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ABSTRACT:
Covariance matrix forecasts of financial asset returns are an important component of

current practice in financial risk management.  A wide variety of models, ranging from matrices
of simple summary measures to covariance matrices implied from option prices, are available for
generating such forecasts.  In this paper, we evaluate the relative accuracy of different covariance
matrix forecasts using standard statistical loss functions and a value-at-risk (VaR) framework. 
This framework consists of hypothesis tests examining various properties of VaR models based
on these forecasts as well as an evaluation using a regulatory loss function.

Using a foreign exchange portfolio, we find that implied covariance matrix forecasts
appear to perform best under standard statistical loss functions.  However, within the economic
context of a VaR framework, the performance of VaR models depends more on their
distributional assumptions than on their covariance matrix specification.  Of the forecasts
examined, simple specifications, such as exponentially-weighted moving averages of past
observations, perform best with regard to the magnitude of VaR exceptions and regulatory capital
requirements.  These results provide empirical support for the commonly-used VaR models
based on simple covariance matrix forecasts and distributional assumptions.
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1  See Bollerslev, Engle and Nelson (1994) as well as Diebold and Lopez (1995) for detailed surveys.

2  See Diebold and Lopez (1996) for further discussion on forecast evaluation techniques.

3  See Basle Committee on Banking Supervision (1996a,b).
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I.  Introduction

The modeling of the second moments of asset returns has been a major field of study in

finance over the last twenty years.  Although regularities in the variances of asset returns were

noted by Mandelbrot (1963), the explosion in volatility modeling can generally be traced to the

work of Engle (1982) and Bollerslev (1986).1  Research in the area of volatility models has

expanded in many directions and has led to a wide variety of modeling techniques, both

univariate for individual assets and multivariate for asset portfolios.

Most of this research has focused on the in-sample fit of volatility models by proposing

alternative model specifications and model diagnostic tools, such as the news-impact curve

proposed by Engle and Ng (1993).  A smaller amount of research has focused on the evaluation

of out-of-sample volatility forecasts.  These studies use forecast evaluation techniques to

examine out-of-sample model performance in the hope of providing further guidance on model

specification.  In fact, model evaluations of this sort could be of greater practical importance

since they can make specific recommendations to the users of volatility models.2

In this paper, we evaluate the out-of-sample performance of covariance matrix forecasts

from multivariate volatility models based on different model specifications and information sets. 

The evaluation techniques used here and in the literature can generally be placed into two

categories.  The statistical category consists of loss functions based on distance measures, such as

mean squared error.  The economic category consists of techniques tied to specific uses of second

moment forecasts, such as asset allocation, option trading and portfolio hedging.  Although we

use statistical techniques, we employ a value-at-risk (VaR) framework that should be more

relevant to financial risk managers.  For example, regulatory capital requirements for the market

risk exposure of commercial banks are now explicitly based on VaR estimates and include an

explicit penalty for model inaccuracy.3  Our goal is to provide insight on which covariance

matrix forecasts generate the best performing VaR estimates from this perspective.
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The VaR framework we use consists of two sets of evaluation techniques.  The first set

focuses on the statistical properties of VaR estimates derived from VaR models based on

alternative covariance matrix forecasts.  Specifically, the binomial test of correct unconditional

coverage, which is implicitly incorporated into the aforementioned bank capital requirements, is

used to examine 1%, 5%, 10% and 25% VaR estimates.  The test for correct conditional coverage

developed by Christoffersen (1998) and multinomial extensions of these tests, which can

examine several VaR estimates at the same time, are also used to examine these VaR estimates. 

Finally, the normal transform test developed by Berkowitz (1999) is used to evaluate the VaR

models’ forecasts of portfolio return distributions.

The second set of techniques focus on the magnitude of the losses experienced when VaR

estimates are exceeded, clearly an issue of interest to financial institutions and their regulators. 

To determine whether the magnitudes of observed exceptions are in keeping with the model

generating the VaR estimates, Berkowitz (1999) proposes a hypothesis test based on the

truncated normal distribution.  To examine the performance of the competing covariance matrix

forecasts with respect to regulatory capital requirements, we use the regulatory loss function

implied by the U.S. implementation of market risk amendment to the Basel Capital Accord.  This

loss function penalizes a VaR model for poor performance by using a capital charge multiplier

based on the number of VaR exceptions; see Lopez (1999) for further discussion.

In this paper, we examine a portfolio of foreign exchange rates.  With regard to the

statistical loss functions, our results indicate that covariance matrix forecasts as implied from

option prices appear to perform best.  However, with respect to the more economically

meaningful VaR framework, these forecasts do not perform as well.  Our results for the testing of

the competing VaR estimates’ statistical properties indicate that the choice of the underlying

distributional assumption for the VaR model is more important than that of the covariance matrix

specification.  In fact, only limited inference on the relative forecast performance of these

specifications is available using these hypothesis tests.

However, the second set of VaR evaluation techniques do permit such inference. 

Specifically, the covariance matrix forecasts that perform best under these criteria are the naive

specifications, such as exponentially-weighted moving averages of past observations.  In fact,
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VaR estimates based on portfolio variance forecasts that completely ignore covariance matrix

forecasts perform quite well under this criteria.  For example, a simple VaR model based on an

exponentially-weighted measure of portfolio variance and the standard normal distribution

generates the lowest regulatory capital requirements.  Overall, these empirical results provide

evidence in support of the simple VaR models that are commonly used in practice.

The paper is structured as follows.  Section II provides a short literature review of the

statistical and economic evaluation of covariance matrix forecasts from multivariate volatility

models.  Section III describes the eight covariance matrix specifications and the statistical loss

functions used in this study.  Section IV describes the 40 VaR models analyzed and presents the

results for the first four sets of hypothesis tests that make up the VaR evaluation framework. 

Section V describes and presents the results for the final set of hypothesis tests and the regulatory

loss function based on the quantity and magnitude of VaR exceedances.  Section VI concludes.

II.  Literature Review

As highlighted by Kroner and Ng (1998), the estimation of time-varying covariances and

implicitly of the entire covariance matrix between asset returns is crucial for asset pricing,

portfolio selection and risk management.  To that end, a wide variety of multivariate volatility

models have been proposed.  For example, Bollerslev, Engle and Wooldridge (1988) proposed

the diagonal GARCH model in which the individual variances and covariances are standard

GARCH processes, and Engle and Kroner (1995) proposed the BEKK representation of the

GARCH model, which more readily imposes the condition of positive definiteness on the

estimated covariance matrices.  In the field of risk management, exponentially-weighted moving

averages of past portfolio returns are commonly used as a simple model of asset variances and

covariances; see J.P. Morgan (1996).  In addition, asset variances and covariances as implied

from option prices are available for these purposes.

Given the wide variety of volatility models, a key question is how best to choose among

them.  Most studies evaluating the performance of volatility models have focused on the in-

sample analysis of univariate models, although several have examined their out-of-sample



4  See Pagan and Schwert (1990); Engle, Hong, Kane and Noh (1993); West, Edison and Cho (1993); West
and Cho (1994); Engle, Kane and Noh (1996); Bollerslev and Ghysels (1996); Bollerslev and Mikkelsen (1996);
and Lopez (2000).

5  For studies of optimal commodity hedges, see Baillie and Myers (1991); Myers (1991); and Bera, Garcia
and Roh (1997).  For studies of optimal foreign exchange futures hedges, see Kroner and Claessens (1991); Kroner
and Sultan (1993); and Ghose and Kroner (1994).  For studies of optimal interest rate futures hedges, see Park and
Bera (1987); Cecchetti, Cumby and Figlewski (1988); and Gagnon and Lypny (1995).  For studies of optimal stock
index hedges, see Park and Switzer (1995); Tong (1996); and Kroner and Ng (1998).  Chan, Kareski and
Lakonishok (1999) examine various factor models for the covariance matrix of stock portfolio returns using
portfolio measures such as the global minimum variance portfolio and minimum tracking error volatility.

6  See Jorion (1997) as well as Duffie and Pan (1997) for detailed surveys.
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performance using statistical and economic loss functions.4  A smaller number of studies have

examined the in-sample and out-of-sample performance of multivariate volatility models using

economic loss functions, particularly with respect to hedging strategies.  For example, Cechetti,

Cumby and Figlewski (1988) find that a time-varying covariance matrix is necessary in order to

construct an optimal hedge ratio between Treasury bonds and bond futures, while Kroner and Ng

(1998) find that the choice of multivariate volatility model can result in very different estimates

of the optimal hedge ratio for a stock portfolio.5  Furthermore, Gibson and Boyer (1998) find that

find standard time-series models produce better correlation forecasts than simple moving average

models for the purpose of stock-index option pricing and trading.

With respect to financial risk management, current practice places much emphasis on

value-at-risk (VaR) measures, which generally indicate the amount of portfolio value that could

be lost over a given time period with a specified confidence level.6  A limited amount of research

has been done to evaluate the forecast performance of multivariate volatility models within a

VaR framework.  For example, Hendricks (1996) provides the most extensive evaluation of

alternative VaR models using a portfolio of foreign exchange rates, although he does not

examine covariance forecasts.  Several papers, such as Alexander and Leigh (1996), Jackson,

Maude and Perraudin (1997) as well as Davé and Stahl (1996), examine VaR models for several

asset portfolios using different multivariate volatility models.  These comparisons are generally

based on the number of VaR exceptions within observation periods mandated by bank regulators.

In this paper, we examine VaR estimates from a much wider variety of multivariate volatility

models, ranging from naive averages to standard time-series models to option-implied models. 



7  For both series, the in-sample mean is zero.  The correlegram for the JPY series does not indicate any
ARMA dynamics; i.e., the p-value for the portmanteau statistic is 12.3% at 20 lags and 38.8% at 40 lags.  The
correlegram for the DEM series indicates a small MA(6) effect; the p-value for the portmanteau statistic is 2.7% at
20 lags and 4.3% at 40 lags.  Once this effect is removed, the p-value for the portmanteau statistic is 27.8% at 20
lags and 44.1% at 40 lags.  However, given the uncommon nature of this MA term, we ignore it in our analysis.
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Our evaluation is based purely on out-of-sample, covariance matrix forecasts and employs both

statistical loss functions and a VaR framework that expands upon those in previous studies.

