those of the other 39 VaR
models. This model clearly has lower capital requirements than all of the covariance matrix
specifications under the t(13) and generalized-t distributions; that is, EWMA-normal perform
better than these alternatives greater than 75% of the time. The only VaR estimates that generate
smaller capital charges than those of the EWMA-normal model for more than 50% of the trading
days are those for the portfolio EWMA specification with the normal and the nonparametric
distributions.

To more carefully examine these loss function results, we examine the differences
between the capital charges for the EWMA-normal model and the other models using the
Diebold-Mariano test statistic. The null hypothesis that we investigate is whether the mean
difference between the two sets of capital charges is equal to zero. If we do not reject the null
hypothesis, then the alternative model does not perform worse than the EWMA-normal model.

If we reject the null hypothesis and the mean difference is negative, then the EWMA-normal
model and its VaR estimates perform better because they generate lower capital charges on
average. If we reject the null hypothesis and the mean difference is positive, then the alternative
model and its VaR estimates perform better.

In Table 10, we present the p-values for the Diebold-Mariano statistics; if they are below
5%, we reject the null hypothesis in favor of the EWMA-normal model, and if they are above
95%, we reject the null hypothesis in favor of the alternative model. In 32 cases, we reject the
null hypothesis in favor of the EWMA-normal model. We reject all the alternative VaR models
based on the t(13) and generalized-t distributional assumptions. For the nonparametric
distribution, we do not reject the null hypothesis for the EWMA and portfolio EWMA
specifications. For the normal distribution, several covariance matrix specifications do not reject
the null hypothesis, indicating that they perform as well as the EWMA-normal model under this

regulatory loss function. However, the most noteworthy case is the portfolio EWMA-normal
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model that rejects the null hypothesisin favor of itself; that is, the capital charges from the
portfolio EWMA-normal model are, on average, significantly lower than those for the EWMA -
normal model.

Table 11 presents the test results for the mean differencesin capital charges between the
portfolio EWMA-normal model and the other 39 VaR models. We rgject the null hypothesis that
the means are zero in al cases, which implies that the capital charges generated by the portfolio
EWMA-norma model are the lowest in an economically and statistically meaningful way.

The empirical evaluation results under this regulatory loss function permit the most
inference on the relative performance of the competing covariance matrix forecasts within aVaR
framework. Under this loss function, the simple EWMA covariance matrix forecast performs
quite well relative to the other aternatives, although the GARCH specifications aso performs
well under the normal distributional assumption. Thus, the use of simple covariance matrix
forecasts can bejustified in actual practice. However, overal, it can be argued that these results
indicate that covariance matrix forecasts can be ignored in favor of portfolio variance forecasts

for generating capital-minimizing VaR estimates.

V1. Conclusion

In this paper, we evaluate the performance of several covariance matrix forecasts using
standard statistical loss functions and a VaR framework, which should be more economically
meaningful to financial risk managers. For aportfolio of foreign exchange rates, these evaluation
results provide guidance on which covariance matrix forecasts perform best under these criteria.
With respect to the statistical loss functions, our results indicate that the forecasts implied from
option prices generally outperform forecasts based on simple averages and on GARCH models,
although the degree of statistical significance varies. Our findings are generaly in line with
those of Jorion (1995) for univariate exchange rates. However, economic loss functions that
explicitly incorporate the costs faced by forecast users provide the most meaningful forecast
evaluations.

The economic context we useis aVaR framework consisting of two sets of evaluation

techniques. Thefirst set of techniques focuses on certain statistical properties of VaR estimates
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derived from the competing covariance matrix specifications. These results indicate that the
dominant factor in determining the relative accuracy of VaR estimatesistheir distributional
assumption, not the specification of the covariance matrix. Even though only alimited amount
of inference is possible here, the implied covariance matrix specification performs poorly overall.
This result may not be surprising given the many anomalies typically associated with implied
volatilities. These results seem to provide support for the common industry practice of using the
EWMA covariance matrix specifications in generating VaR estimates. However, it does not
completely explain why practitioners have generally settled on the standard normal distributional
assumption, since other distributional assumptions, such as using a nonparametric distribution,
did better across the four quantiles examined.

