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Abstract

The ability of the usual factors from empirical arbitrage-free representations of the term

structure—that is, spanned factors—to account for interest rate volatility dynamics has

been much debated. We examine this issue with a comprehensive set of new arbitrage-free

term structure specifications that allow for spanned stochastic volatility to be linked to

one or more of the yield curve factors. Using U.S. Treasury yields, we find that much

realized stochastic volatility cannot be associated with spanned term structure factors.

However, a simulation study reveals that the usual realized volatility metric is misleading

when yields contain plausible measurement noise. We argue that other metrics should be

used to validate stochastic volatility models.
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1 Introduction

Understanding and predicting the variability of interest rates play a crucial role in derivatives

pricing and portfolio risk management, so creating accurate empirical models of interest rate

stochastic volatility has been a key research priority. Unfortunately, while the canonical affine

arbitrage-free term structure models have been widely applied to price bonds, the ability of

these popular models to capture the changing volatility of interest rates has been seriously

questioned. Indeed, using U.S. swap rate data, Collin-Dufresne, Goldstein, and Jones (2009)

find that a standard three-factor affine model, in which one of the factors drives volatility,

produces very poor volatility estimates. They suggest that an unspanned volatility factor (i.e.,

a factor that affects interest rate volatility without changing bond prices) has to be added to

the affine term structure model in order to capture the stochastic volatility observed in U.S.

dollar swap rates. However, Jacobs and Karoui (2009) argue this conclusion is sensitive to the

specific sample period analyzed, and they recommend further research to examine whether

spanned factors in an affine arbitrage-free model can capture the conditional volatility in U.S.

Treasury and swap rate data. In this paper, we conduct such research by examining to what

extent spanned factors can generate stochastic interest rate volatility.

We incorporate spanned stochastic volatility into the class of affine, arbitrage-free Nelson-

Siegel (AFNS) term structure models developed by Christensen, Diebold, and Rudebusch

(2011, henceforth CDR).1 These models are characterized by imposing the level, slope, and

curvature factor structure observed in the usual principal components analysis of the yield

curve. This class of models captures both the cross section of yields and their time-series

dynamics quite well and can be readily estimated.2 Indeed, in previous work, analysis of

multiple factor sources for spanned volatility have been hampered by problems in estimating

the parameters of multifactor affine models.3 However, we estimate new specifications of

AFNS models that allow one, two, or all three factors to generate spanned stochastic volatility.

A key advantage of our approach to modeling stochastic volatility is that the factors remain

well-defined as level, slope, and curvature for any admissible parameter set despite their latent

1In related work, Hautsch and Ou (2012) and Koopman, Malle, and van der Wel (2010) incorporate stochas-
tic volatility into a dynamic Nelson-Siegel model that—unlike in our work—does not address the problem of
eliminating the existence of arbitrage opportunities

2This model has been shown to exhibit both good in-sample fit and out-of-sample forecast accuracy for
various yield curves. The empirical analysis conducted in CDR is based on unsmoothed Fama-Bliss data
for nominal Treasury yields, while Christensen and Rudebusch (2012) analyze the same Treasury yields used
in this paper. Christensen, Lopez, and Rudebusch (2010) examine yields for nominal and real Treasuries,
while Christensen, Lopez, and Rudebusch (2014) examine short-term LIBOR and highly-rated financial firms’
corporate bond rates.

3The latent nature of the factors and the over-parameterization of the models make estimation quite difficult.
See CDR and Duffee (2011).
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nature. This structure also makes the results comparable across model classes and allows us

to detail which factors are able to generate empirically plausible stochastic yield volatility.

This feature distinguishes our approach from the existing literature on affine models where the

optimal parameters for any unconstrained affine model only implicitly reveal which factor(s)

generate(s) stochastic volatility.

We estimate these new models on daily U.S. Treasury yields from January 2, 1985, to

June 30, 2011, for eight maturities. We find that the introduction of stochastic volatility does

not weaken the models’ in-sample fit of the term structure relative to a model with constant

volatility. Following the existing literature, we correlate the models’ predicted stochastic

volatility (measured in terms of standard deviations) with a measure of realized standard

deviations based on daily data. As in Collin-Dufresne et. (2009), we find that the correlation

between the predicted and realized bond yield standard deviations is quite low and often

negative over the full sample. However, we also provide evidence that this negative result is

not definitive. In particular, we construct a simulation experiment in which all yield volatility

is spanned by construction. We find that the predicted yield volatilities generated from

model estimations on the simulated data have correlations with the simulated data’s realized

yield volatilities that depend critically on the quality of the data. If measurement noise is

unrealistically low (i.e., normal i.i.d. errors with one basis point standard deviation or lower),

the correlations are quite high as theory would suggest (e.g., Andersen, Bollerslev, Diebold,

and Labys 2003). On the other hand, if the added white noise is of the size of the fitted errors

in our model estimations, then the correlations are frequently low, and occasionally even

negative. Based on this evidence, we conclude that correlations at high frequency between ex

ante predicted and ex post realized yield volatility measures are flawed measures for validating

term structure models with stochastic volatility—contrary to the conclusions of Andersen and

Benzoni (2010) and Collin-Dufresne et. (2009).

As a consequence of the shortcomings of the realized volatility metric, we try to validate

our stochastic volatility AFNS models along other dimensions. First, instead of focusing on

time-series correlations at high frequency, we examine the root-mean-squared errors (RMSE)

between the predicted and realized yield standard deviations. These model validation results

are more favorable to affine models with spanned volatility factors. In particular, the AFNS

model in which all three factors can affect volatility performs well based on this measure

with RMSEs below 15 basis points at all maturities in addition to providing a good fit to the

cross section of yields. Second, this model is also able to match the unconditional mean and

standard deviation of our realized yield volatility series. To summarize, our results show that,
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while incapable of matching the high-frequency time variation of realized yield volatilities,

three-factor affine models can fit the cross section of yields and capture an interesting part of

realized yield volatility.

The rest of the paper is structured as follows. Section 2 presents a short summary of

the original AFNS model of the term structure with constant volatility. Section 3 introduces

the modified classes of AFNS models with stochastic volatility dynamics. Section 4 presents

empirical results for the AFNS model classes, while Section 5 studies their ability to capture

stochastic yield volatility. Finally, Section 6 concludes.

2 The AFNS Model with Constant Volatility

In this section, we briefly review the AFNS model with constant volatility, throughout referred

to as the AFNS0 specification.4 A standard continuous-time affine arbitrage-free structure

(Duffie and Kan 1996) underlies all the models in this paper. To represent an affine diffusion

process, define a filtered probability space (Ω,F , (Ft), Q), where the filtration (Ft) = {Ft :

t ≥ 0} satisfies the usual conditions; see Williams (1997). The state variable Xt is assumed to

be a Markov process defined on a set M ⊂ Rn that solves the following stochastic differential

equation (SDE):

dXt = KQ(t)[θQ(t)−Xt]dt+Σ(t)D(Xt, t)dW
Q
t , (1)

where WQ is a standard Brownian motion in Rn, the information of which is contained in

the filtration (Ft).
5 The drift terms θQ : [0, T ] → Rn and KQ : [0, T ] → Rn×n are bounded,

continuous functions.6 Similarly, the volatility matrix Σ : [0, T ] → Rn×n is assumed to be a

bounded, continuous function, while D :M × [0, T ] → Rn×n is assumed to have the following

diagonal structure:




√
γ1(t) + δ1(t)Xt . . . 0

...
. . .

...