III.  Covariance Matrix Forecasts and Statistical Loss Functions

A.  Covariance matrix forecasts

In this paper, we examine the covariance matrix forecasts for a portfolio of foreign

currencies.  Specifically, we examine an equally-weighted dollar-denominated portfolio of the

Deutschemark (DEM) and Japanese yen (JPY) over the period from January 3, 1980 to April 2,

1997.  We use the in-sample period from January 3, 1980 to September 29, 1990 (2804

observations) to estimate the parameters of the multivariate models as needed, and we evaluate

the models’ one-step-ahead covariance matrix forecasts over the out-of-sample period from

October 2, 1990 through April 2, 1997 (1679 observations).

Let Yt+1 denote the (2x1) vector consisting of the DEM/USD and JPY/USD spot

exchange rates, and   Let yt+1 be the first difference of yt+1, which is the vector( )t 1 t 1y ln Y .+ +=

of exchange rate returns.  Our analysis does not indicate the presence of any significant

conditional mean dynamics in these series.7  Thus, we examine the model  wheret 1 t 1y ,+ +∆ = ε

, DM is a bivariate probability distribution and Ht+1 is the (2x2) matrix | ~ D 0,Ht Mt 1 t 1
 
  

ε Ω+ +

11,t 1 12,t 1

t 1

12, t 1 22,t 1

h h
H .

h h
+ +

+
+ +

=
 
 
 

For our analysis, we impose the portfolio weighting vector w = [1, 1]´, such thatx wt t+ +=1 1’ε

and , where Dz is an univariate probability distribution and  ( )ztt 1 pt 1x | ~ D 0,h+ +Ω h w H wpt t+ +=1 1’ .

Note that xt+1 can be expressed as , where x h zt pt t+ + +=1 1 1 ( )t 1
z ~ D 0,1 .+



8  The choice of 120 days is based on previous studies; see Hendricks (1996) as well as Walter and Lopez
(2000).  This specification obviously could be generalized to N days.

9  Foster and Nelson (1996) as well as Fleming et al. (2000) find similar values for the exponential decay
parameter using nonparametric estimation techniques.
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We examine three categories of covariance matrix forecasts: simple averages, time-series

models and covariance matrices implied from option prices.  The first category is based on

different averages of the products of past exchange rate changes.  The first specification is simply

that the covariance matrix remains constant over the out-of-sample period and is equal to the in-

sample period’s unconditional covariance matrix; i.e.,   We also
2804

t 1 j j
j 1

H C ./ 2804+
=

′= = ε ε
 
 
 
∑

consider two time-varying specifications that differ only in the weights applied in the averages. 

The historical average model equally weights the past 120 observations, such that
8  The exponentially-weighted moving average (EWMA) model is based

119

t 1 t n t n
n 0

H ./120+ − −
=

′= ε ε 
  
∑

on weights that decline exponentially; i.e.,  where  is a calibrated( ) nH 1t 1 t n t n
n 0

∞
′= −λ λ ε ε∑+ − −

=
parameter.  For our analysis, we chose =0.94, which is a commonly used value; see J.P. Morgan

(1996) as well as Walter and Lopez (2000).9

The second category of covariance matrix forecasts consists of multivariate GARCH

models.  These models use the same information set as the first category, but impose specific

forms of variance dynamics.  The first model is specified as the bivariate GARCH(1,1) process

suggested by Bollerslev, Engle and Wooldridge (1988), which is

2
11,t 1 11 11 1,t 11 11,t

12,t 1 12 12 1,t 2,t 12 12,t
2

22,t 1 22 22 2,t 22 22,t

h 0 0 0 0 h

h 0 0 0 0 h .

h 0 0 0 0 h

+

+

+

    ω α ε β     
         = ω + α ε ε + β         
         ω α ε β         

This specification suggests that the three components of Ht+1 each have separate time dynamics;

we denote it as GARCH-DVEC.  The second model is a bivariate GARCH(1,1) process using the

BEKK specification suggested by Engle and Kroner (1998).  This specification guarantees the

positive definiteness of the fitted and forecasted covariance matrices without ignoring possible

cross-variable interactions.  For a lag order of one, the BEKK representation is

22 2 2 2 2 2
1,t 1,t 2,t11 11 21 11 12 11 12 11 12 11 12

t 1 t22 2
1,t 2,t 2,t21 22 22 21 22 21 22 21 22 21 22

0
H ’ ’H ;

0
+

            ε ε εω ω ω α α α α β β β β
= + +            ε ε εω ω ω α α α α β β β β             



10  The lag order of one restricts the model in such a way that not as many vech (or diagonal)
representations as possible are nested.  Engle and Kroner (1993) state the necessary and sufficient conditions for
achieving full generality within the BEKK model as well as for excluding the possibility of observationally
equivalent representations.

11  The parameter estimates and in-sample diagnostics are available from the authors upon request.

12  The options prices used in this paper were provided by a prominent bank trading in the over-the-counter
market for foreign exchange options.  These implied volatilities are for at-the-money forward straddles, a
combination of a European call option and a European put option with the strike prices set at the forward rate.  

13  Note that Carr and Madan (1999) propose an alternative implied covariance forecast based on a
synthetic covariance contract created by static positions in options on all three currency futures and dynamic trading
in the underlying futures themselves.
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we denote this specification as GARCH-BEKK.10  For both of these models, rolling estimation is

used; that is, we more closely approximate actual forecasting practice by estimating the models’

parameters using just the 1,000 observations prior to the date on which the forecast is made.11

The third category of covariance matrix forecasts we examine is based on the implied

variances and covariances derived from option prices.12  Implied volatilities are derived from

option prices by inverting the appropriate option pricing model, which is the Garman-Kohlhagen

model (Garman and Kohlhagen, 1983) for foreign exchange options.  This option pricing formula

modifies the Black-Scholes model to account for foreign interest rates.  An implied volatility can

be interpreted as the market’s assessment of the underlying asset’s volatility over the remaining

life of the option and is said to provide a “forward-looking” estimate of asset volatility.  Thus, we

examine such implied moments since they are based on different information sets than those used

for the time-series models.

Implied covariance is defined as the covariance between two variables as implied by the

price of a single option or the prices of several options.  In our case, options on the exchange

rates in currency trios are commonly traded, and the implied correlation between two exchange

rates derived from implied volatilities is calculated as follows.13  Let  represent the log ofyA/B,t%1

the daily exchange rate between currencies A and B at time t+1.  In terms of a third currency C

and in the absence of arbitrage,   Focusing on ,yA/B,t%1 ' yA/C,t%1 & yB/C,t%1. A/B,t%1 ' yA/B,t%1

we have   Since A/B,t%1 ' A/C,t%1 & B/C,t%1. Var A/B 'Var A/C %Var B/C &2Cov A/C, B/C ,

the implied covariance can be calculate from the three implied variance as



14  Such an univariate, nested model is proposed by Kroner, Kneafsey and Claessens (1995) as well as
Amin and Ng (1997).  Manfredo et al. (1999) propose a simple combining technique based on linear regression. 
We have begun work along these lines for multivariate models.
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CovIV A/C, B/C t,T
'

1
2

VarIV A/C t,T
% VarIV B/C t,T

& VarIV A/B t,T
.

Note that option maturities, denoted as T, are certainly longer than the one-step-ahead forecasts

that we will be working with.  However, since the option pricing model assumes that the second

moments are constant over the life of the option, we generate one-day forecasts by assuming that

the daily innovations are independent and dividing the implied variances by T.  Further note that

the Ht+1 forecast consisting of these implied second moments will be positive definite.

The other two implied model specifications we examine are based on combining certain

implied moments with those from other specifications.  It is commonly found that forecast

performance can be improved by combining information sets.  Although a model nesting both the

time-series and option price information sets would be preferable, in this paper, we simply splice

implied moments into the EWMA matrix.14  Specifically, we construct an Ht+1 series with

implied variances and EWMA covariances and an Ht+1 series with EWMA variances and implied

covariances; these two covariance matrix specifications are denoted as EWMA-IVAR and

EWMA-ICOV, respectively.  Of course, these matrices are not guaranteed to be positive definite,

and for our dataset, they are not 2% and 8% of the time, respectively.  In such cases, we simply

impose a zero covariance to insure positive definiteness.

The final set of forecasts we examine are not based on covariance matrix specifications at

all.  Zangari (1997) argues that a quicker and still useful approach to generating VaR measures is

to ignore covariance matrix forecasts and focus on the time-varying volatility of the aggregate

portfolio (hp,t+1 in our notation).  This approach significantly reduces the computational time

needed to generate VaR measures without possibly reducing their overall accuracy.  To examine

this possibility, we examine the EWMA and the GARCH(1,1) specifications of the portfolio

variance as alternative specifications of hp,t+1 and denote them as port.EWMA and port.GARCH,

respectively.  These models provide another benchmark with which to evaluate covariance

matrix forecasts; that is, whether they are necessary at all for generating accurate VaR measures.
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B.  Statistical Loss Functions

Several statistical loss functions have been used to evaluate the out-of-sample forecast

performance of univariate models; see Bollerslev and Ghysels (1996) for a short summary.  In

this paper, we use several loss functions to evaluate the two univariate volatility forecasts h11,t+1

and h22,t+1, the covariance forecast h12,t+1 and the portfolio volatility forecast hp,t+1.

The most commonly used loss function, mean-squared error (MSE), is defined as

 where gx,t+j and gy,t+j are the individual exchange rate returns( )
2T

xy x , t j y , t j xy , t j
j 1

1
M SE h ,

T + + +
=

= ε ε −∑
and hxy,t+j is the forecast of interest.  If x=y, then we are examining one of the two volatility

forecasts, and if xúy, then we are examining the covariance forecast.  For the portfolio variance,

  Similarly, mean absolute error (MAE) loss function is defined asMSE
T

x hp t j p t j
j

T

= −+ +
=
∑1 2

1
, .3 8

 and MAE
T

hxy x t j y t j xy t j
j

T

= −+ + +
=
∑1

1

| |, , ,ε ε
T

p p ,t j p , t j
j 1

1
MAE | x h |.

T + +
=

= −∑

The MSE and MAE loss functions penalize forecast errors symmetrically.  Although this

may be appropriate for covariance forecasts that may be negative, these loss functions are not as

appropriate for variance forecasts, which should always be positive.  Two loss functions that

provide alternative asymmetric penalty functions are the logarithmic loss function,

 and the heteroskedasticity-adjusted MSELL
T

hxy x t j y t j xy t j
j

T

= −+ + +
=
∑1

1

2

ln ln ,, , ,ε ε3 8 3 84 9
(HMSE),   Note that the LL loss function cannot be used for

2
T

x,t j y,t j
xy

j 1 xy,t j

1
HMSE 1 .

T h
+ +

= +

 ε ε
= −   

∑

covariance forecasts because they may be negative.  The LL loss function assigns proportionally

higher weights to incorrect forecasts when the observed variance proxy is low.  The final

statistical loss function employed is based on the Gaussian quasi-maximum likelihood function

commonly used to estimate GARCH models; i.e.,   Of( )
T

x,t j y,t j
xy xy,t j

j 1 xy,t j

1
GMLE ln h .

T h
+ +

+
= +

 ε ε
= +   

∑

course, for the portfolio returns, we substitute in the observed portfolio return xt+1 and the

forecasted portfolio variance hpt+1.