The second set of evaluation techniques focus on the magnitude of osses experienced
when VaR exceptions are registered. Although distributional assumptions play arole here as
well, the normal transform magnitude test permits more inference on the performance of
covariance matrix forecasts. The specifications that performed best overall are the historical and
EWMA specifications, indicating that simple average forecasts appear to perform best and
further validating the current practice of financial institutions. Aswith the full distribution test
results, the implied covariance matrix forecasts reject the magnitude null hypothesisin all cases.

With respect to the regulatory loss function built into current bank capital requirements,
the two VaR models that perform best are the port. EWMA-normal and the EWMA-normal
model. Thisempirical result indicates that the VaR models based on the simplest specifications
of second moment dynamics and distributional assumptions may be the ones that provide the
capital-minimizing VaR forecasts. In fact, these results indicate that ignoring covariance matrix
forecasts in favor of just portfolio variance forecasts may be preferable.

In short, from our empirical results, the covariance matrix forecasts that perform best
overall within aVaR framework are those derived from simple specifications, such asthe
popular EWMA specification. Although this result challenges the folk wisdom that forecasts
based on larger information sets, such as those embodied in options prices, or based on more
rigorous time-series specification of their dynamics should be more accurate, our results indicate

this additional information and structure is not necessarily helpful the purposes of VaR estimates.
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These empirical results are consistent with those of Lucas (2000), who finds that VaR models
based on simple measures of portfolio variance and the normal distribution generate smaller
discrepancies between actual and postulated VaR estimates than more sophisticated VaR models.
He argues that this outcome is based on offsetting biases in the variance and VaR estimates of
simple models that cannot be captured by more sophisticated models that attempt to capture the
actual (but unknown) degree of leptokurtosisin the portfolio returns.

In fact, our results seem to go even further by indicating that VaR models based on
covariance matrix forecasts for the individual portfolio assets do not perform much better than
VaR models based just on the portfolio variance. Further research is necessary into why the
additional information in the covariance matrix forecasts does not seem to be useful in this
context and into whether it can be made useful by way of forecast combination techniques, as
proposed by Christoffersen et al. (1998).
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Table 1. Evaluation Resultsunder the Statistical L oss Functions
This analysis is based on the 1679 out-of -sample covariance matrix forecasts. The minimum value in each column
isin bold font and underlined, and the second smallest value isjust in bold font. The shaded cells indicate that the
null hypothesis of equal loss function values between the forecast and the minimizing forecast is rejected using the
Diebold-Mariano statistic. The asterisks indicate the degree of statistical significance (one for 10%, two for 5% and
three for 1%).

Panel A. Varianceforecastsfor thedaily DEM returns

M SE MAE HMSE LL GMLE
Constant 9.44168e-09" 5.44717e-05 4.17589™ 9.70722 -8.94005™"
Historical 9.31532e-09” 5.37523e-05 4.30393™ 9.29186' -8.99659™
EWMA 9.00663e-09 5.25232e-05 4.07639™ 9.06168 -9.03971
GARCH-DVEC | 8.93228e-09 5.37428e-05" 3.16844™ 9.32334" -9.04864
GARCH-BEKK | 8.90617e-09 5.29962e-05 3.33749™ 9.25773 -9.04656
Implied 8.88637e-09 5.62076e-05"" | 241193 9.74525™" -9.04463

Panel B. Variance forecastsfor the daily JPY returns

M SE MAE HMSE LL GMLE
Constant 9.39769e-09” 4.94215e-05" 4.95564" 9.75784" -9.08801""
Historical 9.28328e-09™ 4.74357e-05 6.66301" 9.20758" -9.11650""
EWMA 9.12076e-09™" 4.67895e-05 6.45013™" 8.99888 -9.15197""
GARCH-DVEC | 9.08908e-09" 4.68262e-05 4.87144 9.17600 -9.16907""
GARCH-BEKK | 9.11594e-09™ 4.67479e-05 5.18208™" 9.18913 -9.16038™"
Implied 8.89495e-09 4.86307e-05"" | 3.33255 9.38747"" -9.20371