0 . . .
√
γn(t) + δn(t)Xt


 ,

4Our nomenclature draws on Dai and Singleton (2000). Our AFNSn models are members of their An(3)
class of models, which have three state variables and n square-root processes.

5Note that the affine property applies to bond prices; therefore, affine models only impose structure on the
factor dynamics under the pricing measure.

6Stationarity of the state variables is ensured if all the eigenvalues of KQ(t) are positive. If the eigenval-
ues are complex, the real component should be positive; see Ahn, Dittmar, and Gallant (2002). However,
stationarity is not a necessary requirement for the process to be well defined.
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where

γ(t) =




γ1(t)
...

γn(t)


 , δ(t) =




δ11(t) . . . δ1n(t)
...

. . .
...

δn1 (t) . . . δnn(t)


 ,

γ : [0, T ] → Rn and δ : [0, T ] → Rn×n are bounded, continuous functions, and δi(t) denotes

the ith row of the δ(t)-matrix. Finally, the instantaneous risk-free rate is assumed to be an

affine function of the state variables

rt = ρ0(t) + ρ1(t)
′Xt,

where ρ0 : [0, T ] → R and ρ1 : [0, T ] → Rn are bounded, continuous functions.

Duffie and Kan (1996) prove that zero-coupon bond prices in this framework are exponential-

affine functions of the state variables

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t
rudu

)]
= exp

(
B(t, T )′Xt +A(t, T )

)
,

where B(t, T ) and A(t, T ) are the solutions to the following system of ordinary differential

equations (ODEs)

dB(t, T )

dt
= ρ1 + (KQ)′B(t, T )−

1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,j(δ
j)′, B(T, T ) = 0, (2)

dA(t, T )

dt
= ρ0 −B(t, T )′KQθQ −

1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,jγ
j, A(T, T ) = 0, (3)

and the possible time-dependence of the parameters is suppressed in the notation. These

pricing functions imply that the zero-coupon yields are given by affine functions of Xt

y(t, T ) = −
1

T − t
log P (t, T ) = −

B(t, T )′

T − t
Xt −

A(t, T )

T − t
.

In the AFNS model with constant volatility, the instantaneous risk-free rate is defined by

rt = X1
t +X2

t .

In addition, the three state variables in the model Xt = (X1
t ,X

2
t ,X

3
t ) are described by the
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following system of SDEs under the risk-neutral Q-measure:7




dX1
t

dX2
t

dX3
t


 =




0 0 0

0 λ −λ

0 0 λ










θ
Q
1

θ
Q
2

θ
Q
3


−




X1
t

X2
t

X3
t





 dt+Σ




dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 , λ > 0.

In matrix notation, this system is denoted as

dXt = KQ(θQ −Xt)dt+ΣQdW
Q
t .

CDR show that this specification implies that zero-coupon bond yields are given by

y(t, T ) = X1
t +

(1− e−λ(T−t)

λ(T − t)

)
X2

t +
(1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

)
X3

t −
A(t, T )

T − t
.

Importantly, the three factors in this yield function have level, slope, and curvature loadings

identical to those in the popular Nelson and Siegel (1987) yield curve, while the final yield-

adjustment term captures convexity effects due to Jensen’s inequality and ensures the absence

of arbitrage.

The model is completed with a risk premium specification that connects the factor dynam-

ics to the dynamics under the real-world (or historical) P -measure. It is important to note

that there are no restrictions on the dynamic drift components under the empirical P -measure

beyond the requirement of constant volatility. To facilitate empirical implementation, we use

the extended affine risk premium developed by Cheridito, Filipović, and Kimmel (2007). In

the Gaussian framework, this specification implies that the risk premiums Γt depend on the

state variables; that is,

Γt = γ0 + γ1Xt,

where γ0 ∈ R3 and γ1 ∈ R3×3 contain unrestricted parameters.8 The relationship between

real-world yield curve dynamics under the P -measure and risk-neutral dynamics under the

Q-measure is given by

dW
Q
t = dWP

t + Γtdt.

7As discussed in CDR, with a unit root in the level factor under the pricing measure, the model is not
arbitrage-free with an unbounded horizon; therefore, as is often done in theoretical discussions, we impose an
arbitrary maximum horizon.

8For Gaussian models this specification is equivalent to the essentially affine risk premium specification
introduced in Duffee (2002).
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Thus, the P -dynamics of the state variables are

dXt = KP (θP −Xt)dt+ΣdWP
t ,

where both KP and θP are allowed to vary freely relative to their counterparts under the

Q-measure.

The main limitation of the AFNS class of models above is the constant volatility matrix

Σ. The purpose of this paper is to modify the AFNS model in a straightforward fashion in

order to incorporate stochastic volatility. The key assumption to preserving the desirable

Nelson-Siegel factor loading structure in the zero-coupon bond yield function is to maintain

the KQ mean-reversion matrix under the Q-measure. Furthermore, all model classes will be

characterized by an instantaneous risk-free rate defined as the sum of the first two factors

rt = X1
t +X2

t .

3 Three AFNS Specifications with Stochastic Volatility

In this section, we introduce three new AFNS specifications with stochastic volatility. These

three specifications vary depending on whether they contain one, two, or three stochastic

volatility factors and on the identity of those factors. For each model class, we derive the

maximally flexible specification available using the extended affine risk premium specification.

3.1 AFNS Models with One Stochastic Volatility Factor

There are two AFNS stochastic volatility specifications that allow just one factor to exhibit

stochastic volatility. The first, denoted as the AFNS1-L model, allows only the level factor

to exhibit stochastic volatility. The state variables in this specification follow this system of

stochastic differential equations under the risk-neutral Q-measure:




dX1
t

dX2
t

dX3
t


 =




ε 0 0

0 λ −λ

0 0 λ










θ
Q
1

θ
Q
2

θ
Q
3


−




X1
t

X2
t

X3
t





 dt

+




σ11 0 0

σ21 σ22 0

σ31 σ32 σ33







√
X1

t 0 0

0
√

1 + β21X
1
t 0

0 0
√

1 + β31X
1
t







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 ,
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where the X1
t level factor is a square-root process with stochastic volatility that affects the

instantaneous volatility of the two other factors through the β21 and β31 volatility sensitivity

parameters.9

For the factor loadings in the zero-coupon bond prices, B1(t, T ) is the solution to

dB1(t, T )

dt
= 1 + εB1(t, T )−

1

2
σ2

11
B1(t, T )2 −

1

2
σ2

21
B2(t, T )2 −

1

2
σ2

31
B3(t, T )2

−σ21σ11B
1(t, T )B2(t, T )− σ31σ11B

1(t, T )B3(t, T )− σ21σ31B
2(t, T )B3(t, T )

−
1

2
β21

[
σ2

22
B2(t, T )2 + σ2

32
B3(t, T )2 + 2σ22σ32B

2(t, T )B3(t, T )
]
−

1

2
β31σ

2

33
B3(t, T )2,

while B2(t, T ) and B3(t, T ) are given by

B2(t, T ) = −
(1− e−λ(T−t)

λ

)
,

B3(t, T ) = (T − t)e−λ(T−t) −
(1− e−λ(T−t)

λ

)
.

The last two factor loadings match exactly the factor loadings of the slope and curvature

factors in the Nelson-Siegel zero-coupon yield function, while the ODE for B1(t, T ) contains

quadratic elements related to the stochastic volatility of X1
t . The A(t, T )-function in the

yield-adjustment term in this class of models must solve the following ODE:

dA(t, T )

dt
= −B(t, T )′KQθQ −

1

2
σ2

22
B2(t, T )2 −

1

2
(σ2

32
+ σ2

33
)B3(t, T )2 − σ22σ32B

2(t, T )B3(t, T ).

