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CREDIT CONSTRAINTS AND SELF-FULFILLING BUSINESS
CYCLES

ZHENG LIU AND PENGFEI WANG

Abstract. We argue that credit constraints not just amplify fundamental shocks,
they can also lead to self-fulfilling business cycles. To make this point, we study
a model in which productive firms are credit constrained, with credit limits de-
termined by equity value. A drop in equity value tightens credit constraints and
reallocates resources from productive to unproductive firms. This reallocation re-
duces aggregate productivity and further depresses equity value and further tightens
credit constraints, generating a financial multiplier that amplifies the effects of fun-
damental shocks. At the aggregate level, credit externality manifests as increasing
returns and thus can lead to self-fulfilling business cycles.

I. Introduction

In the presence of credit constraints, financial factors can play an important role
in macroeconomic fluctuations. For instance, if it is costly to enforce loan contracts
or monitor project outcomes, then borrowing capacity will be limited by the value of
the borrower’s collateral assets or net worth. When credit constraints are binding, an
increase in asset prices eases the constraints and thus helps expand production and
investment. Expanded production and investment in turn raise the borrower’s col-
lateral value and net worth, further easing the constraints. This financial accelerator
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can, in principle, amplify macroeconomic fluctuations by transforming small economic
shocks into large business cycles (Kiyotaki and Moore, 1997; Bernanke, Gertler, and
Gilchrist, 1999). Recent studies show that the financial accelerator is empirically
important, especially for amplifying and propagating financial shocks (Christiano,
Motto, and Rostagno, 2008; Liu, Wang, and Zha, 2011). The goal of this paper is
to point out that credit constraints not only amplify fundamental shocks, but that
sufficiently tight credit constraints can lead to self-fulfilling business cycles.

To make this point, we study a business cycle model with financial friction. The
model features a representative household who consumes a homogeneous good and
supplies labor to firms. The household invests the good to accumulate capital, which
is rented to firms in a competitive market. Firms have access to a constant returns
technology that transforms capital and labor into goods. In each period, firms draw an
idiosyncratic productivity. If a firm chooses to produce, it needs to finance operating
costs through external borrowing.

Limited contract enforcement gives rise to credit constraints. Under optimal con-
tracts, credit and production are allocated to firms with productivity above a cut-off
level. Incentive compatibility implies that the amount of loans available to operat-
ing firms is bounded above by a fraction of firms’ expected equity value. Thus, in
equilibrium, only productive firms operate and operating firms face binding credit
constraints. Firms with productivity below the cut-off level remain idle.

The model generates a financial multiplier that amplifies macroeconomic shocks.
Since borrowing capacity is bounded by firms’ expected equity value, an increase in
equity value enlarges the borrowing capacity for productive firms. With more credit
available, productive firms are able to produce more by hiring more workers and
renting more capital. The rise in factor prices crowds out less productive firms and,
as a consequence, the cut-off level of productivity rises and resources are shifted to
more productive firms. This reallocation raises aggregate productivity and leads to
further increases in equity value and further expansion in credit, generating a ripple
effect.

The reallocation effect stemming from credit constraints leads to procyclical aggre-
gate productivity. In our model, measured total factor productivity (TFP) contains a
financial factor, which corresponds to the cut-off level of productivity, which in turn is
a monotonic function of aggregate leverage measured by the ratio of working capital
loans to aggregate output. An increase in leverage raises firms’ borrowing capacity
and shifts resources to productive firms. Thus, aggregate productivity increases with
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leverage. In our model, working-capital leverage is procyclical because firms borrow
to finance both working capital (i.e., variable costs) and a per-period fixed cost. In re-
cessions when equity value drops, total available credit declines; but since the average
fixed cost increases in recessions, the credit available to finance working capital de-
clines by even more than does total credit. Thus, the ratio of working capital declines
relative to output, leading to procylical leverage, as in the data. Procyclical leverage
implies procyclical aggregate productivity. In this sense, financial friction provides an
independent source of procyclical movements in aggregate productivity separate from
changes in true technology.1

Since aggregate productivity is procyclical, any shock that raises aggregate capital
and labor inputs would also raise aggregate output more than proportionately. This
implies aggregate increasing returns. We show that aggregate dynamics in our model
with credit constraints and constant returns technology at the firm level are isomorphic
to those in a representative-agent economy with increasing returns technology. The
degree of increasing returns in the aggregated version of our economy corresponds to
the size of the financial multiplier. With sufficiently poor contract enforcement and
thus sufficiently tight credit constraints, the model implies a sufficiently large financial
multiplier and thus gives rise to the possibility of self-fulfilling, sunspot-driven business
cycles.

The financial transmission mechanism in our model helps explain some empirical
facts documented in the literature. For example, Ramey and Ramey (1995) docu-
ment that countries with lower GDP growth experience higher growth volatility. Our
model’s predictions are consistent with this evidence. In our model, poorer contract
enforcement implies tighter credit constraints, which lead to greater misallocation and
thus lower levels of aggregate productivity and output. Poorer contract enforcement
also leads to greater volatility of aggregate output because it implies a larger finan-
cial multiplier that amplifies fundamental shocks and, with sufficiently tight credit
constraints, it may also lead to sunspot-driven business cycle fluctuations.

It is well-known in the literature that resource misallocation can lower a country’s
TFP (Rustuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Fernald and Neiman,
2010). For example, Hsieh and Klenow (2009) show that misallocation is quantita-
tively important for China and India, and reallocation can potentially improve TFP

1The importance of resource reallocation for understanding the procyclical behavior of aggregate
productivity has been noted by Basu and Fernald (1997, 2001). Our model emphasizes a specific
mechanism of reallocation through credit constraints.
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by 30 − 50% in these countries. Our theory suggests that misallocation may have
a financial origin. In a country with poor financial development (such as China),
credit constraints can lead to misallocation between heterogeneous firms and thus
depress the levels of TFP. Improvement in financial institutions in such a country
would help reallocate resources to more productive firms and lead to potentially large
improvement in the country’s TFP and income levels.

The rest of the paper is organized as follows. Section II discusses the contributions
of our paper in relation to the literature. Section III presents the baseline model
with financial friction and characterizes optimal financial contracts. Section IV illus-
trates the financial multiplier and the relation between financial factors and aggregate
TFP. Section V shows the connections between firm-level financial friction and aggre-
gate increasing returns and discusses the possibility of self-fulfilling business cycles.
Section VI concludes. The Appendices contain some detailed derivations and proofs.