Under a given loss function, the forecasts generating the lowest value can be said to be
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the most accurate.  However, whether this outcome is statistically significant or an artifact of the

dataset is not clear.  Diebold and Mariano (1995) propose a statistical test of this hypothesis.  For

a particular loss function and second moment, we generate the time series of differences between

the loss function values of a set of forecasts and the forecasts that minimized the loss function

over the sample period.  If the two forecasts perform equally well, then the mean of this

difference should be zero.  If we reject this null hypothesis, then the forecast with the lower loss

function value is the more accurate forecast.  The asymptotic Diebold-Mariano statistic is simply

S '
d̄

ˆ2
d / T

a
~ N(0,1),

where  is the sample mean of the difference series and  is a consistent estimate of itsd̄ ˆ2
d

variance.

C.  Empirical results

For our specified portfolio, the statistical loss function results are summarized in Table 1. 

Panels A and B show the results for the individual variance forecasts.  For this dataset, the

implied variances perform relatively well, especially under the MSE, HMSE and GMLE loss

functions.  In these six cases, the one-step-ahead implied forecasts significantly minimize the loss

functions with respect to the other forecasts, except for the GMLE case for DEM variance

forecasts.  However, the statistical significance of this result varies across the two variances.  For

the JPY case, the null hypothesis of equal loss function values is clearly rejected for all

competing forecasts, while for the DEM case, the null hypothesis is not as strongly rejected. 

Panel C presents the results for the covariance forecasts, which show that the implied forecasts

again generally minimize the MSE, HMSE and GMLE loss functions in a significant way.

For the MAE and LL loss functions, the EWMA forecasts perform best as the minimizing

forecasts in three of the four variance cases, but not always in a statistically significant way.  In

fact, GARCH-BEKK forecasts perform almost as well and are the minimizing covariance

forecasts.

Panel D presents the results for the portfolio variance forecasts.  Once again, the implied

forecasts perform best for the MSE, HMSE and GMLE loss functions, although not in a
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consistently significant way.  For the MAE and LL loss functions, the portfolio EWMA forecasts

generate the lowest values, but only in the LL case is this result statistically significant.  These

results indicate that simple portfolio variance forecasts are useful under certain statistical loss

functions, but that forecasts based on covariance matrix specifications generally perform as well

or better.

In summary, statistical loss functions provide a useful, preliminary analysis of variance,

covariance and portfolio variance forecasts.  Our results indicate that the second moment

forecasts implied by option prices generally outperform time-series forecasts for these loss

functions, although the degree of statistical significance varies.  Our findings are generally in line

with those of Jorion (1995) for univariate exchange rates; see Figlewski (1997) for a survey of

comparisons between implied and time-series forecasts.  However, as suggested by Bollerslev et

al. (1994) and Lopez (2000), economic loss functions that explicitly incorporate the costs faced

by volatility forecast users provide the most meaningful forecast evaluations.  In the next section,

we examine the performance of the covariance matrix forecasts within a value-at-risk framework.

IV.  Value-at-Risk Framework: Definitions, Models, Hypothesis Tests and Results

A.  Definitions

As discussed by Hsieh (1993), in the presence of volatility dynamics, conditional

densities based on covariance matrix forecasts should provide a better description of short-term

asset price movements than unconditional densities.  This improved description could be

particularly important for elements of financial risk management, such as hedge ratios and the

capital allocations needed to cover possible portfolio losses.  In this paper, we focus on value-at-

risk (VaR) estimates, an increasingly common tool for financial risk management.  Specifically,

we examine the accuracy of several VaR models based on different covariance matrix

specifications and conditional densities.

VaR models are characterized by their forecasted distributions of k-period-ahead portfolio

returns.  Generalizing our notation from before, let xt+k denote the k-period-ahead portfolio return

in log terms.  Conditional on the information available at time t, xt+k is a random variable with

distribution ft+k; that is,   Thus, VaR model m is characterized by fmt+k, itst k t t kx | ~ f .+ +Ω



15  The intuition for specifying a VaR model as a separate portfolio variance (whether based on a modeled
covariance matrix or portfolio variance) and a distributional assumption arises from the two-step procedure
proposed by Engle and Gonzalez-Rivera (1991).  In that study, an univariate variance process was estimated under
the normal assumption in order to generate standardized residuals, whose empirical distribution is then fitted using a
nonparametric technique.  We use a simplified version of their approach here.  Note that an alternative approach is
to estimate the parameters of a multivariate volatility model using a distributional form other than the multivariate
normal.  However, such distributional forms are difficult to specify and use in estimation.
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forecast of ft+k.  A VaR estimate is a specified quantile of the forecasted return distribution over a

given holding period.  The VaR estimate at time t derived from model m for a k-period-ahead

return, denoted VaRmt(k, ), is the critical value that corresponds to the lower  percent tail of

fmt+k.  Thus, where  is the inverse of the cumulative( ) ( )1
mt mt kVaR k, F /100 ,−

+α = α F &1
mt%k

distribution function corresponding to fmt+k.

VaR estimates are now commonly used as measures of exposure to financial market

fluctuations.  In fact, under the auspices of the Basel Committee on Banking Supervision, the

capital requirements for the market risk exposure of large banks are now explicitly based on their

VaR estimates for a ten-day holding period (k = 10) and 99 percent coverage (  = 1).  The

formula for determining the capital requirements includes a multiplication factor that explicitly

links the accuracy of the underlying VaR model to a bank’s capital requirement.  (This loss

function is discussed further in section V.)  Thus, a VaR framework should provide financial

institutions with a meaningful economic framework in which to evaluate the accuracy of

covariance matrix forecasts.

B.  Models

VaR models can be used to generate distribution forecasts for k-step-ahead portfolio

returns, but we examine one-step-ahead VaR estimates in accordance with common practice and

our previous analysis.  Let VaRmt( ) denote the % VaR estimate from model m generated at

time t for period t+1.  Although VaR models can be constructed in many ways, a common

approach (and the one used in this paper) is to specify the variance dynamics hpt+1 and the

distributional form of fmt+1 separately.15  In this analysis, we examine the eight covariance matrix

specifications and two portfolio variance specifications from before and specify four different

distributional forms for a total of 40 VaR models.
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The first distributional form we examine is the standard normal, the one most commonly

used for risk management purposes.  The second distributional form is the t-distribution with an

estimated number of degrees of freedom, which affects the tail thickness of the distribution.  The

t-distribution is specified as

f x
v v

v h x h vm t pt t pt
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+ +
− − − −
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where v > 2 is the degrees of freedom.  This parameter was estimated on the in-sample

standardized residuals for the ten model specifications and was generally found to be

approximately 13, which is the value used in the subsequent analysis.

The third distributional form is the generalized t-distribution, proposed by McDonald and

Newey (1988) and used by Bollerslev, Engle and Nelson (1994).  The generalized t-distribution

has two shape parameters that directly influence the tail thickness and the width of the center of

the distribution.  This distribution is specified as
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where n and q are the shape parameters, n > 0, q > 0, nq > 2, B is the beta function and

 is a scale factor that makes the conditional variance ofb q n n q n= −Γ Γ Γ Γ1 6 1 6 1 6 1 62 71 3 2
1/2

/ / / /

xt+1 equal hpt+1.  These shape parameters were estimated on the in-sample standardized residuals

for the ten portfolio variances and were generally found to be approximately n = 2.5 and q = 1,

which are the values used in the subsequent analysis.  The last distributional form we examine is

the simple, unsmoothed nonparametric distribution of portfolio returns, which is the distribution

used in the so-called “historical simulation” approach for generating VaR estimates.  Although

nonparametric densities are available, we examine the unsmoothed distributions of the in-sample

standardized residuals arising from the EWMA covariance matrix specification.  We chose this

model since it is commonly used for risk management purposes.

The VaR estimates corresponding to these VaR models are generated as follows.  By

definition, , which is equivalent to Pr x VaRt mt+ < =1 α α1 62 7
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( ) ( )( )mt
pt 1 m mt pt 1

pt 1

VaR
Pr z F VaR h ,

h
+ +

+

 α < = α = α
  

where Fm here denotes the cumulative distribution of the standardized residuals zpt+1 under VaR

model m.  Using the inverse of Fm, we have 

VaR
h

Fmt

pt
m

α α1 6 1 6
+

−=
1

1

or equivalently,   Thus, the VaR estimates for our 40 models are basedVaR h Fmt pt mα α1 6 1 6= +
−

1
1 .

on the product of the forecasted portfolio standard deviations and the appropriate quantile from

their assumed distributional form.  Table 2 contains the quantiles for the four distributional

assumptions used in this analysis.

C.  Hypothesis Tests and Empirical Results

In this section, we describe the first three hypothesis tests used to evaluate the

performance of the VaR models based on competing covariance matrix forecasts.  The first two

tests evaluate the unconditional and conditional % coverage of the competing sets of VaR

estimates.  In addition, we expand these binomial tests to multinomial form to simultaneously

examine more elements of the VaR models’ distribution forecasts.  The fourth hypothesis test

evaluates the entire distribution forecast using the models’ empirical quantiles.

1a).  Evaluation of VaR estimates based on unconditional and conditional coverage

Assuming that VaR estimates and their underlying model are accurate, exceptions or

occasions when xt+1 < VaRmt( ) can be modeled as independent draws from a binomial

distribution with a probability of occurrence equal to  percent.  Accurate VaR estimates should

exhibit the property that their unconditional coverage  where x is the number of
^

x / T,α =

exceptions, equals  percent.  The likelihood ratio statistic for testing whether  isˆ '

LRuc ' 2 log ˆx 1 & ˆ T&x & log x ( (1 & )T&x ,



16  The finite sample distribution of the LRuc statistic as well as the others in this study are of interest in
actual practice; see Lopez (1999a,b).  For example, with respect to size, the finite sample distribution of LRuc for
specified ( , T) values may be sufficiently different from a 2(1) distribution that the asymptotic critical values may
be inappropriate.  As for the power of this test, Kupiec (1995) shows how this test has a limited ability to
distinguish among alternative hypotheses and thus has low power in the typical samples of size 250 used for risk
management purposes.  However, since 1679 observations are used in this exercise,  the asymptotic distributions for
all of the test statistics are used.