Panel C. Covarianceforecastsfor thedaily DEM and JPY returns

MSE MAE HMSE GMLE
Constant 4.77241e-09™" 3.96918e-05"" | 4.84833 -9.56626"""
Historical 4.68406e-09 3.61173e-05 8.56484""" -9.63544""
EWMA 4.62121e-09™" 3.57659e-05 8.69300 -9.65778"
GARCH-DVEC | 4.61319e-09° 3.60943e-05 6.35233"" -9.67271°
GARCH-BEKK | 4.62304e-09° 3.55559e-05 6.77418™" -9.65799™
Implied 4.55059e-09 3.70369e-05"" | 4.47682 -9.70195




Panel D. Variance forecastsfor the portfolio returns

M SE MAE HMSE LL GMLE
Constant 8.345x10% ™ 1.647 x10*~ 3.526" 10.553 -7.869 "
Historical 8.255 x10® ™ 1.560 x10™* 4.433" 9.814° -7.905"
EWMA 8.069 x108 ™ 1.531 x10* 4135 9.669 -7.942°
GARCH-DVEC | 8.017 x10® 1.547 x10* 3.332™ 9.935™ -7.952
GARCH-BEKK | 8.021 x10® 1.526 x10* 3.498 " 9.895 ™ -7.947
Implied 7.923 x10° 1.611x10%"" | 2.497 10.226 " -7.962
EWMA-IVAR 7.974 X108 1.564 x10*~ 3.135" 9.983 " -7.959
EWMA-ICOV 8.103 x10% ™" 1.655 x10* ™" 2.630 10.313™ -7.948"
Port. EWMA 8.064 x108 ™ 1.524 x10* 4.865"" 9.52500 -7.935°
Port. GARCH 8.004 x10® 1.531 x10* 3371 9.884™ -7.955
Table2. Quantilesof thefour distributional assumptions used
N(0,1) t(13) generalized-t with [ nonparametric
[n,p]=[2.5,1] based_on EWMA
covariance matrix
1% -2.3263 -2.6503 -3.2678 -2.4468
5% -1.6449 -1.7709 -1.6157 -1.6115
10% -1.2816 -1.3502 -1.1238 -1.2066
25% -0.6745 -0.6938 -0.5405 -0.5866
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Table 3. Observed Exception Ratesfor the 40 VaR Models

Panel A. VaR models based on the standard normal distributional assumption

Observed frequency of exceptions

Covariance
specification 1% 5% 10% 25%
Constant 1.19 441 7.21 19.18
Historical 1.85 5.30 8.22 21.80
EWMA 1.67 5.18 7.86 21.62
GARCH-DVEC 1.19 4.88 7.92 20.55
GARCH-BEKK 119 476 8.16 20.85
Implied 0.95 4.05 6.67 20.01
EWMA-IVAR 119 4.35 7.21 20.55
EWMA-ICOV 143 494 7.98 21.50
Port. EWMA 155 554 8.93 22.51
Port. GARCH 125 4.88 8.22 20.67
Panel B. VaR models based on the t(13) distributional assumption
Observed frequency of exceptions
Covariance
specification 1% 5% 10% 25%
Constant 0.89 3.63 6.67 18.58
Historical 101 4.35 7.68 21.02
EWMA 1.01 4.17 7.33 20.91
GARCH-DVEC 0.77 3.75 7.44 19.77
GARCH-BEKK 0.77 3.87 7.33 20.19
Implied 0.54 3.16 6.02 19.24
EWMA-IVAR 0.66 3.39 6.37 19.89
EWMA-ICOV 0.95 4.05 7.27 21.08
Port. EWMA 0.83 4.35 8.16 21.26
Port. GARCH 0.71 3.69 7.39 20.37
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Panel C. VaR models based on the estimated generalized t-distributional assumption

