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Abstract

Analysis of the term structure of interest rates almost always takes a two-step approach.
First, actual bond prices are summarized by interpolated synthetic zero-coupon yields,
and second, a small set of these yields are used as the source data for further empirical
examination. In contrast, we consider the advantages of a one-step approach that directly
analyzes the universe of bond prices. To illustrate the feasibility and desirability of the one-
step approach, we compare arbitrage-free dynamic term structure models estimated using
both approaches. We also provide a simulation study showing that a one-step approach
can extract the information in large panels of bond prices and avoid any arbitrary noise

introduced from a first-stage interpolation of yields.
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1 Introduction

Most term structure analysis takes a two-step approach to examining prices of fixed-income
securities. First, a set of constant-maturity zero-coupon yields are constructed from a sample
of bond prices, and then these synthetic yields are used as the input to estimate the dynamic
term structure model (DTSM) of interest. In the past, this separation was especially con-
venient because of the computational burden of working with large data sets of actual bond
prices. Indeed, the widespread popularity of the two-step approach has implied that the es-
timation of these synthetic zero-coupon yields typically is taken for granted and given little
consideration, despite the challenges documented in the construction of these synthetic yields
in, e.g., Bliss (1996) and Giirkaynak et al. (2007, 2010). Furthermore, some researchers such
as Dai et al. (2004) and Fontaine and Garcia (2012) have argued that synthetic interpolated
yields can erase interesting bond pricing information by excessive smoothing and may even
introduce unnecessary measurement error to the data.

The contribution of the present paper is to show that the initial step of constructing
synthetic zero-coupon yields can be avoided, as progress in computing power now allows term
structure analysis to work directly with the big data universe of bond prices. Indeed, we
document that standard DTSMs can be reliably estimated via a one-step approach using a
large panel of observed bond prices. We illustrate this alternative to the conventional two-
step approach by comparing identical DTSMs that are estimated by the one-step and two-step
approaches—both using an empirical sample of bond prices and simulated bond prices in a
Monte Carlo study.!

Our empirical application focuses on the Canadian government bond market between
January 2000 and April 2016, which is chosen because its size is representative of sovereign
bond markets in many developed countries. In addition, Canadian bonds face no appreciable
credit risk during our sample, and these bonds are not materially affected by liquidity issues
and safety premiums on recently-issued securities, which plague analysis of U.S. Treasuries.?
In total, our Canadian sample for the one-step approach contains end-of-month prices on
105 bonds. The corresponding data for the two-step approach follows the existing literature
and uses a limited number of synthetic zero-coupon yields. We consider two sources for such
synthetic yields. The first data set is produced by the Bank of Canada and described in Bolder
et al. (2004). We construct the second data set of synthetic yields by estimating the flexible

'Duffee (1999), Driessen (2005), Fontaine and Garcia (2012), and Pancost (2017) also estimate DTSMs on
actual bond prices, but they do not compare their results to those obtained from the corresponding two-step
approach as done in the present paper.

2In the creation of interpolated nominal U.S. Treasury yield curves, Giirkaynak et al. (2007) generally
exclude the two most recently issued securities, i.e. the “on-the-run” and “first off-the-run” bonds, which
often trade at a premium. A one-step approach could also exclude these bond prices or augment the DTSM of
interest to accommodate bond-specific liquidity characteristics as in Fontaine and Garcia (2012) and Andreasen
et al. (2017), among others.



parametric discount function of Svensson (1995) on the same panel of bond prices as used
for the one-step approach.?> The differences between these two data sets of synthetic zero-
coupon yields are generally small for maturities within the one- to ten-year maturity range,
but the differences may easily exceed ten basis points outside this maturity range where fewer
bonds are available. This observation provides tentative evidence that the various curve-
fitting techniques used to construct synthetic zero-coupon yields may induce nonnegligible
measurement errors in these yields.

We then estimate the same DTSMs on Canadian bond prices via the one-step and two-
step approaches using either synthetic zero-coupon yields from the Bank of Canada or from
the Svensson (1995) yield curve. Our benchmark DTSM is the arbitrage-free Nelson-Siegel
(AFNS) model of Christensen et al. (2011), which is a Gaussian affine model where level,
slope, and curvature factors explain the evolution of the yield curve. We highlight two findings
from estimating this model on our Canadian sample. First, the parameters that determine
the functional form between bond yields and the latent factors (i.e. the risk-neutral param-
eters) are those most affected by the choice of estimation approach. For instance, the decay
parameter A in the AFNS model, which determines how the slope and curvature factor affect
bond yields, varies notably. Thus, the parameters in a DTSM can be affected by using syn-
thetic zero-coupon yields as opposed to the underlying market prices. Second, we also show
that the proposed one-step approach gives a substantially closer fit to the underlying coupon
bonds than the conventional two-step approach. For instance, the ability of the AFNS model
to fit the market prices of coupon bonds may reduce the root mean squared fitted errors by as
much as 44% when the model is estimated by the proposed one-step approach instead of the
conventional two-step approach. This shows that the use of synthetic yields in the two-step
approach may add some noise to the predicted bond prices from an estimated DTSM.

We also demonstrate how to address the inherent nonlinearities when pricing coupon bonds
in most DTSMs and implement the one-step approach with maximum likelihood estimation
of model parameters and latent factors. Furthermore, to show the general applicability of
the proposed one-step approach, we estimate a nonlinear DTSM that enforces the zero-lower
bound, and a five-factor model to get an even tighter fit of long-term Canadian bonds than
implied by our benchmark three-factor model.

As a supplement to these empirical estimates, we also explore the finite-sample properties
of the proposed one-step approach and the conventional two-step approach in a Monte Carlo
study. A novel feature of this simulation experiment is to work at the level of coupon bonds

and hence account for estimation uncertainty in the construction of synthetic zero-coupon

30ther functional forms could be considered such as the cubic splines used by Steeley (2008), the hybrid
combination of cubic splines and parametric functions advocated by Faria and Almaida (2017), or the optimally
smooth spline yield curves derived from an exact bootstrap method based on the Moore-Penrose pseudoinverse
developed by Filipovi¢ and Willems (2016).



yields within the two-step approach. The main insight from this Monte Carlo study is that
DTSMs may be estimated more reliably by directly estimating them on observed bond prices
instead of synthetic zero-coupon yields. Although these synthetic zero-coupon yields are
estimated very accurately with well-established curve-fitting techniques, we nevertheless find
that seemingly negligible errors in these synthetic yields do affect the estimated parameters
in a DTSM. In particular, all risk-neutral parameters are estimated with smaller biases and
greater efficiency in the proposed one-step approach compared with the conventional two-step
approach.

The remainder of the paper is structured as follows. Section 2 describes the Canadian
government bond data, while Section 3 briefly summarizes the AFNS model and presents its
estimation results on Canadian data. Section 4 provides several extensions of the analysis
in Section 3, while Section 5 is devoted to our Monte Carlo study. We provide an out-of-
sample forecasting exercise of the Canadian three-month yield in Section 6, before concluding
in Section 7. Appendices contain additional details on the characteristics of the Canadian
government bonds, our construction of synthetic zero-coupon yields based on the Svensson

(1995) yield curve, the model estimation, and formulas for yield decompositions.

2 The Canadian Bond Market

This section describes the market for Canadian government bonds. We first describe our
sample of Canadian bonds for the one-step approach in Section 2.1, before presenting two

data sets of synthetic zero-coupon yields for the two-step approach in Section 2.2.

2.1 The Universe of Government Bonds

As of April 2016, the Canadian government bond market had a total outstanding notional
amount of CAD 512.5 billion, which is equivalent to 25% of Canadian GDP. The Canadian
government holds a AAA rating with a stable outlook by all major rating agencies, meaning
that no correction for credit risk is required. The number of individual fixed-coupon bonds
in our sample is shown in panel (a) of Figure 1. The number of bonds grows gradually from
about 15 bonds at the start of the sample to roughly 45 bonds in 2012, where it has remained
until the end of our sample in 2016.