17  As discussed in Christoffersen (1998), several other forms of dependence, such as second-order Markov
dependence, can be specified.  For the purposes of this paper, however, first-order Markov dependence is used.
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Imt%1 '

1 if xt%1 < VaRmt( )

0 if xt%1 $ VaRmt( )
.

which has an asymptotic 2(1) distribution.16

The LRuc test is an unconditional test of the coverage of VaR estimates since it simply

counts exceptions over the entire period without reference to the information available at each

point in time.  However, if the underlying portfolio returns exhibit time-dependent

heteroskedasticity, the conditional accuracy of VaR estimates is probably a more important issue. 

In such cases, VaR models that ignore such variance dynamics will generate VaR estimates that

may have correct unconditional coverage, but at any given time, will have incorrect conditional

coverage.

To address this issue, Christoffersen (1998) proposed conditional tests of VaR estimates

based on interval forecasts.  VaR estimates are essentially interval forecasts of the lower one

percent tail of ft+1, the one-step-ahead return distribution.  The LRcc test used here is a test of

correct conditional coverage.  For a given VaR estimate, the indicator variable Imt+1 for whether

an exception occurred is constructed as 

Since accurate VaR estimates have correct conditional coverage, the Imt+1 series must exhibit both

correct unconditional coverage and serial independence.  The LRcc test is a joint test of these

properties, and the relevant test statistic is  which is asymptoticallyLRcc ' LRuc%LRind,

distributed 2(2).

The LRind statistic is the likelihood ratio statistic for the null hypothesis of serial

independence against the alternative of first-order Markov dependence.17  The likelihood function



16

under this alternative hypothesis is  where the Tij notationLA ' 1& 01
T00

T01

01 1& 11
T10

T11

11 ,

denotes the number of observations in state j after having been in state i the period before,

 and   Under the null hypothesis of independence,01 ' T01 / T00%T01 11 ' T11 / T10%T11 .

 and the relevant likelihood function is  where01 ' 11 ' , L0 ' (1& )
T00%T10 T01%T11,

  The test statistic  =  has an asymptotic ' T01%T11 /250. LRind 2 logLA & logL0
2(1)

distribution.

1b).  LRuc and LRcc test results for VaR estimates

Table 3 reports the percentage of exceptions observed for each of the 40 VaR models for

the 1%, 5%, 10% and 25% VaR estimates over the entire out-of-sample period.  These summary

statistics are key components of the LRuc and LRcc test results reported in Table 4.  Both the

tables and the discussion below are framed with respect to the distributional assumption first and

then with respect to the relative performance of the eight covariance matrix forecasts and two

portfolio variance forecasts.  Note that the LRuc and LRcc test results are qualitatively similar.

As shown in Panel A of Table 4, VaR models based on the standard normal distributional

assumption perform relatively well at the lower quantiles (1% and 5%) in that only a few

forecasts fail the LRuc and LRcc tests at the 5% significance level.  However, almost all fail at the

higher quantiles (10% and 25%).  As shown in Panel B, VaR models based on the t(13)

distributional assumption perform well only for the 1% VaR estimates.  This result indicates that

the tail thickness of this distributional assumption probably limits its use to just the lowest VaR

coverage levels.

The results for the VaR models based on estimated generalized t-distribution reported in

Panel C indicate that all the covariance matrix specifications fail at the lowest quantile, but

perform relatively well at the other quantiles.  This result suggests that the overall shape of this

distribution is better than the previous two, even though its lower 1% tail and the corresponding

VaR estimates are inaccurate.  The nonparametric distribution results in Panel D indicate that

these VaR estimates basically do well across all four quantiles.

Although we can conclude that the two least restrictive distributional assumptions seem

to produce better VaR estimates, inference regarding the relative forecast accuracy of the eight
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covariance matrix specifications and two portfolio variance specifications is limited.  As shown

in Panels A and B, no strong conclusions can be drawn across the forecasts using the normal or

t(13) distributional assumptions.  In addition, little inference is possible under the generalized t-

distribution for two reasons.  First, for the 1% VaR estimates, all the VaR models have an

exception rate that is too low due to the long lower tail of this distribution, and thus they fail the

hypothesis tests.  Second, for the three other quantiles, all the VaR models perform well, with the

exception of the portfolio EWMA specification.  Similarly, under the nonparametric distribution,

most of the VaR models perform basically well, except for the constant and three implied

covariance matrix specifications.

In summary, these results indicate that the dominant factor in determining the relative

accuracy of VaR estimates with respect to coverage accuracy is the distributional assumption. 

The specifications of the covariance matrix forecasts appear to be of second-order importance. 

These results seem to provide support for the common industry practice of using the EWMA

covariance matrix specification in generating VaR estimates.  However, it does not completely

explain why practitioners have generally settled on the standard normal distributional

assumption.  Although it did perform well for the lower coverage levels that are usually of

interest, the nonparametric distribution did better across the four levels examined.

2a).  Multinomial form of the LRuc and LRcc tests

By their very nature, VaR estimates focus specifically on just one quantile of the entire

forecasted distribution.  However, for VaR model evaluation, one could examine several of the

model’s VaR estimates at the same time.  Such hypothesis tests provide a stricter test of coverage

accuracy since it is based on more information than binomial tests.  The generalization of

binomial tests to multinomial tests is straightforward and is illustrated here for the trinomial case. 

Accurate VaR estimates should exhibit the property of unconditional coverage; i.e.,

 where x1 and x2 are the number of exceptions for the firstˆ1, ˆ2 ' x1 /T, x2 /T ' [ 1, 2 ],

and second set of VaR estimates, respectively.  The appropriate likelihood ratio statistic is

LRuc ' 2 log ˆ
x1

1 ˆ
x2

2 1&ˆ1&ˆ2
T&x1&x2 & log

x1

1

x2

2 (1& 1& 2)
T&x1&x2 ,
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which has an asymptotic 2(2) distribution.  The trinomial LRcc statistic has a similar structure

and an asymptotic 2(4) distribution.

2b).  Trinomial LRuc and LRcc test results

Table 5 presents the trinomial test results for two pairs of VaR estimates: the 1% and 5%

VaR estimates, and the 1% and 10% VaR estimates.  These results are basically in line with the

univariate test results; the additional restrictions implied by the joint test should not and do not

overturn the univariate results.  For example, since all the VaR models under the t(13)

assumption reject the binomial null hypotheses for the 5% VaR estimates, all the joint [1%, 5%]

tests reject the joint hypotheses as well.  For the joint [1%, 10%] tests, all of the VaR models

based on the first three distributional assumptions strongly reject the joint null hypotheses,

mainly due to the rejections of the binomial hypotheses by the 10% VaR estimates for the normal

and t(13) distributional assumptions and by the 1% VaR estimates for the generalized-t

assumption.  However, under the nonparametric distributional assumption, several covariance

matrix specifications do not reject the joint null hypothesis of the LRuc test since they do not

strongly reject the two binomial null hypotheses.

The conformity of the trinomial results to the binomial results is to be expected.  By

testing the VaR estimates for additional properties, the trinomial tests provide a stricter analysis

of the VaR models’ distributional forecasts.  Such analysis could be helpful to forecast users that

are not exclusively interested in just one of the lower quantiles of the forecasted distributions. 

However, to fully examine the accuracy of the VaR models’ distribution forecasts, we use the

normal transform test proposed by Berkowitz (1999).

3a).  Evaluation of the forecasted distributions using the normal transform test

Since VaR models are generally characterized by their distribution forecasts of portfolio

returns, several authors have suggested that evaluations should be based directly on these

forecasts.  Such an evaluation would use all of the information available in the forecasts.  The

object of interest in these evaluation methods is the observed quantile qmt+1, which is the quantile

under the distribution forecast fmt+1 in which the observed portfolio return xt+1 actually falls; i.e.,



18  Crnkovic and Drachman (1996) suggest that these two properties be examined separately and thus
propose two separate hypothesis tests.  Diebold, Gunther and Tay (1998) propose the use of CUSUM statistics to
test for these properties simultaneously.
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qmt%1 xt%1 ' m
xt%1

&4

fmt%1(x)dx.

If the underlying VaR model is accurate, then its qmt+1 series should be independent and

uniformly distributed over the unit interval.

Several hypothesis tests have been proposed for testing these two properties.18  In this

paper, we use the likelihood ratio test proposed by Berkowitz (1999).  To examine whether the

qmt+1 series exhibits these properties, the zmt+1 series is generated by transforming the qmt+1 series

with the inverse of the standard normal cumulative distribution function; i.e.,  ( )1z q .mt 1 mt 1
−= Φ+ +

If the VaR model is correctly specified, the zmt+1 series should be independent and identically

distributed as standard normals.  This hypothesis can be tested against alternative specifications,

such as

( )zmt m m zmt m t+ − = − + +1 1µ ρ µ η ,

where the parameters [µm, m] are the conditional mean and AR(1) coefficient corresponding to

the zmt+1 series and t+1 is a normal random variable with mean zero and variance .  Under the2
mσ

null hypothesis that both properties are present, .  The appropriate LR2, , 0,0,1m m m
       
µ ρ σ =

statistic is , where( ) ( )2LR 2 L , , L 0, 0,1dist m m m
 = µ ρ σ −  
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The LRdist statistic is asymptotically distributed 2(3).

3b).  LRdist test results

Table 6 contains the normal transform test results for the 40 VaR models.  The results

generally indicate that the implied covariance matrix specifications perform poorly, regardless of

the associated distributional assumption.  Of the 12 VaR models using these specifications, all
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but two (the EWMA-IVAR specification under the generalized-t and nonparametric

assumptions) reject the null hypothesis of correct distributional form.  For the other VaR models,

the null hypothesis is not generally rejected, except for the t(13) distributional assumptions that

performed poorly with respect to previous test results.