II. Related literature

Our work builds on a large strand of literature that examines the possibility of in-
determinate equilibria in RBC models. In an influential study, Benhabib and Farmer
(1994) first point out that a standard one-sector RBC model with increasing returns
to scale can generate indeterminacy. Farmer and Guo (1994) show that, in such an
economy, sunspot shocks are quantitatively important for business cycles. The de-
gree of increasing returns required to generate indeterminacy in this class of models,
however, is considered too large to be consistent with empirical evidence (Basu and
Fernald, 1995, 1997). Subsequent contributions by Benhabib and Farmer (1996) and
Benhabib and Nishmura (1998) show that, in multisector RBC models, the required
externality to generate indeterminacy is substantially smaller. Wen (1998) extends
the one-sector model in Benhabib and Farmer (1994) by introducing variable capacity
utilization and shows that the model can generate indeterminacy with empirically
plausible increasing returns. Benhabib and Wen (2004) study a version of the Wen
(1998) model and find that, under parameter configurations that allow for indeter-
minacy, the RBC model driven by demand shocks performs well in matching the
business cycle facts along several important dimensions. Schmitt-Grohe (1997) com-
pares four different models and finds that models with countercyclical markups rely
on a lower degree of increasing returns to generate indeterminacy than those with
constant markups. Galí (1994) and Wang and Wen (2008) show that variations in
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the composition of aggregate demand help generate countercyclical markups and in-
determinacy. Jaimovich (2007) shows that a model with endogenous entry and exit
of firms and thus countercyclical markups can generate indeterminacy even without
increasing returns.2

Our model does not rely on increasing returns to generate indeterminacy. Instead,
we focus on the role of financial friction and, in particular, the reallocation effect
of credit constraints in amplifying fundamental shocks and generating expectations-
driven equilibria. In our model, productive firms face binding credit constraints and
only those with productivity above a cutoff level choose to produce. Operating firms
earn economic profits since their productivity levels are higher than the cutoff level.
In a business cycle boom, credit constraints are eased and resources are concentrated
in high-productivity firms. Accordingly, the cutoff level of productivity rises and ag-
gregate economic profit falls. Thus, our model generates countercyclical markups and
indeterminacy through financial friction, which is a different source of indeterminacy
than those considered in the previous literature.

Our focus on financial friction is similar to Woodford (1986), who first recognizes
the possibility that borrowing constraints help generate stationary sunspot equilibria.
Woodford (1986) considers an economy with two classes of representative agents and
with no heterogeneity within each class. Thus, the Woodford model does not generate
the reallocation effect of credit constraints which, as we show, is a central ingredient
in our model’s amplification mechanism and crucial for generating indeterminacy.

Our paper contributes to the rapidly growing literature on the role of financial
friction for macroeconomic fluctuations. A comprehensive survey of that literature
is beyond the scope our paper.3 The credit amplification mechanism in our model is
closely related to the financial accelerator studied by Carlstrom and Fuerst (1997),
Bernanke, Gertler, and Gilchrist (1999), and Kiyotaki and Moore (1997, 2008), Jer-
mann and Quadrini (Forthcoming), among others. We follow Kiyotaki and Moore
(1997, 2008) and Jermann and Quadrini (Forthcoming) and focus on limited contract
enforcement problems. We generalize these models in the literature by introducing
firm-level heterogeneity, which helps simplify solution methods for this class of mod-
els. Since it is difficult to solve a model with occasionally binding credit constraints,

2The indeterminacy in this class of business cycle models are dynamic examples of the sunspot
equilibria initially studied by Azariadis (1981) and Cass and Shell (1983). See Benhabib and Farmer
(1999) for a comprehensive survey of the literature.

3For surveys of the literature on financial friction in DSGE models, see Bernanke, Gertler, and
Gilchrist (1999) and Gertler and Kiyotaki (2009).
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existing literature typically follows Kiyotaki and Moore (1997) and assumes that bor-
rowers are less patient than lenders so that credit constraints are binding in the steady
state equilibrium (and also around the steady state). In our model, credit constraints
are binding only for productive firms. In the aggregated economy, credit friction is
summarized by the cut-off level productivity that depends only on aggregate economic
conditions. Thus, when we solve for aggregate dynamics, we do not need to deal with
occasionally binding constraints.

III. The model

The model economy is populated by two types of agents—a representative house-
hold and a representative entrepreneur—both infinitely lived. There are three types
of commodities traded in the economy in perfectly competitive markets: goods, labor,
and loanable funds. The household consumes and invests the goods and supplies labor
and capital to the entrepreneur. The entrepreneur family has a large number of man-
agers, each managing a firm with a constant returns technology that transforms labor
and capital into consumption goods. To incorporate financial friction, we assume that
firms face idiosyncratic productivity shocks and, if it is profitable to produce, active
firms finance operation costs by borrowing from a competitive financial intermediary.
Contract enforcement is costly. Thus, operating firms face credit constraints.

III.1. The representative household and the representative entrepreneur.
The representative household has the utility function

E
∞∑
t=0

βt
{

lnCh
t − aL

N1+χ
t

1 + χ

}
, (1)

where β ∈ (0, 1) denotes the household’s subjective discount factor, Ch
t denotes the

household’s consumption, Nt denotes the hours worked, aL > 0 is the utility weight for
leisure, χ > 0 is the inverse Frish elasticity of labor supply, and E is the expectation
operator.

The household chooses consumption Ch
t , labor supply Nt, and new capital stock

Kh
t+1 to maximize the utility (1) subject to the sequence of budget constraints

Ch
t +Kh

t+1 ≤ wtNt + (1 + rt − δ)Kh
t ∀t ≥ 0, (2)

and the non-negativity constraints Ch
t ≥ 0 and Kh

t+1 ≥ 0, taking as given the labor
wage rate wt and the capital rental rate rt. The parameter δ ∈ (0, 1) denotes the
capital depreciation rate.
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The representative entrepreneur has the utility function

E
∞∑
t=0

β̃t lnCe
t , (3)

where β̃ ∈ (0, 1) denotes the entrepreneur’s subjective discount factor and Ce
t denotes

the entrepreneur’s consumption.
The entrepreneur chooses consumption Ce

t and new capital stock Ke
t+1 to maximize

(3) subject to the sequence of budget constraints

Ce
t +Ke

t+1 ≤ (1 + rt − δ)Ke
t +Dt, ∀t ≥ 0, (4)

along with the non-negative constraints Ce
t ≥ 0 and Ke

t+1 ≥ 0, taking as given the
rental rate rt. In the budget constraint, the term Dt denotes the dividend payments
received from the firms that the entrepreneur owns.

We assume that the entrepreneur is less patient than the household (i.e., β̃ < β).
In equilibrium, the household is the only saver and the entrepreneur does not hold
any capital (i.e., Ke

t+1 = 0 for all t ≥ 0). Thus, the entrepreneur’s consumption equals
dividend payments from firms.4

III.2. The firms. The entrepreneur owns a large number of firms. Each firm has
access to a constant returns technology that transforms capital and labor into goods.
In each period, each firm faces an aggregate technology shock At and draws an id-
iosyncratic productivity ω from the distribution F (ω). Without loss of generality, we
index firms by their productivity draws ω.

The production function for firm ω is given by

yt(ω) = ωAtkt(ω)αnt(ω)1−α, (5)

where yt(ω) denotes output, kt(ω) and nt(ω) denote capital and labor inputs, and
α ∈ (0, 1) denotes the elasticity of output with respect to capital input.

Aggregate technology shock At follows the stationary stochastic process

lnAt = (1− ρa) lnA+ ρa lnAt−1 + εat, (6)

where ρa ∈ (0, 1) measures the persistence of the aggregate technology shock and εat
is an i.i.d. normal process with a mean of zero and a variance of σ2

a.
5

4The assumption that the representative entrepreneur is less patient than the representative house-
hold helps simplify the analysis. The derivations of firm-level credit constraints below do not rely
on this assumption.

5The shock process can be easily generalized to allow for trend growth without affecting the
model’s business cycle dynamics.
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To make analytical aggregation feasible, we follow Carlstrom and Fuerst (1997) and
Bernanke, Gertler, and Gilchrist (1999) by assuming that the idiosyncratic produc-
tivity shock ω is i.i.d. across time and across firms. Further, we assume that ω is
drawn from a Pareto distribution defined over the interval [1,∞), with the distribution
function

F (ω) = 1− ω−σ, (7)

where σ > 1 is the shape parameter, which determines the dispersion of the distribu-
tion.

