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1 Introduction

The Cobb Douglas production technology has long been a popular choice in macroe-

conomic research owing to its analytical convenience and empirically-supported long-

run balanced-growth properties. However, the malleability of capital inherent to

the Cobb-Douglas framework severely restricts the analysis of issues related to ir-

reversible investment, including investment under uncertainty, capacity utilization,

and capital obsolescence and replacement. In particular, a key assumption needed to

achieve aggregation with Cobb-Douglas technology and heterogeneous capital goods

is that labor be equally flexible in the short and the long run. This assumption im-

plies that, absent modifications such as costs of operating capital, all capital goods

are used in production and that the short-run elasticity of output with respect to

labor equals the long-run labor share of income.

Putty-clay technology, originally introduced by Johansen (1959), provides an al-

ternative description of production and capital accumulation that breaks the tight

restrictions on short-run production possibilities imposed by Cobb-Douglas technol-

ogy and provides a natural framework for examining issues related to irreversible

investment. With putty-clay capital, the ex ante production technology allows sub-

stitution between capital and labor, but once the capital good is installed, the tech-

nology is Leontief with productivity determined by the embodied level of vintage

technology and the ex post fixed choice of capital intensity.2 An impediment to the

adoption of the putty-clay framework has been the analytical difficulty associated

with a model in which one must keep track of all existing vintages of capital. While

recent research has made significant progress in incorporating aspects of putty clay

technology while preserving analytical tractability, these efforts have not provided

a full treatment of issues related to irreversible investment and capacity utiliza-

tion (see, for example, Cooley, Hansen and Prescott (1995) and Atkeson and Kehoe

(1999)).

In Gilchrist and Williams (2000), we develop a general equilibrium model with

putty-clay technology in which aggregate relationships are explicitly derived from

the microeconomic decisions of investment, capacity utilization, and machine re-

placement. This model has already proven to be useful in a number of applications

(Gilchrist and Williams (2001), Wei (2001)). In this paper, we extend this model
2Putty-clay capital was studied intensely during the 1960s, but received relatively little attention

again until the 1990s. See Gilchrist and Williams (2000) for further references.
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to incorporate time variation in the variability of project returns and explore the

steady-state and dynamic relationships idiosyncratic uncertainty and investment.

In addition, we provide a more complete theoretical analysis of the partial- and

general-equilibrium properties of this putty-clay framework than has been provided

elsewhere.

We show that the assumption of log-normally distributed idiosyncratic produc-

tivity, as in Campbell (1998), facilitates the analysis of aggregate relationships while

preserving the putty-clay characteristics of the microeconomic structure. In partic-

ular, there exists a well-defined aggregate production function with a short-run

elasticity of output with respect to labor strictly less than that of the Cobb-Douglas

alternative. This result is in contrast to that of Houthakker (1953), who finds that

a Leontief microeconomic structure aggregates to a Cobb-Douglas production func-

tion if the distribution of idiosyncratic uncertainty is Pareto. In addition, we show

that all relevant production elasticities in the putty-clay model are functions of haz-

ard rates for a standard normal distribution, facilitating the derivation of analytical

results.

We then examine the steady-state and dynamic relationships between uncer-

tainty and investment in the putty-clay model. In recent papers, Campbell, Lettau,

Malkiel and Xu (2001) and Goyal and Santa-Clara (2001) demonstrate that the

idiosyncratic component of stock returns, a measure of investment uncertainty, is

subject to large and highly persistent shifts over time. We find that in the putty-clay

model such shifts in the distribution of returns have first-order effects on aggregate

investment, hours, and productivity that differ sharply from those occurring with

putty-putty capital or resulting from shocks to the level of technology.

Our analysis contributes to the large theoretical literature that identifies chan-

nels through which uncertainty may influence investment. Bernanke (1983) and

Pindyck (1991) stress the negative influence that uncertainty has in a model where

there exists an “option value” to waiting to invest. Because the uncertainty consid-

ered in this paper is resolved only after investment decisions are made, our work is

more directly related to the work of Hartman (1972) and Abel (1983). These au-

thors emphasize the positive effect that increased uncertainty may have on firm-level

investment because expected profits increase with uncertainty. In our framework,

increased uncertainty raises expected profits but reduces the expected marginal re-

turn to capital, causing a reduction in capital intensity at the microeconomic level.
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We begin with the steady-state analysis and consider both partial and general

equilibrium implications. The partial equilibrium analysis focuses on the intensive

margin where the decision is how much to invest per project, while the general equi-

librium analysis takes into account movements in relative prices and investment on

the extensive margin that occurs through new entry. We find that an increase in

idiosyncratic uncertainty reduces investment at the project level but raises invest-

ment in the aggregate. The former result is broadly consistent with the empirical

evidence of a negative relationship between investment and uncertainty at the firm-

level (Leahy and Whited 1996).

The increase in aggregate investment is a natural consequence of the reallocation

benefits associated with redistributing variable factors of production, such as labor,

across project outcomes that are embodied in fixed factors, such as capital. When

compared to the benchmark vintage capital model introduced by Solow (1960), we

show that the additional irreversibility of the capital-labor ratio associated with

the putty-clay framework limits such reallocation benefits. As a result, the long-

run expansionary effects of increased uncertainty are lower in the putty-clay model

vis--vis the putty-putty alternative.

The dynamic response to a change in the variance of project outcomes differs

significantly from that of a shock to the level of technology in the putty-clay model.

In particular, an increase in the variance of returns generates a hump-shaped re-

sponse of the growth rate of labor productivity with the peak response not occurring

for ten to fifteen years; in contrast, the peak response to an increase in the level of

technology occurs on impact. By comparison, in the case of putty-putty capital, the

dynamic responses to the two shocks are identical. Overall, these results suggest

a new mechanism whereby variation in the second moment of project returns can

have first-order effects on aggregate quantities.

The remainder of this paper is divided as follows: Section 2 describes the model

and equilibrium conditions. Section 3 shows the equilibrium determination of uti-

lization rates in the case of no growth and provides closed-form expressions for

aggregate economic variables as functions of the equilibrium utilization rate. Sec-

tion 4 considers the steady-state implications of increased uncertainty on investment

at both the project level and in the aggregate, while section 5 examines the dynamic

responses of increased uncertainty in an economy with growth. Section 6 concludes.
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2 The Model

In this section, we describe the putty-clay model and derive the equilibrium con-

ditions. Each capital good possesses two defining qualities: its level of embodied

technology and its capital intensity. The underlying ex ante production technology

is assumed to be Cobb-Douglas with constant returns to scale, but for capital goods

in place, production possibilities take the Leontief form: there is no ex post substi-

tutability of capital and labor at the microeconomic level. In addition to aggregate

technological change, we allow for the existence of idiosyncratic uncertainty regard-

ing the productivity of investment projects, the variance of which may change over

time. To characterize the equilibrium allocation, we first discuss the optimization

problem at the project level and then describe aggregation from the project level to

the aggregate allocation.3

2.1 The Investment Decision

Each period, a set of new investment “projects” becomes available. Constant returns

to scale implies an indeterminacy of scale at the level of projects, so without loss

of generality, we normalize all projects to employ one unit of labor at full capacity.

We refer to these projects as “machines.” Capital goods require one period for

initial installation and then are productive for 1 ≤ M ≤ ∞ periods. The productive

efficiency of machine i initiated at time t is affected by a random idiosyncratic

productivity term. In addition, we assume all machines, regardless of their relative

efficiency, fail at an exogenously given rate that varies by the age of the machine. In

summary, capital goods are heterogeneous and are characterized by three attributes:

vintage (age and level of aggregate embodied technology), capital-intensity, and the

realized value of the idiosyncratic productivity term.