These results provide further evidence that the distributional assumption appears to drive

these forecast evaluation results and that the covariance matrix specification is of secondary

importance.  In fact, other than the poor performance of the implied specifications, little

inference on the relative performance of these models is possible.  This poor performance may

not be surprising given that implied volatilities are derived under the strict distributional

assumptions underlying the Garman-Kohlhagen model and may not be directly applicable for use

with other distributional assumptions.  Furthermore, the basically equivalent performance of the

covariance matrix specifications and the portfolio variance specifications that abstract from

covariance matrix forecasts indicate that one may simplify the generation of VaR estimates in

this way without sacrificing accuracy.

V.  Analysis of VaR Exception Magnitudes and Capital Requirements

The evaluation of VaR models, both in practice and in the literature, has generally

focused on the frequency of exceptions and thus has disregarded information on their

magnitudes.  However, as discussed by Hendricks (1996) and Berkowtiz (1999), the magnitudes

of exceptions should be of primary interest to the various users of VaR models.  For example,

regarding bank capital requirements for market risk exposure, initial public documents stated that

“[w]hen considering supervisory responses, [supervisory agencies] would take into account the

extent to which trading losses exceed the VaR amounts, since exceptions that greatly exceed VaR

amounts are of greater concern than are exceptions that exceed them only slightly.” (Federal

Register, 1996).  In this section, we use two evaluation methods that focus on the magnitude of

the losses experienced when VaR estimates are exceeded.  The first method uses a hypothesis

test developed by Berkowitz (1999) that explicitly examines the magnitude of VaR exceptions. 

The second method is based on the regulatory loss function embodied in current market risk

capital requirements for large U.S. banks.  These evaluation results permit inference on the



19  Note that this test does not examine the autocorrelation coefficient m discussed before, since the
transformation zmt+1 into the censored random variable ymt+1 disrupts the time sequence of the series.  Thus, we only
examine the two unconditional moments of the zmt+1 series.
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mt%1 '

zmt%1 if zmt%1 < &1 ( )

0 if zmt%1 $ &1 ( )
.

relative performance of the various covariance matrix forecasts.

1a).  Normal transform magnitude test for VaR exceptions

Berkowitz (1999) proposes a hypothesis test for determining whether the magnitude of

observed VaR exceptions are consistent with the underlying VaR model.  The key intuition is

that VaR exceptions are treated as continuous random variables and not converted into the binary

Imt+1 variable used for the binomial and multinomial tests.  For this test, we focus on the

exceptions by treating non-exceptions as censored random variables.  In essence, this test

provides a middle ground between the full distribution approach of the LRdist test and the

frequency approach of the LRuc and LRcc tests.

As with the LRdist test, the empirical quantile series is transformed into standard normal

zmt+1 series.  However, the zmt+1 values are treated as censored normal random variables, where

the censoring is tied to the desired coverage level of the VaR estimates.  Thus, zmt+1 is

transformed into mt+1 as follows:

The conditional likelihood function for the right-censored observations of mt+1 = 0 (i.e., for non-

exceptions) is

( )( ) ( )1
m1

mt 1 mt 1

m

f | z 1 ,
−

−
+ +

 Φ α − µ
γ ≥ Φ α = − Φ   σ 

where µm and m are the unconditional mean and standard deviation of the zmt+1 series.19  The

conditional likelihood function for ymt+1 = zmt+1 is that of a truncated normal distribution; i.e.,

( )( ) ( )
( )

mt 11
mt 1 mt 1 1

m

m

f z
f | z .+−

+ + −
γ < Φ α =

 Φ α − µ
Φ  σ 
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The unconstrained, conditional log-likelihood is
( ) ( ) ( ) ( )

mt 1 mt 1 mt 1

21 1
m mt 1 m m2

mag m 2
0 zm m m

y1
f log 1 log 2 log .

2 2+ + +

− −
+

γ = =

       Φ α − µ − µ Φ α − µ
 = − Φ + − πσ − − Φ             σ σ σ       

∑ ∑

If the VaR model generating the empirical quantiles is correct, the mt+1 series should be

identically distributed, and [µm, m] should equal [0, 1].  Thus, the relevant test statistic is

, which is asymptotically distributed 2(2).( ) ( )[ ]LR L Lmag mag m m mag= −2 0 1µ σ, ,

1b).  Results of the LRmag test

The results of the LRmag tests for the four sets of VaR estimates are reported in Table 7. 

Since this is a joint null hypothesis regarding the frequency of exceptions and their magnitudes,

we expect that it would be rejected for the cases in which the VaR estimates rejected the

binomial null hypothesis alone.  This result occurs in only 82% of the cases (56 out of 68), but

the bulk of the unexpected non-rejections of the joint null hypothesis (9 out of 12) occur for the

1% VaR estimates, where the power of the binomial test is at its lowest.  Overall, the two sets of

test results were in agreement in 46% of the cases (73 out of 160), and the joint null hypothesis

was rejected after the binomial null hypothesis was not rejected in another 47% of cases (75 of

160).  Thus, the LRmag results are consistent with the LRuc results in 93% of the cases.

Focusing first on the distributional assumptions underlying the VaR models, Panel C

clearly indicates that, as before, the t(13) distributional assumption performs poorly, even for the

1% VaR estimates for which it did well before.  However, as shown in the other three panels of

Table 7, the normal, generalized-t and nonparametric distributional assumptions perform

relatively well for the 1% VaR estimates.

Focusing on the different specifications of the portfolio variance forecasts, as with the

LRdist results, we find that the implied covariance matrix forecasts strongly reject the LRmag null

hypothesis in all 40 cases.  Clearly, these covariance matrix forecasts perform poorly along many

dimensions in a VaR framework, in contrast to their performance under the purely statistical loss

functions.  The covariance matrix specifications that performed best across the distributional

assumptions are the historical and EWMA specifications, while the GARCH specifications do
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well only for the 1% coverage level.

In summary, although distributional assumptions play a role, the LRmag test permits more

inference on the covariance matrix forecasts and indicates that the simple average forecasts

appear to perform best, further validating the current practice of financial institutions.  The

simple covariance matrix specifications performed better than the two portfolio variance

specifications in that the latter’s VaR estimates did not reject the joint null for only the lower

coverage measures.  However, this is only weak evidence in favor of using VaR models based in

forecasted covariance matrices.

2a).  Capital requirements based on VaR estimates

As mentioned before, current international bank regulations require that capital

requirements for the market risk exposures of large banks be based on the banks’ own VaR

estimates.  Lopez (1999) describes the U.S. implementation of these capital requirements and

provides an explicit regulatory loss function that can be used to examine the relative performance

of the 40 VaR models.  As before, we begin with the logged portfolio return

( ) ( ) ( )t 1 t 1 t 1 1 1t 1 2 2t 1x w ’ w ’ ln Y w ln Y w ln Y .+ + + + += ε = ∆ = ∆ + ∆

In order to determine the dollar value of the foreign exchange portfolio, we have 

( ) ( ) ( ) ( )1 2w w
t 1 t 1 1 1t 1 2 2t 1 1t 1 2t 1P$ ln Y w ln Y w ln Y ln Y Y ,+ + + + + += = + =

which implies that  and for our weighting vector [1,1],   Note1 2w w
t 1 1t 1 2t 1Y Y Y+ + += t 1 1t 1 2t 1Y Y Y .+ + +=

that a VaR estimate is expressed in dollar terms as the loss between the current portfolio value

and the portfolio value corresponding to it; that is,  is expressed in dollar terms asVaRmt(k, )

VaR$mt(k, ) ' P$t 1 & e
VaRmt(k, )

.

Under the current U.S. implementation of the market risk capital requirements, capital

charges are based on VaR estimates generated using a ten-day holding period (k = 10) and 99

percent coverage ( = 1).  In other words, a bank’s market risk capital charge is based on its own

estimate of the potential loss that would not be exceeded with one percent probability over the

subsequent two week period.  The actual market risk capital that must be hold for time t+1,

denoted MRCmt+1, is the larger of VaR$mt(10,1) or a multiple of the average of the previous sixty

VaR$mt(10,1) estimates; that is,



20  Note that the portfolio returns reported to the regulators, commonly referred to as the “profit & loss
numbers”, will usually not directly correspond to xt+1.  The profit & loss numbers are usually polluted by the
presence of customer fees and intraday trade results, which are not captured in standard VaR models.  No definitive
method of dealing with this discrepancy has been established.

21  In the yellow zone, the multiplier values for five through nine exceptions are 3.4, 3.5, 3.75 and 3.85,
respectively.

22  A common approach for generating ten-day VaR estimates is to scaled up one-day VaR estimates using
which assumes that the portfolio returns are independent and identically distributed.  We examined the10 ,

performance of these simple ten-day VaR estimates under the regulatory loss function and not surprisingly found
the results to be qualitatively similar.
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MRCmt%1 ' max VaR$mt(10,1); Smt(
1
60j

59

i'0
VaR$mt&i(10,1) % SRmt,

where Smt and SRmt are a multiplication factor and an additional capital charge for the portfolio’s

idiosyncratic credit risk, respectively.  In this study, we ignore the SRmt capital charge.

Under the current framework, Smt $ 3, and it is a step function that depends on the

number of exceptions observed over the previous 250 trading days.20  The possible number of

exceptions is divided into three zones.  Within the green zone of four or fewer exceptions, a VaR

model is deemed “acceptably accurate” to the regulators, and Smt remains at its minimum value

of three.  Within the yellow zone of five to nine exceptions, Smt increases incrementally with the

number of exceptions.21  Within the red zone of ten or more exceptions, the VaR model is

deemed to be “inaccurate” for regulatory purposes, and Smt increases to its maximum value of

four.  The institution must also explicitly take steps to improve its risk management system. 

Thus, banks look to minimize exceptions (in order to minimize the multiplier) without reporting

VaR estimates that are too large and raise the average term in the loss function.

2b).  Results

As currently specified, this regulatory loss function is based on ten-day VaR estimates. 

However, since we are examining one-step-ahead covariance matrix forecasts, we evaluate one-

day VaR estimates using this loss function.22  Table 8 presents the percentage of overlapping

250-day periods, of which there are 1430 in the out-of-sample period, for which a specific

number of exceptions (0, #4, #5, #9, #10) are observed for each of the 40 VaR models.  Since in

no case are there more than 10 exceptions, we are never in the red zone, and none of the models
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would invoke serious regulatory concerns.