III.3. Financial contracts. In each period, firms need to pay a fixed cost φ to stay in
business. We interpret the fixed cost as a cost of accessing credit market, which covers
the cost of financial intermediation. Firms need to borrow from a competitive financial
intermediary to finance payments of the fixed cost and variable costs. Following
Jermann and Quadrini (Forthcoming), we assume that there is a mismatch of cash
flows so that these payments need to be made in the beginning of the period, before
production takes place. Loans are repaid at the end of the period after production
completes.

Denote by lt(ω) the amount of loans that a firm with productivity ω can borrow
and by Vt(ω) the firm’s value. Define Vt ≡

∫
Vt(ω)f(ω)dω as the ex ante value of

the firm (with idiosyncratic productivity integrated out). The firm solves the value-
maximizing problem

Vt(ω) = max
nt(ω),kt(ω)

ωAtkt(ω)αnt(ω)1−α − wtnt(ω)− rtkt(ω)− φ+ Etβ̃
Λe
t+1

Λe
t

Vt+1, (8)

subject to the borrowing constraint

wtnt(ω) + rtkt(ω) + φ ≤ lt(ω). (9)

and an incentive constraint to be specified below. The term Λe
t denotes the marginal

utility of the entrepreneur who owns all firms.
Since contract enforcement is imperfect, borrowers have an incentive to default on

a loan. Optimal contracts solves the firm’s problem subject to an incentive constraint,
so that no default occurs in equilibrium. We now specify the incentive constraints.

If a firm with the productivity draw ω does not default at the end of the period,
it repays the loan lt(ω), keeps its revenue ωAtkt(ω)αnt(ω)1−α and any unspent loans
lt(ω)−wtnt(ω)−rtkt(ω)−φ after payments of operating costs. The non-default value
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for the firm is thus given by

V N
t (ω) = ωAtkt(ω)αnt(ω)1−α + [lt(ω)− wtnt(ω)− rtkt(ω)− φ] (10)

−lt(ω) + β̃Et
Λe
t+1

Λe
t

Vt+1. (11)

If the firm does not pay back the loan at the end of the period (i.e., if the firm
defaults), we follow Jermann and Quadrini (Forthcoming) and assume that the lender
can recover a fraction θ of the firm’s expected equity value. In this sense, the parameter
θ captures the strength of contract enforcement. The value of default is given by

V D
t (ω) = ωAtkt(ω)αnt(ω)1−α + [lt(ω)− wtnt(ω)− rtkt(ω)− φ] (12)

+β̃(1− θ)Et
Λe
t+1

Λe
t

Vt+1.

The firm chooses not to default if and only if V D
t (ω) ≤ V N

t (ω). In light of the value
functions in (10) and (12), the incentive constraint can be rewritten as

lt(ω) ≤ β̃θEt
Λe
t+1

Λe
t

Vt+1. (13)

III.4. Allocations of credit and production. We now examine the allocations
of credit and production across firms with different productivity. For this purpose,
we make the distinction between working capital, which corresponds to the variable
factor payments, and the overall cost, which includes also the fixed cost. Define
bt(ω) = wtnt(ω) + rtkt(ω) as the working capital. The incentive constraint (13) can
then be rewritten as

b(ω) ≤ β̃θEt
Λe
t+1

Λe
t

Vt+1 − φ ≡ bt, (14)

where we have used the borrowing constraint (9) to replace l(ω). The variable bt
denotes the credit limit for working capital loans.

To obtain the variable cost function, the firm chooses variable input factors nt(ω)

and kt(ω) to minimize wtnt(ω)+rtkt(ω) subject to the constraint ωAtkαt (ω)n1−α
t (ω) ≥

y. The variable cost function is given by C(y, ω) = y
ω∗
t

ω
, where

ω∗t ≡
1

At

(
wt

1− α

)1−α

(
rt
α

)α. (15)

The incentive constraint (14) implies that the total variable cost (which needs to be
financed through working capital loans) cannot exceed bt. In particular, we have

C(yt(ω), ω) = yt(ω)
ω∗t
ω
≤ bt. (16)
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Optimal contracts maximize the firm’s value subject to the firm’s borrowing con-
straint and the incentive constraint. Formally, the optimal contract problem is to
choose yt(ω) to maximize

yt(ω)− yt(ω)
ω∗t
ω
− φ+ β̃Et

Λe
t+1

Λe
t

Vt+1, (17)

subject to the constraints

yt(ω)
ω∗t
ω
≤ bt, (18)

yt(ω) ≥ 0, . (19)

Solving the optimal contract problem gives the allocations of production and credit,
as we summarize in the following proposition:

Proposition 1. There exists a cut-off level of productivity ω∗t ∈ [1,∞) such that the
production allocation is given by

yt(ω) =

{
btω
ω∗
t
, ifω ≥ ω∗t ,

0, otherwise,
(20)

and the working-capital credit allocation is given by

bt(ω) =

{
bt, ifω ≥ ω∗t

0 otherwise.
(21)

The credit limit for working capital financing bt and the cut-off productivity ω∗t are
defined in (14) and (15), respectively.

Proposition 1 shows that firms with sufficiently high levels of productivity choose
to operate and less productive firms remain inactive. For the marginal firm with
productivity ω∗t , total revenue equals total variable cost. Equation (17) shows that
the marginal firm has an operating loss that equals the fixed cost. The firm chooses
to stay in business because it expects to obtain positive equity value in future periods.

Under optimal contracts, productive firms are credit-constrained, and the credit
limit for working capital financing is given by a fraction θ of the firms’ expected
equity value net of payments for fixed costs. Unproductive firms stay inactive and
they do not borrow. The parameter θ captures the strength or effectiveness of contract
enforcement. Stronger contract enforcement implies a higher credit limit. A higher
fixed cost for accessing credit markets lowers the available credit for productive firms’
working-capital financing and thus tightens the credit constraints.
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III.5. Competitive equilibrium and aggregation. A competitive equilibrium con-
sists of sequences of prices {wt, rt}, allocations for the household {Ch

t , K
h
t+1, Nt}, al-

locations for the entrepreneur {Ce
t , K

e
t+1}, allocations for firms {kt(ω), nt(ω), bt(ω)}

such that, taking the prices as given, the allocations for each type of agents solve
their optimizing problems and all markets clear.

Factor market clearing implies that∫
kt(ω)dF (ω) = Kh

t +Ke
t = Kt,

∫
nt(ω)dF (ω) = Nt. (22)

Loan market clearing implies that∫
bt(ω)dF (ω) = wtNt + rtKt, (23)

where we have imposed the equilibrium condition thatKe
t+1 = 0 since the entrepreneur

is less patient than the household.
Goods market clearing implies that

Ch
t + Ce

t +Kt+1 = (1− δ)Kt + Yt − φ, (24)

where Yt =
∫
yt(ω)dF (ω) denotes aggregate output.

Integrating the production allocation in equation (20) across firms, we obtain ag-
gregate output given by

Yt =

∫
ω≥ω∗

t

bt
ω∗t
ωdF (ω) =

σ

σ − 1
btω
∗
t
−σ. (25)

With constant returns technology and perfect mobility of factors, the capital-labor
ratio is independent of firms’ idiosyncratic productivity. In particular, cost-minimizing
implies that

wt
rt

=
1− α
α

kt(ω)

nt(ω)
=

1− α
α

Kt

Nt

. (26)

Cost minimizing also implies that aggregate payments to input factors are given by

wtNt + rtKt = ω∗tAtK
α
t N

1−α
t . (27)

As the capital-labor ratio for each firm is identical, integrating the production
function (5) across firms implies that

AtK
α
t N

1−α
t =

∫
yt(ω)

ω
dF (ω) =

∫
ω≥ω∗

t

bt
ω∗t
dF (ω) = btω

∗
t
−σ−1, (28)

where the second equality follows from the production allocation (20) and the final
equality from the Pareto distribution function.
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Combining (25) and (28), we obtain the aggregate production function

Yt =
σ

σ − 1
ω∗tAtK

α
t N

1−α
t . (29)

IV. Credit constraints and aggregate productivity

Since productive firms face binding credit constraints and cannot operate at full ca-
pacity, the presence of credit constraints leads to misallocation and depressed total fac-
tor productivity (TFP). We now draw a formal connection between credit constraints
and aggregate productivity in our model. We further show that, in the presence of
fixed cost for financial intermediation, credit constraints help amplify macroeconomic
fluctuations through reallocation of resources.