The time-varying maturity distribution of all 105 bonds in our sample is illustrated in
panel (b) of Figure 1, where each security is represented by a downward-sloping line showing
its remaining years to maturity at each date. Since two-year bonds are issued several times
each year, the short end of the fixed-coupon bond market has remained densely populated at
all times. As for medium-term maturities, five-year bonds were issued once a year between
2000 and 2006, were halted in 2007 and 2008, and made semi-annual since 2009. There has also



60

50

All bonds .
— All bonds with at least 3 months to maturity

40 50
40

Number of bonds
20 30
| |
Time to maturity in years

\ \ \
2008 2012 2016

T
2000 2004

T T T T T
2000 2004 2008 2012 2016

(a) Number of Canadian bonds (b) Maturity distribution of Canadian bonds

Figure 1: Description of The Canadian Bond Market

Panel (a) shows the number of Canadian government bonds at each date. The solid grey line refers to
the entire sample of bonds. The solid black line indicates the number of bonds when eliminating bonds
with less than three months to maturity. Panel (b) shows the maturity distribution of the Canadian
government bonds considered. The grey rectangle indicates the subsample used throughout the paper.

been a regular issuance of ten-year bonds once a year since the start of our sample. Finally,
at the very long end of the yield curve, thirty-year bonds have been issued approximately
every three years throughout our sample, and a single fifty-year bond was issued in 2014.
The contractual characteristics of all 105 bonds and the number of monthly observations for
each bond are reported in Appendix A.

All bond prices are represented by their mid-market price as provided by Bloomberg.
Following Giirkaynak et al. (2007), securities with less than three months to maturity are
excluded from our sample, as the implied yield on these securities often display erratic be-

havior.?

2.2 Synthetic Zero-Coupon Yields

The corresponding data for the two-step approach follows the existing literature and represents
the universe of bonds by a limited number of synthetic zero-coupon yields. We consider two
sources for such synthetic yields. The first data set is produced by the Bank of Canada using

the “Merrill Lynch exponential spline model” and is publicly available.? We construct the

4This may partly reflect a lack of liquidity for these securities or segmented demand for short-term securities
by money market funds and other short-term investors.

5See Bolder et al. (2004) for a description of the yield curve construction and the algorithm used
to filter out “strange” observations. We interpret the elimination of these strange bonds as part of
the provided estimation routine. The data set from Bank of Canada can be accessed at the link:



Maturity | Mean Mean Max. Correlation
in months | diff. | abs. diff. | abs. diff. | Levels | Diff.
3 0.78 21.52 105.24 0.982 | 0.410
6 -1.95 11.41 65.25 0.995 | 0.693
12 -3.80 4.77 22.13 0.999 | 0.966
24 -1.13 3.22 15.85 1.000 | 0.986
36 1.12 2.69 11.74 1.000 | 0.990
60 1.42 3.25 23.37 1.000 | 0.992
84 -0.71 4.85 21.57 0.999 | 0.989
120 -5.37 5.48 19.46 1.000 | 0.988
240 5.12 5.84 20.03 0.999 | 0.968
360 -6.63 7.86 71.43 0.995 | 0.848

Table 1: Comparing Two Data Sets of Synthetic Zero-Coupon Yields

The table reports the summary statistics for the mean differences, mean absolute differences, and max-
imum absolute differences between synthetic Canadian zero-coupon yields from the Bank of Canada
and our implementation of the Svensson (1995) curve. These differences are reported in basis points.
The last two columns report the correlations between the two yield series for each maturity in levels
and first differences, respectively. The data series are monthly covering the period from January 31,
2000, to April 30, 2016.

second data set by estimating the flexible discount function of Svensson (1995) on the same
panel of bond prices as used for the one-step approach (see Appendix B for further details).
For each data set, we extract synthetic yields with the following ten maturities: 0.25, 0.5, 1,
2, 3,5, 7,10, 20, and 30 years.

Table 1 reports summary statistics for the differences between the two data sets at various
maturities. The mean absolute difference for yields in the one- to ten-year maturity range are
within 5 basis points and hence small, but larger deviations emerge at the very short and very
long maturities. For instance, the mean absolute difference at the six-month and thirty-year
maturities are 11 and 8 basis points, respectively, but the largest difference has been 65 basis
points for the six-month yield and 71 basis points for the thirty-year yield. The last two
columns in Table 1 show the correlations between the two data sets, both when computed
in levels and in first-differences. These nonnegligible deviations in the two data sets are also
evident, in particular from the correlations in first differences, which differ from one at the
short and long maturities.

To further explore these differences, Figure 2 plots the six-month and thirty-year yields
from the two data sets. We see notable differences at the six-month maturity at the start
of the sample and when the short rate approaches the zero lower bound in 2009. At the
thirty-year maturity, the large differences appear mainly at the start of our sample.

Another way to evaluate the magnitude of these differences in synthetic zero-coupon yields

http://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/
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Figure 2: Two Data Sets of Synthetic Zero-Coupon Yields: Key Differences

Panel (a) shows the six-month synthetic yields from the Bank of Canada and our implementation of the
Svensson (1995) yield curve. Panel (b) shows the thirty-year synthetic yields from the Bank of Canada
and our implementation of the Svensson (1995) yield curve. Panel (c) shows ¢ from the regression
Yern(k — h) — y(k) = o + ks (ye(k) — ye(h)) + e4(k) with h = 6 months, where y,(k) refers to
the yield in period ¢ with k£ months to maturity. Panel (d) shows 6(k) in the regression xhpriin (k) =
(k) + Orz (k) + viqn (k) with b = 6 months, where zhpryyp(k) = hpropn(k) — yi(h) is the excess
holding period return and hpryyp (k) = — 5y (k — h) + 5y, (k) is the holding period return. The
variable (k) denotes the forward spread ft(kfh’k) — 22y,(h), where ft(kfh’k) = Eui(k) — Ly (k—h)
is the forward rate between time ¢t + k — h and ¢ + k.

is to re-visit two classic regressions. The first is due to Campbell and Shiller (1991), where

realized returns are regressed on the slope of the yield curve. Panel (c) in Figure 2 shows that



the loadings in these regressions differ quite a bit at the short and long end of the yield curve
but are almost identical in the five- to twenty-year maturity spectrum. The second regression
is due to Fama (1976), where realized excess returns are regressed on the slope of the forward
curve. Although most regression loadings in Panel (d) coincide closely, we do find substantial
differences beyond the twenty-year maturity, as the loadings increase monotonically for the
Svensson (1995) yields but not for those provided by the Bank of Canada. Importantly,
though, these differences are not statistically significant for both regressions, as the estimated
regression loadings based on the Svensson (1995) yields are well within one standard deviation

of the estimated coefficients from the Bank of Canada yields.

3 Empirical Application

This section presents our empirical application of the one-step approach and compares the
results to those obtained from the traditional two-step approach. We proceed by presenting
our benchmark DTSM in Section 3.1, while Section 3.2 describes the econometric aspects
related to the one- and two-step approach. The estimation results from Canadian bonds are

finally discussed in Section 3.3.

3.1 A Gaussian DTSM

To capture the factors determining the Canadian yield curve described in the previous section,
we focus on the three-factor Gaussian DTSM of Christensen et al. (2011), where the factors
represent the familiar level, slope, and curvature of the yield curve.’ In this arbitrage-free
Nelson-Siegel (AFNS) model, the state vector is denoted by X; = (L4, Sy, Cy), where L; is a
level factor, S; is a slope factor, and C; is a curvature factor. The instantaneous risk-free rate
is defined as

ry = Ly + 54 (1)

The risk-neutral (or @-) dynamics of the state variables are given by the stochastic differential

equations
dL, 0 0 0 L w9
s, | =10 =x Sy |dt+x] aw 9 |. (2)
dC, 0 0 -\ C, dw e

Here, dW"? for i = {L,S,C} denotes independent Wiener processes and ¥ is a constant

covariance matrix with dimensions 3 x 3.7 As shown in Christensen et al. (2011), this implies

6Although the model is not formulated using the canonical form of affine DTSMs in Dai and Singleton
(2000), it can be viewed as a restricted version of this model class.

"As discussed in Christensen et al. (2011), the unit root in the level factor implies that the model is only
free of arbitrage for bonds with a finite horizon. For our sample of Canadian bonds described in Section 2,



that the zero-coupon bond yield at maturity 7 is given by

1—e 7 L—e™ A(T)
y(T,Xt)—Lt+<T>St+<T—€ >Ct— - s (3)

where A(7) is a convexity term that ’adjusts’ the functional form in Nelson and Siegel (1987)
to ensure absence of arbitrage.®

The model is closed by adopting the essentially affine specification for the market price of
risk Ty as in Duffee (2002). That is, we let 'y = 4 + ' X;, where 4° € R3 and ! € R3*3
contain unrestricted parameters. The physical (or P-) dynamics of the three factors in the

AFNS model are therefore given by

dL, kb Kkl KD oF Ly thL’P
as, | =| kb kL, Kk of || s | |at+=| aw® |, (@
dc, kP kb kB or Cy aw St

where /<; ;.; and HP are free parameters, subject to X; being stationary under the P-measure.