To estimate this model, we specify the dynamics under the real-world P -measure as the

measure change dWQ = dWP
t + Γtdt. Given the extended affine risk premium specification,

the maximally flexible affine P -dynamics are, in general, given by




dX1
t

dX2
t

dX3
t


 =




κP11 0 0

κP21 κP22 κP23

κP31 κP32 κP33










θP1

θP2

θP3


−




X1
t

X2
t

X3
t





 dt

+




σ11 0 0

σ21 σ22 0

σ31 σ32 σ33







√
X1

t 0 0

0
√
1 + β21X

1
t 0

0 0
√

1 + β31X
1
t







dW
1,P
t

dW
2,P
t

dW
3,P
t


 .

9Note that we cannot set κ
Q
11

to zero as that would eliminate the drift of X1

t and cause this process to
remain at zero once it hits zero, which it will P -a.s. when κ

Q
11

= 0. Instead, we fix this parameter at a small,
but positive, ε = 10−6, to get close to the unit-root property imposed in the AFNS0 model.
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To ensure absence of arbitrage as per Cheridito et al. (2007), the constrained X1
t square-

root process must satisfy a Feller condition under both probability measures; i.e.,

κP11θ
P
1 >

1

2
σ211 and εθ

Q
1 >

1

2
σ211.

These restrictions ensure that the X1
t -process will remain in positive territory.

Finally, we identify this class of models by fixing θQ2 = θ
Q
3 = 0, eliminating the Q-means

of the unconstrained processes as in CDR. These restrictions allow the corresponding means

under the P -measure to be determined in the estimation. There are 20 parameters in the

maximally flexible specification of this class of models.

The natural next AFNS one-factor stochastic volatility specification would allow the slope

factor to exhibit stochastic volatility. However, examination of the matrix

KQ =




0 0 0

0 λ −λ

0 0 λ


 ,

shows that X2
t cannot be a square-root process with X3

t as an unconstrained process, if the

important off-diagonal element κQ23 is to remain equal to −λ, which generates the unique factor

loading of the curvature factor in the AFNS model. Thus, there is no admissible AFNS1-

S model. The AFNS1-C model, which allows for a stochastic volatility curvature factor, is

admissible. However, empirically, this specification turns out to be little different from the

Gaussian AFNS0 model, so we omit it from our discussion here though model details are

available from the authors.

3.2 AFNS Models with Two Stochastic Volatility Factors

Our second class of stochastic volatility models allows for two stochastic volatility factors.

Although there are three potential specifications, the specification with just the level and

slope factors exhibiting stochastic volatility is not admissible because it does not permit the

important off-diagonal element κQ23 to equal −λ, which is the unique characteristic of the

curvature factor in the original AFNS model. Instead, stochastic volatility is associated with

either level and curvature or slope and curvature. One of these specifications, denoted AFNS2-

LC, is similar empirically to the AFNS1-L model, so, for brevity, it is omitted—though model

details are available from the authors.

The AFNS specification with two volatility factors that we focus on allows the slope and

8



curvature factors to be square-root processes while the level factor remains unconstrained.

The factor dynamics of this AFNS2-SC model under the Q-measure are




dX1
t

dX2
t

dX3
t


 =




0 0 0

0 λ −λ

0 0 λ










θ
Q
1

θ
Q
2

θ
Q
3


−




X1
t

X2
t

X3
t





 dt

+




σ11 σ12 σ13

0 σ22 0

0 0 σ33







√
1 + β12X

2
t + β13X

3
t 0 0

0
√
X2

t 0

0 0
√
X3

t







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 .

Note that the X2
t and X3

t square-root processes are positively correlated through the off-

diagonal element κQ23 = −λ < 0. Beyond generating their own stochastic volatility, these two

factors induce instantaneous volatility for X1
t via the β12 and β13 volatility sensitivities.

For the first factor loading in the zero-coupon bond price function, this structure implies

that

B1(t, T ) = −(T − t),

which preserves the role of the level factor. The next two factor loadings are the unique

solutions to:

dB2(t, T )

dt
= 1 + λB2(t, T )−

1

2
σ222B

2(t, T )2 −
1

2
σ212B

1(t, T )2

−σ12σ22B
1(t, T )B2(t, T )−

1

2
β12σ

2
11B

1(t, T )2,

dB3(t, T )

dt
= −λB2(t, T ) + λB3(t, T )−

1

2
σ233B

3(t, T )2 −
1

2
σ213B

1(t, T )2

−σ13σ33B
1(t, T )B3(t, T )−

1

2
β13σ

2
11B

1(t, T )2.

The A(t, T )-function in the yield-adjustment term is the solution to

dA(t, T )

dt
= −B(t, T )′KQθQ −

1

2
σ211B

1(t, T )2.

Using the extended affine risk premium specification, the maximally flexible affine P -
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dynamics can be written as




dX1
t

dX2
t

dX3
t


 =




κP11 κP12 κP13

0 κP22 κP23

0 κP32 κP33










θP1

θP2

θP3


−




X1
t

X2
t

X3
t





 dt

+




σ11 σ12 σ13

0 σ22 0

0 0 σ33







√
1 + β12X

2
t + β13X

3
t 0 0

0
√
X2

t 0

0 0
√
X3

t







dW
1,P
t

dW
2,P
t

dW
3,P
t


 .

To keep this class of models arbitrage-free, the X2
t and X3

t factors must avoid hitting the

zero-boundary. This outcome is ensured by imposing the Feller condition on their parameters

as follows:

κP22θ
P
2 + κP23θ

P
3 >

1

2
σ222; λθ

Q
2 − λθ

Q
3 >

1

2
σ222; κP33θ

P
3 + κP32θ

P
2 >

1

2
σ233; and λθ

Q
3 >

1

2
σ233.

Furthermore, for X2
t and X3

t to be well-defined, the sign of the effect they have on each other

must be positive, which we impose using the constraints κP23 ≤ 0 and κP32 ≤ 0. This implies

that the two square-root processes cannot be negatively correlated. Finally, we identify this

class of models by fixing θQ1 = 0, which allows θP to vary freely. In total, there are 20 free

parameters in the maximally flexible specification.

3.3 AFNS Models with Three Stochastic Volatility Factors

In the AFNS3 specification, all three factors exhibit stochastic volatility. The dynamics of Xt

are described under the Q-measure as10




dX1
t

dX2
t

dX3
t


 =




ε 0 0

0 λ −λ

0 0 λ










θ
Q
1

θ
Q
2

θ
Q
3


−




X1
t

X2
t

X3
t





 dt

+




σ11 0 0

0 σ22 0

0 0 σ33







√
X1

t 0 0

0
√
X2

t 0

0 0
√
X3

t







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 .

10Note that, we again fix ε = 10−6 to approximate the unit-root property imposed in the AFNS0 model.
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In this model class, the factor loadings in the zero-coupon bond price function are given by

the unique solution to

dB1(t, T )

dt
= 1 + εB1(t, T )−

1

2
σ211B

1(t, T )2,

dB2(t, T )

dt
= 1 + λB2(t, T )−

1

2
σ222B

2(t, T )2,

dB3(t, T )

dt
= −λB2(t, T ) + λB3(t, T )−

1

2
σ233B

3(t, T )2,

while the A(t, T )-function in the yield-adjustment term is given by the solution to:

dA(t, T )

dt
= −B(t, T )′KQθQ.