IV.1. Credit constraints and misallocation. The aggregate production function
(29) reveals that measured TFP is given by

TFPt ≡
Yt

Kα
t N

1−α
t

=
σ

σ − 1
ω∗tAt. (30)

Thus, measured TFP reflects true technology changes (At) and endogenous variations
in the cutoff level of productivity (ω∗t ) that determines which firms are active.

Absent credit constraints, the only firms that operate would be those with the
highest productivity draw ωmax.6 In the presence of credit constraints, however, less
productive firms (i.e., those with productivity between ω∗t and ωmax) are able to sur-
vive. In this sense, credit constraints create misallocation of resources, the magnitude
of which is captured by the cutoff level of productivity ω∗t .

The following proposition establishes the relation between the endogenous compo-
nent of TFP (the misallocation effect) and the average tightness of credit constraints.

Proposition IV.1. There is a one-to-one and monotonic mapping between ω∗t and
aggregate loan-to-output ratio. In particular,

ω∗t =

[
bt
Yt

σ

σ − 1

]1/σ
. (31)

The loan-to-output ratio in turn depends on the tightness of the credit constraints:

bt
Yt

=
β̃θ

1− β̃

[
1

σ
− φ̄t

]
− φ̄t, (32)

where φ̄t ≡ φ/Yt.

6Strictly speaking, the notion of the “most productive firms” is a limiting concept since the support
of the Pareto distribution is not bounded from above (i.e., with ωmax approaching infinity).
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Proof. The equality in (31) follows immediately from (25). To obtain the relation
in (32), we first note that (14) implies that the working-capital credit limit bt is
determined by expected future equity value. The equity value Vt can be solved out
from the recursive relation Vt = Ce

t + β̃Et
Cet
Cet+1

Vt+1, which yields

Vt =
1

1− β̃
Ce
t . (33)

In equilibrium, Ce
t is the aggregate dividend payments from all firms, which is given

by

Ce
t = Yt − wtNt − rtKt − φ =

1

σ
Yt − φ, (34)

where the last equality follows from (27) and (29). We then have the credit limit

bt = β̃θEt
Ce
t

Ce
t+1

Vt+1 − φ =
β̃θ

1− β̃

[
1

σ
Yt − φ

]
− φ, (35)

where the second equality uses (33) to substitute out Vt+1 and (34) to substitute out
Ce
t . Dividing (35) through by Yt, we obtain the desired equality in (32). �

Proposition IV.1 implies that more credit would be available for productive firms
if contract enforcement is stronger (i.e., θ is larger) or costs of financial intermedia-
tion are lower (i.e., φ/Yt is smaller). With more available credit, resources are more
concentrated in high-productivity firms, so the economy should have a higher level
of TFP (see (31)). Empirical studies suggest that misallocation accounts for a large
fraction of cross-country differences in TFP (Hsieh and Klenow, 2009). Our theory
suggests that financial friction can be a source of misallocation that depresses TFP.

IV.2. Amplification through reallocation. Credit constraints not only lead to
misallocation that depresses steady-state TFP, they also amplify technology shocks
through reallocation of resources between firms with different levels of productivity.
The following proposition establishes the conditions under which a financial multiplier
arises.

Proposition IV.2. Holding input factors constant, a 1 percent change in technology
shock leads to µ > 1 percent change in aggregate output, where µ is given by

µ ≡ d log Yt
d logAt

=
σ

σ + 1− ξ
, ξ ≡

[
1− φ̄σ1− β̃(1− θ)

β̃θ

]−1
> 1, (36)

where φ̄ = φ/Y measures the steady-state cost of financial intermediation as a fraction
of GDP.
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Proof. Substituting for ω∗t in (29) by the relations in (31) and (32) and rearranging
terms, we obtain

Y 1+σ
t =

(
σ

σ − 1

)1+σ
β̃θ

1− β̃

[
1

σ
Yt − φ

1− β̃(1− θ)
β̃θ

] [
AtK

α
t N

1−α
t

]σ
. (37)

Taking logarithms on both sides and applying total differentiation, we obtain (36). �

Proposition IV.2 shows that tighter credit constraints lead to greater amplification
of technology shocks. In particular, weaker contract enforcement (a smaller θ) or more
costly financial intermediation (a larger φ̄) leads to a greater financial multiplier (a
larger µ). The fixed cost of credit market access is crucial for reallocation because
it hurts less-productive firms more. Indeed, the financial multiplier relies on the
existence of the fixed cost. In the extreme case with φ = 0, we have µ = 1 and we
obtain no financial multiplier (µ = 1). In general, a positive value of φ gives rise to a
positive financial multiplier (µ > 1) and allows the strength of contract enforcement
(θ) to play a role in the credit amplification mechanism.

To understand how the credit amplification mechanism works, consider a positive
technology shock. On impact, output rises, which raises firms’ equity value and, un-
der the optimal contract, the credit line rises (see (35)). Equation (32) reveals that,
in the presence of the fixed cost, the credit limit rises more than proportionately
than does aggregate output because the boom in output reduces the average cost of
financial intermediation measured by φ̄. Since firms with high levels of productivity
choose to produce and active firms face binding working capital constraints (Propo-
sition 1), the increased credit limit enables productive firms to expand production.
Some less-productive firms are crowded out and become inactive. As a consequence,
the cutoff level of productivity shifts up as the loan-to-output ratio rises (see equation
(31)), which raises measured TFP (equation (30)) and thereby reinforcing the initial
technology shock. Following a negative technology shock, the same logic applies with
the direction reversed. The interactions between equity value and credit limits cre-
ate a reallocation effect under credit constraints, which can amplify macroeconomic
fluctuations.

V. Aggregate Increasing Returns and Indeterminacy

The reallocation effect represents a form of credit externality that stems from credit
constraints. In an unconstrained economy, resources are concentrated in the most
productive firms and changes in equity value do not have any impact on production
allocation. In the presence of credit constraints, however, firms need to finance their
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working capital through borrowing and their borrowing capacity is limited by equity
value. Thus, changes in equity value directly alter the borrowing capacity of the
credit-constrained firms and lead to reallocation.

We have established that the reallocation effect of credit constraints is crucial in
amplifying business cycle shocks. We now show that credit constraints at the firm
level are equivalent to increasing returns at the aggregate level, despite that all firms
operate a constant returns technology. Further, we show that the reallocation effect
makes the economy prone to indeterminate equilibria and sunspot driven fluctuations,
just like a representative-agent economy with increasing returns technology studied
by Benhabib and Farmer (1994) and others.