The productivity of each machine, initiated at time t, differs according to the

log-normally distributed random variable, θi,t, where

ln θi,t ∼ N(ln θt − 1
2
σ2

t , σ
2
t ).

The aggregate index θt measures the mean level of embodied technology of vintage t

investment goods and σ2
t is the variance of the idiosyncratic shock for capital goods

installed of that vintage. The mean correction term −1
2σ2

t implies that E(θi,t|θt) =

3This section extends that in Gilchrist and Williams (2000) by incorporating time-variation in
the degree of idiosyncratic uncertainty.

4



θt. We assume θt follows a non-stochastic trend growth process with gross growth

rate (1 + g)1−α.

The idiosyncratic shock to individual machines is not observed until after the

investment decisions are made. We also assume that after the revelation of the id-

iosyncratic shock, further investments in existing machines are not possible. Subject

to the constraint that labor employed, Li,t+j , is nonnegative and less than or equal

to unity (capacity), final goods output produced in period t + j by machine i of

vintage t is

Yi,t+j = θi,tk
α
i,tLi,t+j ,

where ki,t is the capital-labor ratio chosen at the time of installation. Denote the

labor productivity of a machine by

Xi,t ≡ θi,tk
α
i,t.

The only variable cost to operating a machine is the wage rate, Wt. Idle machines

incur no variable costs and have the same capital costs as operating machines. Given

the Leontief structure of production, these assumptions imply a cutoff value for the

minimum efficiency level of machines used in production: those with productivity

Xi,t ≥ Wt are run at capacity, while those less productive are left idle.

Owing to trend productivity growth and relatively long-lived capital, the mean

labor productivity of the most recent vintage is substantially higher than that of all

existing machines. Obsolescence through embodied technical change implies that

older vintages have lower average utilization rates than newer vintages.

To derive the equilibrium allocation of labor, capital intensity, and investment,

we begin by analyzing the investment and utilization decision for a single machine.

Define the time t discount rate for time t + j income by R̃t,t+j ≡ ∏j
s=1 R−1

t+s, where

Rt+s is the one period gross interest rate at time t+s. At the machine level, capital

intensity is chosen to maximize the present discounted value of profits to the machine

max
ki,t,{Li,t+j}M

j=1

E

{
−ki,t +

M∑
j=1

R̃t,t+j(1 − δj)(Xi,t − Wt+j)Li,t+j

}
, (1)

s.t. 0 ≤ Li,t+j ≤ 1, j = 1, . . . , M,

0 < ki,t < ∞,

where δj is the probability a machine has failed exogenously by j periods and ex-

pectations are taken over the time t idiosyncratic shock, θi,t.
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Because investment projects are identical ex ante, the optimal choice of the

capital-labor ratio is equal across all machines in a vintage; that is, ki,t = kt,∀i.

Denote the mean productivity of vintage t capital by Xt = θtk
α
t . Capital utilization

for vintage s at time t is the ratio of labor employed to employment capacity of the

vintage, given by Pr(Xi,s > Wt|Wt, θt). Given the log-normal distribution for θi,t,

the expected labor requirement at time t for a machine built in period s is given by

Pr(Xi,s > Wt|Wt, θt) = 1 − Φ(zs
t ),

where Φ (·) is the c.d.f. of the standard normal and

zs
t ≡ 1

σs

(
lnWt − lnXs +

1
2
σ2

s

)
.

Letting F (Xi,s) denote the c.d.f. of Xi,s, we can similarly compute expected output

to be ∫ ∞

Xi,s>Wt

Xi,sdF (Xi,s) = (1 − Φ(zs
t − σs))Xs

where the expression on the right hand side follows from the formula for the expec-

tation of a truncated log-normal random variable.4 Capacity utilization of vintage s

capital at time t—the ratio of actual output produced from the capital of a given vin-

tage to the level of output that could be produced at full capital utilization—equals

(1 − Φ(zs
t − σs)).

Expected net income in period t from a vintage s machine, πs
t , conditional on

Wt, is given by

πs
t = (1 − δt−s)

(
(1 − Φ(zs

t − σs))Xs − (1 − Φ(zs
t ))Wt

)
.

Substituting this expression for net income into equation 1 eliminates the future

choices of labor from the investment problem. The remaining choice variable is kt.

The choice of kt has a direct effect on profitability through its effect on the

expected value of output Xt. It also has a potential indirect effect through its

influence on utilization rates. For any given realization of θit, a higher choice of kt

raises the probability that a machine will be utilized in the future. This increase in

utilization raises both expected future output and expected future wage payments.

Because the marginal machine earns zero quasi-rents, this indirect effect has no

4If ln(µ) ∼ N(ζ, σ2), then E(µ|µ > χ) = (1−Φ(γ−σ))
(1−Φ(γ))

E(µ) where γ = (ln(χ) − ζ)/σ (Johnson,

Kotz and Balakrishnan 1994).
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marginal effect on profitability however, that is,

∂πs
t

∂zs
t

=
1
σs

φ(zs
t − σs)Xs − 1

σs
φ(zs

t )Wt = 0,

where φ(·) denotes the p.d.f. for a standard normal random variable. The first-order

condition for an interior solution for kt is given by

kt = α
M∑

j=1

R̃t,t+j(1 − δj)
(
1 − Φ(zt

t+j − σt)
)

Xt. (2)

New machines are put into place until the value of a new machine (the present

discounted value of net income) is equal to the cost of a machine, kt,

kt =
M∑

j=1

R̃t,t+j(1 − δj)
(
(1 − Φ(zt

t+j − σt))Xt − (1 − Φ(zt
t+j))Wt+j

)
. (3)

This is the free-entry or zero-profit condition. The first term on the right hand

side of equation 3 equals the expected present discounted value of output adjusted

for the probability that the machine’s idiosyncratic productivity draw is too low to

profitably operate the machine in period t+j. The second term equals the expected

present value of the wage bill, adjusted for the probability of such a shutdown.

Equations 2 and 3 jointly imply that, in equilibrium, the expected present value of

the wage bill equals (1 − α) times the expected present value of revenue.

2.2 Aggregation

Total labor employment, Lt, is equal to the sum of employment from all existing

vintages of capital

Lt =
M∑

j=1

(1 − Φ(zt−j
t ))(1 − δj)Qt−j , (4)

where Qt−j is the quantity of new machines started in period t− j. Aggregate final

output, Yt, is

Yt =
M∑

j=1

(1 − Φ(zt−j
t − σt−j))(1 − δj)Qt−jXt−j . (5)

In the absence of government spending or other uses of output, aggregate consump-

tion, Ct, satisfies

Ct = Yt − ktQt, (6)

where ktQt is gross investment in new machines.
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2.3 Preferences

To close the model, we posit that representative households have preferences de-

scribed by
1

1 − γ

∞∑
t=0

βtNt

(
Ct(Nt − Lt)ψ

Nt

)1−γ

, (7)

where β ∈ (0, 1), ψ > 0, 1/γ > 0 is the intertemporal elasticity of substitution, and

Nt = N0(1 + n)t is the household’s growing time endowment. Households optimize

over these preferences subject to the standard intertemporal budget constraint. We

assume that claims on the profits streams of individual machines are traded; in

equilibrium, households own a diversified portfolio of all such claims.

The first-order condition with respect to consumption is given by

Uc,t = βRt,t+1Uc,t+1, (8)

where Uc,t+s denotes the marginal utility of consumption. The first-order condition

with respect to leisure/work is given by

Uc,tWt + UL,t = 0, (9)

where UL,t denotes the marginal utility associated with an incremental increase in

work (decrease in leisure).