3.2 Estimation Methodology in the One-Step and Two-Step Approach

To describe the econometric implementation of the one-step approach, let Pf(,C) denote
the price at time ¢ of the ith coupon bond, which matures at time ¢ + 7 and pays the coupon
C semi-annually. In the absence of arbitrage, the price of this coupon bond must equal the
discounted sum of all remaining payments, i.e.,

_C(ti—t)

N ¢
F{<(ty — 1) 25 7ty — 1) + P (ty — 1), (5)

where t <ty < ... <ty = 7. Here, PF°(1) = exp {—y(7; X¢)7} denotes the price of the zero-
coupon bond with 7 years to maturity, and y(7; X;) is the zero-coupon yield from the DTSM.
The corresponding bond price in the data is denoted Pti’D“ta(T, (). To ensure that the errors
of the DT'SM are comparable across bonds with different maturities, we scale each bond price
by its duration. Here, we apply the model-free measure of Macaulay, which is calculated
before the model estimation and denoted DZ Data(T, (). The measurement equation for the

7th bond price in the one-step approach is therefore given by

PP (r,0)  Pi(r,C)
T

. = — + et 6
D;,Data( 70) Dz,Data(T7 C) t ( )

and most other sovereign bond markets, this restriction is not binding and therefore of no practical relevance.
8The analytical expression for the yield-adjustment term A(7) is provided in Christensen et al. (2011).



where ¢! represents independent and Gaussian distributed measurement errors with mean
zero and a common standard deviation o, i.e., e ~ NZD (O,a?).g The state transition
dynamics for X; under the P-measure is given by equation (4).

As is commonly assumed, the state variables are taken to be unobserved and must be
estimated along with the model parameters ¥ from the panel of bond prices. The nonlinear
relationship between the states X; and the price of a coupon bond P}(7,C) in equation (5)
implies that the AFNS model cannot be estimated with the standard Kalman filter. Instead,
we use the well-known extended Kalman filter (EKF) to obtain an approximated log-likelihood
function L¥XF (1)), which serves as the basis for estimating v by quasi-maximum likelihood
(QML), as described in further detail in Appendix C.

The econometric implementation of the two-step approach is well-known but summa-
rized here for completeness. Let the synthetic zero-coupon yields in the data be denoted by
yP (1), and let y(7, X;) denote the corresponding yield from the DTSM. The measurement
equation is then given by

y " (1) = y(r, Xi) + e (1),

for a selection of constant maturities as indexed by 7. The variable ¢; (1) ~ NZD (0,0’82)
and accounts for estimation errors in the construction of these synthetic zero-coupon yields
within the first step. The state transition dynamics for X; under the P-measure is similar
to the one-step approach and given by equation (4). For the AFNS model, the zero-coupon
yields are affine in X, as seen from equation (3), and all model parameters ) are therefore

estimated by maximum likelihood based on the Kalman filter.

3.3 Estimation Results for the AFNS Model

The estimated model parameters in the AFNS model are reported in Table 2 when using the
one-step and the two-step approach. The conventional two-step approach is implemented on
the two samples of synthetic yields discussed in Section 2.2 to explore whether the highlighted
differences in the two data sets affect the estimated model parameters. Hence, the one-step
approach uses all available bond prices with maturities exceeding three months, whereas
the two-step approach only uses the ten maturities selected in Table 1. In the interest of
simplicity, we focus on the most parsimonious version of the AFNS model with independent
factor dynamics in this section. This restriction comes at practically no loss of generality for
the reported results, as the estimated factors and model fit are insensitive to omitting the

off-diagonal terms in KF and ¥.1°

9As is common, we also assume that these errors are uncorrelated to the state innovations in equation (4),
and hence to the factors in X; at all leads and lags.

19Gee for instance Christensen et al. (2011), who also show that this restricted model often does better
at forecasting yields out of sample than the most flexible version of the AFNS model, where K¥ and ¥ are
unrestricted.



One-step approach Two-step approach
Par. Bank of Canada yields | Svensson (1995) yields
Est SE Est SE Est SE

Hﬁ 0.1060 0.0763 0.2172 0.3086 0.0835 0.1327
I{§2 0.2157 0.1443 0.1839 0.1696 0.2982 0.1969
/ii% 0.7255 0.3649 0.4214 0.2675 0.3543 0.2301
o11 | 0.0052 0.0001 0.0071 0.0001 0.0052 0.0001
o2 | 0.0103 0.0010 0.0085 0.0005 0.0103 0.0004
o33 | 0.0207 0.0015 0.0197 0.0013 0.0212 0.0013
9{3 0.0529 0.0034 0.0542 0.0111 0.0477 0.0143
95 -0.0275 0.0093 -0.0295 0.0136 -0.0251 0.0088
93{3 -0.0230  0.0060 | -0.0187 0.0129 -0.0181 0.0156

A 0.3747 0.0105 0.3070 0.0047 0.4511 0.0051

Table 2: Parameter Estimates in the AFNS Model

This table reports the estimated parameters (Est) in the AFNS model with independent factors and
their standard errors (SE) using either the one-step or the two-step approach. The SE in the one-step
approach are computed by pre- and post-multiplying the variance of the score by the inverse of the
Hessian matrix, as outlined in Harvey (1989). The SE in the two-step approach are computed from

the inverse of the variance of the score. The data are monthly and cover the period from January 31,
2000, to April 29, 2016.

We first note that all elements in K and 6 are estimated very inaccurately in the three
data sets, which is a well-known characteristic of estimating persistent autoregressive processes
over a relatively short time span. The diagonal elements in > and A are estimated much more
accurately and reveal some notable differences. First, the volatility of the level factor o171 is
0.0071 in the two-step approach based on yields from Bank of Canada, but only 0.0052 in the
one-step approach and in the two-step approach based on Svensson (1995) yields. Second,
the volatility of the slope factor g9 is 0.0085 in the two-step approach using yields from
the Bank of Canada, whereas we find o9 = 0.0103 in the two other data sets. Finally, the
Nelson-Siegel parameter A is 0.375 in the one-step approach, 0.305 in the two-step approach
based on Bank of Canada yields, and 0.451 in the two-step approach based on Svensson (1995)
yields. These findings reveal that the estimated parameters in a DTSM are affected by using
synthetic zero-coupon yields as opposed to the underlying market prices on coupon bonds,
and that even small differences between synthetic yields of the same maturity can matter for
the estimation results.

Figure 3 shows the filtered states from estimating the AFNS model. Each of the states are
highly correlated across the three data sets as expected, but we also observe some differences.
For instance, the level factor in the two-step approach based on Bank of Canada yields is
generally 30 to 40 basis points above the estimated level factor from the one-step approach,

whereas, for the slope factor, we generally find the opposite ordering between the two data sets.

10
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Figure 3: Estimated States in the AFNS Model
Ilustration of the estimated level, slope, and curvature factors in the AFNS model with independent
factor dynamics. The data are monthly and cover the period from January 31, 2000, to April 29, 2016.

Somewhat smaller differences appear in the state estimates between the one-step approach
and the two-step approach based on Svensson (1995) yields, although the two estimates of
the curvature factor behave differently at the start and at the end of the sample.