V.1. Credit constraints and aggregate increasing returns. To see that aggre-
gate technology in the model exhibits increasing returns, we log-linearize the reduced-
form aggregate production function (37) around the (unique) deterministic steady
state to get

ŷt = µ[ât + αk̂t + (1− α)n̂t], (38)

where a hatted variable denotes the log-deviations of the corresponding variable from
its steady-state value (e.g., ŷt ≡ log(Yt/Y ), where Y is the steady-state level of out-
put). The term µ is the financial multiplier given by (36). Equation (38) shows that
µ also measures aggregate returns to scale. Thus, the reduced-form aggregate tech-
nology exhibits increasing returns if and only if there is a positive financial multiplier
(i.e., µ > 1).

V.2. Theoretical possibility of self-fulfilling equilibria. It is well known that
an economy with increasing returns can be prone to self-fulfilling, sunspot driven
business cycles (Benhabib and Farmer, 1994). Since credit constraints in our model
are observationally equivalent to aggregate increasing returns, we now examine the
conditions under which sunspot-driven fluctuations can occur. To help exposition, we
examine a continuous-time version of our model at the aggregate level and we abstract
from aggregate shocks.

Define Xt ≡ σ−1
σ
Yt. Substituting this expression in equation (37), we obtain

Xt =

[
β̃θ

1− β̃

(
1

σ − 1
Xt − φ̃

)] 1
σ+1 (

AtK
α
t N

1−α
t

) σ
σ+1 , (39)

where

φ̃ ≡ φ
1− β̃(1− θ)

β̃θ
. (40)
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The aggregate resource constraint in the continuous-time version of our model is
given by

K̇t

Kt

= −δ +
Xt

Kt

− Ch
t

Kt

(41)

where we have substituted for Ce
t in equation (24) by using (34) and we have imposed

the equilibrium condition that Ke
t+1 = 0.

The intertemporal Euler equation for the household implies that

Ċh
t

Ch
t

= α
Xt

Kt

− δ − ρ, (42)

where ρ ≡ − log β is the subjective discount factor in the continuous-time model.
The household’s labor supply decision is given by

aLN
χ
t C

h
t = (1− α)

Xt

Nt

. (43)

Equations (39) to (43), along with the transversality condition limt→∞ e
−ρtKt/C

h
t =

0 and the initial condition K0 = K̄ fully characterize the aggregate dynamics in our
model with heterogeneous firms operating a constant returns technology and facing
credit constraints.

The next proposition establishes an equivalence result between the aggregate dy-
namics in our model and those in the Benhabib and Farmer (1994) economy.

Proposition V.1. Aggregate dynamics in a continuous-time version of our model
are identical, up to a first-order approximation, to those in the Benhabib and Farmer
(1994, BF) economy where the social planner solves the problem

Max U =

∫
e−ρt[logCt − aL

N1+χ
t

1 + χ
] (44)

subject to
Ct + K̇t = Kα

t N
1−α
t

(
K̄α
t N̄

1−α
t

)µ−1 − δKt, (45)

where K̄ and N̄ represent average economy-wide levels of capital and labor.

Proof. The first-order necessary conditions in the BF model are given by

Ċt
Ct

= α
Xt

Kt

− δ − ρ, (46)

aLN
χ
t Ct = (1− α)

Xt

Nt

, (47)

K̇t

Kt

=
Xt

Kt

− δ − Ct
Kt

, (48)

Xt = Kαµ
t N

(1−α)µ
t , (49)



CREDIT CONSTRAINTS AND SELF-FULFILLING BUSINESS CYCLES 17

whereXt denotes aggregate output. Equation (46) comes from the optimal consumption-
saving decision, (47) describes the optimizing labor-leisure choice, (48) rewrites the
resource constraint (45), and (49) is the production function, where we have imposed
the equilibrium conditions that K̄t = Kt and N̄t = Nt. Since the utility function is
strictly concave, these are also sufficient conditions for the optimizing problem in the
BF model.

Log-linearizing equations (46) to (49) around the deterministic steady state, we
obtain the following system of equations that characterizes equilibrium dynamics in
the BF model:

ċt = (δ + ρ)[xt − kt], (50)

(1 + χ)nt = xt − ct, (51)

k̇t =
δ + ρ

α
[xt − kt]−

δ + ρ− αδ
α

[ct − kt], (52)

xt = µ [αkt + (1− α)nt] , (53)

where the lower-cased variable xt denotes the log-deviations of the upper-cased vari-
able Xt from steady state (i.e., xt = logXt/X) and we have evaluated the ratios X/K
and C/K at the steady state.

It is straightforward to show that this linearized system of equations from the BF
model are identical to those implied by equations (39) to (43) in our model. �

The mapping between our model and the BF model suggests that indeterminacy
arises in our model under the same conditions as those provided by Benhabib and
Farmer (1994). To see this, we follow Benhabib and Farmer (1994) and consider an
economy in which the output elasticity of capital in the aggregate production function
is less than one (i.e., µα < 1). The following proposition summarizes the determinacy
conditions.

Proposition V.2. The necessary and sufficient condition for equilibrium indetermi-
nacy in the benchmark economy is given by

(1− α)µ− 1 > χ. (54)

Proof. See Appendix A. �

The condition for indeterminacy in (54) suggests that self-fulfilling fluctuations arise
if the slope of the effective labor demand curve exceeds the slope of the labor supply
curve. Figure 1 illustrates the labor market adjustment to a shift in expectations
of future wealth in the absence of fundamental shocks, where we assume that the
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labor supply curve is flat or, equivalently, labor supply is indivisible (Hansen, 1985;
Rogerson, 1988). If agents expect future equity value to rise, the anticipated wealth
effect shifts the labor supply curve upward. In the standard RBC model, the labor
demand curve is downward sloping so that the shift in the labor supply curve drives up
real wages and lowers equilibrium hours and income. Thus, the initial expectations of
a rise in equity value would be invalidated. However, in an economy with a sufficiently
large µ (stemming either from increasing returns as in BF or from financial friction
as in our model), the effective labor demand curve becomes upward-sloping and is
steeper than the labor supply curve (i.e., the condition in equation (54) is satisfied).
As shown in the top panel of the figure, an upward shift in the labor supply curve
from the wealth effect would raise equilibrium hours. Thus, production increases and
the initial expectations of a rise in wealth become self-fulfilling.

Although aggregate dynamics in our model are isomorphic to the BF model, the
sources of indeterminacy are quite different. Unlike the BF model in which indetermi-
nacy arises directly from increasing returns technology, our model contains a different
mechanism that has to do with financial friction. In particular, all firms have access
to a constant returns technology and only productive firms operate. Since operating
firms face binding credit constraints, labor demand at the firm level is a function of
available credit. For any given level of credit, the labor demand curve is downward
sloping. Yet, if agents expect a rise in future equity value, available credit expands
and the labor demand curve shifts out. As shown in the bottom panel of Figure 1, al-
though the wealth effect from the anticipated increase in equity value shifts the labor
supply curve up and leads to a rise in the real wage, the expansion in available credit
shifts the labor demand curve out and, with a sufficiently large financial multiplier
(i.e., a sufficiently large µ), it can lead to a rise in equilibrium hours. A rise in hours
would confirm the initial expectations and lead to self-fulfilling equilibria. There-
fore, multiple equilibria in our model stem from financial friction, not from increasing
returns.

V.3. Variable capacity utilization. In an important study, Wen (1998) shows that
incorporating variable capacity utilization in the BF model helps to lower substantially
the required degree of increasing returns to generate multiple equilibria. We now
extend our model to allow for variable capacity utilization and show that the model’s
aggregate dynamics are observationally equivalent to those in the Wen model.