2.4 The Solow Vintage Model

By relaxing the restriction that ex post capital-labor ratios are fixed, the model de-

scribed above collapses to the putty-putty vintage capital model initially introduced

by Solow (1960), modifed to allow for time-varying idiosyncratic uncertainty. For

the Solow vintage model, define the capital aggregator, Kt, by

Kt ≡
M∑

j=1

(
θt−je

(1−α)σ2
t−j

2α

)1/α

(1 − δj)It−j , (10)

where It denotes gross aggregate capital investment in period t. The two terms

that multiply investment flows measure the level of embodied technology at the

time of installation of the capital good, θ, and the scale correction that results

from aggregating across machines with differing levels of idiosyncratic productivity,

subject to the marginal product of labor being equal across all machines. Aggregate

production in period t is given by

Yt = Kα
t L1−α

t . (11)
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If we assume that δj = 1 − (1 − δ)j−1 and M = ∞, we obtain the following capital

accumulation equation

Kt = (1 − δ)Kt−1 +
(
θt−1e

(1−α)σ2
t−1

2α

)1/α
It−1.

Note that in this economy with putty-putty capital, a mean-preserving spread to

idiosyncratic productivity is equivalent to an increase in embodied productivity at

the aggregate level. Both of these factors enter the model through the capital

accumulation equation and are equivalent to a reduction in the economic cost of

new capital goods.

3 The No-Growth Economy

In this section, we derive the conditions describing the steady state of the putty-clay

economy with no technological or population growth; the case of positive growth is

taken up in section 5. We first prove the uniqueness of the steady-state equilibrium

utilization rate. We then derive closed-form solutions for the steady-state values of

all variables as functions of the steady-state utilization rate. In so doing, we show

that the model has a well-defined aggregate production function and characterize

its properties.

The no-growth economy is obtained by setting g = n = 0. For further simplicity,

we assume M = ∞ and δj = 1−(1−δ)j−1 for some depreciation rate δ > 0. Letting

lower case letters denote steady-state per capita quantities and suppressing time

subscripts we define z = (1/σ)[ln(w)− ln(θkα)+ 1
2σ2]. Equation 4 then implies that

steady-state labor equals the steady-state capital utilization rate times the total

stock of machines, q/δ ,

l = (1 − Φ(z))(q/δ), (12)

while equation 5 implies that steady-state output is equal to the steady-state ca-

pacity utilization rate times potential output

y = (1 − Φ(z − σ))θkα(q/δ). (13)

For a given capital-labor ratio and stock of machines, labor and output are increasing

in the rate of utilization.

Equations 12 and 13 provide an implicit relationship between labor and out-

put that may be interpreted as the short-run production function for this economy
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(holding capital fixed). Computing the ratio of these two equations, we obtain an

expression for the average product of labor (APL)

APL =
(1 − Φ(z − σ))

(1 − Φ(z))
θkα.

Average labor productivity depends on overall machine efficiency θkα adjusted for

both the rates of capacity utilization and capital utilization. Taking the ratio of

partial derivatives, ∂y
∂z / ∂l

∂z , we obtain an expression for the marginal product of

labor (MPL)

MPL =
φ(z − σ)

φ(z)
θkα.

Taking second derivatives we obtain ∂MPL
∂l = −σMPL , which implies strict con-

cavity of the short-run production function.

Letting (1/w) denote the gross markup over wage costs, we can obtain the short-

run elasticity of supply by taking logs and then differentiating equation 13 with

respect to ln w
∂ ln y

∂ ln(1/w)
=

h(z − σ)
σ

,

where h(x) ≡ φ(x)/(1 − Φ(x)), the hazard rate for the standard normal. In the

short run, an expansion of output is achieved through the utilization of marginal

machines. The hazard rate h(z−σ) measures machine efficiency for machines in use,

relative to overall machine efficiency. As output increases, the efficiency of machines

in use falls, and the elasticity of supply falls.

The elasticity of output with respect to labor is computed as the ratio of marginal

to average labor productivity; equivalently, it may be expressed in terms of hazard

rates

∂ ln y

∂ ln l
=

h(z − σ)
h(z)

.

This ratio plays a key role in determining both the equilibrium rate of capital uti-

lization.

Combining equations 2, 12, and 13 and solving for the capital-labor ratio per

machine yields

k =
(

α

r + δ
(1 − Φ(z − σ))θ

) 1
1−α

, (14)

where r = 1/β − 1 is the steady-state equilibrium real interest rate. Except for the

adjustment for capacity utilization (1 − Φ(z − σ)), this is the standard expression
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for the steady-state capital-labor ratio in a no-growth economy. The adjustment

factor implies that the optimal capital-labor ratio for new machines is increasing in

the capacity utilization rate.

In equilibrium, the wage rate equals the marginal product of labor, or, equiva-

lently, the efficiency level of the marginal machine. The first-order condition for the

labor-leisure decision, equation 9, and the aggregate resource constraint, equation 6,

yield

w = ψ
c

1 − l
, (15)

c = y − kq. (16)

To close the model and solve for the equilibrium rate of capital utilization, we first

express the zero-profit condition as a monotonic function of z. In steady state,

per-period profits (net of capital expenditures) are given by

Π = (1 − Φ(z − σ))θkα − (1 − Φ(z))w − (r + δ)k, (17)

where (r + δ)k equals per-period capital expenditures. Using equation 14, we may

alternatively express per-period capital expenditures by α(1 − Φ(z − σ))θkα. Net

profits may then be written

Π = (1 − Φ(z))[(1 − α)
y

l
− w].

The free-entry condition requires that expected net profits equal zero, so that,

in equilibrium, labor’s share of output equals the wage bill: (1 − α)y = wl, just

as in the neoclassical vintage model with Cobb-Douglas production. In the vintage

model, this equality is achieved by allocating more labor to high-efficiency machines

and less to low-efficiency machines so that the marginal product of labor is equal

across machines. Each factor (labor and capital) is paid its share of output so that

net profits are zero. In the putty-clay model, marginal products are not equalized

across individual machines. Instead, a worker employed on a highly efficient machine

is more productive than one employed on a low efficiency machine. Free entry of

new machines then determines the utilization rate consistent with zero equilibrium

net profits.

To see the link between free entry and utilization, we use the equilibrium condi-

tion that the wage rate equals the productivity of the marginal machine to obtain

wl

y
=

h(z − σ)
h(z)

.
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Free entry requires that the ratio of marginal to average machine efficiencies equals

labor’s share (1 − α). This equilibrium condition determines the steady-state value

of z and thereby the steady-state capital utilization rate (1 − Φ(z)). We state this

result in the following proposition.

Proposition 1 For the no-growth economy, there exists a unique equilibrium value

of z that satisfies:

1 − α =
h(z − σ)

h(z)
(18)

where h(x) = φ(x)/(1 − Φ(x)) is the hazard rate for the standard normal.

Proof: As shown in the appendix, for any given σ > 0, h(z − σ)/h(z) is monotoni-

cally increasing with limz→−∞
h(z−σ)

h(z) = 0 and limz→+∞
h(z−σ)

h(z) = 1. Hence, there is

a single value of z that satisfies equation 18.

To complete the description of the model, we combine equations 13, 14, 15, and

16 and use the free entry condition to solve for steady-state labor

l =
(1 − α)

1 − α − ψ(1 − αδ/(r + δ))
. (19)

Note that steady-state labor is independent of z and σ2, the variance of idiosyncratic

shocks. As in the case of the Solow vintage model, a mean-preserving spread to

idiosyncratic productivity acts like an aggregate disembodied productivity shock

with respect to the labor allocation decision and thus has no effect on steady-state

labor. Equilibrium values for all remaining aggregate variables are then computed

from z and l.