Given the better performance of the EWMA-normal model in the previous sections, we

chose its capital charges to be the standard against which the other models’ capital charges are

compared.  Table 9 presents the percentage of the 1430 out-of-sample trading days for which the

MRCm,t+1 capital charges for the EWMA-normal model are less than those of the other 39 VaR

models.  This model clearly has lower capital requirements than all of the covariance matrix

specifications under the t(13) and generalized-t distributions; that is, EWMA-normal perform

better than these alternatives greater than 75% of the time.  The only VaR estimates that generate

smaller capital charges than those of the EWMA-normal model for more than 50% of the trading

days are those for the portfolio EWMA specification with the normal and the nonparametric

distributions.

To more carefully examine these loss function results, we examine the differences

between the capital charges for the EWMA-normal model and the other models using the

Diebold-Mariano test statistic.  The null hypothesis that we investigate is whether the mean

difference between the two sets of capital charges is equal to zero.  If we do not reject the null

hypothesis, then the alternative model does not perform worse than the EWMA-normal model. 

If we reject the null hypothesis and the mean difference is negative, then the EWMA-normal

model and its VaR estimates perform better because they generate lower capital charges on

average.  If we reject the null hypothesis and the mean difference is positive, then the alternative

model and its VaR estimates perform better.

In Table 10, we present the p-values for the Diebold-Mariano statistics; if they are below

5%, we reject the null hypothesis in favor of the EWMA-normal model, and if they are above

95%, we reject the null hypothesis in favor of the alternative model.  In 32 cases, we reject the

null hypothesis in favor of the EWMA-normal model.  We reject all the alternative VaR models

based on the t(13) and generalized-t distributional assumptions.  For the nonparametric

distribution, we do not reject the null hypothesis for the EWMA and portfolio EWMA

specifications.  For the normal distribution, several covariance matrix specifications do not reject

the null hypothesis, indicating that they perform as well as the EWMA-normal model under this

regulatory loss function.  However, the most noteworthy case is the portfolio EWMA-normal
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model that rejects the null hypothesis in favor of itself; that is, the capital charges from the

portfolio EWMA-normal model are, on average, significantly lower than those for the EWMA-

normal model.

Table 11 presents the test results for the mean differences in capital charges between the

portfolio EWMA-normal model and the other 39 VaR models.  We reject the null hypothesis that

the means are zero in all cases, which implies that the capital charges generated by the portfolio

EWMA-normal model are the lowest in an economically and statistically meaningful way. 

The empirical evaluation results under this regulatory loss function permit the most

inference on the relative performance of the competing covariance matrix forecasts within a VaR

framework.  Under this loss function, the simple EWMA covariance matrix forecast performs

quite well relative to the other alternatives, although the GARCH specifications also performs

well under the normal distributional assumption.  Thus, the use of simple covariance matrix

forecasts can be justified in actual practice.  However, overall, it can be argued that these results

indicate that covariance matrix forecasts can be ignored in favor of portfolio variance forecasts

for generating capital-minimizing VaR estimates.

VI.  Conclusion

In this paper, we evaluate the performance of several covariance matrix forecasts using

standard statistical loss functions and a VaR framework, which should be more economically

meaningful to financial risk managers.  For a portfolio of foreign exchange rates, these evaluation

results provide guidance on which covariance matrix forecasts perform best under these criteria. 

With respect to the statistical loss functions, our results indicate that the forecasts implied from

option prices generally outperform forecasts based on simple averages and on GARCH models,

although the degree of statistical significance varies.  Our findings are generally in line with

those of Jorion (1995) for univariate exchange rates.  However, economic loss functions that

explicitly incorporate the costs faced by forecast users provide the most meaningful forecast

evaluations.

The economic context we use is a VaR framework consisting of two sets of evaluation

techniques.  The first set of techniques focuses on certain statistical properties of VaR estimates
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derived from the competing covariance matrix specifications.  These results indicate that the

dominant factor in determining the relative accuracy of VaR estimates is their distributional

assumption, not the specification of the covariance matrix.  Even though only a limited amount

of inference is possible here, the implied covariance matrix specification performs poorly overall.

This result may not be surprising given the many anomalies typically associated with implied

volatilities.  These results seem to provide support for the common industry practice of using the

EWMA covariance matrix specifications in generating VaR estimates.  However, it does not

completely explain why practitioners have generally settled on the standard normal distributional

assumption, since other distributional assumptions, such as using a nonparametric distribution,

did better across the four quantiles examined.

The second set of evaluation techniques focus on the magnitude of losses experienced

when VaR exceptions are registered.  Although distributional assumptions play a role here as

well, the normal transform magnitude test permits more inference on the performance of

covariance matrix forecasts.  The specifications that performed best overall are the historical and

EWMA specifications, indicating that simple average forecasts appear to perform best and

further validating the current practice of financial institutions.  As with the full distribution test

results, the implied covariance matrix forecasts reject the magnitude null hypothesis in all cases.

With respect to the regulatory loss function built into current bank capital requirements,

the two VaR models that perform best are the port.EWMA-normal and the EWMA-normal

model.  This empirical result indicates that the VaR models based on the simplest specifications

of second moment dynamics and distributional assumptions may be the ones that provide the

capital-minimizing VaR forecasts.  In fact, these results indicate that ignoring covariance matrix

forecasts in favor of just portfolio variance forecasts may be preferable.

In short, from our empirical results, the covariance matrix forecasts that perform best

overall within a VaR framework are those derived from simple specifications, such as the

popular EWMA specification.  Although this result challenges the folk wisdom that forecasts

based on larger information sets, such as those embodied in options prices, or based on more

rigorous time-series specification of their dynamics should be more accurate, our results indicate

this additional information and structure is not necessarily helpful the purposes of VaR estimates. 
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These empirical results are consistent with those of Lucas (2000), who finds that VaR models

based on simple measures of portfolio variance and the normal distribution generate smaller

discrepancies between actual and postulated VaR estimates than more sophisticated VaR models. 

He argues that this outcome is based on offsetting biases in the variance and VaR estimates of

simple models that cannot be captured by more sophisticated models that attempt to capture the

actual (but unknown) degree of leptokurtosis in the portfolio returns.

In fact, our results seem to go even further by indicating that VaR models based on

covariance matrix forecasts for the individual portfolio assets do not perform much better than

VaR models based just on the portfolio variance.  Further research is necessary into why the

additional information in the covariance matrix forecasts does not seem to be useful in this

context and into whether it can be made useful by way of forecast combination techniques, as

proposed by Christoffersen et al. (1998).
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Table 1.  Evaluation Results under the Statistical Loss Functions
This analysis is based on the 1679 out-of-sample covariance matrix forecasts.  The minimum value in each column
is in bold font and underlined, and the second smallest value is just in bold font.  The shaded cells indicate that the
null hypothesis of equal loss function values between the forecast and the minimizing forecast is rejected using the
Diebold-Mariano statistic.  The asterisks indicate the degree of statistical significance (one for 10%, two for 5% and
three for 1%).

Panel A. Variance forecasts for the daily DEM returns

MSE MAE HMSE LL GMLE

Constant 9.44168e-09**   5.44717e-05 4.17589***   9.70722*   -8.94005***

Historical 9.31532e-09**   5.37523e-05 4.30393***   9.29186*   -8.99659**

EWMA 9.00663e-09   5.25232e-05 4.07639***   9.06168   -9.03971

GARCH-DVEC 8.93228e-09   5.37428e-05** 3.16844***   9.32334**   -9.04864

GARCH-BEKK 8.90617e-09   5.29962e-05 3.33749***   9.25773*   -9.04656

Implied 8.88637e-09   5.62076e-05*** 2.41193 9.74525*** -9.04463

Panel B. Variance forecasts for the daily JPY returns

MSE MAE HMSE LL GMLE

Constant 9.39769e-09**   4.94215e-05** 4.95564*   9.75784**   -9.08801***

Historical 9.28328e-09**   4.74357e-05 6.66301**   9.20758*   -9.11650***

EWMA 9.12076e-09***   4.67895e-05 6.45013***   8.99888 -9.15197***

GARCH-DVEC 9.08908e-09**   4.68262e-05 4.87144***   9.17600   -9.16907***

GARCH-BEKK 9.11594e-09**   4.67479e-05 5.18208***   9.18913   -9.16038***

Implied 8.89495e-09 4.86307e-05*** 3.33255 9.38747***   -9.20371

Panel C. Covariance forecasts for the daily DEM and JPY returns

MSE MAE HMSE GMLE

Constant 4.77241e-09***    3.96918e-05*** 4.84833 -9.56626***

Historical 4.68406e-09**   3.61173e-05 8.56484*** -9.63544**

EWMA 4.62121e-09***    3.57659e-05 8.69300*** -9.65778**

GARCH-DVEC 4.61319e-09*    3.60943e-05* 6.35233*** -9.67271*

GARCH-BEKK 4.62304e-09*   3.55559e-05 6.77418*** -9.65799**

Implied 4.55059e-09   3.70369e-05*** 4.47682 -9.70195
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Panel D. Variance forecasts for the portfolio returns

MSE MAE HMSE LL GMLE

Constant 8.345 x10-8 ** 1.647 x10-4 * 3.526 * 10.553 ** -7.869 *** 

Historical 8.255 x10-8 **   1.560 x10-4 4.433 **     9.814 * -7.905 **

EWMA 8.069 x10-8 *** 1.531 x10-4 4.135 ***     9.669 **   -7.942 *

GARCH-DVEC 8.017 x10-8 1.547 x10-4 3.332 ***     9.935 *** -7.952

GARCH-BEKK 8.021 x10-8 1.526 x10-4 3.498 ***     9.895 **  -7.947

Implied 7.923 x10-8 1.611 x10-4 *** 2.497 10.226 ***    -7.962

EWMA-IVAR 7.974 x10-8 1.564 x10-4 * 3.135 **   9.983 *** -7.959

EWMA-ICOV 8.103 x10-8 *** 1.655 x10-4 *** 2.630 10.313 *** -7.948 *

Port. EWMA 8.064 x10-8 ** 1.524 x10-4 4.865 ***   9.52500 -7.935 *

Port. GARCH 8.004 x10-8 1.531 x10-4 3.371 ***   9.884 ** -7.955

Table 2.  Quantiles of the four distributional assumptions used

N(0,1) t(13) generalized-t with
[n,p]=[2.5,1]

nonparametric
based on EWMA
covariance matrix

 1% -2.3263 -2.6503 -3.2678 -2.4468

 5% -1.6449 -1.7709 -1.6157 -1.6115

10% -1.2816 -1.3502 -1.1238 -1.2066

25% -0.6745 -0.6938 -0.5405 -0.5866
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Table 3.  Observed Exception Rates for the 40 VaR Models