Table 3 evaluates the ability of the AFNS model to match market prices on coupon
bonds. The pricing errors are here computed based on the implied yield on each coupon bond
to make these errors comparable across securities. That is, for the price on the ith coupon
bond P}(r,C), we find the value of yz’c that solves

N
P 0) = §0 e (i (-0} + 3 G exn {0t (- 0} +exp {0t (v -0} (@)
For the model-implied estimate of this bond price, denoted ]5;'(7', ('), we find the corresponding
implied yield g}i’c and report the pricing error as yi’c — g}i’c.ll Table 3 shows that the two-step
approach provides a fairly tight fit to the underlying coupon bond prices with an overall root
mean squared error (RMSE) of 8.31 basis points for the Bank of Canada yields and 7.90 basis
points for the Svensson (1995) yields. We emphasize that both the states and the model
estimates in the AFNS model are here obtained from syntehtic zero-coupon yields. Thus,
the conventional two-step approach provides a fairly accurate fit to the underlying coupon
bonds, although these bonds only enter indirectly through the synthetic zero-coupon yields
in the estimation of the AFNS model. Another and equally important observation is that the
one-step approach delivers an even better fit to these coupon bonds with an overall RMSE

of only 5.79 basis points. Compared to the overall RMSE in the two-step approach, this

1 8caling bond prices by duration in equation (6) when estimating DTSMs in the one-step approach serves as
a first-order approximation to the implied yield on a coupon bond. We prefer scaling bond prices by duration
when estimating DTSMs in the one-step approach, because it is computationally much less demanding than
estimating DTSMs based on the fixed-point problem in equation (7).
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. Two-step approach Svensson (1995)
N{jf;g;ty (1)\{)05. One-step approach Bank of Canada yields | Svensson (1995) yields | zero-coupon yields

" | Mean RMSE Mean RMSE Mean RMSE Mean RMSE
0-2 1,472 | -0.10 5.74 2.40 7.87 0.33 9.81 -1.08 8.83
2-4 1,098 | 0.44 4.74 1.78 7.20 2.02 5.61 0.87 4.27
4-6 744 -0.39 3.85 1.04 4.37 -1.23 4.61 0.40 3.50
6-8 404 -1.24 5.47 0.04 5.02 -3.12 6.61 -1.89 4.50
8-10 477 -2.54 6.07 -2.27 6.61 -4.62 7.81 -2.95 5.43
10-12 289 -1.14 6.20 -1.09 8.56 -2.01 8.35 -2.06 5.84
12-14 155 3.79 6.72 4.70 11.98 4.79 11.18 2.01 3.65
14-16 168 0.77 4.32 -1.61 9.05 0.36 8.28 0.35 2.87
16-18 179 0.71 4.66 -1.97 9.89 0.94 8.84 0.24 3.80
18-20 192 1.71 4.33 2.02 8.89 4.88 8.64 0.68 3.60
20-22 186 3.45 4.97 5.06 10.06 7.36 10.32 2.32 4.58
22-24 142 0.60 4.47 2.37 7.27 4.62 7.09 1.39 3.59
24-26 124 -0.08 5.01 3.75 8.37 4.67 7.43 1.63 3.56
26-28 113 -5.58 8.36 0.73 5.90 0.33 4.49 -1.32 3.33
28< 288 -5.01 11.91 6.36 18.13 0.88 8.69 -2.75 5.37
All bonds | 6,031 | -0.36 5.79 1.50 8.31 0.42 7.90 -0.44 5.78

Table 3: Summary Statistics of Bond Fitted Errors in the AFNS Model

This table reports the mean pricing errors (Mean) and the root mean-squared pricing errors (RMSE)
of the Canadian bond prices for the AFNS model with independent factors estimated on three different
data sets: (1) the universe of Canadian coupon bond prices, (2) zero-coupon yields constructed by
the Bank of Canada, and (3) zero-coupon yields constructed from Canadian coupon bond prices using
the Svensson (1995) yield curve. The final two columns report the corresponding statistics for the
constructed Svensson (1995) yield curve. The pricing errors are reported in basis points and computed
as the difference between the implied yield on the coupon bond and the model-implied yield on this
bond. The data are monthly and cover the period from January 31, 2000, to April 29, 2016.

corresponds to an 44% and 36% improvement when using the Bank of Canada yields and
the Svensson (1995) yields, respectively. This shows that the first step in the conventional
two-step approach may add a considerable amount of noise to the predicted bond prices from
the estimated DTSM.

In the final two columns of Table 3, we benchmark these results from the AFNS model to
the fit of the Svensson (1995) discount function, that is, we compute the predicted price of
a given coupon bond from the synthetic Svensson (1995) yields, which we then convert into
the implied yield using equation (7) to obtain the pricing error. As expected, the RMSEs for
bonds with maturities exceeding two years are all smaller for the Svensson (1995) discount
function when compared to any of the estimated versions of the AFNS model. However,
the deterioration in fit for the estimated AFNS model based on the one-step approach is
surprisingly small except for very long-term bonds with more than 26 years to maturity.
Even more surprising are the results for bonds within the zero to two-year maturity bucket,
where the estimated AFNS model based on the one-step approach has a RMSE of only 5.74
basis points and hence does better than the Svensson (1995) discount function with a RMSE

of 8.83 basis points. When accounting for the large number of bonds in this maturity bucket,
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we find that the overall RMSE of the Svensson (1995) discount function is 5.78 basis points
and hence basically identical to that of the AFNS model from the one-step approach with an
overall RMSE of 5.79 basis points.

4 Extensions

The present section explores whether we can improve the ability of the AFNS model to fit
coupon bonds in the one-step approach. Section 4.1 replaces the proposed QML estimator
in the one-step approach with a fully efficient maximum likelihood estimator. Section 4.2
extends the AFNS model with a shadow-rate specification to accommodate the zero lower
bond, while the effects of extending the AFNS model with two additional factors to better
fit long-term bonds are explored in Section 4.3. From a methodological perspective, these
extensions illustrate that the proposed one-step approach is applicable to i) fully efficient
maximum likelihood estimation, ii) nonlinear DTSMs, and iii) models with more than three
factors. As in the previous section, we benchmark the performance of the one-step approach
to those from the conventional two-step approach based on synthetic zero-coupon yields from

the Bank of Canada and the Svensson (1995) discount function.

4.1 Maximum Likelihood Estimation in the One-Step Approach

It is well-known that the adopted QML estimator in the one-step approach based on the
EKF induces an efficiency loss compared to maximum likelihood (ML), but it is perhaps less
recognized that consistency of this QML estimator cannot be established as the sample size
T tends to infinity.!> To explore whether the performance of the one-step approach can be
improved by adopting a better estimator, we next show how the one-step approach can be
implemented with a fully efficient ML estimator.

We have so far adopted a Bayesian perspective when filtering out the states in both the
one-step and two-step approach. But the one-step approach is characterized by a large set of
observables in the cross-sectional dimension, and it therefore seems natural to adopt a classical
perspective to filtering, as commonly considered in the estimation of large factor models (see,
for instance, Bai and Ng (2002) and Bai (2003)).!® That is, we now consider the states

X1 = {X{}le as parameters along with the model parameters 1.!* The main advantage

2This is because the approximated nature of the EKF implies that the conditional first and second mo-
ments for the prediction errors related to coupon bond prices cannot be computed ezxactly at the true model
parameters, see Bollerslev and Wooldridge (1992) and Andreasen (2013).

13A classical perspective to filtering has also recently been considered by Andreasen and Christensen (2015)
when estimating DTSMs and by Andersen et al. (2015) when estimating option pricing models.

The curve-fitting procedure of Svensson (1995), Bliss (1996), and Giirkaynak et al. (2007, 2010) among
others adopt the same classical perspective, as they estimate a parametric model for a daily yield curve, where
the "states” in these curves are treated as parameters and estimated from a large panel of bond prices.
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of considering the states Xi.r as parameters is that the likelihood function can be evaluated
without simulation for a nonlinear DTSM with Gaussian innovations and measurement errors,
and this in turn makes full ML estimation feasible within the one-step approach.

To realize this, let ¢ = [ v Xir } denote the extended set of model parameters and let
ny,t denote the number of bond prices in period ¢, which we collect in ;. Hence, Yi.7 = {Y}t}tT:1
refers to the entire sample of bond prices. The relation between bond prices and the states is

then expressed condensely by the measurement equation
Yi=g(Xp;9) + e, (8)

where g (X;;%) is a nonlinear function in X; and &, ~ NZD (0, R.;).!> The state transition

dynamics under the P-measure is after an appropriate Euler-discretization given by
Xiv1 = h(Xe5) + wiya, (9)

where h (X};1)) is a potentially nonlinear function in X; and w1 ~ NZD (0, Ry). Given the
imposed distributional assumptions on the system in equations (8) and (9), the log-likelihood

function L (1/;]Y1:T) is then proportional to (see Durbin and Koopman (2001))

T

- T 1
L (7/}‘Y1:T> X b) log ‘REI‘ D) Z (Xeg1 — h(Xt;w))/Rz_ul (Xi+1 — h(Xi59))  (10)
t=1
T 1 X
+glog|Rot| = 5 D (Yi—g(Xiw)) Rof (Vi — g (X))
t=1 t=1
The ML estimator is then given by
Vo = arg max L (@\Yl;fp) ) (11)
Ped

where ¥ denotes the feasible set for zﬁ To make this optimization problem computationally
feasible, we use the procedure in Durbin and Koopman (2001) to numerically concentrate out
X171 from L (1/;]Y1:T) for a given value of ¥. As explained in Appendix D, this is done by
iterating the Kalman filter and smoother on a linearized version of the system in equations (8)
and (9), where convergence for the AFNS model typically is achieved within five iterations.!©

The asymptotic distribution of 1[1ML when n, ; — oo for all ¢ and T' — oo at the same rate

5The subscript t on R.; indicates that its dimension adapts to the available number of bonds throughout
the sample.