Figure 1 provides a graphical depiction of the steady-state equilibrium. In this

figure, we normalize θkα at unity and plot the ratio of marginal to average variable

cost (the inverse of MPL/APL) as a function of capital utilization for two values of σ,

0.25 and 0.4. At low levels of utilization, the marginal machine is highly productive

and marginal cost is low. At high levels of utilization, the marginal machine is

relatively unproductive, and small increases in utilization cause sharp increases in

marginal cost. Average variable cost is concave and increasing in utilization with

average variable cost equaling unity at full capacity utilization. Because the ratio

of marginal to average variable cost is strictly increasing and asymptotes to infinity

as the economy approaches full capacity utilization, we are guaranteed a unique

equilibrium rate of capital utilization.
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Figure 1: Equilibrium Utilization Rate
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The steady-state equilibrium condition that MC
AV C = 1

1−α is satisfied for the two

cases of σ at the points labeled CU∗ shown in the figure. If capacity utilization

exceeds the equilibrium level, marginal cost is high relative to average variable cost,

implying that wages are low relative to labor productivity and profits are positive.

Positive profits induce new entry into the market which in turn increases the demand

for labor. Given the steady-state quantity of labor, new entry causes wages to rise.

Marginal machines are shut down, capacity utilization falls, and profits decline to

the point that new machines earn zero profits.

The steeply rising MC
AV C curve shown in figure 1 translates into a short-run aggre-

gate supply curve with more curvature than that of the neoclassical vintage model,

for which the ratio of MC
AV C is constant and equal to 1

1−α . To see this more directly,

figure 2 plots the log of output versus the log of the inverse of the wage for two

specifications of σ of the putty-clay model and for the Solow vintage model. In

each case, the stock of capital goods is held fixed at its steady-state level. Each

curve traces out the increases in output obtained through increases in labor input,

i.e., increased utilization in the putty-clay model, in response to lower wages. In

log-terms, the slope of the supply curve is equal to the inverse of the elasticity of

supply. In the Solow vintage model, the elasticity of supply is constant and equal

to 1−α
α and therefore the supply curve is log-linear. In the putty-clay model, the

elasticity of supply (h(z−σ)
σ ) is decreasing in utilization, implying that the slope of

13



Figure 2: Aggregate Supply Curve
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the supply curve increases as output increases. As can be seen from figure 2, for any

given σ, the slope of the supply curve is increasing at an increasing rate as lower

and lower quality machines are brought on line.

We expect that increased idiosyncratic uncertainty produces a more flexible econ-

omy which translates into a higher elasticity of supply and therefore a flatter supply

curve. As can be seen from the tangency lines in figure 2, at the steady-state equilib-

rium, the slope of the short-run aggregate supply curve is indeed negatively related

to the degree of idiosyncratic uncertainty. At the steady-state equilibrium, it is

always greater than α
1−α , the slope for the Solow vintage model. These results are

formalized in the following proposition.

Proposition 2 For the no-growth putty-clay economy, the slope of the aggregate

supply curve holding capital fixed, ∂ ln(1/w)
∂ ln y = σ

h(z−σ) , is increasing and convex in

ln y. Evaluated at the steady-state equilibrium, the slope of the aggregate supply

curve is decreasing in the level of idiosyncratic uncertainty and is bounded below by
α

1−α , the slope of the supply curve for the Solow vintage model.

Proof: Let η = ∂ ln y
∂ ln(1/w) = h(z−σ)

σ denote the elasticity of supply. From Result 1 in

the appendix, we know that h(z) is log-concave which implies h(z−σ)− (z−σ) >

h(z) − z and h′ (z − σ) < 1 . Using h′(z) = h(z)(h(z) − z), and taking partial
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derivatives, we have: ∂η
∂ ln y = −

(
h(z−σ)−(z−σ)

σ

)
< 0 and ∂2η

∂(ln y)2
= (h′(z−σ)−1)

σh(z−σ) < 0

implying that the slope of the supply curve, η−1 , is increasing and convex in ln(y).

To show η−1 is decreasing in σ, we note that in equilibrium η = (1−α)h(z)
σ .

Taking derivatives we obtain

dη

dσ
= (

h′(z)
h(z)

dz

dσ
− 1

σ
)η

and totally differentiating equation 18 we obtain dz
dσ = h(z−σ)−(z−σ)

h(z−σ)−h(z)+σ > 1 where the

inequality again follows from log-concavity of h(z) . Combining these expressions

we have
dη

dσ
=

[
(h(z − σ) − (z − σ)) (h(z) − z)

h(z − σ) − h(z) + σ
− 1

σ

]
η.

Result 5 in the appendix relies on convexity of h(z) to show that the term in brackets

is strictly positive for any σ > 0 . This establishes that dη
dσ > 0 , and the slope

of the supply curve is strictly decreasing in σ at the steady-state equilibrium. To

establish the lower bound for the slope of the supply curve, in equilibrium, we note

that h(z −σ) = (1−α)h(z) and h(z −σ)− (z −σ) > h(z)− z implies αh(z) < σ

and therefore η = (1−α)h(z)
σ < 1−α

α .

In summary, by varying σ we vary the slope (and position) of the short-run

aggregate supply curve. Thus, the putty-clay aggregate production function effec-

tively embeds, depending on the degree of idiosyncratic uncertainty, the log-linear

and relatively flat short-run aggregate supply curve traditionally associated with a

Cobb-Douglas production structure up to the reverse L-shaped supply curve tradi-

tionally associated with the putty-clay framework.

4 Reallocation Benefits, Investment, and Uncertainty

We now consider the effect of an increase in idiosyncratic uncertainty on investment

at both the project level and the macroeconomic level. We show that increased

uncertainty typically reduces investment at the project level but unambiguously

increases aggregate investment. The expansionary effect of increased idiosyncratic

uncertainty on aggregate investment and output is, however, smaller in the putty-

clay model than the neoclassical vintage model owing to the constraint on labor

reallocation embedded in the ex post fixity of capital-labor ratios in the putty-clay

model.
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We start by considering the effect of an increase in σ on the steady-state of the

putty-clay model. The complete characterization of the effect of an increase in σ on

the steady-state equilibrium is summarized in the following proposition.5

Proposition 3 For the no-growth economy, dz
dσ > 1, and the steady-state capital-

labor ratio per machine, k, and capacity utilization are strictly decreasing in σ.

Output, consumption, total investment, and the wage rate are increasing in σ, with

semi-elasticity d ln y
dσ = h(z). The investment share is invariant to σ.

Proof: Equation 18 defines z as an implicit function of σ with dz
dσ > 1 following

immediately from the increasing hazard property of the standard normal distribution

(see the proof of proposition 2). Differentiating the capital-labor ratio k with respect

to σ, and using equation 18 we obtain d ln k
dσ = −h(z)( dz

dσ − 1) < 0. Because steady-

state labor is independent of σ, the flow of new machines is proportional to the

inverse of the capital utilization rate. Thus, an increase in σ leads to a fall in the

steady-state capital utilization rate proportional to the increase in the number of new

machines: d ln q
dσ = h(z) dz

dσ > 0 . Combining d ln k
dσ with d ln q

dσ , we obtain the result that

investment kq is increasing in σ: d ln(kq)
dσ = h(z) > 0. Equations 13 and 14 imply

that output is linear in investment: y = 1−β(1−δ)
αβ kq so that d ln y

dσ = h(z) > 0. Thus,

output and investment rise by the identical h(z) percent in response to a unit increase

in σ, and the investment share of output is invariant to the degree of idiosyncratic

uncertainty.