Applying the extended affine risk premium specification, the maximally flexible affine

P -dynamics are given by




dX1
t

dX2
t

dX3
t


 =




κP11 κP12 κP13

κP21 κP22 κP23

κP31 κP32 κP33










θP1

θP2

θP3


−




X1
t

X2
t

X3
t





 dt

+




σ11 0 0

0 σ22 0

0 0 σ33







√
X1

t 0 0

0
√
X2

t 0

0 0
√
X3

t







dW
1,P
t

dW
2,P
t

dW
3,P
t


 .

To keep this model class arbitrage-free, all three state variables must be prevented from

hitting the zero-boundary. We ensure this by imposing the Feller condition on their parame-

ters under both probability measures, i.e.,

κP11θ
P
1 + κP12θ

P
2 + κP13θ

P
3 >

1

2
σ211 and εθ

Q
1 >

1

2
σ211,

κP21θ
P
1 + κP22θ

P
2 + κP23θ

P
3 >

1

2
σ222 and λθ

Q
2 − λθ

Q
3 >

1

2
σ222,

κP31θ
P
1 + κP32θ

P
2 + κP33θ

P
3 >

1

2
σ233 and λθ

Q
3 >

1

2
σ233.

Furthermore, to have well-defined processes for X1
t , X

2
t , and X

3
t , the sign of the effect that the

factors have on each other must be positive, which we impose with the restrictions κP12 ≤ 0,

κP13 ≤ 0, κP21 ≤ 0, κP23 ≤ 0, κP31 ≤ 0, and κP32 ≤ 0. Note that these restrictions imply that the

three square-root processes cannot be negatively correlated. In total, there are 19 parameters

in the maximally flexible specification of this class of models.
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3.4 Estimation Methodology

We estimate the stochastic volatility models using the Kalman filter. The zero-coupon yields

are affine functions of the state variables,

yt(τ) = −
1

τ
B(τ)′Xt −

1

τ
A(τ) + εt(τ),

where εt(τ) represent i.i.d. Gaussian white noise measurement errors. The conditional mean

for multi-dimensional affine diffusion processes is given by

EP [XT |Xt] = (I − exp(−KP (T − t)))θP + exp(−KP (T − t))Xt, (4)

where exp(−KP (T−t)) is a matrix exponential. In general, the conditional covariance matrix

for affine diffusion processes is given by

V P [XT |Xt] =

∫ T

t

exp(−KP (T − s))ΣD(EP [Xs|Xt])D(EP [Xs|Xt])
′Σ′ exp(−(KP )′(T − s))ds. (5)

Stationarity of the system under the P -measure is ensured if the real components of all

the eigenvalues of KP are positive, and this condition is imposed in all estimations. For this

reason, we can start the Kalman filter at the unconditional mean and covariance matrix11

X̂0 = θP and Σ̂0 =

∫
∞

0
e−KP sΣD(θP )D(θP )′Σ′e−(KP )′sds.

However, the introduction of stochastic volatility implies that the factors are no longer

simply Gaussian. We choose to approximate the true probability distribution of the state

variables using the first and second moments and use the Kalman filter algorithm as if the

state variables were Gaussian.12 The state equation is given by

Xt = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt−1 + ηt, ηt ∼ N(0, Vt−1),

where ∆t is the time between observations and Vt−1 is the conditional covariance matrix

given in Equation (5). Furthermore, the approximation can cause the square-root processes to

become negative despite the fact that the parameter sets are forced to satisfy Feller conditions

11In the estimation, we calculate the conditional and unconditional covariance matrices using the analytical
solutions provided in Fisher and Gilles (1996).

12A few notable examples of papers that follow this approach include Duffee (1999), Driessen (2005), and
Feldhütter and Lando (2008). Jacobs and Karoui (2009) show that use of the extended Kalman filter, which
allows all yields to be measured with error, does not change their qualitative results. In contrast, Collin-
Dufresne et al. (2009) use Bayesian estimation methods for their stochastic volatility models.
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and other non-negativity restrictions. Whenever this happens, we follow the literature and

simply truncate those processes at zero; see Duffee (1999) for example.

In the Kalman filter estimations, the error structure is given by


 ηt

εt


 ∼ N




 0

0


 ,


 Vt−1 0

0 H




 ,

where H is assumed to be a diagonal matrix of the measurement error standard deviations,

σε(τi), that are specific to each yield maturity in the data set. The linear least-squares

optimality of the Kalman filter requires that the white noise transition and measurement

errors be orthogonal to the initial state; i.e., E[f0η
′

t] = 0 and E[f0ε
′

t] = 0. Finally, the

standard deviations of the estimated parameters are calculated as

Σ(ψ̂) =
1

T

[
1

T

T∑

t=1

∂ log lt(ψ̂)

∂ψ

∂ log lt(ψ̂)

∂ψ

′
]
−1

,

where ψ̂ denotes the optimal parameter set.

3.5 Model-Implied Conditional Yield Volatility

Throughout the paper, the model-implied predicted one-month conditional yield volatility

measures we refer to are given by the square root of

V P
t [yT (τ)] =

1

τ2
B(τ)′V P

t [XT ]B(τ), (6)

where V P
t [XT ] is the conditional covariance matrix of the state variables provided in Equation

(5), T − t = 1
12 , and τ is the yield maturity in years.

4 Model Estimates from Daily U.S. Treasury Yields

We estimate our AFNS models with stochastic volatility using U.S. Treasury zero-coupon

bond yields from the Gürkaynak et al. (2007, henceforth GSW) database.13 The following

eight maturities are included: 3, 6, 12, 24, 36, 60, 84, and 120 months. We use daily data

and limit our sample to the period from January 2, 1985, to June 30, 2011. Researchers

have typically found that three factors are sufficient to model the time-variation in the cross

section of U.S. Treasury bond yields (e.g., Litterman and Scheinkman, 1991). Indeed, for

13These data are available at http://www.federalreserve.gov/econresdata/researchdata/feds200628 1.html
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our daily U.S. Treasury bond yield data, 99.98% of the total variation is accounted for by

the first three principal components, which have level, slope, and curvature loadings across

maturities. Such a pattern motivates an AFNS model with its level, slope, and curvature

factor structure. Our estimated AFNS state variables are close to but not identical to the

principal components.

We first examine in-sample estimation results for the most parsimonious specification with

diagonal KP and Σ matrices for each AFNS model class. For example, the AFNS1-L model

has P -dynamics given by




dX1
t

dX2
t

dX3
t


 =




κP11 0 0

0 κP22 0

0 0 κP33










θP1

θP2

θP3


−




X1
t

X2
t

X3
t





 dt

+




σ11 0 0

0 σ22 0

0 0 σ33







√
X1

t 0 0

0
√
1 + β21X

1
t 0

0 0
√

1 + β31X
1
t







dW
1,P
t

dW
2,P
t

dW
3,P
t


 .

It suffices to only look at the parsimonious specification because the models in each AFNSi

class deliver essentially identical decompositions of the data into level, slope, and curvature

factors independent of the specification of the P -dynamics.14 Since it is this factor decompo-

sition that determines the shape and form of the model-implied stochastic volatility, at least

at the short one-month horizon we focus on in this paper, this restriction comes at a minimal

loss of generality. Furthermore, it makes the results readily comparable across model classes.