Panel A. VaR models based on the standard normal distributional assumption

Observed frequency of exceptions

Covariance
specification 1% 5% 10% 25%

Constant 1.19 4.41 7.21  19.18

Historical 1.85 5.30 8.22  21.80

EWMA 1.67 5.18 7.86  21.62

GARCH-DVEC 1.19 4.88 7.92  20.55

GARCH-BEKK 1.19 4.76 8.16  20.85

Implied 0.95 4.05 6.67  20.01

EWMA-IVAR 1.19 4.35 7.21  20.55

EWMA-ICOV 1.43 4.94 7.98  21.50

Port. EWMA 1.55 5.54 8.93 22.51

Port. GARCH 1.25 4.88 8.22 20.67

Panel B. VaR models based on the t(13) distributional assumption

Observed frequency of exceptions

Covariance
specification 1% 5% 10% 25%

Constant 0.89 3.63 6.67  18.58

Historical 1.01 4.35 7.68  21.02

EWMA 1.01 4.17 7.33  20.91

GARCH-DVEC 0.77 3.75 7.44  19.77

GARCH-BEKK 0.77 3.87 7.33  20.19

Implied 0.54 3.16 6.02  19.24

EWMA-IVAR 0.66 3.39 6.37  19.89

EWMA-ICOV 0.95 4.05 7.27  21.08

Port. EWMA 0.83 4.35 8.16 21.26

Port. GARCH 0.71 3.69 7.39 20.37
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Panel C. VaR models based on the estimated generalized t-distributional assumption

Observed frequency of exceptions

Covariance
specification 1% 5% 10% 25%

Constant 0.24 4.53   9.59  24.00

Historical 0.42 5.36  11.14  25.97

EWMA 0.30 5.36  11.26  26.92

GARCH-DVEC 0.24 4.94  10.01  26.27

GARCH-BEKK 0.30 4.94  10.01  26.15

Implied 0.18 4.23   8.99  24.90

EWMA-IVAR 0.30 4.53   9.35  25.61

EWMA-ICOV 0.12 3.87   8.70  24.48

Port. EWMA 0.48 5.66 11.49 27.87

Port. GARCH 0.30 5.06 10.07 26.09

Panel D. VaR models based on the in-sample nonparametric distributional assumption

Observed frequency of exceptions

Covariance
specification 1% 5% 10% 25%

Constant 1.07 4.59   8.64 22.22

Historical 1.67 5.36   9.11 24.30

EWMA 1.31 5.36   9.41 25.07

GARCH-DVEC 0.95 4.94   9.05 24.24

GARCH-BEKK 1.07 5.00   8.99 24.42

Implied 0.83 4.29   7.62 22.75

EWMA-IVAR 0.89 4.59   8.34 23.29

EWMA-ICOV 0.71 3.93   7.44 22.81

Port. EWMA 1.25 5.66 10.18 25.43

Port. GARCH 1.07 5.12   9.05 24.60
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Table 4.  Asymptotic p-values for the LRuc and LRcc Test Results

The p-value for the LRuc and LRcc test statistics are reported.  The LRuc statistics are asymptotically distributed 2(1),
and the LRcc statistics are asymptotically distributed 2(2).  The cells in bold font indicate rejection of the null
hypothesis at the 5% significance level.

Panel A. VaR models based on the standard normal distributional assumption

Binomial LR tests

1% VaR estimates 5% VaR estimates 10% VaR estimates 25% VaR estimates

Covariance
specifcation

LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc

Constant 0.56    0.63 0.74 1.00 1.00 1.00 1.00 1.00

Historical 1.00    0.99 0.42 0.85 0.99 1.00 1.00 0.99

EWMA 0.99    0.97 0.27 0.87 1.00 1.00 1.00 1.00

GARCH-
DVEC

0.56    0.41 0.17 0.65 1.00 1.00 1.00 1.00

GARCH-
BEKK

0.56    0.41 0.34 0.87 0.99 1.00 1.00 1.00

Implied 0.15    0.67 0.93 1.00 1.00 1.00 1.00 1.00

EWMA-
IVAR

0.56    0.63 0.79 0.98 1.00 1.00 1.00 1.00

EWMA-
ICOV

0.90    0.82 0.08  0.92  1.00 1.00 1.00 1.00

Port.
EWMA

0.94 0.92 0.68 0.72 0.86 0.86 0.98 0.97

Port.
GARCH

0.68 0.53 0.17 0.65 0.99 0.99 1.00 1.00
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Panel B. VaR models based on the t(13) distributional assumption

Binomial LR tests

1% VaR estimates 5% VaR estimates 10% VaR estimates 25% VaR estimates

Covariance
specifcation

LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc

Constant 0.35    0.73 0.99 1.00 1.00 1.00 1.00 1.00 

Historical 0.04    0.16 0.79 0.98 1.00 1.00 1.00 1.00 

EWMA 0.04    0.16 0.89 0.99 1.00 1.00 1.00 1.00

GARCH-
DVEC

0.67    0.43 0.99 0.99 1.00 1.00 1.00 1.00

GARCH-
BEKK

0.67    0.43 0.97 0.99 1.00 1.00 1.00 1.00

Implied 0.96 0.89 1.00 1.00 1.00 1.00 1.00 1.00

EWMA-
IVAR

0.87    0.70 1.00 1.00 1.00 1.00 1.00 1.00

EWMA-
ICOV

0.15    0.16 0.93 0.96 1.00 1.00 1.00 1.00 

Port.
EWMA

0.52 0.31 0.79 0.85 0.99 0.99 1.00 1.00

Port.
GARCH

0.78 0.57 0.99 1.00 1.00 1.00 1.00 1.00
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Panel C. VaR models based on the generalized t-distributional assumption

Binomial LR tests

1% VaR estimates 5% VaR estimates 10% VaR estimates 25% VaR estimates

Covariance
specifcation

LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc

Constant 1.00    1.00 0.63 0.99 0.43 0.96 0.66 0.59 

Historical 0.99    0.98 0.50 0.85 0.87 0.86 0.64 0.50

EWMA 1.00    1.00 0.50 0.97 0.91 0.78 0.93 0.81

GARCH-
DVEC

1.00    1.00 0.08 0.81 0.01 0.30 0.77 0.52

GARCH-
BEKK

1.00    1.00 0.08 0.81 0.01 0.30 0.72 0.47

Implied 1.00    1.00 0.86 1.00 0.84 0.88 0.08 0.12

EWMA-
IVAR

1.00    1.00 0.63 0.98 0.63 0.67 0.44 0.25 

EWMA-
ICOV

1.00 1.00 0.97 1.00 0.93 0.96 0.38 0.30

Port.
EWMA

0.98 0.95 0.77 0.85 0.95 0.88 0.99 0.97

Port.
GARCH

1.00 1.00 0.09 0.55 0.07 0.27 0.69 0.42
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Panel D. VaR models based on the nonparametric distributional assumption

Binomial LR tests

1% VaR estimates 5% VaR estimates 10% VaR estimates 25% VaR estimates

Covariance
specifcation

LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc

Constant 0.23    0.60 0.57    0.99 0.94 0.98 0.99 0.98

Historical 0.99    0.97 0.50    0.85 0.78 0.93 0.49 0.24

EWMA 0.78    0.65 0.50    0.97 0.58 0.73 0.06 0.09

GARCH-
DVEC

0.15    0.16 0.08    0.81 0.81 0.91 0.53 0.26

GARCH-
BEKK

0.23    0.21 0.00    0.79 0.84 0.93 0.42 0.24 

Implied 0.52    0.79 0.83    0.99 1.00 1.00 0.97 0.94

EWMA-
IVAR

0.35    0.21 0.57    0.97 0.98 0.99 0.90 0.80

EWMA-
ICOV

0.78    0.57 0.96    0.99 1.00 1.00 0.96 0.93

Port.
EWMA

0.68 0.53 0.77 0.85 0.20 0.52 0.32 0.09

Port.
GARCH

0.23 0.21 0.18 0.53 0.81 0.91 0.30 0.11
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Table 5.  Asymptotic p-values for the Trinomial LRuc and LRcc Test Results
The p-value for the trinomial LRuc and LRcc test statistic are reported.  The trinomial LRuc statistics are
asymptotically distributed 2(2), and the trinomial LRcc statistics are asymptotically distributed 2(4).  The shaded
cells indicate rejection of the null hypothesis at the 5% significance level.

Panel A. VaR models based on the standard normal distributional assumption

Test statistics for =[0.01, 0.05] Test statistics for =[0.01, 0.10]

Covariance
specification

LRuc LRcc LRuc LRcc

Constant 0.60     1.00     1.00    1.00

Historical 0.99     1.00     1.00     1.00

EWMA 0.96     1.00     1.00     1.00

GARCH-DVEC 0.27     1.00     0.99     1.00

GARCH-BEKK 0.32     1.00     0.97     1.00

Implied 0.82     1.00     1.00     1.00 

EWMA-IVAR 0.65     1.00     1.00     1.00

EWMA-ICOV 0.75     1.00     0.99     1.00

Port. EWMA 0.94     1.00     0.97     1.00

Port. GARCH 0.40     1.00     0.96     1.00

Panel B. VaR models based on the t(13) distributional assumption

Test statistics for =[0.01, 0.05] Test statistics for =[0.01, 0.10]

Covariance
specification

LRuc LRcc LRuc LRcc

Constant 0.98    1.00     1.00     1.00

Historical  0.54     1.00     1.00    1.00

EWMA  0.72     1.00     1.00     1.00

GARCH-DVEC 0.97     1.00     1.00     1.00

GARCH-BEKK 0.95     1.00     1.00     1.00

Implied 1.00     1.00     1.00     1.00

EWMA-IVAR 1.00     1.00     1.00     1.00

EWMA-ICOV 0.82     1.00     1.00     1.00

Port. EWMA 0.65     1.00     0.97     1.00

Port. GARCH 0.98     1.00     1.00     1.00
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Panel C. VaR models based on the generalized t-distributional assumption

Test statistics for =[0.01, 0.05] Test statistics for =[0.01, 0.10]

Covariance
specification

LRuc LRcc LRuc LRcc

Constant 1.00 1.00 1.00 1.00

Historical 1.00 1.00 1.00 1.00

EWMA 1.00 1.00 1.00 1.00

GARCH-DVEC 1.00 1.00 1.00 1.00

GARCH-BEKK 1.00 1.00 1.00 1.00

Implied 1.00 1.00 1.00 1.00

EWMA-IVAR 1.00 1.00 1.00 1.00

EWMA-ICOV 1.00 1.00 1.00 1.00

Port. EWMA 0.97 1.00 0.99 1.00

Port. GARCH 1.00 1.00 1.00 1.00

Panel D. VaR models based on the nonparametric distributional assumption

Test statistics for =[0.01, 0.05] Test statistics for =[0.01, 0.10]

Covariance
specification

LRuc LRcc LRuc LRcc

Constant 0.29     1.00     0.84     1.00

Historical 0.97     1.00     0.98     1.00

EWMA 0.63     1.00     0.65     1.00

GARCH-DVEC 0.02     1.00    0.59     1.00

GARCH-BEKK 0.04     1.00     0.63     1.00

Implied 0.70     1.00     1.00     1.00

EWMA-IVAR 0.34     1.00     0.94     1.00

EWMA-ICOV 0.95     1.00     1.00     1.00

Port. EWMA 0.72     1.00     0.41     1.00

Port. GARCH 0.07     1.00     0.59     1.00
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Table 6.  Asymptotic p-values for the LRdist Test Results

The p-value for the LRdist test statistics are reported.  The LRdist statistic is asymptotically distributed 2(3).  The
shaded cells indicate rejection of the null hypothesis at the 5% significance level.