To provide intuition for these results, we first consider the partial equilibrium effect

of an increase in σ on k, holding the wage rate fixed. We then analyze the general

equilibrium effect by allowing the wage rate to adjust to its new equilibrium level.

In the putty-clay model, project managers pay k and in effect buy an option

to produce in the future. The option is exercised (production occurs) if the ex

post realization of revenues exceeds wage costs.6 Ceteris paribus, an increase in

uncertainty raises the value of the option and increases expected profits.7 This is
5In the case of positive growth, we still obtain the result that dz

dσ
> 1 and dk

dσ
< 0. With growth,

however, changes in σ influence the effective depreciation rate. As a result, labor is not independent
of σ and the aggregate output effects are much more difficult to characterize analytically. Numerical
results indicate that the variation in l is economically inconsequential and that the results for the
no-growth model generalize to the case of positive growth for reasonable choices of σ.

6Pindyck (1988) also considers the option value associated with machine shutdown. In his
framework, holding constant the option value associated with waiting to invest, an increase in
uncertainty raises investment. This result contrasts with that described below.

7Equivalently, one can think of θi,t as the relative output price for the good produced. The
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seen in the upper panel of figure 3, which shows expected net profits per machine as

a function of k, for a given degree of idiosyncratic uncertainty and level of the wage.

Holding the wage fixed at w1, an increase in σ from σ1 (solid line) to σ2 (dotted

line) raises expected profits per machine for all values of k.

In the putty-clay model, the relationship between k and profits—given by equa-

tion 17—combines both the standard concave relationship owing to diminishing re-

turns to capital and the effect of k on expected utilization rates. If k is very high, uti-

lization is nearly 100% and net profits are approximately equal to θkα−w−(r+δ)k,

which is strictly concave in k. For low values of k, however, expected utilization is

nearly zero and an incremental increase in k has virtually no effect on expected gross

profits (revenues minus wages) despite having a large incremental effect on θkα. As

a result, for low values of k, net profits are decreasing in k as the cost of capital

increases linearly in k. For intermediate values of k, utilization rates are sufficiently

high that profits are increasing and concave in k.

Although expected profits per machine increase with σ, the partial equilibrium

effect on k is ambiguous and depends on the utilization rate. The expected marginal

product of capital (i.e. the derivative of gross profits with respect to k) is given by

MPK = α(1 − Φ(z − σ))kα−1.

The derivative of the marginal product of capital with respect to σ, holding wages

fixed, equals
∂MPK

∂σ
= φ(z − σ)αkα−1 z

σ
.

For z < 0, that is, at capital utilization rates exceeding 50%, a mean-preserving

spread reduces the capacity utilization rate, the marginal product of capital, and

k. If the capital utilization rate is less than 50%, utilization occurs on the convex

portion of (1−Φ(z−σ)) and the partial equilibrium effect of an incremental increase

in σ is to increase, rather than decrease, k.

The bottom panel of figure 3 plots the expected marginal product of capital. In

equilibrium, the marginal product of capital equals the required return, r+δ; for the

case of σ = σ1 (solid line), the equilibrium capital-labor ratio equals k1. Holding the

wage rate fixed at w1, an increase in idiosyncratic uncertainty reduces the capacity

utilization rate and the marginal product of capital, as shown by the dotted line in

convexity of the profit function with respect to the output price implies that an increase in σ raises
expected profits.
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Figure 3: The Effects of Increased Uncertainty
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the figure. For wage w1, k must fall to k̃ to restore the equality of the marginal

product of capital to the required return.

In general equilibrium, higher profits induce new entry. New entry drives up

the wage rate, thereby reducing utilization and eroding profits. As shown in the

figure, the increase in the wage rate from w1 to w2 causes a reduction in k to k2.

The additional investment that occurs through the extensive margin more than

offsets any reduction in investment that occurs through the intensive margin and

aggregate investment unambiguously rises in response to an increase in idiosyncratic

uncertainty.
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We now compare this result to that from the Solow vintage model, which we

state in the following proposition.

Proposition 4 Define the semi-elasticity of steady-state output with respect to σ

by ε ≡ d ln y
dσ . Then

εputty−clay = h(z) <
σ

α
= εSolow.

Proof: We need to show that at the equilibrium, αh(z) < σ, which is established in

the proof of proposition 2.

In the Solow vintage model, project-level capital expenditures are irreversibly tied

to a specific realization of idiosyncratic productivity θi,t but labor can be costlessly

reallocated across projects after the realization occurs. A mean-preserving spread

causes a reallocation of labor from low productivity to high productivity machines,

equalizing the marginal product of labor across machines. This reallocation increases

productivity in proportion to σ and raises the return to capital, causing investment

and output to increase.

In the putty-clay model, labor reallocation is limited to moving workers from

machines in the lower tail of the efficiency distribution to new machines, the mean

efficiency of which equals average labor productivity. The term h(z) captures the

benefits from this reallocation of labor. Specifically, the elasticity of output with

respect to σ, σh(z), equals the difference between average log-efficiency of machines

in use relative to the log-efficiency of all machines

σh(z) = E(ln(xi)|xi > w) − E ln(xi).

At low levels of idiosyncratic uncertainty, the difference between the productivity of

machines in use to that of all machines produced is small, and reallocation provides

little benefit. As σ increases, this gap widens, and the benefit from reallocation

rises. This implies that the semi-elasticities of output and k with respect to sigma

are increasing in sigma.

5 Transition Dynamics in the Economy with Growth

The assumption of zero trend growth simplifies the preceding analysis; however, in

order to study both the timing of capital goods replacement and transition dynamics

we need to allow for positive growth. We start by describing and proving existence
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of a deterministic balanced growth equilibrium. We then analyze the replacement or

“endogenous depreciation” of capital goods as a function of growth and idiosyncratic

uncertainty. Finally, we investigate the dynamic implications of increases in σ.

5.1 Equilibrium along the Balanced Growth Path

Along the balanced growth path, per capita output, consumption, and investment

grow at rate g, and labor and labor capacity grow at rate n. We use lower case letters

to indicate steady-state values of variables, normalized by appropriate time trends,

and k̃ to indicate the normalized steady-state capital-labor ratio. We define the

growth-adjusted discount rate β̃ ≡ β(1 + g)−γ . Let z denote the difference between

the average efficiency of the leading edge technology and the current wage rate in

steady state, z ≡ (lnw − lnx + 1
2σ2)/σ, and let z(i) denote the difference between

the average efficiency of vintage i and the current wage rate z(i) ≡ z+(i/σ) ln(1+g).

On the balanced growth path, the normalized levels of output, consumption,

labor, and the wage rate are given by

y = qx
M∑

j=1

((1 + g)(1 + n))−j(1 − δj)
(
1 − Φ(z(j) − σ)

)
, (20)

c = y − k̃q, (21)

l = q
M∑

j=1

(1 + n)−j(1 − δj)
(
1 − Φ(z(j))

)
. (22)

w =
(1 + g)−jxφ(z(j) − σ)

φ(z(j))
, j = 1, . . . , M. (23)

Note that y/q, c/q, l/q, and w depend only on the values of k̃ (directly and indirectly

through x = k̃α) and z. The first-order condition for k and the zero-profit condition

yield two equations in z and k

k̃ = α
M∑

j=1

β̃j(1 − δj)
{(

1 − Φ(z(j) − σ)
)
x

}
, (24)

k̃ =
M∑

j=1

β̃j(1 − δj)
{(

1 − Φ(z(j) − σ)
)
x − (1 + g)j

(
1 − Φ(z(j))

)
w

}
. (25)

By combining these last three equations, we obtain the balanced growth equilibrium

condition for z.