Tables 1 and 2 present our parameter estimates of the four models.15 The parameter

estimates exhibit similarities across the model specifications, especially for the KP matrix.16

The estimated KP parameter for the level factor indicates the most persistence, while the

curvature factor is the least persistent, in all specifications. As for both the mean parameters

in θP and the σ volatility parameters, we see some notable differences across the various

models depending on whether the factor in question is generating stochastic volatility or not.

For the θP parameters, the variation in the estimated values is tied to differences in the scale

14The inclusion of stochastic volatility into the AFNS model prevents us from obtaining the exact Nelson-
Siegel factor loadings unlike what is the case for the AFNS0 model class. Importantly, though, the NS
factor loading structure is approximately preserved in all the new model classes, as desired by construction,
independent of the differences in the models’ ability to generate stochastic volatility.

15The fact that the θQ parameters are not statistically identifiable and fixed at zero in the Gaussian AFNS0

model is a warning that the θQ parameters in the AFNS models with stochastic volatility are likely to warrant
careful treatment. For the AFNS2-LC model these issues lead us to fix θ

Q
2

at a low value of 0.08. Unreported
results show that this comes at a minimum loss of generality.

16Our conclusions on volatility are likely not affected by the finite-sample bias discussed in Bauer, Rudebusch,
and Wu (2012) due to the short one-month horizon for our volatility measures.
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Parameter AFNS0 AFNS1-L AFNS2-SC AFNS3

κP
11

0.0237 0.1604 0.0101 0.0313
(0.0441) (0.1197) (0.0472) (0.0519)

κP
22

0.0947 0.1802 0.1821 0.2269
(0.0922) (0.1416) (0.0875) (0.0373)

κP
33

0.6257 0.8734 1.0481 1.2901
(0.1865) (0.2484) (0.1024) (0.0861)

θP
1

0.0872 0.0628 -0.0110 0.0304
(0.0245) (0.0163) (0.0792) (0.0483)

θP
2

-0.0390 -0.0232 0.0539 0.0210
(0.0237) (0.0226) (0.0125) (0.0036)

θP
3

-0.0184 -0.0050 0.0685 0.0500
(0.0088) (0.0075) (0.0058) (0.0028)

σ11 0.0058 0.0606 0.0051 0.0436
(0.0000) (0.0003) (0.0001) (0.0005)

σ22 0.0092 0.0004 0.0364 0.0312
(0.0001) (0.0000) (0.0003) (0.0004)

σ33 0.0297 0.0313 0.1014 0.1226
(0.0002) (0.0006) (0.0007) (0.0012)

β11 − − − −
− − − −

β12 − − 0.0000 −
− − (1.2560) −

β13 − − 0.0000 −
− − (0.5238) −

β21 − 23,245 − −
− (7.2310) − −

β22 − − − −
− − − −

β23 − − − −
− − − −

β31 − 0.0000 − −
− (0.5657) − −

β32 − − − −
− − − −

β33 − − − −
− − − −

Table 1: Parameter Estimates of the P -Dynamics.

The table contains the estimated KP matrix, θP vector, Σ matrix, and β volatility sensitivity parame-

ters for the P -dynamics in the AFNSi models for U.S. Treasury yields. Estimated standard deviations

for the parameter estimates are given in parentheses. The estimations are based on daily observations

from January 2, 1985, to June 30, 2011.

at which each factor operates. Since the factors are latent, this level varies and depends on

which factors generate stochastic volatility and therefore have to be bound away from the

zero-boundary. Finally, the β volatility sensitivity parameters suggest that the level factor

plays a role in generating stochastic volatility for the slope factor, but not for the curvature

factor. Furthermore, there is little evidence that slope and curvature play a role for the
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Parameter AFNS0 AFNS1-L AFNS2-SC AFNS3

θ
Q
1

− 3,105 − 990.1
− (18.95) − (16.18)

θ
Q
2

− − 0.08 0.0553
− − − (0.0001)

θ
Q
3

− − 0.0787 0.0537
− − (0.0002) (0.0002)

λ 0.4667 0.5964 0.5203 0.3072
(0.0011) (0.0009) (0.0013) (0.0008)

Max logL 322,626.8 332,897.1 316,857.1 292,381.0

Table 2: Parameter Estimates of the Q-Dynamics.

The table contains the estimated θQ vector and λ parameters for the Q-dynamics in the AFNSi
models for U.S. Treasury yields. Estimated standard deviations for the parameter estimates are given

in parentheses. The estimations are based on daily observations from January 2, 1985, to June 30,

2011. The maximum log likelihood values are reported, although the models are non-nested.

volatility of the level factor in this sample of U.S. Treasury yields.

If we turn to a performance comparison of the various AFNSi specifications, we can start

by comparing the obtained maximum log likelihood values reported in Table 2. Even though

all AFNSi models are non-nested and therefore not directly comparable, the relatively large

differences in likelihood values still suggest that the AFNS1-L model provides the overall best

fit to the cross-sectional and time-series variation of the data. On the other hand, the AFNS3

model obtains a markedly lower maximum likelihood value than any of the other models.

This model is restricted by the fact that all three factors have to remain non-negative, and

one or more of these restrictions are binding periodically, not least during the last three years

of the sample with the low interest rate environment in the wake of the financial crisis of 2007

and 2008. Duffee (2002), in his analysis of general affine Ai(3) term structure models, also

finds that the A1(3) model class performs the best, and the A3(3) model class the poorest.

Note, though, that he only uses essentially affine risk premium specifications, which are less

general than the extended affine risk premium specifications applied in this paper.

Another way to assess the performance of the different AFNS specifications of stochastic

volatility is to examine the cross-sectional fit of the yield curve, as shown in Table 3 using

root-mean-squared-error for the models’ fitted yields. Relative to the AFNS0 specification,

the introduction of stochastic volatility reduces the RMSE of the fitted yields for the short-

term three- and six-month maturities. However, for the remaining maturities, the stochastic

volatility specifications do not necessarily insure a reduction in the RMSE measure with one

exception, the AFNS1-L model does deliver a uniform improvement in model fit over the
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RMSE for AFNS models
Maturity
in months AFNS0 AFNS1-L AFNS2-SC AFNS3

3 20.93 19.52 9.64 12.47
6 9.32 8.40 0.58 3.64
12 0.12 0.01 5.36 9.91
24 2.37 1.76 3.73 12.28
36 0.00 0.00 2.47 9.14
60 2.78 1.58 3.78 3.15
84 1.85 0.58 2.47 6.03
120 9.68 5.03 11.32 11.69

Table 3: RMSE of Fitted Yields.

The table presents the root-mean-squared errors for the fitted U.S. Treasury yields across the eight

maturities in the AFNSi models. The sample covers the period from January 2, 1985, to June 30,

2011. All numbers are expressed in basis points.

AFNS0 model. Furthermore, the AFNS2-SC model delivers the overall most balanced fit to

the data. Finally, the AFNS3 model falls in between with a decent fit for all eight maturities.

Thus, based on the evidence so far, there is no basis for either disqualifying or preferring any

particular of the new AFNSi model classes with stochastic volatility over the others or the

original AFNS0 model.17 Of course, from a mechanical point of view, the AFNS3 specification

has the ability to induce the greatest degree of stochastic volatility of all the specifications

and thus should be best suited ex ante to closely match the observed data characteristics in

terms of yield volatility in addition to providing a good in-sample fit to the cross section of

yields.

5 Yield Volatility Analysis

Here we analyze the ability of the AFNS models with stochastic volatility to predict condi-

tional realized yield volatility at a high frequency. The results favor the AFNS3 model, which

has stochastic yield volatility generated through all three spanned factors. Thus, we test the

ability of this model to match the unconditional first and second moments of our realized

yield volatility series, where the results again are generally favorable.