5The specification in (9) omits nonlinearities between the states and the innovations, but this is without
loss of generality, as shown in Appendix E. Hence, the proposed ML estimator may also be applied to DTSMs
with stochastic volatility.
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QML ML

Est SE Est SE
kT | 0.1060 0.0763 | 0.0720 0.1353
Kby | 0.2157 0.1443 | 0.2038 0.1846
kEy | 07255 0.3649 | 0.3748 0.3177
o11 | 0.0052 0.0001 | 0.0052 0.0000
092 | 0.0103  0.0010 | 0.0095 0.0003
o33 | 0.0207 0.0015 | 0.0170 0.0010
o 1 0.0529 0.0034 | 0.0497 0.0158
0L 1-0.0275 0.0093 | -0.0247 0.0133
6L 1-0.0230 0.0060 | -0.0188 0.0140

A | 03747 0.0105 | 0.3774 0.0015

Par.

Table 4: ML Estimates of the AFNS Model

This table reports the estimated parameters (Est) in the AFNS model with independent factors in the
one-step approach, using either QML or ML. The standard errors (SE) for the QML are computed by
pre- and post-multiplying the variance of the score by the inverse of the Hessian matrix, as outlined
in Harvey (1989). The SE for the ML estimates are obtained as the inverse of the variance for the
concentrated score function. The data are monthly and cover the period from January 31, 2000, to
April 29, 2016.

as ¢ is multivariate normal, and the standard errors are given by the inverse of the variance
of the score for the concentrated log-likelihood function (see Hahn and Newey (2004)).17
The ML estimates are provided in Table 4. For the AFNS model we find very small
differences between the ML and the QML estimates. In particular, the two estimates of A
are almost identical. Hence, estimating the AFNS model by ML in the one-step approach
does not improve the ability of the model to fit coupon bonds compared to those reported in
Table 3 based on the QML estimator.'® In the remaining part of the paper, we therefore only
report results using the QML estimator, which is computationally somewhat faster than the

ML estimation described above.

4.2 A Shadow-Rate Model

Given the very low policy rates in many economies during the recent financial crisis, it has
become popular to account for the zero lower bound (ZLB) in DTSMs. Although short rates
are close to zero for only a limited period in our Canadian sample (as seen from Figure

2(a)), it is still possible that the ZLB may affect the shape and dynamics of the yield curve

1t is well-known from the literature on fixed-effects in panel models that L/A;ML may be affected by the
incidental bias B**¢/n,, which in our case arises from the uncertainty attached to estimating an increasing
number of states Xi.7 as T' grows. However, the states are estimated very accurately in multi-factor DTSMs—
as shown in Section 5 below—and the incidental bias is therefore unlikely to be important for estimating DTSMs
with a reasonable number of cross-sectional observations n,. An analytical expression for the incidental bias
B may be derived following the procedure in Hahn and Newey (2004).

8The corresponding version of Table 3 based on the ML estimates are available upon request.
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One-step approach Two-step approach
Par. Bank of Canada yields | Svensson (1995) yields
Est SE Est SE Est SE

Hﬁ 0.1450 0.0891 0.1373 0.0669 0.0521 0.0468
1652 0.1066 0.0819 0.1074 0.0701 0.5166 0.1828
/iglz;, 0.4337 0.2897 0.3503 0.3573 0.2646 0.3935
o11 | 0.0073 0.0002 0.0083 0.0003 0.0059 0.0002
o9 | 0.0122 0.0011 0.0098 0.0008 0.0114 0.0011
o33 | 0.0180 0.0021 0.0205 0.0021 0.0220 0.0026
9{3 0.0546 0.0034 0.0546 0.0115 0.0555 0.0242
95 -0.0396 0.0087 -0.0248 0.0135 -0.0231 0.0046
93{3 -0.0248  0.0117 | -0.0250 0.0135 -0.0238 0.0219

A 0.3920 0.0123 0.3473 0.0135 0.4754 0.0149

Table 5: Estimated Parameters in the B-AFNS Model

This table reports the estimated parameters (Est) in the B-AFNS model with independent factors and
their standard errors (SE) using either the one-step or the two-step approach. The SE are in all cases
computed by pre- and post-multiplying the variance of the score by the inverse of the Hessian matrix,
as outlined in Harvey (1989). The data are monthly and cover the period from January 31, 2000, to
April 29, 2016.

even during episodes of near-zero interest rates (see, e.g., Swanson and Williams (2014)).
To enforce the ZLB in the AFNS model, we follow Black (1995) and introduce the shadow
rate s, = Ly + S; and let 7, = max{0, s¢}, as in Christensen and Rudebusch (2015). All
other aspects of this B-AFNS model remain as described above for the AFNS model.'® The
expression for zero-coupon yields in the B-AFNS model is not available in closed form but
approximated numerically using the accurate method of Krippner (2013).20

Table 5 shows that all elements in K and 6% in the B-AFNS model are also estimated very
inaccurately across the three data sets. The volatility parameters in X are estimated much
more precisely and are generally higher in the B-AFNS model when compared to the AFNS
model. Figure 4 shows that this difference is mainly explained by greater factor variability
after 2008, because the shadow-rate specification in the B-AFNS model allows the factors to
move more freely than seen in the AFNS model without violating the ZLB. We also find that
A is estimated to be somewhat higher in all three data sets when accounting for the ZLB.
Similar to the pattern observed for the AFNS model, the estimate of A in the B-AFNS model
within the one-step approach lies in between those from the two-step approach, as A is 0.392
in the one-step approach, 0.347 in the two-step approach based on Bank of Canada yields,
and 0.475 in the two-step approach using Svensson (1995) yields.

9Following Kim and Singleton (2012), the prefix “B-" refers to a shadow-rate model in the spirit of Black
(1995).
20Gee also Christensen and Rudebusch (2015, 2016) for further details on this approximation and its accuracy.
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Figure 4: Estimated States in the One-Step Approach
This figure reports the filtered estimates of level, slope, and curvature in the AFNS and B-AFNS
model. The data are monthly and cover the period from January 31, 2000, to April 29, 2016.

Table 6 reports the pricing errors of the B-AFNS model for the underlying coupon bonds.
For the one-step approach and both versions of the two-step approach, we find slightly smaller
RMSEs in the B-AFNS model compared to the AFNS model. For instance, the overall RMSE
falls by 3% from 5.79 to 5.62 basis points in the one-step approach. Thus, accounting for the
Z1LB does not materially improve the ability of the AFNS model to match Canadian coupon

bond prices.

4.3 A Five-Factor Model

The main motivation of Giirkaynak et al. (2007) to prefer the Svensson (1995) curve over the
simpler specification of Nelson and Siegel (1987) is that the Svensson (1995) curve allows for
an additional ’hump’ that helps fit U.S. bond yields beyond the ten- to fifteen-year maturity
spectrum.?! The AFNS model may potentially also benefit from additional dynamics to fit
long-term Canadian bond prices, as its factor loadings for the slope and curvature factor
decay to zero as maturity approaches infinity. This often implies (for reasonable values of \)
that only the level factor in the AFNS model can be used to fit long-term bonds, which may
at times be insufficient as noted in Christensen et al. (2011).