Following Wen (1998), we assume that increases in the capacity utilization rate
accelerate capital depreciation. In particular, we assume that the household’s budget
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constraint (4) is replaced by

Ch
t +Kt+1 ≤ wtNt + [1 + rtut − δ(ut)]Kt, ∀t ≥ 0, (55)

where ut denotes the capacity utilization. As in the benchmark model, all capital
accumulation is done by the household. The capital depreciation rate varies with
capacity utilization according to

δ(ut) = δ0
u1+ηt

1 + η
, (56)

where δ0 ∈ (0, 1) is a constant and η > 0 measures the elasticity of the depreciation
rate with respect to capacity utilization. The household’s optimizing choices now
include an additional endogenous variable—the capacity utilization rate ut.

With variable capacity, the aggregate production function (37) becomes

Yt =
σ

σ − 1

[
β̃θ

1− β̃

(
1

σ
Yt − φ

)
− φ

] 1
σ+1 (

At(utKt)
αN1−α

t

) σ
σ+1 . (57)

Here, unlike in the benchmark model, the quantity produced depends on the effective
capital services utKt rather than the physical units of capital Kt.

We first note that introducing variable capacity utilization raises the magnitude of
the financial multiplier. In particular, we have

Proposition V.3. In the extended model with variable capacity utilization, a 1 percent
change in TFP holding input factors constant results in µ̃ > 1 percent change in
aggregate output, where

µ̃ ≡ d log Yt
d logAt

=
µ(1 + η)

1 + η − αµ
> µ, (58)

where µ is the financial multiplier in the benchmark model and is given by equation
(36).

Proof. See Appendix B.2. �

Accordingly, introducing variable capacity utilization makes indeterminacy more
likely, as in Wen’s model. In particular, we show that

Proposition V.4. The extended model with variable capacity utilization has aggregate
dynamics equivalent to those in the representative agent model studied by Wen (1998),
where the social planner solves the problem

Max U =

∫
e−ρt[logCt − aL

N1+χ
t

1 + χ
] (59)
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subject to

Ct + K̇t = (utKt)
αN1−α

t

[
(utK̄t)

αN̄1−α
t

]µ−1 − δtKt, (60)

where δt = δ0
u1+ηt

1+η
.

Proof. See Appendix B.4. �

The conditions for indeterminacy are summarized in the following proposition:

Proposition V.5. The necessary and sufficient condition for equilibrium indetermi-
nacy in the extended model with capacity utilization is given by

(1− α)µ̃− 1 > χ. (61)

Proof. The proof is the same as in Proposition V.2, with the financial multiplier µ
replaced by µ̃. �

Since µ̃ > µ, the indeterminacy conditions in (54) and (61) reveal that incorporat-
ing variable capacity utilization makes multiple equilibria more likely. This result is
analogous to that obtained by Wen (1998) in a representative agent economy with
increasing returns, although in the context of financial friction.

V.4. Empirical plausibility of self-fulfilling equilibria. We have established that,
to a first-order approximation, the model with financial friction is observationally
equivalent to a representative-agent economy with aggregate increasing returns. We
have shown that it is possible, at least in theory, to generate multiple equilibria in our
model, provided that the financial multiplier is sufficiently large. We now examine
the empirical plausibility of self-fulfilling business cycles in the model under calibrated
parameters.

The parameters to be calibrated include the subjective discount factors β for the
household and β̃ for the entrepreneur, the capital depreciation rate δ, the capital
income share α, the inverse Frisch elasticity of labor supply χ, the elasticity η of
depreciation with respect to capacity utilization rate, the scale parameter of the Pareto
distribution for the idiosyncratic productivity shocks σ, the parameter measuring the
strength of contract enforcement θ, and the steady-state ratio of fixed cost of financial
intermediation to aggregate output φ̄. Table 1 summarizes the calibrated parameter
values.

We set β = 0.99, implying an annual risk-free interest rate of 4 percent. We set
δ = 0.025, corresponding to an annual capital depreciation rate of 10 percent. We set
α = 0.3 to match the labor income share of 70 percent in the U.S. data. We assume
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that labor is indivisible (Hansen, 1985; Rogerson, 1988), which implies that χ = 0.
We follow Wen (1998) and set η = 0.4.

The remaining parameters are those related to financial friction. In the model, the
difference between β̃ and β reflects the risk of business failure. We set β̃ = 0.98,
implying a business failure rate of about 1 percent at the quarterly frequency, in line
with the estimate obtained by Fisher (1999). We set σ = 6, which implies a markup
of 20 percent for operating firms. We set φ̄ = 0.06, which corresponds to the average
value-added share of finance and insurance industry from 1960 to 2010 in the United
States. Given β̃, σ, and φ̄, we θ = 0.41 so that the model implies a steady-state ratio
of private credit to quarterly GDP of 2.08, as in the U.S. data.7

These calibrated parameters imply a financial multiplier of µ = 1.11 in the bench-
mark model and µ̃ = 1.51 in the extended model with variable capacity utilization.
The size of the financial multiplier µ implies that, under the calibrated labor share
and Frisch elasticity of labor supply, the condition (54) for multiple equilibria is not
satisfied and thus the benchmark model has a unique local equilibrium. However,
the size of µ̃ in the extended model with capacity utilization does meet the condition
(B38) and thus the model can generate sunspot-driven equilibria.

V.5. The role of financial friction parameters. To isolate the importance of the
financial friction parameters θ and φ in generating multiple equilibria in the model
with variable capacity utilization, we fix all the other parameters at their calibrated
values and examine the combinations of θ and φ that lead to multiplicity of equilibria.
We focus on admissible values of θ and φ so that the model has an interior solution.
We derive the parameter restrictions in Appendix B.5.

Figure 2 plots the admissible region and indeterminacy region in the space of θ and
φ̃.8 The figure shows that there is a large set of combinations of financial friction
parameters that leads to multiple equilibria. For any given value of θ, a large enough
φ leads to multiplicity; for any given value of φ, a large enough θ leads to multiplicity.
The figure also shows that the fixed cost of financial intermediation is crucial for

7We measure nominal private credit by the non-farm, nonfinancial business liabilities based
on credit market instruments. The data are taken from the Flow of Funds Tables of the Fed-
eral Reserve through Haver Analytics (private credit is the sum of OL10TCR5@FFUNDS and
OL11TCR5@FFUNDS). The sample mean of the ratios of nominal private credit to annualized
nominal GDP is about 0.52 for the period from 1960:Q1 to 2011:Q1, implying a quarterly average
of 2.08.

8One could easily transform φ̃ into φ using the relation in (40) and plot the parameter regions in
the space of (φ, θ).
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indeterminacy. If φ is close to zero, then the model has a unique equilibrium for
all admissible values of θ. Multiple equilibria can be obtained only for large enough
values of φ.

VI. Conclusion

We have studied the possibility of self-fulfilling, sunspot-driven fluctuations in an
economy with credit constraints. We find that financial friction in this economy leads
to misallocation of resources since productive firms face binding credit constraints.
Interactions between firms’ equity value and credit limits under credit constraints
generate a financial multiplier that amplifies the effects of fundamental shocks on
macroeconomic fluctuations. The financial multiplier stems from a credit externality.
At the aggregate level, the credit externality manifests in the form of increasing re-
turns and can lead to multiple local equilibria under plausible parameter values. Our
finding suggests that an economy with poor contract enforcement and high cost of
credit-market access suffers not just from lower TFP, it is also more likely to suffer
from aggregate instability as the economy is prone to sunspot-driven business cycle
fluctuations.
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Appendix A. Proof of Proposition V.2

In Proposition V.2, we establish the condition for indeterminacy in the benchmark
model. We now provide a formal proof.