As in the no-growth economy, an equilibrium value of z is determined by setting

utilization rates so that a weighted average of vintage labor shares equals 1 − α.
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In the case of positive growth, however, these weights are not fixed constants as in

the no-growth case, but instead depend on z. As a result, with positive growth one

cannot rule out a priori the existence of multiple steady-state values of z without

additional assumptions, as stated in the following proposition.

Proposition 5 Let

v(z(j)) =
β̃j(1 − δj)(1 − Φ(z(j) − σ))∑M
i=1 β̃i(1 − δi)(1 − Φ(z(i) − σ))

(26)

define a set of weights such that
∑M

j=1 v(z(j)) = 1, then there exists at least one

steady state value of z that satisfies

(1 − α) =
M∑

j=1

v(z(j))
h(z(j) − σ)

h(z(j))
. (27)

A sufficient condition for uniqueness of the equilibrium is that the sum
∑M

j=1 β̃j(1−
δj)(1 − Φ(z(j) − σ)) be log-concave in z.

Proof: See appendix.

Note that the possibility of multiple balanced growth equilibria exists only in the

case of non-zero trend technological growth. This potential for multiple steady states

distinguishes this model from its putty-putty counterpart. Nonetheless, numerical

analysis of the model suggests that multiple equilibria occur only in “unusual” re-

gions of the parameter space, for example, when the trend growth rate of technology

is extremely large and the value of α lies in a limited range. Further discussion of

these issues appears in the appendix. In the following analysis, the parameterized

version of the model possesses a unique steady state.

5.2 Endogenous Depreciation

With positive growth in embodied technology, the real wage rises over time and

increasing shares of older vintages of capital become too costly to operate given

their labor requirements, with the result that they are mothballed or scrapped.

In steady state, the capital utilization rate of capital goods i periods old equals

(1−Φ(z +(i/σ) ln(1+g))). From this formula we see that the two key determinants

of the shape and location of the vintage utilization schedule are the long-run growth

rate of embodied technology and the degree of idiosyncratic uncertainty.
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Figure 4: Steady-state Capacity Utilization

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

5 10 15 20 25 30

 

  =.05
  =.15
  =.25

σ
σ
σ

Vintage Age (in years)

C
ap

ac
ity

 U
til

iz
at

io
n 

R
at

e

The primary direct effect of positive trend productivity growth on machine re-

placement is to shorten the useful life of capital goods. Owing to more rapid growth

in real wages, an increase in g speeds up the process of machine replacement, shifting

the utilization schedule forward in time. The degree of idiosyncratic uncertainty, on

the other hand, mainly affects the shape of the utilization schedule. First, consider

the extreme case of no idiosyncratic uncertainty, where all machines of the same

vintage are identical. In this case, machines of a given vintage are run at full ca-

pacity until the real wage exceeds the vintage’s level of productivity, at which time

they are retired all together. With a small degree of idiosyncratic uncertainty, the

replacement of capital goods follows the basic pattern of the case of no idiosyncratic

uncertainty, but relatively inefficient machines are scrapped early and relatively ef-

ficient machines are scrapped later. Figure 4 shows steady-state capacity utilization

rates across vintages of capital for three values of σ.8 As σ increases, the link

between vintage age and machine productivity is weakened, resulting in reduced

utilization of recent vintages and increased utilization of older vintages. For low σ,

the depreciation schedule is close to that of the one-hoss-shay, whereas for high σ,

the depreciation schedule begins to resemble exponential decay.9

8For the examples shown in figure 4, we assume there is no “exogenous” capital depreciation,
i.e., δ = 0.

9The pattern of scrapping relates to the potential presence of “replacement echoes” of the type
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5.3 The Dynamic Effects of Increases in Uncertainty

We now consider the transition dynamics associated with an increase in idiosyn-

cratic uncertainty. Using numerical simulations, we model the effect of a one-time

permanent increase in idiosyncratic uncertainty for the growth economy described

above. Such an exercise is of interest for theoretical reasons – in our model, a mean

preserving spread to project outcomes has first-order effects on both transition dy-

namics and steady-state levels. It is also of interest for empirical reasons – recent

evidence shows that the idiosyncratic variance associated with the return to capital

at the firm level has doubled over the post-war period and explains a large fraction

of the total volatility of stock market returns (Campbell et al. 2001).

We calibrate our model to match standard long-run properties of the postwar

U.S. data.10 The only parameter that is not standard is the level of the idiosyncratic

variance. We choose σ = 0.2 so that the overall capacity utilization rate in our model

matches the average capacity utilization rate of the manufatcuring sector of the U.S.

economy over the period 1960-2000. Figures 5 and 6 compare the dynamic responses

from an increase in σ to that of an increase in the mean level of embodied technology,

θ.11 In each case, we calibrate the size of the shock to produce a 1 percent increase

in the steady-state level of output. In the case of a shock to σ, this corresponds to

an increase in σ of about 0.04, which implies a 20 percent increase in the standard

deviation of returns. Such a 20 percent increase in volatility is conservative relative

to the range of low frequency movements in idiosycratic volatility documented by

Campbell et al. We focus on a permanent increase in σ based on the finding by

Campbell et al that the idiosyncratic component of stock returns exhibits near unit

root behavior.

The dynamic response of the economy to an increase in the mean level of tech-

nology embodied in capital is well understood (Gilchrist and Williams (2000)). An

increase in θ represents a reduction in the effective price of new capital goods. Ow-

studied by Boucekkine, Germain and Licandro (1997), where an initial investment surge leads to
recurring spikes in investment as successive vintages are retired. In the context of our putty-clay
model, pronounced replacement echoes occur only in the absence of mechanisms which lead to the
smoothing of capital goods replacement over time. Specifically, necessary conditions for replacement
echoes to exist in our putty-clay model are (i) a low degree of idiosyncratic uncertainty and (ii) a
high intertemporal elasticity of consumption.

10We set α = .3, β = .98, δ = .06, γ = 1, and ψ = 3.
11Total factor productivity (TFP) is constructed using the standard Solow formula: ∆ ln TFPt =

∆ ln(Yt) − α∆ ln(Kt) − (1 − α)∆ ln(Nt), where capital is measured using the perpetual inventory
method Kt = (1 − δ)Kt−1 + It.
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Figure 5: Dynamic Responses of Hours, Output, and Productivity
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ing to the associated increase in investment demand, investment spending, labor,

and output all increase upon impact of the shock. The economy continues to display

high levels of investment (relative to output) and high levels of employment for a

number of years after the shock. Output rises while the investment-output ratio

and employment fall monotonically along the transition path. Productivity growth

– both labor and total-factor productivity – is highest at the onset of the shock,

when the newer, more productive capital is small relative to the existing stock. In

percentage terms, the productivity gains associated with the newer, more produc-

tive investment fall as the existing capital stock embodies a larger fraction of new
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Figure 6: Investment Dynamics
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capital relative to old capital. Consequently, the growth rates of both labor and

total-factor productivity fall monotonically over time.

The transition dynamics associated with an increase in the idiosyncratic vari-

ance differ dramatically from those associated with an increase in the mean level of

embodied technology. While the main transition dynamics of an increase in θ occur

in the first five years after the shock, an increase in σ produces a transition dynamic

whose peak effect occurs ten to fifteen years after the initial innovation. In the

long-run, an increase in variance raises output, labor productivity and real wages,

and causes an increase in aggregate investment. In the short-run, an increase in σ
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has little effect on either output, employment or investment. Over time, output and

employment rise, with employment peaking nearly ten years after the shock. The

investment rate (I/K) peaks even later. Although total-factor productivity growth

is highest at the onset of the shock, the growth rate of labor productivity rises for

ten years. Overall, the increase in the variance of idiosyncratic returns produces a

medium-run boom in labor hours, investment, and labor-productivity growth.12

An increase in the variance of project outcomes yields a substantial delay in

the investment response and productivity gains. This delay occurs for two reasons.