To explore whether the performance of the AFNS model on our Canadian sample may
be improved further, we briefly consider the generalized AFNS model of Christensen et al.
(2009), which includes an additional pair of slope and curvature factors that help to explain

long-term bonds. In this AFGNS model, the instantaneous risk-free rate is given by

Tt:Lt—i-St-l-gt,

21 This additional hump is captured by £3(t) in equation (12) in Appendix B, which formally presents the
Svensson (1995) curve.
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. Two-step approach
NII)al;c:kr;zy (1)\];(;" One-step approach Bank of Canada yields | Svensson (1995) yields
Mean RMSE Mean RMSE Mean RMSE
0-2 1,472 | -0.41 5.51 2.91 7.84 0.70 9.54
2-4 1,098 | 0.47 4.92 1.55 6.92 1.26 5.20
4-6 744 | -0.36 4.17 0.14 4.67 -2.06 5.08
6-8 404 | -1.79 5.82 -1.04 5.99 -3.62 7.07
8-10 477 | -3.65 6.75 -3.04 6.89 -4.76 7.7
10-12 289 -2.35 6.80 -1.23 8.55 -1.80 8.02
12-14 155 2.54 5.62 4.93 11.28 5.12 10.55
14-16 168 -0.34 4.17 -0.96 8.66 0.89 7.90
16-18 179 -0.30 4.79 -1.68 9.93 1.13 8.80
18-20 192 0.94 3.93 1.89 8.33 4.66 8.26
20-22 186 3.31 5.38 5.44 9.58 7.43 10.07
22-24 142 1.49 5.38 2.90 6.82 4.74 6.89
24-26 124 1.45 5.40 4.16 8.20 4.78 7.37
26-28 113 -2.98 6.88 1.14 5.66 0.43 4.45
28< 288 -2.59 9.24 1.16 5.95 -1.71 4.59
All yields | 6,031 | -0.52 5.62 1.15 7.34 0.15 757

Table 6: Summary Statistics of Bond Fitted Errors in the B-AFNS Model

This table reports the mean pricing errors (Mean) and the root mean-squared pricing errors (RMSE)
of the Canadian bond prices for the B-AFNS model with independent factors. The pricing errors are
reported in basis points and computed as the difference between the implied yield on the coupon bond

and the model-implied yield on this bond. The data are monthly and cover the period from January
31, 2000, to April 29, 2016.

where S; is an additional (long-term) slope factor. The state dynamics under the risk-neutral

() measure is given by

dL, 000 0 0)[/6 L\ |

S 00X 0 =X 0 08 S,

as; =100 X 0o -X 08 | = S, || dt+zaw,
dC; 000 XA 0 0% Cy

dc; 000 0 X J[\6 Cr ) |

where A > A > 0 and C; is an additional (long-term) curvature factor. Zero-coupon yields

are then given by

1— e—A(T—t) 1— e—)\(T—t) \
— = MNT-v)
y(t, T) Li + )\(T — t) Sy + )\(T — t) e Cy
+1 - e~ AMT—t) G, 4 1 - e—AMT—t) Ay & A(t,T)
T —t) T —t) T—t’
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One-step approach Two-step approach
Par. Bank of Canada yields | Svensson (1995) yields
Est SE Est SE Est SE

Hﬁ 0.0453 0.0484 0.3656 0.4340 0.1365 0.1194
1652 0.1835 0.1418 0.6233 0.3229 0.5279 0.2508
/iglz;, 0.2015 0.1973 0.1214 0.1790 1.1160 0.3580
1@1134 0.7371 0.3144 0.9582 0.4657 1.1599 0.3570
I<L5P5 0.1970 0.1255 0.3950 0.2917 0.1464 0.1347
o11 | 0.0031 0.0006 0.0092 0.0007 0.0050 0.0002
o9 | 0.0125 0.0010 0.0125 0.0009 0.0140 0.0009
o33 | 0.0106 0.0009 0.0093 0.0009 0.0150 0.0015
o4 | 0.0237 0.0019 0.0209 0.0013 0.0359 0.0021
os5 | 0.0200 0.0014 0.0215 0.0033 0.0189 0.0013
9{3 0.0500 0.0053 0.0982 0.0110 0.0580 0.0091
95 0.0183 0.0172 -0.0040 0.0087 0.0069 0.0099
93{3 -0.0452 0.0140 -0.0691 0.0219 -0.0456 0.0045
95 0.0064 0.0090 -0.0041 0.0071 0.0061 0.0093
95{3 0.0486 0.0185 -0.0318 0.0229 0.0252 0.0329

A 0.6416 0.0280 1.3699 0.0297 0.9290 0.0102

A 0.1166 0.0084 0.0786 0.0039 0.1185 0.0026

Table 7: Parameter Estimates in the AFGNS Model

This table reports the estimated parameters (Est) in the AFGNS model with independent factors and
their standard errors (SE) using either the one-step or the two-step approach. The SE in the one-step
approach are computed by pre- and post-multiplying the variance of the score by the inverse of the
Hessian matrix, as outlined in Harvey (1989). The SE in the two-step approach are computed from
the inverse of the variance of the score. The data are monthly and cover the period from January 31,
2000, to April 29, 2016.

where the yield-adjustment term A(¢,T) is derived in Christensen et al. (2009). The P-
dynamics for this five-factor model is obtained in a standard fashion by adopting an essential
affine specification for the market price of risk, as in Section 3.1.

The estimation results for the AFGNS model are reported in Table 7, where we for con-
sistency with the AFNS model only study the case with independent factor dynamics under
the P-measure. The decay parameter \ is estimated to be somewhat larger than in the AFNS
model, because S; and C; no longer have to fit long-term bonds. The very low estimate of
the second decay parameter X implies that the additional factors S; and C; greatly assist the
level factor in matching the long end of the Canadian yield curve.

Table 8 reports the pricing errors of the AFGNS model for the underlying coupon bonds,
and we clearly see that all three versions of this five-factor model provide a closer fit to nearly
all bonds when compared with the AFNS model. This is highligthed in Table 8 by ARMSE,
which shows the difference in RMSE between the AFGNS model and the AFNS model within
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. Two-step approach
I\%Lt:kr;:y (1)\]2(;' One-step approach Bank of Canada yields Svensson (1995) yields
" | Mean RMSE ARMSE | Mean RMSE ARMSE | Mean RMSE ARMSE

0-2 1,472 | -0.20 4.86 -0.88 2.63 5.56 -2.31 -0.73 9.01 -0.80
2-4 1,098 | 0.36 3.82 -0.92 -0.93 4.49 -2.71 0.33 4.28 -1.33
4-6 744 0.77 3.77 -0.08 -0.03 3.29 -1.08 0.06 3.91 -0.70
6-8 404 -0.78 3.88 -1.59 1.54 3.96 -1.06 -1.47 4.32 -2.29
8-10 477 -2.39 5.33 -0.74 0.91 5.00 -1.61 -2.28 5.31 -2.50
10-12 289 -2.01 6.45 0.25 2.14 7.98 -0.58 -1.68 6.00 -2.35
12-14 155 1.87 4.01 -2.71 7.45 10.56 -1.42 2.59 4.86 -6.32
14-16 168 0.03 2.45 -1.87 1.71 6.36 -2.69 0.61 3.04 -5.24
16-18 179 -0.21 3.10 -1.56 -1.62 7.70 -2.19 -0.06 4.13 -4.71
18-20 192 0.71 3.77 -0.56 -0.53 5.92 -2.97 0.44 4.41 -4.23
20-22 186 2.39 5.10 0.13 1.17 4.74 -5.32 2.47 4.69 -5.63
22-24 142 1.82 5.31 0.84 -0.92 4.51 -2.76 0.99 3.67 -3.42
24-26 124 1.26 4.48 -0.53 0.16 5.54 -2.83 1.44 3.66 -3.77
26-28 113 -1.21 4.51 -3.85 -1.51 4.71 -1.19 -1.56 3.51 -0.98
28< 288 -1.88 5.32 -6.59 11.59  32.98 14.85 0.33 7.82 -0.87
All bonds | 6,031 | -0.13 4.51 -1.28 1.46 8.93 0.62 -0.26 6.05 -1.85

Table 8: Summary Statistics of Bond Fitted Errors in the AFGNS Model

This table reports the mean pricing errors (Mean) and the root mean-squared pricing errors (RMSE)
of Canadian coupon bond prices for the AFGNS model with independent factors. The table also
reports the difference in RMSE (ARMSE) between the AFGNS model and the AFNS model within
the one-step approach and each of the two implementations of the two-step approach. All pricing
errors are reported in basis points and computed as the difference between the implied yield on the
coupon bond and the model-implied yield on this bond. The data are monthly and cover the period
from January 31, 2000, to April 29, 2016.

the one-step approach and each of the two implementations of the two-step approach. For the
one-step approach, we see large improvements in the RMSEs for long-term bonds, but also
in the zero to two-year and two- to four-year maturity buckets, which both contain a large
numbers of bonds. As a result, the overall RMSE within the one-step approach drops from
5.79 basis points in the AFNS model to just 4.51 basis points in this extended model, which
corresponds to a 22% reduction in the size of the in-sample fitted errors. This also means
that the AFGNS model clearly provides a better overall fit to bond prices than the Svensson
(1995) discount function with an overall RMSE of 5.78 basis points. Given this satisfying
performance of the AFGNS model, its zero-coupon yields may thus be used as another and
slightly more accurate representation of the Canadian yield curve than the zero-coupon yields
from the Svensson (1995) discount function.