5.1 Conditional Yield Volatility Results

Collin-Dufresne et al. (2009) argue that there is a potential tension in affine models be-

tween fitting the cross section of yields and capturing their stochastic volatility. They further

17Bikbov and Chernov (2011) report similar findings in their analysis of LIBOR and eurodollar futures rates
using three-factor affine term structure models with and without stochastic volatility.
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Three-month U.S. Treasury yield
Correlation

AFNS0 AFNS1-L AFNS2-SC AFNS3
AFNS0 1 0 0 0
AFNS1-L 1 -0.093 0.743
AFNS2-SC 1 0.543
AFNS3 1

Two-year U.S. Treasury yield
Correlation

AFNS0 AFNS1-L AFNS2-SC AFNS3
AFNS0 1 0 0 0
AFNS1-L 1 0.258 0.906
AFNS2-SC 1 0.621
AFNS3 1

Five-year U.S. Treasury yield
Correlation

AFNS0 AFNS1-L AFNS2-SC AFNS3
AFNS0 1 0 0 0
AFNS1-L 1 0.374 0.918
AFNS2-SC 1 0.658
AFNS3 1

Ten-year U.S. Treasury yield
Correlation

AFNS0 AFNS1-L AFNS2-SC AFNS3
AFNS0 1 0 0 0
AFNS1-L 1 0.394 0.947
AFNS2-SC 1 0.605
AFNS3 1

Table 4: Pairwise Correlations of the One-Month Conditional Standard Deviation

of Four U.S. Treasury Yields across the AFNSi Models.

The table contains the pairwise correlations between the one-month conditional standard deviations

of the three-month, the two-year, the five-year, and the ten-year U.S. Treasury yields predicted by the

AFNSi models. The estimations are based on daily data from January 2, 1985, to June 30, 2011.

demonstrate that to allow only one factor to generate stochastic volatility in a three-factor

affine model appears to be too restrictive to fit both aspects of the data. By allowing for more

factors to generate stochastic volatility in our AFNS specifications, we hope to mitigate this

potential tension. The AFNS specifications with stochastic volatility do not differ markedly

in terms of fitting the observed U.S. Treasury yield curve. However, predicted volatility

measures of these specifications do differ. Table 4 reports a large dispersion in the pairwise

correlations of the predicted conditional yield volatility series for four maturities across all

four AFNSi models.

To evaluate the fit of these predicted one-month-ahead conditional yield standard devia-

tions, we compare them to a standard measure of realized volatility based on the daily data

used in the model estimations. We generate the realized standard deviation of daily changes

in interest rates for the 31-day period ahead on a rolling basis. The realized variance measure

is used by Andersen and Benzoni (2010), Collin-Dufresne et al. (2009), as well as Jacobs
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and Karoui (2009) in their assessments of stochastic volatility models. This measure is fully

nonparametric and has been shown to converge to the underlying realization of the condi-

tional variance as the sampling frequency increases; see Andersen et al. (2003) for details.

The square root of this measure retains these properties. For each observation date t we

determine the number of trading days N during the subsequent 31-day time window (where

N is most often 21 or 22).18 We then generate the realized standard deviation as

RV STD
t,τ =

√√√√
N∑

n=1

∆y2t+n/N (τ),

where ∆yt+n/N (τ) is the change in yield y(τ) from trading day (n− 1) to trading day n.19

Figure 1 plots the realized 31-day ahead volatility series over the full sample period for

four maturities: 3 months, 2 years, 5 years, and 10 years. In each chart, we include the

corresponding predicted yield volatility from our four AFNS models. The figure highlights

three empirical features of the realized volatilities. First, the realized volatility series become

less volatile as the maturity increases. Table 5 shows that the standard deviation of the

realized standard deviation for the changes in the three-month yield is almost 1.5 times

greater than that of the ten-year yield.20 This pattern of declining variation as maturity

increases suggests that the standard deviations generated by all the model specifications

should exhibit better fit as maturity increases, which is, in general, the pattern observed in

Table 6, which contains the summary statistics of the errors between the model-implied one-

month conditional standard deviations and the 31-day-ahead realized volatility for all eight

maturities in the U.S. Treasury data.

Second, note that the AFNS0 and AFNS2-SC models produce consistently low RMSE

values between predicted and realized standard deviations for all maturities. However, the

degree of variation exhibited by these predicted standard deviations is quite low relative to

the AFNS3 specification. As our objective is to best capture the stochastic volatility of these

interest rate series, the AFNS3 specification stands out as a model that delivers a reasonable

fit to both the cross section of yields and the cross section of realized yield volatilities.

Third, aside from measures of fit, the correlations between the predicted and realized

18As a consequence, the realized volatility measure can be calculated for the period from January 2, 1985 to
May 27, 2011.

19Note that other measures of realized volatility have been used in the literature, such as the realized
mean absolute deviation measure as well as fitted GARCH estimates. Collin-Dufresne et al. (2009) also use
option-implied volatility as a measure of realized volatility.

20This pattern is similar to the one presented by Jacobs and Karoui (2009) for monthly Treasury yields,
although their measures decline at a slower rate as maturity increases. The differences may be due to the
longer sample period from 1970 to 2003 that they use.
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(a) Three-month Treasury yield.
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(b) Two-year Treasury yield.
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(c) Five-year Treasury yield.
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(d) Ten-year Treasury yield.

Figure 1: Predicted and Realized One-Month Conditional Standard Deviations of

U.S. Treasury Yields.

standard deviations have been used as measures of how well a model is able to capture the

stochastic volatility observed in the data. The top panel of Table 7 presents the correlations

across the model specifications and maturities that we examine over the full sample period.

The correlations are relatively low, reaching a maximum of just 0.31, and often being negative

with the lowest value being -0.24. While these low values could be interpreted to imply that

the AFNSi model specifications are not capable of capturing the stochastic volatility in the

data very well, the subsample correlation results reported by Jacobs and Karoui (2009) suggest
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Maturity Mean Std. dev. Std. dev.
in months in bps in bps ratio

3 22.05 14.26 1.48
6 18.61 11.57 1.20
12 20.90 10.49 1.09
24 25.58 10.21 1.06
36 27.60 10.13 1.05
60 28.39 9.94 1.03
84 28.03 9.81 1.02
120 27.36 9.61 1.00

Table 5: Summary Statistics for the 31-Day Realized Standard Deviations of U.S.

Treasury Yields.

The summary statistics are for the 31-day rolling realized standard deviations based on the daily U.S.

Treasury data from January 2, 1985, to June 30, 2011. The standard deviation ratio is calculated as

the standard deviation in question divided by the standard deviation for the ten-year maturity.

RMSE for predicted conditional yield standard deviations

Maturity AFNS0 AFNS1-L AFNS2-SC AFNS3
in months Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 8.24 16.47 31.84 35.07 4.75 15.25 -2.60 14.30
6 11.40 16.24 34.44 36.59 7.90 14.23 1.01 11.55
12 9.55 14.18 31.50 33.63 5.90 12.41 -0.39 11.20
24 6.51 12.11 26.34 28.76 2.26 11.39 -2.71 12.18
36 5.10 11.34 23.19 25.81 0.26 11.38 -2.91 12.63
60 2.68 10.30 18.94 21.93 -2.68 11.48 -2.40 12.74
84 0.14 9.81 16.11 19.44 -5.02 11.82 -2.80 12.59
120 -2.99 10.07 13.32 16.98 -7.38 12.51 -4.63 12.49

Table 6: Summary Statistics for the Prediction Errors of the One-Month Condi-

tional Yield Standard Deviations.