First, the productivity gains associated with an increase in variance depend on the

extent of reallocation. This in turn is tied to the real wage. Prior to the increase, the

current real wage reflects the existing capital stock whose distribution is determined

by the initially low level of σ. At the onset of the shock, new investment is small

relative to existing capital, and the increase in variance has very little impact on the

real wage. Because wages are low relative to the new steady state, utilization rates

on new machines are relatively high, and there is very little reallocation of labor

within the new vintages. Over time, as the existing capital stock reflects the higher

level of σ, real wages rise and the economy experiences a higher rate of machine

shutdown and reallocation. Because reallocation benefits are slow to arrive, there

is little incentive to increase aggregate investment in the short run. The pace of

investment reflects the benefits to reallocation. As a result, the economy displays

strong co-movement between the investment-output ratio, labor hours, and labor

productivity growth.

The second reason for the delay is that an increase in the variance of project

outcomes for new machines extends the effective life of existing capital and slows

down the rate at which new machines are introduced to the economy. An increase

in variance implies a lower level of capital intensity for new machines relative to old

machines. As figure 6 shows, capital intensity of new machines falls immediately

to near its new long-run steady-state value. The drop in machine intensity is offset

by a surge in investment at the extensive margin, resulting in a relatively stable

investment-to-output ratio. However, existing machines are more capital intensive

than is optimal relative to the new steady state. The relatively high capital intensity
12While Gilchrist and Williams (2000) document the fact that the putty-clay model with low

sigma produces a hump-shaped response of labor hours to permanent increases in the mean level
of embodied technology, neither the standard RBC model nor the putty-clay model produce a
hump-shaped response of labor productivity growth to permanent increases in either embodied or
disembodied technology.
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of old machines implies a higher mean efficiency level for old machines relative to new

machines and a lower probability of shutdown for existing capital than would have

occurred with no change in variance. As the scrappage rate of existing machines

falls, the economy has less incentive to invest in new machines in the short-run.

Over time, old machines are eventually scrapped, and investment pick ups.

Models with irreversible capital but flexible labor imply that increases in id-

iosyncratic uncertainty have first-order effects on the mean-levels of output, hours,

investment, and productivity. By contrast, in the standard putty-putty framework,

an increase in variance is observationally equivalent to an increase in the mean level

of embodied technology (see equation 11). Both produce an immediate expansion

in output and high and declining rates of employment, investment and productiv-

ity growth. In the putty-clay model, the reallocation benefits associated with an

increase in variance are limited by the fact that at capacity, capital-labor ratios are

irreversible. Irreversibility of capital-labor ratios produces delays in response that

differentiate the effects of increase in the mean level of technology from the effects of

an increase in the variance. In this framework, an increase in the variance of project

outcomes results in an expansion in both economic activity and labor productivity

growth whose peak responses occur well beyond the business cycle-frequency.

6 Conclusion

In this paper, we investigate the microeconomic and aggregate implications for in-

vestment and output that result from assuming ex post fixity of capital-labor ratios

in a putty-clay model of capital accumulation. The model that we develop provides a

set of microeconomic foundations for the analysis of investment under uncertainty,

capacity utilization, and machine retirement in a general equilibrium framework.

Aggregation over heterogeneous capital goods results in a well-defined aggregate

production function that preserves the putty-clay microeconomic structure and is

easily characterized in terms of hazard rates of the standard normal distribution.

The analysis yields a number of interesting results. First, we show that under

the assumptions of the model, the aggregate production function takes an interme-

diate form between that of Cobb-Douglas and Leontief, depending on the degree

of idiosyncratic uncertainty. Second, we find that an increase in idiosyncratic un-

certainty typically reduces investment at the micro level but raises aggregate in-

vestment. Relative to an increase in the mean level of technology, an increase in
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idiosyncratic variance also has important implications for transition dynamics. In

the putty-clay model, an increase in variance results in a pronounced expansion in

output, hours and investment, whose combined effect produces a sustained increase

in trend labor-productivity growth over a ten to fifteen year period.
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Appendix

Results regarding the hazard rate of the standard normal distribu-
tion used for proofs in the text:

In the following, let h(x) denote the hazard rate for the standard normal distribution,

h(x) ≡ φ(x)/(1 − Φ(x)). From the definition of the hazard rate, we know h(x) =

E(y|y > x), y ∼ N(0, 1), which implies that h(x) > 0 and h(x) > x, for all x.

Result 1: h(x) is monotonically increasing in x, with limx→−∞ h′(x) = 0 and

limx→+∞ h′(x) = 1.

Proof Taking the derivative of h(x), we have h′(x) = h(x)(h(x) − x) > 0, where

the inequality follows directly from the definition of the hazard rate of the standard

normal. To establish the lower limit of h′(x), first note that limx→−∞ h(x) = 0.

Then, limx→−∞ h′(x) = − limx→−∞ xh(x) = − limx→−∞ xφ(x) = 0, where the final

equality results from applying l’Hopital’s rule. To establish the upper limit, note that

application of l’Hopital’s rule yields limx→+∞ h′(x) = limx→+∞ h(x)/x. Applying

l’Hopital’s rule yields limx→+∞
h(x)

x = limx→+∞(1 + 1
x2 ) = 1, which establishes the

result.

Result 2: h(x) is log-concave, that is, ln(h(x)) is strictly concave in x.13

Proof To prove log-concavity, we need to show that ∂ ln(h(x))
∂x = h′(x)

h(x) is decreasing

in x, which is true if h′(x) < 1. Consider h′′(x)

h′′(x) = h(x)[(h(x) − x)2 + (h′ (x) − 1)]

which is strictly positive if h′(x) ≥ 1. Suppose h′(x∗) ≥ 1 for some x∗. Then, h′(x)

is increasing at x∗, implying h′(x) > 1 and h′′(x) > 0 for all x > x∗, a result

which contradicts limx→+∞ h′(x) = 1, established in Result 1. Alternatively, it is

straightforward to show that for the standard normal distribution Var(y|y > x) =

1 − h′(x), which implies h′(x) < 1 for all x.

Result 3: h(x) is strictly convex in x.

Proof Let g(x) = [(h(x)−x)2+(h′ (x)−1)]; then, h′′(x) > 0 iff g(x) > 0. Given the

limiting results established above, it is straightforward to obtain limx→−∞ g(x) = ∞
13Bagnoli and Bergstom (1989) provide some results on properties of log-concave distribution

functions, including a proof that the reliability function 1−Φ(x) is log-concave. We require however
that the hazard rate itself be log-concave.
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and limz→+∞ g(x) = 0. Now, consider g′(x)

g′(x) = 2(h(x) − x)(h′(x) − 1) + h(x)g(x)

which is strictly negative if g(x) ≤ 0. Suppose g(x∗) ≤ 0 for some x∗, implying that

g′(x∗) < 0. This then implies that g(x) < 0 and g′(x) < 0 for all x > x∗, a result

which contradicts limx→+∞ g(x) = 0.

Result 4: For a given constant c > 0, h(x−c)
h(x) is monotonically increasing in x with

limx→−∞
h(x−c)
h(x) = 0 and limx→+∞

h(x−c)
h(x) = 1.