Proof. We reduce the system of log-linearized equilibrium conditions (50) to (53) into
two equations in k and c and show that both roots of the Jacobian are negative under
the condition in (54).

Since the reduced system has one state variable, indeterminacy occurs if and only
if both eigenvalues of the Jacobian matrix are negative. The Jacobian evaluated at
the steady state is

J =

[
(ρ+δ)
α

Ω1 + (ρ+δ)
α
− δ (ρ+δ)

α
Ω2 − (ρ+δ)

α
+ δ

(ρ+ δ)Ω1 (ρ+ δ)Ω2

]
(A1)

where Ω1 = (µα−1)(1+χ)+µ(1−α)
1+χ−µ(1−α) and Ω2 = − µ(1−α)

1+χ−µ(1−α) .
Denote by λ1 and λ2 the eigenvalues of J . Then the necessary and sufficient condi-

tions for indeterminacy are

det(J) = λ1λ2 > 0, Trace(J) = λ1 + λ2 < 0. (A2)

The determinant of J is given by

det(J) = (ρ+ δ)

[
(ρ+ δ)

α
− δ
]

(1− µα)(1 + χ)

µ(1− α)− (1 + χ)
. (A3)

Since the economy that we consider has µα < 1, we have det(J) < 0 if the inequality
(54) holds (i.e., if (1− α)µ− 1 > χ).

Indeterminacy also requires Trace(J) < 0. The trace of J is given by

Trace(J) =
(ρ+ δ)

α
Ω1 +

(ρ+ δ)

α
− δ + (ρ+ δ)Ω2

=
(ρ+ δ)µ

1 + χ− µ(1− α)
(χ+ α)− δ. (A4)

Clearly, if (1− α)µ− 1 > χ, then Trace(J) < 0. �

Appendix B. The model with variable capacity utilization

We now describe the model with variable capacity utilization. To help exposition,
we follow Wen (1998) by assuming that the household decides the capacity utiliza-
tion rate. Since the entrepreneur is less patient, only the household holds capital in
equilibrium. In this Appendix, we derive the optimizing conditions that character-
ize the aggregate dynamics. We prove Propositions V.3 and V.4. Finally, we derive
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the admissible set of financial-friction parameters (φ, θ) as well as the indeterminacy
region.

B.1. Optimizing conditions and aggregate dynamics. The household maxi-
mizes the utility

E0

∞∑
t=0

βt
[
log(Ch

t )− aL
N1+χ
t

1 + χ

]
, (B1)

subject to the budget constraint

Ch
t +Kt+1 ≤ [1 + rtut − δ(ut)]Kt + wtNt. (B2)

The term ut denotes the fraction of capital stock that the household rents out to the
firms. Heavier capacity utilization accelerates capital depreciation. The depreciation
function is given by

δ(ut) = δ0
u1+ηt

1 + η
(B3)

where η > 0.
The household’s optimizing choices of capital stock, the utilization rate, and labor

supply lead to the first-order conditions
1

Ch
t

= βEt
1

Ch
t+1

[1 + rt+1ut+1 − δ(ut+1)], (B4)

rt = δ0u
η
t , (B5)

1

Ch
t

wt = aLN
χ
t . (B6)

Using the depreciation function (B3) and the optimizing condition for the utilization
rate (B5), we can rewrite the capital Euler equation (B4) as

1

Ch
t

= βEt
1

Ch
t+1

[1 +
η

1 + η
rt+1ut+1]. (B7)

The financial contracts are the same as in the benchmark model. The factor market
clearing conditions now need to take into account of the utilization rate and become∫

kt(ω)f(ω)dω = utKt,

∫
nt(ω)f(ω)dω = Nt. (B8)

The goods market clearing condition is the same as in the benchmark model:

Ch
t +Kt+1 + Ce

t = (1− δt)Kt + Yt − φ, (B9)

where Yt denotes aggregate output and is given by

Yt =
σ

σ − 1

[
β̃θ

1− β̃

(
1

σ
Yt − φ

)
− φ

] 1
σ+1 (

Atu
α
tK

α
t N

1−α
t

) σ
σ+1 , (B10)
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and Ce
t denotes aggregate dividend (or the entrepreneur’s consumption) and is related

to aggregate output by

Ce
t =

1

σ
Yt − φ. (B11)

Aggregating the firms’ cost-minimizing conditions results in

wtNt = (1− α)ϕtAtu
α
tK

α
t N

1−α
t = (1− α)

σ − 1

σ
Yt, (B12)

and
rtutKt = αϕtAtu

α
tK

α
t N

1−α
t = α

σ − 1

σ
Yt. (B13)

Using (B12) and (B13), we rewrite the household’s optimizing conditions as

1

Ch
t

(1− α)
σ − 1

σ

Yt
Nt

= aLN
χ
t , (B14)

1

Ch
t

= βEt
1

Ct+1

[1 + α
η

1 + η

σ − 1

σ

Yt+1

Kt+1

]. (B15)

Aggregate dynamics in the model with variable capacity utilization are fully char-
acterized by the following system of equations:

Xt =

[
β̃θ

1− β̃

(
1

σ − 1
Xt − φ̃

)] 1
σ+1 (

Atu
α
tK

α
t N

1−α
t

) σ
σ+1 , (B16)

Xt = Ch
t +Kt+1 − (1− δt)Kt, (B17)

1

Ch
t

(1− α)
Xt

Nt

= aLN
χ
t , (B18)

1

Ch
t

= βEt
1

Ch
t+1

[1− δt+1 + α
Xt+1

Kt+1

], (B19)

α
Xt

Kt

= δ0u
η+1
t , (B20)

where Xt ≡ σ−1
σ
Yt and φ̃ = β̃θ+1−β̃

β̃θ
φ.

B.2. Proof of Proposition V.3. We are now ready to derive the financial multiplier
in the model with variable capacity utilization as stated in Proposition V.3 in the text.

Proof. Log-linearizing the aggregate production function (B16) around the determin-
istic steady state, we obtain

X̂t =
(
αût + αK̂t + (1− α)N̂t + Ât

) σ

σ + 1− ξ
.

Using the log-linearized version of the optimizing conditions for the utilization rate in
(B20), we substitute out ût and obtain

X̂t = µ̃Ât + µ̃α
η

1 + η
K̂t + µ̃(1− α)N̂t, (B21)
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where µ̃ ≡ µ(1+η)
1+η−αµ > µ, with µ being the financial multiplier in the benchmark model.

Thus, holding input factors constant, a 1 percent change in TFP leads to a µ̃ percent
change in aggregate output. �

B.3. Aggregate dynamics in continuous time. As in the benchmark model, we
use a continuous-time version of the model to examine the possibility of indeterminacy
in the presence of variable capacity utilization. The system of equations are

Xt =

[
β̃θ

1− β̃

(
1

σ − 1
Xt − φ̃

)] 1
σ+1 (

Atu
α
tK

α
t N

1−α
t

) σ
σ+1 , (B22)

K̇t

Kt

=
Xt

Kt

− δt −
Ch
t

Kt

=
η + 1− α
η + 1

Xt

Kt

− Ch
t

Kt

, (B23)

1

Ch
t

(1− α)
Xt

Nt

= aLN
χ
t , (B24)

Ċh
t

Ch
t

= α
Xt

Kt

− δt − ρ = α
η

η + 1

Xt

Kt

− ρ, (B25)

α
Xt

Kt

= δ0u
η+1
t . (B26)

In the steady state, we have

X

K
=
ρ(η + 1)

αη
,

Ch

K
=

(η + 1− α)ρ

αη
. (B27)

Log-linearizing the equilibrium conditions around the steady state, we obtain

xt =
αηµ

1 + η − αµ
kt +

(1− α)(1 + η)µ

1 + η − αµ
nt, (B28)

k̇t =
ρ(η + 1− α)

αη
[xt − kt]−

ρ(η + 1− α)

αη
[cht − kt], (B29)

ċht = ρ(xt − kt), (B30)

nt(1 + χ) = xt − cht . (B31)
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B.4. Proof of Proposition V.4. With these log-linearized equilibrium conditions,
it is easy to prove the equivalence results stated in Proposition V.4 in the text.