Accordingly, allowing for an additional pair of slope and curvature factors improves the

ability of the AFNS model to fit bond prices, in particular those of long-term bonds.
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5 Simulation Study

The preceding analysis has shown that the one-step and the two-step approach give somewhat
different estimates of DTSMs. The obvious next question is which of the two approaches gives
the most accurate estimates? The present section addresses this question by conducting a
Monte Carlo study to analyze the finite sample properties of estimating the AFNS model by
the one-step and two-step approaches. We first describe the setup for the Monte Carlo study
in Section 5.1 before analyzing the precision of the estimated synthetic zero-coupon yields
from the Svensson (1995) yield curve in Section 5.2. The results for the estimated model
parameters are reported in Section 5.3, while the accuracy of the filtered states and the
standard yield curve decomposition are explored in Section 5.4 and 5.5, respectively. Section
5.6 is devoted to the implementation of the two-step approach, where we explore how the
number of synthetic yields and the adopted curve-fitting technique for these yields affect the
estimated parameters in our DTSM. Finally, Section 5.7 summarizes the main findings from

this Monte Carlo study.

5.1 Setup for the Monte Carlo Study

A novel feature of this Monte Carlo study is to work at the level of individual coupon bond
prices, and hence account for estimation uncertainty in the construction of synthetic zero-
coupon yields within the two-step approach. To get a representative data generating process
for the Canadian bond market, we use the estimates of the AFNS model in the one-step
approach from Table 2. Based on these parameters, we first simulate N = 100 samples for
the three states at a monthly frequency for 196 months, which corresponds to the number
of monthly observations in our Canadian sample.?? These simulated sample paths will be
common across all exercises in this Monte Carlo study to facilitate the interpretation. The
inputs for each of the two estimation approaches are then constructed as follows.

For the one-step approach, we use the simulated states to compute N panels of coupon-
bond prices that match those observed in the Canadian sample in terms of available bonds
and their characteristics. These bond prices are computed using the bond price formula
in equation (5) in combination with the zero-coupon yields in equation (3). We then add
measurement errors €; ~ NZD (0,02) to the individual simulated bond prices and scale these
measurement errors by the duration of the simulated bond for consistency with equation (6).%

For the two-step approach, we take these simulated panels of coupon bond prices as

22We simulate from (4) using a standard Euler-discretization, i.e., Xi = X;_; +x5 (0F — X{_1)At+0:i:V/ Atz
where z; ~ N(0,1) and At = 0.0001. The starting values X{ are drawn from the unconditional distribution of
X:.

23 Note that we use the same set of simulated samples of €¢ throughout this Monte Carlo study to make the
results as comparable as possible.
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input to extract synthetic zero-coupon yields based on the Svensson (1995) yield curve. For
consistency with the empirical estimation results presented in the previous sections, we extract
synthetic zero-coupon yields with ten constant maturities, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, and
30 years, which we use for our implementation of the two-step approach in the Monte Carlo
study. Given that the underlying bond prices are already contaminated with measurement
errors, we do not add additional noise to these synthetic yields.

To study the role of the data quality, we consider two cases where o, is either 1 or 10
basis points. The first case with 0. = 1 basis point represents an ideal setting with hardly
any noise in bond prices and helps to isolate the effects of the curve fitting procedure in the
two-step approach. The second case with 0. = 10 basis points is included to describe a more
realistic setting, as we find that o. = 7 basis points in our Canadian sample when using the

one-step approach.

5.2 Accuracy of Synthetic Yields

We first consider the accuracy of the synthetic zero-coupon yields from the Svensson (1995)
yield curve based on the simulated prices for coupon bonds. That is, we compare the estimated
synthetic yields to the true zero-coupon yields from the AFNS model without measurement
errors, see Appendix B for details.

With small measurement errors of o, = 1 basis point, Table 9 shows that the mean errors
are generally very close to zero within the one- to twenty-year maturity range but somewhat
larger at the three- and six-month maturities (-4 and -2 basis points, respectively) and at
the thirty-year maturity (-1.3 basis points). This means that the Svensson (1995) yield curve
slightly overpredicts the level of the zero-coupon yields at the short and long end of the curve.
The low mean absolute errors (MAE) of roughly 1 basis point show that yields within the
one- to twenty-year maturity spectrum are estimated very accurately, whereas yields at the
short and long end of the curve are estimated less precisely. For instance, we have a MAE of
6.8 basis points for the three-month yield and a MAE of 3.09 basis points for the thirty-year
yield, as the short and long end of the curve is not always densely populated in the underlying
panels of bond prices.

With larger measurement errors of oo = 10 basis points, maturities between one and
twenty years remain well approximated with mean errors close to zero. The precision of
these yields in terms of the MAEs only decreases by a factor of three, which is substantially
lower than the ten-fold increase in o.. Thus, when o. = 10 basis points, the construction
of synthetic zero-coupon yields is in most cases able to smooth out a large fraction of the
noise from &! in the underlying bond prices, which generally leaves the measurement equation
in the two-step approach with smaller measurement errors than in the one-step approach.

Hence, for 0. = 10 basis points, the considered setup is likely to favor the two-step approach,
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Maturity | 0. = 1 basis point | 0. = 10 basis points
in months | Mean MAE Mean MAE
3 -4.09 6.79 -3.00 12.48
6 -2.37 3.89 -1.74 7.84
12 -0.32 1.05 -0.24 3.58
24 0.78 1.42 0.52 3.52
36 0.43 0.99 0.24 3.12
60 -0.48 1.05 -0.34 3.13
84 -0.67 1.26 -0.37 3.30
120 -0.34 0.94 -0.14 2.88
240 0.64 1.46 0.27 3.76
360 -1.32 3.09 -0.90 9.34

Table 9: Accuracy of Estimated Svensson (1995) Yields

The table reports the mean of the sampling distribution of the mean errors (Mean) and mean absolute
errors (MAE) for each zero-coupon yield constructed using the Svensson (1995) yield curve relative
to the true zero-coupon yield implied by the AFNS model with simulated samples of length T' = 196
and N = 100 repetitions. The mean is obtained by first computing the mean errors in each of the
simulated samples across the T' = 196 observations, and we then report the average of these means
across the N = 100 simulated samples. Similarly, the MAE are obtained by first computing the mean
absolute errors in each of the simulated samples across the T' = 196 observations, and we then report
the average of these absolute means across the N = 100 simulated samples. The true states are
generated from the AFNS model as described in Section 5.1. All numbers are reported in basis points.

as the measurement equation here has less noise than in the one-step approach.
Accordingly, the synthetic zero-coupon yields from the Svensson (1995) yield curve appear
to be quite accurate in the present setting, although with slightly larger errors at the short

and long end of the yield curve.