Proof To prove that h(x − c)/h(x) is monotonically increasing in x we compute

∂(h(x − c)/h(x))
∂x

=
h(x − c)

h(x)

{
h(x − c) − (x − c) − (h(x) − x)

}
.

which is positive if the term in brackets is positive. We therefore need to show

that h(y) − y > h(x) − x for y < x which is true if h′(x) < 1, i.e., if h(x) is log

concave, which is proven in Result 2 above. To show the lower limit we note that
h(x−c)
h(x) =

(
e(2xc−c2)/2

) (
1−Φ(x)

1−Φ(x−c)

)
and take limits. To establish the upper limit, we

use the mean value theorem to obtain h(x) = h(x− c) + ch′(x∗) for x− c < x∗ < x.

We then use x∗ < x and h′′(x) > 0 to obtain the bounds 1 > h(x−c)
h(x) > 1 − h′(x)

h(x) c.

Result 1 implies limx→+∞
h′(x)
h(x) = 0, which establishes the result.

Result 5: For a given constant c > 0, c (h(x − c) − (x − c)) (h(x) − x) > h(x −
c) − h(x) + c.

Proof Let

f(x) = c[ω(x − c)ω(x)] + [ω(x) − ω(x − c)].

where ω(x) = h(x) − x > 0. Taking limits we obtain limx→−∞ ω(x) = ∞ ,

limx→+∞ ω(x) = 0, implying limx→−∞ f(x) = ∞ and limx→+∞ f(x) = 0. Tak-

ing derivatives we have: ω′(x) = h′(x) − 1 < 0 and ω′′(x) = h′′(x) > 0. Since ω(x)

is decreasing and strictly convex in z, we have ω′(x) < ω′(x − c) and

f ′(x) = c[ω′(x − c)ω(x) + ω(x − c)ω′(x)] + [ω′(x) − ω′(x − c)] < 0.

Given that limx→−∞ f(x) = ∞ and limx→+∞ f(x) = 0, f ′(x) < 0 implies f(x) > 0

for all x.
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The Economy with Growth

We first state the proof of proposition 5:

Proof: Let Ψ(z) ≡ ∑M
j=1 β̃j(1−δj)(1−Φ(z(j)−σ))h(z(j)−σ)

h(z(j)) , and Γ(z) ≡ ∑M
j=1 β̃j(1−

δj)(1 − Φ(z(j) − σ)). Then Ψ(z)
Γ(z) =

∑M
j=1 v(z(j))h(z(j)−σ)

h(z(j)) and the balanced growth

equilibrium condition may be written

(1 − α) =
Ψ(z)
Γ(z)

.

Following the proof of result 2, it is straightforward to show that limz→−∞
Ψ(z)
Γ(z) = 0

and limz→+∞
Ψ(z)
Γ(z) = 1. Thus, by continuity of Ψ(z)

Γ(z) , there exists at least one value

of z that satisfies the equilibrium condition.

To prove that log-concavity of Γ(z) implies uniqueness of the equilibrium we show

that ∂2 ln Γ(z)
∂z2 < 0 implies Ψ(z)

Γ(z) is monotonically increasing in z. Taking derivatives

and using the facts that Ψ′(z) = σΨ(z)+Γ′(z), and Γ′(x) = −∑M
i=1 β̃j(1−δj)φ(z(j)−

σ), we obtain
∂ Ψ(z)

Γ(z)

∂z
= σ

Ψ(z)
Γ(z)

+
(

1 − Ψ(z)
Γ(z)

)
∂ ln Γ(z)

∂z

Taking second derivatives we obtain

∂2 Ψ(z)
Γ(z)

∂z2
=

(
σ − Γ′(z)

Γ(z)

) ∂ Ψ(z)
Γ(z)

∂z
+

(
1 − Ψ(z)

Γ(z)

)
∂2 ln Γ(z)

∂z2

If ∂2 ln Γ(z)
∂z2 < 0 the second term in this expression is negative. Given Γ′(x) < 0 we

have
(
σ − Γ′(z)

Γ(z)

)
> 0, so that

∂
Ψ(z)
Γ(z)

∂z < 0 implies that the first term is also negative.

Now suppose
∂

Ψ(z∗)
Γ(z∗)

∂z < 0 for some z∗. Then we have
∂2 Ψ(z∗)

Γ(z∗)

∂z2 < 0 implying that

0 < Ψ(z∗)
Γ(z∗) < 1 and Ψ(z)

Γ(z) strictly decreasing on (z∗,∞) , a result which contradicts

limz→+∞
Ψ(z)
Γ(z) = 1.

Uniqueness of equilibrium depends on log-concavity of Γ(z). In the remainder of

this appendix, we provide some analysis of the conditions needed to guarantee the

log-concavity of Γ(z) ≡ ∑M
j=1 β̃j(1− δj)(1−Φ(z(j)−σ)). We also consider what set

of parameter values may lead to multiple equilibria.

To begin, consider the function Γ′′(z)Γ(z)−Γ′(z)2 which, if negative, guarantees

log-concavity of Γ(z) and hence uniqueness of the equilibrium. We know that the

reliability function (1 − Φ(x)) is log-concave and Γ(z) is the weighted sum of such

functions, which, while not sufficient to guarantee log-concavity, suggests that it
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may be difficult to produce circumstances under which it does not obtain. Let

ωj = β̃j(1 − δj) and zj = z(j) − σ. After some manipulation we obtain

Γ′′(z)Γ(z) − Γ′(z)2 =
M∑

j=1

M∑
k=1

ωjωkφ(zj)[(zj)(1 − Φ(zk) − φ(zk)]

=
M∑

j=1

M∑
k=1

ωjωkφ(zj)φ(zk)
(

zj

h(zk)
− 1

)

=
M∑

j=1

M∑
k=1

ωjωkφ(zj)φ(zk)
(

zk

h(zk)
− 1

)

+
M∑

j=1

M∑
k=1

ωjωkφ(zj)φ(zk)
(

zj − zk

h(zk)

)
.

The first term in this expression is clearly negative. The second term may be positive

if for some j, k we have large productivity differentials between vintages j and k.

Because zj is linearly increasing in machine age, a large productivity differential

is likely to occur when vintage j is substantially older and less productive than

vintage k. In this case, however, the contribution of this term to the sum is relatively

small owing to discounting, both explicitly through the term β̃j(1−δj) and implicitly

through a low value of φ(zj). Furthermore, for any positive term (zj −zk)/h(zk) > 0

there is an equally weighted negative term (zk − zj)/h(zj) < 0. This suggests that

only under extreme parameterizations can we have large productivity differentials

that yield positive values of any magnitude for

ωjωkφ(zj)φ(zk)

(
(zj − zk)

h(zk)
+

(zk − zj)
h(zj)

)
,

the weighted sum of these components. In turn, these positive values must be large

enough to offset the negative sum in the first component of Γ′′(z)Γ(z) − Γ′(z)2.

Note that log-concavity of Γ(z) is a sufficient, not necessary, condition for a

unique steady-state value of z. Indeed, it is not necessary that Ψ(z)/Γ(z) be mono-

tonically increasing, as long as it crosses (1 − α) only once. Numerical experi-

ments suggest that multiple equilibria only occur when both the trend productivity

growth rate is exorbitantly high, so that productivity differentials across vintages

are large, and when discounting through the real interest rate and depreciation is

very low. For example, we obtain multiple equilibria in the model when σ = 0.1,

δj = 0, j = 1, . . . , M , γ = 0.1, g = 0.6 (60% per annum), and β = 0.999. These
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parameter values imply that z2 − z1 > 5. Relatively small adjustments in param-

eter values result in the number of equilibria to collapsing to one. We have found

no evidence of multiple equilibria using more conventional parameterizations that

would typically characterize the capital accumulation process in a general equilib-

rium model calibrated based on empirical moments of industrialized economies.
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