Proof. Denote by Xt = A0u
α
tK

α
t N

1−α
t

(
ūαt K̄

α
t N̄

1−α
t

) ξ−1
(σ+1−ξ) aggregate output in Wen’s

model. The first-order conditions in Wen (1998) are identical to (B24)–(B26) in our
model and the resource constraint in his model is also the same as in ours (B23). The
log-linearized production function in Wen’s model is

xt =
αηµ

1 + η − αµ
kt +

(1− α)(1 + η)µ

1 + η − αµ
nt, (B32)

which is identical to the linearized aggregate production function (B28) in our model.
�

B.5. Parameter restrictions and the indeterminacy region. We now derive the
restrictions on the financial friction parameters θ and φ̃ that permit interior solutions,
that is, the admissible region. We also derive the combinations of these parameters
in the admissible region that lead to indeterminacy.

B.5.1. Admissible parameters. We begin by deriving the combinations of (φ̃, θ) that
permit interior solutions.

In the steady-state equilibrium, (B27) shows that the output-capital ratio Xk ≡
X
K

and the consumption-capital ratio Ck ≡ Ch

K
are independent of financial friction

parameters. It follows from the labor supply decision (B24) and the optimal capacity
utilization decision (B26) that the steady-state levels of employment N and utilization
u are also independent of the financial friction parameters. Without loss of generality,
we normalize the steady-state level of technology A such that AuαN1−α = 1. The
aggregate production function (B22) then implies that, in the steady state,

X =

[
β̃θ

1− β̃

(
1

σ − 1
X − φ̃

)] 1
σ+1

(Kα)
σ
σ+1 . (B33)

Since aggregate output is given by X = ω∗A(uK)αN1−α = ω∗Kα, where ω∗ ≥ 1 is
the cutoff level of productivity, interior solution requires that

X ≥ Kα ≡ Xmin. (B34)

The minimum output Xmin can be solved in terms of (nonfinancial) parameters using
the fact that the output-capital ratio is invariant to financial friction parameters. In
particular, Xmin = Kα = (Xmin/Xk)

α, so that

Xmin = X
α
α−1

k . (B35)
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The inequality in (B34) puts restrictions on the admissible values of φ̃ and θ. All else
equal, aggregate output decreases with φ̃ and increases with θ. Taking the constraint
in (B34) as given, we first derive the upper bound for φ̃ by holding θ = 1 and then
derive the lower bound for θ as a function of φ̃. Denote the upper bound for φ̃ by
φmax. With φ̃ = φmax, aggregate output reaches its lowest level Xmin. Thus, from
(B33) with θ = 1 imposed, we have

Xmin =

[
β̃

1− β̃

(
1

σ − 1
Xmin − φ̃

)] 1
σ+1

(Xmin)
σ
σ+1 .

Rearranging terms, we obtain

φ̃max =

[
1

σ − 1
− 1− β̃

β̃

]
X

α
α−1

k . (B36)

We now derive the lower bound of θ as a function of φ̃ such that (B34) is satisfied.
Denote this lower bound by θmin(φ̃).We use the production function (B33) to solve for
θmin(φ̃) by setting X = Xmin. This procedure yields

θmin(φ̃) =

1−β̃
β̃
Xmin

1
σ−1Xmin − φ̃

. (B37)

Thus, the set of admissible financial friction parameters are given by

A = {(φ̃, θ)|0 ≤ φ̃ ≤ φmax, θmin(φ̃) ≤ θ ≤ 1}.

B.6. Indeterminacy region. We now derive the combinations of φ̃ and θ that lead
to indeterminacy.

Proposition V.5 establishes that the necessary and sufficient condition for indeter-
minacy is given by

µ̃ ≥ 1 + χ

1− α
, (B38)

where µ̃ = (1+η)µ
1+η−αµ with µ = σ

σ+1−ξ and ξ = 1
1−φ̃(σ−1)/X . The indeterminacy condition

in (B38) puts restrictions on the parameters φ̃ and θ. We now derive these restrictions.
Denote by µ̃∗ ≡ 1+χ

1−α the threshold value of µ̃ such that indeterminacy obtains if
µ̃ ≥ µ̃∗. We define the term

ξ∗ ≡ σ + 1− σ

µ∗
, (B39)

where µ∗ ≡ (1+η)µ̃∗

1+η+αµ̃∗
. Since µ̃ is a monotone function of ξ, we have µ̃ ≥ µ̃∗ if and only

if ξ ≥ ξ∗. Thus, from the definition of ξ, indeterminacy obtains if and only if

1− φ̃σ − 1

X
≤ 1

ξ∗
.
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Define the term
X∗ ≡ φ̃

(σ − 1)ξ∗

ξ∗ − 1
. (B40)

Indeterminacy obtains if and only if X ≤ X∗. Thus, we can solve the maximum
value of θ as a function of φ̃ such that, for all θ below this maximum value, we have
X ≤ X∗ and indeterminacy obtains. Denote by θmax(φ̃) the upper bound of θ for the
indeterminacy region. At this value of θ, we have X = X∗. Thus,

X∗ =

[
β̃θmax(φ̃)

1− β̃

(
1

σ − 1
X∗ − φ̃

)] 1
σ+1 (

X∗

Xk

) ασ
σ+1

, (B41)

where we have used the equilibrium condition that K = X
Xk

for all admissible values
of X. Substituting out X∗ using (B40) and rearranging terms, we obtain

θmax(φ̃) =

[
ξ∗(σ − 1)

ξ∗ − 1
φ̃

]σ+1−ασ
Xασ
k

1
ξ∗−1 φ̃

1− β̃
β̃

, (B42)

where ξ∗ is given by (B39).
Thus, the region of indeterminacy is summarized by the set

I ≡
{

(φ̃, θ)|0 ≤ φ̃ ≤ φmax, θmin(φ̃) ≤ θ ≤ min(θmax(φ̃), 1)
}
. (B43)
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Table 1. Calibrated Parameters

Parameter Description Value
β Household discount factor 0.99

β̃ Entrepreneur discount factor 0.98

α Capital income share 0.30

δ Capital depreciation rate 0.025

η Utilization elasticity of depreciation 0.40

χ Inverse Frisch elasticity of labor supply 0

σ Shape parameter of the productivity distribution 6.00

θ Contract enforcement 0.41

φ̄ Cost of financial intermediation as a fraction of GDP 0.06
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Figure 1. Labor market adjustment to expectations of increases in
wealth under conditions for indeterminacy. Top panel: Aggregate model
with increasing returns (Benhabib and Farmer, 1994). Bottom panel:
Benchmark model with financial friction.
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Cost of financial intermediation: φ
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Figure 2. Financial friction parameters and indeterminacy in the ex-
tended model with variable capacity utilization. The horizontal axis
shows the cost of financial intermediation (φ̃) and the vertical axis shows
the strength of contract enforcement (θ). The admissible region is the
sum of the two colored areas. The indeterminacy region is the blue
area.
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