The table presents the mean and root mean squared error of the model-implied one-month conditional

bond yield standard deviations relative to the 31-day realized standard deviations based on the daily

U.S. Treasury data over the period from January 2, 1985, to June 30, 2011. All numbers are measured

in basis points.

that sample periods could play a key, but as of yet not well understood, role in this analysis.

For their monthly and weekly U.S. Treasury yields, they find that term structure models

do not generate stochastic volatility measures that match the data well for the post-1991

period.21 For this reason we split our sample into three periods. The first period covers the

seven-year period from January 2, 1985 to December 31, 1991. The second period covers the

eleven years from January 2, 1992 to December 31, 2002. Finally, the third period covers the

eight years from January 2, 2003 to May 27, 2011, which is the last day for which we can

calculate the 31-day ahead realized volatility measure.

21Please note that our correlation values are not directly comparable to the correlations reported by Jacobs
and Karoui (2009) as they smooth their logged realized variance series using an ARMA(1,1) filter.
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Maturity Jan. 2, 1985 to May 27, 2011
in months AFNS1-L AFNS2-SC AFNS3

3 0.267 0.068 0.279
6 0.279 0.074 0.308
12 0.201 0.026 0.207
24 0.127 -0.106 0.063
36 0.111 -0.180 0.014
60 0.112 -0.239 -0.007
84 0.126 -0.240 0.010
120 0.156 -0.212 0.056

Maturity Jan. 2, 1985 to Dec. 31, 1991
in months AFNS1-L AFNS2-SC AFNS3

3 0.175 0.073 0.179
6 0.226 0.026 0.212
12 0.226 0.152 0.286
24 0.246 0.301 0.308
36 0.263 0.326 0.307
60 0.260 0.329 0.311
84 0.250 0.322 0.309
120 0.244 0.308 0.300

Maturity Jan. 2, 1992 to Dec. 31, 2002
in months AFNS1-L AFNS2-SC AFNS3

3 0.074 -0.062 0.048
6 0.130 -0.162 0.041
12 0.085 -0.293 -0.158
24 0.082 -0.314 -0.097
36 0.099 -0.295 -0.033
60 0.071 -0.273 -0.028
84 0.006 -0.232 -0.051
120 -0.074 -0.154 -0.077

Maturity Jan. 2, 2003 to May 27, 2011
in months AFNS1-L AFNS2-SC AFNS3

3 0.122 0.099 0.223
6 0.046 0.179 0.286
12 0.137 0.093 0.274
24 0.289 -0.165 0.055
36 0.346 -0.334 -0.097
60 0.365 -0.514 -0.219
84 0.350 -0.584 -0.241
120 0.325 -0.618 -0.215

Table 7: Correlations Between Predicted and Realized Yield Standard Deviations.

The table presents the correlations between the 31-day predicted and realized standard deviations for

U.S. Treasury yields. The top panel is based on the full sample from January 2, 1985 to May 27, 2011

(6,583 daily observations). The second panel is based on the period from January 2, 1985 to December

31, 1991 (1,747 daily observations). The third panel is based on the period from January 2, 1992 to

December 31, 2002 (2,731 daily observations). The bottom panel is based on the period January 2,

2003 to May 27, 2011 (2,105 daily observations).

Our subsample results are similar to those of Jacobs and Karoui (2009). The second panel
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of Table 7 shows these correlations for the seven years from January 2, 1985 to December 31,

1991. Clearly, these correlations are all positive, but still only reaching a maximum of 0.33.

The AFNS2-SC and AFNS3 specifications generate the highest correlations with the realized

volatility series, but the greater degree of variation in the predicted standard deviations

generated by the AFNS3 specification gives this model the edge. However, the bottom two

panels of Table 7 present the low and mainly negative correlations for the subsequent two

subsample periods. Note, though, that the AFNS1-L model stands out for the most recent

eight-year period with positive correlations up to 0.37 for the three-year yield.

The key question left by the results above is to what extent we can expect ex ante predicted

yield standard deviations derived from models like ours to line up with ex post realizations of

yield volatility measures. To shed light on this important question, we focus on the AFNS3

model and use it in a simulation exercise to study the correlations between ex ante predicted

and ex post realized conditional yield volatilities.22

To begin the exercise, we consider the AFNS3 model parameters estimated as of June 30,

2011 and reported in the last column of Tables 1 and 2 as the “true” parameters. In the next

step, we use this model to simulate N = 1,000 artificial data sets identical to the observed

sample of U.S. Treasury yields.23 Specifically, (i) the number of observation dates and the

time in between observations are identical to the original sample, (ii) the yield maturities

on each observation date are identical to those in the original sample, and (iii) i.i.d. errors

are added with a maturity-specific standard deviation given by the estimated values of σε(τ)

from the original sample.24 Third, we use the N = 1,000 artificial data samples as input

into the original Kalman filter estimation, whereby we obtain N = 1,000 alternative model

parameter sets. Fourth, for each simulated data sample, we use the estimated model output

to generate the predicted 31-day conditional yield volatility series for all eight maturities and

correlate them with the corresponding ex post 31-day realized yield volatility series. The

summary statistics for the distribution of correlations across yield maturities is reported in

the top panel of Table 8.

We emphasize that all stochastic yield volatility in the simulated data is generated by

the AFNS3 model and therefore spanned by construction. Despite this fact the median

correlation across the N = 1,000 simulated samples is surprisingly low for most maturities.

Another observation is that the size of the median correlation is highly correlated with the

measurement noise in the yield data reported in the second column of the top panel of Table

22We thank Mikhail Chernov for suggesting this exercise.
23See Christensen, Lopez, and Rudebusch (2013) for details of the model simulation.
24These error standard deviations are reported in the second column of the top panel of Table 8.
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Distribution of correlation coefficients

Mat. in I. σε(τ) as estimated for AFNS3 model
months σε(τ) 5% 25% Median 75% 95%

P (ρ ≤ ρ̂(τ))

3 13.00 -0.043 0.024 0.064 0.111 0.187 0.997
6 4.31 0.142 0.241 0.324 0.415 0.566 0.445
12 9.70 -0.008 0.056 0.107 0.160 0.253 0.887
24 12.06 -0.020 0.037 0.080 0.127 0.196 0.392
36 9.08 0.022 0.092 0.139 0.192 0.270 0.035
60 3.79 0.272 0.340 0.392 0.457 0.563 0.000
84 6.43 0.122 0.185 0.240 0.298 0.406 0.000
120 11.72 -0.015 0.046 0.090 0.133 0.203 0.318

Mat. in II. σε(τ) = 1 basis point for all maturities
months σε(τ) 5% 25% Median 75% 95%

P (ρ ≤ ρ̂(τ))

3 1.00 0.406 0.522 0.621 0.708 0.807 n.a.
6 1.00 0.391 0.511 0.608 0.700 0.802 n.a.
12 1.00 0.376 0.488 0.578 0.670 0.778 n.a.
24 1.00 0.372 0.475 0.546 0.624 0.741 n.a.
36 1.00 0.378 0.475 0.539 0.612 0.718 n.a.
60 1.00 0.392 0.481 0.549 0.613 0.707 n.a.
84 1.00 0.396 0.494 0.554 0.617 0.713 n.a.
120 1.00 0.397 0.498 0.563 0.631 0.733 n.a.

Table 8: Distributions of Correlations between Predicted and Realized Yield Stan-

dard Deviations From Simulated Samples of Bond Yields.