Observed frequency of exceptions

Covariance

specification 1% 5% 10% 25%
Constant 0.24 453 9.59 24.00
Historical 0.42 5.36 11.14 25.97
EWMA 0.30 5.36 11.26 26.92
GARCH-DVEC 0.24 494 10.01 26.27
GARCH-BEKK 0.30 494 10.01 26.15
Implied 0.18 4.23 8.99 24.90
EWMA-IVAR 0.30 453 9.35 25.61
EWMA-ICOV 0.12 3.87 8.70 24.48
Port. EWMA 0.48 5.66 11.49 27.87
Port. GARCH 0.30 5.06 10.07 26.09

Panel D. VaR models based on the in-sample nonparametric distributional assumption

Observed frequency of exceptions

Covariance

specification 1% 5% 10% 25%
Constant 1.07 459 8.64 22.22
Historical 1.67 5.36 9.11 24.30
EWMA 131 5.36 941 25.07
GARCH-DVEC 0.95 494 9.05 24.24
GARCH-BEKK 1.07 5.00 8.99 24.42
Implied 0.83 4.29 7.62 22.75
EWMA-IVAR 0.89 459 8.34 23.29
EWMA-ICOV 0.71 3.93 7.44 22.81
Port. EWMA 1.25 5.66 10.18 25.43
Port. GARCH 1.07 5.12 9.05 24.60
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Table4. Asymptotic p-valuesfor theLR,. and LR, Test Results
The p-value for the LR, and LR, test statistics are reported. The LR, statistics are asymptotically distributed ¥?(1),
and the LR, statistics are asymptotically distributed ¥*(2). The cellsin bold font indicate rejection of the null
hypothesis at the 5% significance level.

Panel A. VaR models based on the standard normal distributional assumption

Binomial LR tests

1% VaR estimates 5% VaR estimates 10% VaR estimates | 25% VaR estimates
Covariance | LR, LR, LR, LR, LR, LR LR, LR
specifcation
Constant 0.56 0.63 0.74 1.00 1.00 1.00 1.00 1.00
Historical 1.00 0.99 0.42 0.85 0.99 1.00 1.00 0.99
EWMA 0.99 0.97 0.27 0.87 1.00 1.00 1.00 1.00
GARCH- 0.56 0.41 0.17 0.65 1.00 1.00 1.00 1.00
DVEC
GARCH- 0.56 0.41 0.34 0.87 0.99 1.00 1.00 1.00
BEKK
Implied 0.15 0.67 0.93 1.00 1.00 1.00 1.00 1.00
EWMA- 0.56 0.63 0.79 0.98 1.00 1.00 1.00 1.00
IVAR
EWMA- 0.90 0.82 0.08 0.92 1.00 1.00 1.00 1.00
ICOV
Port. 0.94 0.92 0.68 0.72 0.86 0.86 0.98 0.97
EWMA
Port. 0.68 0.53 0.17 0.65 0.99 0.99 1.00 1.00
GARCH
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Panel B. VaR models based on the t(13) distributional assumption

Binomial LR tests

1% VaR estimates

5% VaR estimates

10% VaR estimates

25% VaR estimates

Covariance | LR, LR, LR, LR, LR, LR, LR, LR
specifcation

Constant 0.35 0.73 0.99 1.00 1.00 1.00 1.00 1.00
Historical 0.04 0.16 0.79 0.98 1.00 1.00 1.00 1.00
EWMA 0.04 0.16 0.89 0.99 1.00 1.00 1.00 1.00
GARCH- 0.67 0.43 0.99 0.99 1.00 1.00 1.00 1.00
DVEC

GARCH- 0.67 0.43 0.97 0.99 1.00 1.00 1.00 1.00
BEKK

Implied 0.96 0.89 1.00 1.00 1.00 1.00 1.00 1.00
EWMA- 0.87 0.70 1.00 1.00 1.00 1.00 1.00 1.00
IVAR