Normal transform tests

Covariance
specification

Standard normal
distribution

t(13) distribution generalized-t
distribution

nonparametric
distribution

Constant 0.99 1.00 0.96 0.83

Historical 0.28 0.99 0.06 0.73

EWMA 0.36 0.99 0.08 0.64

GARCH-DVEC 0.88 1.00 0.36 0.28

GARCH-BEKK 0.72 1.00 0.18 0.19

Implied 1.00 1.00 0.99 0.99

EWMA-IVAR 0.99 1.00 0.82 0.75

EWMA-ICOV 1.00 1.00 0.99 0.99

Port. EWMA 0.50 0.99 0.28 0.92

Port. GARCH 0.78 1.00 0.21 0.20
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Table 7.  Asymptotic p-values for the LRmag Test Results
The p-value for the LRmag test statistic are reported.  The LRmag test statistics are asymptotically distributed 2(2). 
The shaded cells indicate rejection of the null hypothesis at the 5% significance level.

Panel A. VaR models based on the standard normal distributional assumption

LRmag tests

Covariance
specification

1% VaR
estimates

5% VaR
estimates

10% VaR
estimates

25% VaR
estimates

Constant 0.98 1.00 1.00 1.00

Historical 0.05 0.64 0.92 0.99

EWMA 0.29 0.63 0.76 0.88

GARCH-DVEC 0.96 0.99 1.00 1.00

GARCH-BEKK 0.90 0.99 0.99 0.99

Implied 0.99 1.00 1.00 1.00

EWMA-IVAR 0.99 1.00 1.00 1.00

EWMA-ICOV 0.99 1.00 1.00 1.00

Port. EWMA 0.09 0.85 0.99 1.00

Port. GARCH 0.92 0.99 0.99 0.99

Panel B. VaR models based on the t(13) distributional assumption

LRmag tests

Covariance
specification

1% VaR
estimates

5% VaR
estimates

10% VaR
estimates

25% VaR
estimates

Constant 0.99 1.00 1.00 1.00

Historical 0.99 1.00 1.00 1.00

EWMA 1.00 1.00 1.00 1.00

GARCH-DVEC 0.99 1.00 1.00 1.00

GARCH-BEKK 0.99 1.00 1.00 1.00

Implied 1.00 1.00 1.00 1.00

EWMA-IVAR 0.99 1.00 1.00 1.00

EWMA-ICOV 1.00 1.00 1.00 1.00

Port. EWMA 0.99 1.00 1.00 1.00

Port. GARCH 0.99 1.00 1.00 1.00
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Panel C. VaR models based on the generalized t-distributional assumption

LRmag tests

Covariance
specification

1% VaR
estimates

5% VaR
estimates

10% VaR
estimates

25% VaR
estimates

Constant 0.99 1.00 1.00 1.00

Historical 0.04 0.46 0.84 0.99

EWMA 0.02 0.34 0.72 0.98

GARCH-DVEC 0.87 0.99 0.99 0.99

GARCH-BEKK 0.76 0.99 0.99 0.98

Implied 0.99 1.00 1.00 1.00

EWMA-IVAR 0.98 1.00 1.00 1.00

EWMA-ICOV 0.99 1.00 1.00 1.00

Port. EWMA 0.09 0.76 0.99 1.00

Port. GARCH 0.78 0.99 0.99 0.98

Panel D. VaR models based on the nonparametric distributional assumption

LRmag tests

Covariance
specification

1% VaR
estimates

5% VaR
estimates

10% VaR
estimates

25% VaR
estimates

Constant 0.97 1.00 1.00 1.00

Historical 0.03 0.97 0.99 1.00

EWMA 0.01 0.94 0.99 1.00

GARCH-DVEC 0.78 0.99 0.99 1.00

GARCH-BEKK 0.52 0.94 0.99 0.99

Implied 0.99 1.00 1.00 1.00

EWMA-IVAR 0.96 1.00 1.00 1.00

EWMA-ICOV 0.99 1.00 1.00 1.00

Port. EWMA 0.16 0.99 1.00 1.00

Port. GARCH 0.55 0.95 1.00 1.00
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Table 8.  Exception frequency as a percentage of out-of-sample, 250-trading day periods
Each cell presents the percentage of the 1430 overlapping 250-day periods in the out-of-sample period for

which these number of VaR exceptions are observed.

Panel A.  Standard normal distribution

Number of VaR exceptions

Covariance
specification

0 #4 #5 #9 #10

Constant 25 67   74  100 100

Historical 1 55   70  100 100

EWMA 0 66 80 100 100

GARCH-DVC 0 84 93 100 100

GARCH-BEKK 0 79   93 100  100

Implied 9   92  100 100  100

EWMA-IVAR 1 70 84 100  100

EWMA-ICOV 0 74 87 100 100

Port. EWMA 0 77 87 100 100

Port. GARCH 0 75 95 100 100

Panel B.  t(13) distribution

Number of VaR exceptions

Covariance
specification

0 #4 #5 #9 #10

Constant 26   79   87 100  100

Historical 0 20   95 100  100

EWMA 0 100 100 100  100

GARCH-
DVEC

0 100 100 100  100

GARCH-BEKK 5   96 100 100  100

Implied 26 100 100 100  100

EWMA-IVAR 22 100 100 100  100

EWMA-ICOV 8   89   94 100  100

Port. EWMA 15 26 35 100  100

Port. GARCH 0 100 100 100  100
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Panel C.  Generalized-t distribution

Number of exceptions

Covariance
specification

0 #4 #5 #9 #10

Constant 50 100  100 100  100

Historical 24 100  100 100  100

EWMA 30 100  100 100  100

GARCH-
DVEC

47 100  100 100  100

GARCH-BEKK 43 100  100 100  100

Implied 61 100  100 100  100

EWMA-IVAR 38 100  100 100  100

EWMA-ICOV 76 100  100 100  100

Port. EWMA 43 100  100 100  100

Port. GARCH 22 100  100 100  100

Panel D.  Nonparametric distribution

Number of exceptions

Covariance
specification

0 #4 #5 #9 #10

Constant 26    67   77 100 100

Historical 1 60   71 100 100

EWMA 0 91   100 100 100

GARCH-
DVEC

0 93 100 100 100

GARCH-BEKK 0 83   93 100 100

Implied 0 9   97 100 100

EWMA-IVAR 9   97 100 100 100

EWMA-ICOV 1 100 100 100 100

Port. EWMA 0 85   87 100 100

Port. GARCH 0 95   97 100 100
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Table 9.  Percentage of trading days for which the defined capital charge for EWMA-
Normal model is below the other model’s capital charge

Covariance
specification

Standard normal
distribution

t(13) distribution generalized-t
distribution

nonparametric
distribution

Constant 73.9 83.8 93.5 79.8

Historical 64.9 78.5 99.9 76.0

EWMA 80.0 100.0 71.0

GARCH-DVEC 57.0 83.1 100.0 65.9

GARCH-BEKK 56.8 82.4 100.0 70.5

Implied 68.3 88.5 100.0 79.5

EWMA-IVAR 74.9 85.9 100.0 70.4

EWMA-ICOV 65.3 80.5 100.0 79.6

Port. EWMA 30.8 74.1 100.0 48.8

Port. GARCH 58.2 77.6 100.0 72.2
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Table 10.  p-value of the Diebold & Mariano statistic for capital charges corresponding to
the models’ 1% VaR estimates relative to those of the EWMA-normal model

The shaded cells indicate that the null hypothesis of equal capital charges is rejected at the 5% significance level.

Covariance
specification

Standard normal
distribution

t(13) distribution generalized-t
distribution

nonparametric
distribution

Constant 1.1% 0.0% 0.0% 0.0%

Historical 3.0% 0.0% 0.0% 0.1%

EWMA 0.0% 0.0% 24.8% 

GARCH-DVEC 57.0% 0.0% 0.0% 7.4%

GARCH-BEKK 55.6% 0.0% 0.0% 1.9%

Implied 2.1% 0.0% 0.0% 0.0%

EWMA-IVAR 0.4% 0.0% 0.0% 0.8%

EWMA-ICOV 34.4% 0.0% 0.0% 0.0%

Port. EWMA 98.2% 0.3% 0.0% 80.3%

Port. GARCH 33.0% 0.0% 0.0% 1.0%

Table 11.  p-value of the Diebold & Mariano statistic for capital charges corresponding to
the models’ 1% VaR estimates relative to those of the port.EWMA-normal model

The shaded cells indicate that the null hypothesis of equal capital charges is rejected at the 5% significance level.

Covariance
specification

Standard normal
distribution

t(13) distribution generalized-t
distribution

nonparametric
distribution

Constant 0.0% 0.0% 0.0% 0.0%

Historical 1.6% 0.0% 0.0% 0.2%

EWMA 1.8% 0.0% 0.0% 0.1%

GARCH-DVEC 1.5% 0.0% 0.0% 0.0%

GARCH-BEKK 2.6% 0.0% 0.0% 0.0%

Implied 0.0% 0.0% 0.0% 0.0%

EWMA-IVAR 0.1% 0.0% 0.0% 0.0%

EWMA-ICOV 4.0% 0.0% 0.0% 0.0%

Port. EWMA 0.0% 0.0% 0.3%

Port. GARCH 0.4% 0.0% 0.0% 0.0%