The table reports the distributions of correlations between ex ante predicted and ex post realized 31-

day yield standard deviation series. The data is simulated from the AFNS3 model as described in the

text. The second column contains the error standard deviations (measured in basis points) used in the

simulations, while the last column indicates the probability of observing the full-sample correlations

between predicted and realized yield standard deviations reported for the AFNS3 model in the top

panel of Table 7.

8. The correlation is -97.2 percent. This motivates us to re-run the above exercise using a

uniform low value of one basis point for all σε(τi) values.25 The results are reported in the

bottom panel of Table 8. Consistent with the theoretical results of Andersen et al. (2003), the

predicted yield standard deviations approximate closely the realized yield volatility measures

as the added white noise decline in importance. However, random microstructure noise of

a size similar to the in-sample fitted errors from standard three-factor models like ours can

blur this relationship significantly. To exemplify that that kind of noise likely exists in the

GSW data analyzed in this paper, we note that the average absolute yield prediction errors in

the construction of the data are, with few exceptions, of the order of a few basis points over

25We emphasize that we use the exact same model parameters, simulated state variables, and simulated
measurement errors, εi(τ ), as in the first exercise to make the results as comparable as possible. Similar
results were obtained with zero measurement errors.
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the 1985-2007 period. Thus, this experiment shows that correlations between model-implied

predictions and ex post realizations of yield volatility at high frequency may not be a reliable

measure of a given model’s ability to capture, or span, yield volatility unless the data quality

and model fit are extremely (read: unrealistically) good.

Finally, we note that our simulation experiment is close to one undertaken by Bikbov

and Chernov (2009) using an A1(3) model estimated on weekly data for eurodollar futures

rates. However, they impose zero measurement error in their simulated data to avoid re-

estimating their model. Thus, unlike our experiment, their study is silent about both the role

of measurement error and parameter uncertainty for the inference drawn from correlations

between model-implied and realized measures of yield volatility. In terms of the latter, they

use GARCH(1,1) estimated series. Still, their results are consistent with ours in that they find

that correlations between the model- and GARCH(1,1)-implied yield volatility series range

from -0.44 to 0.51 even though all volatility in the simulated data is spanned by their A1(3)

model.

To summarize, the empirical results suggest that the AFNS3 model can generate predicted

volatility measures that exhibit a reasonable degree of variation and simultaneously provide

a close fit to the realized volatility measures in this sample of U.S. Treasury data. Still, at a

daily frequency, the correlation between the model-implied yield standard deviations and the

realized yield volatility is rather low, frequently even negative. However, a simulation study

reveals that this can be the case even in a situation where all structural volatility is spanned.

5.2 Matching Unconditional Moments of Realized Yield Volatility

To provide support for the view that affine term structure models with spanned factors only

are able to capture key elements of yield level and volatility dynamics both in the time series

dimension and cross-sectionally, we compare the AFNS3 model’s unconditional moments of

the predicted yield volatility to those of the realized yield standard deviations.26

Even though high frequency correlations between predicted and realized yield volatilities

may not be informative, a good model should still be able to match the average level and

variation of the realized yield volatility series. Therefore, we compare the unconditional

mean and standard deviation of the model-implied one-month conditional bond yield standard

26Jagannathan, Kaplin, and Sun (2003) analyze the performance of one-, two-, and three-factor CIR models
using a short sample of LIBOR and swap rates. However, they only consider completely affine risk premium
specifications, which are particularly restrictive for An(n) models. Still, they find that their A3(3) model
produces small fitted errors, matches the observed yield volatility term structure, and is not rejected when
they test whether the means and variances of its state variables match the corresponding model-implied
theoretical distributions. The main drawback they find is its inability to price caps and swaptions, but this
might be due to the restricted risk premium structure.
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(a) Unconditional mean.
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(b) Unconditional standard deviation.

Figure 2: Unconditional Mean and Standard Deviation of the One-Month Condi-

tional Yield Standard Deviations.

Illustration of the unconditional mean and standard deviation of the one-month conditional yield

volatility in the AFNS3 model. Shown are also the mean and standard deviation of the 31-day real-

ized volatility of the eight yield maturities in the GSW Treasury data.

deviation to the mean and standard deviation of the 31-day realized yield volatilities reported

in the first two columns of Table 5. The way we proceed is to simulate N = 10,000 random

draws from the unconditional distribution of Xt = (X1
t ,X

2
t ,X

3
t ) in the AFNS3 model using

the estimated parameters from the full sample.27 For each drawn vector of Xt, we calculate

the model-implied one-month conditional yield standard deviation for all yield maturities

τ ∈ (0, 10). As all the draws are equally likely, the mean and standard deviation of the N =

10,000 simulated yield standard deviations for each maturity τ represent the estimate of the

unconditional mean and standard deviation, respectively, of the one-month conditional yield

volatility. Figure 2 shows the model results and the sample equivalents and reveals a good fit

by the AFNS3 model to these unconditional moments.28

6 Conclusion

In this paper, we generalize the AFNS model introduced by CDR to allow for stochastic

volatility. In doing so, we introduce new specifications whose sources of stochastic volatility

are different permutations of the AFNS model’s three spanned factors. Our empirical exercises

27See Christensen et al. (2013) for details of the model simulation.
28We have also examined whether the AFNS3 model is able to reproduce the failure of the expectations

hypothesis as per Dai and Singleton (2002). We find that it is able.

26



show that the introduction of these volatility factors does not have a significant impact on

the models’ fitted yield values relative to the constant volatility AFNS0 model. Furthermore,

our results suggest that the AFNS3 model in particular, in which all three factors exhibit

stochastic volatility, is able to generate a reasonable amount of volatility dynamics. For our

daily U.S. Treasury yield data, the AFNS3 model generates the most variation in its predicted

yield standard deviations and provides the closest fit to our realized yield volatility measures.

None of the models generate large correlations with those realized yield volatility measures at

high frequency. However, a simulation study shows that this metric is not informative about

a model’s ability to capture yield volatility. Furthermore, in other model validation exercises,

the AFNS3 model is able to approximate the entire term structure of unconditional means

and standard deviations of our realized yield volatility measures.

In conclusion, we find evidence that the modified AFNS modeling framework captures an

important fraction of the stochastic volatility observed in the data in addition to preserving

the good in-sample yield fit and ease of estimation that is the advantage of the original Gaus-

sian AFNS0 model class. Still, at daily frequency, parts of the observed volatility in interest

rates is only weakly associated with any of the spanned term structure factors. However, to

expand the presented model framework to address these issues, is beyond the scope of this

paper. Certainly, more research needs to be done to better understand whether there are

any significant economic benefits to modeling the unspanned component of yield volatility, as

per Collin-Dufresne and Goldstein (2002) and Collin-Dufresne et al. (2009). In a related pa-

per, Christensen, Lopez, and Rudebusch (2012) are able to price deflation protection options

embedded in Treasury inflation-protected securities (TIPS) accurately using spanned yield

factors only, which suggests limited economic benefit of unspanned stochastic volatility fac-

tors. Similarly, Almeida, Graveline, and Joslin (2011), who use A1(3) and A2(3) affine models

to analyze LIBOR and swap rates, find systematically large positive correlations between one-

week model-implied predicted and EGARCH(1,1) estimated yield volatilities. Furthermore,

they show that these models are able to accurately price both interest rate swaps and volatil-

ity sensitive at-the-money caps—again suggesting that spanned risk factors may be sufficient

to capture all economically relevant information.
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