EWMA- 0.15 0.16 0.93 0.96 1.00 1.00 1.00 1.00
ICOV

Port. 0.52 0.31 0.79 0.85 0.99 0.99 1.00 1.00
EWMA

Port. 0.78 0.57 0.99 1.00 1.00 1.00 1.00 1.00
GARCH
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Panel C. VaR models based on the generalized t-distributional assumption

Binomial LR tests

1% VaR estimates

5% VaR estimates

10% VaR estimates

25% VaR estimates

Covariance | LR, LR, LR, LR, LR, LR, LR, LR,
specifcation

Constant 1.00 1.00 0.63 0.99 0.43 0.96 0.66 0.59
Historical 0.99 0.98 0.50 0.85 0.87 0.86 0.64 0.50
EWMA 1.00 1.00 0.50 0.97 0.91 0.78 0.93 0.81
GARCH- 1.00 1.00 0.08 0.81 0.01 0.30 0.77 0.52
DVEC

GARCH- 1.00 1.00 0.08 0.81 0.01 0.30 0.72 0.47
BEKK

Implied 1.00 1.00 0.86 1.00 0.84 0.88 0.08 0.12
EWMA- 1.00 1.00 0.63 0.98 0.63 0.67 0.44 0.25
IVAR

EWMA- 1.00 1.00 0.97 1.00 0.93 0.96 0.38 0.30
ICOV

Port. 0.98 0.95 0.77 0.85 0.95 0.88 0.99 0.97
EWMA

Port. 1.00 1.00 0.09 0.55 0.07 0.27 0.69 0.42
GARCH
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Panel D. VaR models based on the nonparametric distributional assumption

Binomial LR tests

1% VaR estimates

5% VaR estimates

10% VaR estimates

25% VaR estimates

Covariance | LR, LR, LR, LR, LR, LR, LR, LR
specifcation

Constant 0.23 0.60 0.57 0.99 0.94 0.98 0.99 0.98
Historical 0.99 0.97 0.50 0.85 0.78 0.93 0.49 0.24
EWMA 0.78 0.65 0.50 0.97 0.58 0.73 0.06 0.09
GARCH- 0.15 0.16 0.08 0.81 0.81 0.91 0.53 0.26
DVEC

GARCH- 0.23 0.21 0.00 0.79 0.84 0.93 0.42 0.24
BEKK

Implied 0.52 0.79 0.83 0.99 1.00 1.00 0.97 0.94
EWMA- 0.35 0.21 0.57 0.97 0.98 0.99 0.90 0.80
IVAR

EWMA- 0.78 0.57 0.96 0.99 1.00 1.00 0.96 0.93
ICOV

Port. 0.68 0.53 0.77 0.85 0.20 0.52 0.32 0.09
EWMA

Port. 0.23 0.21 0.18 0.53 0.81 0.91 0.30 0.11
GARCH
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Table5. Asymptotic p-valuesfor the Trinomial LR,. and LR, Test Results
The p-value for the trinomial LR, and LRcc test statistic are reported. Thetrinomial LR, stetistics are
asymptotically distributed ¥*(2), and the trinomial LR, statistics are asymptotically distributed ¥*(4). The shaded
cellsindicate rejection of the null hypothesis at the 5% significance level.

Panel A. VaR models based on the standard normal distributional assumption

Test statisticsfor a=[0.01, 0.05] Test statisticsfor =[0.01, 0.10]

Covariance LR LR LR LR
specification

Constant 0.60 1.00 1.00 1.00
Historical 0.99 1.00 1.00 1.00
EWMA 0.96 1.00 1.00 1.00
GARCH-DVEC 0.27 1.00 0.99 1.00
GARCH-BEKK 0.32 1.00 0.97 1.00
Implied 0.82 1.00 1.00 1.00
EWMA-IVAR 0.65 1.00 1.00 1.00
EWMA-ICOV 0.75 1.00 0.99 1.00
Port. EWMA 0.94 1.00 0.97 1.00
Port. GARCH 0.40 1.00 0.96 1.00

Panel B. VaR models based on the t(13) distributional assumption

Test statisticsfor a=[0.01, 0.05] Test statisticsfor a=[0.01, 0.10]

Covariance LR, LR, LR LR
specification

Constant 0.98 1.00 1.00 1.00
Historical 0.54 1.00 1.00 1.00
EWMA 0.72 1.00 1.00 1.00
GARCH-DVEC 0.97 1.00 1.00 1.00
GARCH-BEKK 0.95 1.00 1.00 1.00
Implied 1.00 1.00 1.00 1.00
EWMA-IVAR 1.00 1.00 1.00 1.00
EWMA-ICOV 0.82 1.00 1.00 1.00
Port. EWMA 0.65 1.00 0.97 1.00
Port. GARCH 0.98 1.00 1.00 1.00
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Panel C. VaR models based on the generalized t-distributional assumption

Test statisticsfor =[0.01, 0.05]

Test statisticsfor ¢=[0.01, 0.10]

Covariance LR, LR, LR, LR,
specification

Constant 1.00 1.00 1.00 1.00
Historical 1.00 1.00 1.00 1.00
EWMA 1.00 1.00 1.00 1.00
GARCH-DVEC 1.00 1.00 1.00 1.00
GARCH-BEKK 1.00 1.00 1.00 1.00
Implied 1.00 1.00 1.00 1.00
EWMA-IVAR 1.00 1.00 1.00 1.00
EWMA-ICOV 1.00 1.00 1.00 1.00
Port. EWMA 0.97 1.00 0.99 1.00
Port. GARCH 1.00 1.00 1.00 1.00

Panel D. VaR models based on the nonparametric distributional assumption

Test statisticsfor a=[0.01, 0.05]

Test statisticsfor ¢=[0.01, 0.10]

Covariance LR, LR, LR, LR,
specification

Constant 0.29 1.00 0.84 1.00
Historical 0.97 1.00 0.98 1.00
EWMA 0.63 1.00 0.65 1.00
GARCH-DVEC 0.02 1.00 0.59 1.00
GARCH-BEKK 0.04 1.00 0.63 1.00
Implied 0.70 1.00 1.00 1.00
EWMA-IVAR 0.34 1.00 0.94 1.00
EWMA-ICOV 0.95 1.00 1.00 1.00
Port. EWMA 0.72 1.00 0.41 1.00
Port. GARCH 0.07 1.00 0.59 1.00




Table6. Asymptotic p-valuesfor the LR, Test Results

The p-value for the LR test statistics are reported. The LR statistic is asymptotically distributed ¥%(3). The
shaded cells indicate rejection of the null hypothesis at the 5% significance level.

Normal transform tests

Covariance Standard normal | t(13) distribution | generalized-t nonparametric
specification distribution distribution distribution
Constant 0.99 1.00 0.96 0.83
Historical 0.28 0.99 0.06 0.73
EWMA 0.36 0.99 0.08 0.64
GARCH-DVEC 0.88 1.00 0.36 0.28
GARCH-BEKK 0.72 1.00 0.18 0.19

Implied 1.00 1.00 0.99 0.99
EWMA-IVAR 0.99 1.00 0.82 0.75
EWMA-ICOV 1.00 1.00 0.99 0.99

Port. EWMA 0.50 0.99 0.28 0.92

Port. GARCH 0.78 1.00 0.21 0.20




Table7. Asymptotic p-valuesfor the LR, Test Results
The p-valuefor the LR, test statistic are reported. The LR, test statistics are asymptotically distributed 5?(2).
The shaded cells indicate rejection of the null hypothesis at the 5% significance level.

Panel A. VaR models based on the standard normal distributional assumption

L Ry tests
Covariance 1% VaR 5% VaR 10% VaR 25% VaR
specification estimates estimates estimates estimates
Constant 0.98 1.00 1.00 1.00
Historical 0.05 0.64 0.92 0.99
EWMA 0.29 0.63 0.76 0.88
GARCH-DVEC 0.96 0.99 1.00 1.00
GARCH-BEKK 0.90 0.99 0.99 0.99
Implied 0.99 1.00 1.00 1.00
EWMA-IVAR 0.99 1.00 1.00 1.00
EWMA-ICOV 0.99 1.00 1.00 1.00
Port. EWMA 0.09 0.85 0.99 1.00
Port. GARCH 0.92 0.99 0.99 0.99

Panel B. VaR models based on the t(13) distributional assumption

L Ry tests
Covariance 1% VaR 5% VaR 10% VaR 25% VaR
specification estimates estimates estimates estimates
Constant 0.99 1.00 1.00 1.00
Historical 0.99 1.00 1.00 1.00
EWMA 1.00 1.00 1.00 1.00
GARCH-DVEC 0.99 1.00 1.00 1.00
GARCH-BEKK 0.99 1.00 1.00 1.00
Implied 1.00 1.00 1.00 1.00
EWMA-IVAR 0.99 1.00 1.00 1.00
EWMA-ICOV 1.00 1.00 1.00 1.00
Port. EWMA 0.99 1.00 1.00 1.00
Port. GARCH 0.99 1.00 1.00 1.00
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Panel C. VaR models based on the generalized t-distributional assumption

L Ry tests
Covariance 1% VaR 5% VaR 10% VaR 25% VaR
specification estimates estimates estimates estimates
Constant 0.99 1.00 1.00 1.00
Historical 0.04 0.46 0.84 0.99
EWMA 0.02 0.34 0.72 0.98
GARCH-DVEC 0.87 0.99 0.99 0.99
GARCH-BEKK 0.76 0.99 0.99 0.98
Implied 0.99 1.00 1.00 1.00
EWMA-IVAR 0.98 1.00 1.00 1.00
EWMA-ICOV 0.99 1.00 1.00 1.00
Port. EWMA 0.09 0.76 0.99 1.00
Port. GARCH 0.78 0.99 0.99 0.98
Panel D. VaR models based on the nonparametric distributional assumption
L Ry tests
Covariance 1% VaR 5% VaR 10% VaR 25% VaR
specification estimates estimates estimates estimates
Constant 0.97 1.00 1.00 1.00
Historical 0.03 0.97 0.99 1.00
EWMA 0.01 0.94 0.99 1.00
GARCH-DVEC 0.78 0.99 0.99 1.00
GARCH-BEKK 0.52 0.94 0.99 0.99
Implied 0.99 1.00 1.00 1.00
EWMA-IVAR 0.96 1.00 1.00 1.00
EWMA-ICOV 0.99 1.00 1.00 1.00
Port. EWMA 0.16 0.99 1.00 1.00
Port. GARCH 0.55 0.95 1.00 1.00
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Table 8. Exception frequency as a per centage of out-of-sample, 250-trading day periods
Each cell presents the percentage of the 1430 overlapping 250-day periods in the out-of-sample period for
which these number of VaR exceptions are observed.

Pandl A. Standard normal distribution

Number of VaR exceptions

Covariance 0 <4 <5 <9 <10
specification

Constant 25 67 74 100 100
Historical 1 55 70 100 100
EWMA 0 66 80 100 100
GARCH-DVC | O 84 93 100 100
GARCH-BEKK | 0 79 93 100 100
Implied 9 92 100 100 100
EWMA-IVAR 1 70 84 100 100
EWMA-ICOV 0 74 87 100 100
Port. EWMA 0 77 87 100 100
Port. GARCH 0 75 95 100 100

Panel B. t(13) distribution

Number of VaR exceptions

Covariance 0 <4 <5 <9 <10
specification

Constant 26 79 87 100 100
Historical 0 20 95 100 100
EWMA 0 100 100 100 100
GARCH- 0 100 100 100 100
DVEC

GARCH-BEKK |5 96 100 100 100
Implied 26 100 100 100 100
EWMA-IVAR 22 100 100 100 100
EWMA-ICOV |8 89 9 100 100
Port. EWMA 15 26 35 100 100
Port. GARCH 0 100 100 100 100
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Panel C. Generalized-t distribution

Number of exceptions

Covariance 0 <4 <5 <9 <10
specification

Constant 50 100 100 100 100
Historical 24 100 100 100 100
EWMA 30 100 100 100 100
GARCH- 47 100 100 100 100
DVEC

GARCH-BEKK | 43 100 100 100 100
Implied 61 100 100 100 100
EWMA-IVAR 38 100 100 100 100
EWMA-ICOV | 76 100 100 100 100
Port. EWMA 43 100 100 100 100
Port. GARCH 22 100 100 100 100
Panel D. Nonparametric distribution

Number of exceptions

Covariance 0 <4 <5 <9 <10
specification

Constant 26 67 77 100 100
Historical 1 60 71 100 100
EWMA 0 91 100 100 100
GARCH- 0 93 100 100 100
DVEC

GARCH-BEKK | 0 83 93 100 100
Implied 0 9 97 100 100
EWMA-IVAR 9 97 100 100 100
EWMA-ICOV 1 100 100 100 100
Port. EWMA 0 85 87 100 100
Port. GARCH 0 95 97 100 100
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Table9.

Per centage of trading daysfor which the defined capital chargefor EWMA-

Normal model is below the other model’s capital charge

Covariance Standard normal t(13) distribution generalized-t nonparametric
specification distribution distribution distribution
Constant 73.9 83.8 93.5 79.8
Historical 64.9 78.5 99.9 76.0
EWMA m 80.0 100.0 71.0
GARCH-DVEC 57.0 83.1 100.0 65.9
GARCH-BEKK 56.8 824 100.0 70.5
Implied 68.3 88.5 100.0 79.5
EWMA-IVAR 74.9 85.9 100.0 70.4
EWMA-ICOV 65.3 80.5 100.0 79.6

Port. EWMA 30.8 74.1 100.0 48.8

Port. GARCH 58.2 77.6 100.0 72.2
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Table 10. p-valueof the Diebold & Mariano statistic for capital charges corresponding to
the models’ 1% VaR estimates relative to those of the EWMA-normal model

The shaded cells indicate that the null hypothesis of equal capital chargesis rejected at the 5% significance level.
Covariance Standard normal | t(13) distribution generalized-t nonparametric
specification distribution distribution distribution
Constant 1.1% 0.0% 0.0% 0.0%

Historical 3.0% 0.0% 0.0% 0.1%
EWMA 0.0% 0.0% 24.8%
GARCH-DVEC 57.0% 0.0% 0.0% 7.4%
GARCH-BEKK 55.6% 0.0% 0.0% 1.9%
Implied 2.1% 0.0% 0.0% 0.0%
EWMA-IVAR 0.4% 0.0% 0.0% 0.8%
EWMA-ICOV 34.4% 0.0% 0.0% 0.0%
Port. EWMA 98.2% 0.3% 0.0% 80.3%
Port. GARCH 33.0% 0.0% 0.0% 1.0%

Table 11. p-value of the Diebold & Mariano statistic for capital charges corresponding to
the models’ 1% VaR estimates relative to those of the port. EWMA-normal model

The shaded cells indicate that the null hypothesis of equal capital chargesis rejected at the 5% significance level.

Covariance Standard normal | t(13) distribution generalized-t nonparametric
specification distribution distribution distribution
Constant 0.0% 0.0% 0.0% 0.0%
Historical 1.6% 0.0% 0.0% 0.2%
EWMA 1.8% 0.0% 0.0% 0.1%
GARCH-DVEC 1.5% 0.0% 0.0% 0.0%
GARCH-BEKK 2.6% 0.0% 0.0% 0.0%
Implied 0.0% 0.0% 0.0% 0.0%
EWMA-IVAR 0.1% 0.0% 0.0% 0.0%
EWMA-ICOV 4.0% 0.0% 0.0% 0.0%

Port. EWMA M 0.0% 0.0% 0.3%

Port. GARCH 0.4% 0.0% 0.0% 0.0%
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