5.3 Estimated Parameters

Table 10 summarizes the outcome of the Monte Carlo study for the model parameters by
reporting the mean and the standard deviation for each of the estimated coefficients in the
AFNS model. We first note that both the one-step and the two-step approach generate
the familiar positive bias in the mean-reversion parameters {mﬁ,ﬁi,ﬁ%}, as discussed in
Bauer et al. (2012). For the persistence of the slope factor s, and the curvature factor xk;,
we find that these biases are somewhat larger in the two-step approach compared with the
one-step approach. For instance, with o. = 10 basis points, the bias in the slope factor is
0.51 — 0.22 = 0.29 in the one-step approach but 0.66 — 0.22 = 0.44 in the two-step approach.
The corresponding figures for the curvature factor are 0.93 — 0.73 = 0.20 for the one-step
approach and 1.30 — 0.73 = 0.57 for the two-step approach. However, we see the opposite

pattern in /{{31, as the bias here is slightly smaller for the conventional two-step approach
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True One-step approach Two-step approach
Par. 0c = 1 basis point | o. = 10 basis points 0. = 1 basis point | 0. = 10 basis points

value Mean | Std. dev. Mean Std. dev. Mean | Std. dev. Mean Std. dev.

xI | 0.1060 | 0.3794 0.2660 0.4011 0.2659 0.3457 0.2114 0.3549 0.2186
ki | 0.2157 | 0.5127 0.3022 0.5096 0.3002 0.5296 0.3069 0.6611 0.3883
kly | 0.7255 | 0.9056 0.3973 0.9298 0.3706 1.1519 0.6491 1.3011 0.5329

o1 | 0.0052 | 0.0052 0.0000 0.0052 0.0001 0.0047 0.0003 0.0048 0.0003
o022 | 0.0103 | 0.0103 0.0005 0.0103 0.0006 0.0105 0.0006 0.0117 0.0009
o33 | 0.0207 | 0.0206 0.0007 0.0208 0.0014 0.0242 0.0037 0.0265 0.0020

oF 0.0529 | 0.0514 0.0088 0.0510 0.0086 0.0506 0.0086 0.0513 0.0087
6 | -0.0275 | -0.0254 0.0108 -0.0255 0.0108 -0.0239 0.0112 -0.0247 0.0110
6 | -0.0230 | -0.0242 0.0098 -0.0236 0.0064 -0.0257 0.0062 -0.0261 0.0062

A 0.3747 | 0.3747 0.0008 0.3743 0.0056 0.4237 0.0314 0.4170 0.0264

Table 10: Accuracy of the Parameter Estimates in the AFNS Model

The table reports the mean (Mean) and the standard deviation (Std. dev.) of the sampling distribution
for each of the estimated parameters in the AFNS model when using QML in the one-step approach
and ML in the two-step approach, where synthetic yields are generated with the Svensson (1995) yield
curve, both with simulated samples of length 7" = 196 and N = 100 repetitions.

compared with the one-step approach.

The estimates of the volatility parameters in 3 are basically unbiased in the one-step
approach and estimated with great precision—both with small and large measurement errors.
The corresponding estimates in the two-step approach display small biases with . = 1 basis
points, which generally increase with larger measurement errors. For instance, 99 in the
two-step approach displays a positive bias of 0.0242 — 0.0207 = 0.0035 when 0. = 1 basis
point, but this bias increases to 0.0265 — 0.0207 = 0.0058 with . = 10 basis points.

All elements in 67 are generally close to their true values, although a careful inspection of
Table 10 reveals that the biases in 6% typically are smaller in the one-step approach compared
with the two-step approach.

The estimates of the decay parameter A\ for the slope and curvature factor are centered
exactly around its true value in the one-step approach and estimated with great precision—
both with small and large measurement errors. For the two-step approach, we see small
positive biases in the estimates of A, which is estimated less precisely compared to the one-
step approach. For instance, when o. = 10 basis points, the standard deviation in the
estimates of A\ are 0.0264 in the two-step approach, but only 0.0056 in the one-step approach.
These differences in the estimates of A are of particular interest given the work of Bjork and
Christensen (1999), which shows that the static Nelson-Siegel and Svensson yield curves are
inconsistent with no-arbitrage restrictions because the corresponding A\ parameter(s) in these
static models may change across time. The biased estimate of A in the two-step approach
implies that the curvature factor carries a greater weight on shorter-term yields and is less

sensitive to longer-term yields relative to the true model. Since short-term yields are more
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g One-step approach Two-step approach
tate - - - - - - - -
variable L% = 1 basis point | o. = 10 basis points || o. = 1 basis point | o. = 10 basis points
Mean MAE Mean MAE Mean MAE Mean MAE
L, -0.41 1.16 0.21 5.51 -8.93 10.80 -3.05 9.66
Sy 0.42 1.16 -0.14 5.97 14.28 15.67 7.45 13.46
Cy 0.16 2.51 -0.58 19.07 -21.70 32.33 -25.06 42.62

Table 11: Accuracy of Estimated States in the AFNS Model

The table reports the mean of the sampling distribution of the mean errors (Mean) and mean absolute
errors (MAE) of each estimated state variable in the AFNS model when using QML in the one-step
approach and ML in the two-step approach, where synthetic yields are generated with the Svensson
(1995) yield curve, both with simulated samples of length T = 196 and N = 100 repetitions. The
mean is obtained by first computing the mean errors in each of the simulated samples across the
T = 196 observations, and we then report the average of these means across the N = 100 simulated
samples. Similarly, the MAE are obtained by first computing the mean absolute errors in each of the
simulated samples across the T' = 196 observations, and we then report the average of these absolute
means across the NV = 100 simulated samples. The true states are generated from the AFNS model
as described in Section 5.1. All numbers are reported in basis points.

volatile than long-term yields, this explains the positive bias in the estimates of o33 within
the two-step approach. Furthermore, since short-term yields also tend to be less persistent
than long-term yields, this also explains the more severe upward bias in the estimates of 53%

in the two-step approach compared with the one-step approach.

5.4 Estimated States

For each simulated sample and its related set of estimated parameters, we next study the
accuracy of the filtered states. Table 11 shows that the filtered states in the one-step approach
are basically unbiased, as the mean errors with o. = 10 basis points are 0.21, —0.14, and
—0.58 basis points for the level, slope, and curvature factor, respectively. In contrast, the
conventional two-step approach generates notable biases in the estimated states, which are
—3, 7, and —25 basis points for the level, slope, and curvature factor, respectively, with
0. = 10 basis points. We also note that these biases in the two-step approach are largely
unrelated to the degree of noise in the bond prices, implying that these biases must originate
from the use of the estimated synthetic zero-coupon yields.

To measure the efficiency of the filtered states, we compute the mean absolute errors
in each simulated sample of T' = 196 observations, which we then report in Table 11 by
averaging across the N = 100 simulations. The states in the one-step approach are estimated
very accurately with mean absolute errors of 1 to 2 basis points in the ideal case with 0. = 1
basis point. For the more realistic setting where o. = 10 basis points, we find somewhat larger
mean absolute errors of 6, 6, and 19 basis points for the level, slope, and curvature factor,

respectively. The filtered states in the two-step approach are estimated much less accurately
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due to its lower number of cross-sectional observations to represent the yield curve compared
with the one-step approach. For instance, the mean absolute errors are 10, 13, and 43 basis
points for the level, slope, and curvature factor, respectively, in the two-step approach with
o: = 10 basis points. It is also interesting to note that the efficiency of the state estimates in
the two-step approach are much less affected by increasing the noise in bond prices than seen
in the one-step approach. For instance, the mean absolute errors of the level and slope factor
are basically unaffected by the value of o.. This feature of the two-step approach reflects the
fact that the synthetic zero-coupon yields are able to smooth out much of the noise in the

bond prices, and in this way mitigate the effects of measurement errors.

5.5 Accuracy of Yield Decomposition

DTSMs are often applied to decompose the yield curve into expected future short rates and
term premiums. We next explore whether the use of the one-step approach improves the preci-
sion of this decomposition compared to the conventional two-step approach. Hence, let the 7-
year term premium be defined as TP,(1) = y(7, Xy) — t+T El[ry)ds, where 1 ft+7 EF[ry)ds
denotes expected future short rates.?*

For each simulated sample and its related set of estimated parameters and states, we
next decompose the yield curve into expected future short rates and term premiums in Table
12. We first note that the mean errors in expected future short rates (EXP) are somewhat
closer to zero in the one-step approach than in to the two-step approach. For instance, at
the ten-year maturity with o. = 10 basis points, the mean errors in expected future short
rates are -3.64 basis points in the one-step approach but -11.02 basis points in the two-step
approach. This finding seems consistent with the smaller biases in K and the filtered states
for the one-step approach relative to the two-step approach reported in Section 5.3 and 5.4.
Given the small errors in estimating yields in both approaches, we therefore find that the one-
step approach implies slightly lower mean errors for term premiums (TP) than the two-step
approach. However, the mean absolute errors (MAE) in Table 12 for expected future short
rates and term premiums are very large and almost identical for both estimation approaches,
meaning that the large estimation uncertainty clearly dominates the small improvement in
mean errors for term premiums within the one-step approach.

Thus, standard yield curve decomposition do not benefit from the proposed one-step ap-
proach. This is because the reported biases and large estimation uncertainty in term premiums
originate from expected future short rates, and hence the estimated mean-reversion parame-
ters in K'*, which are relatively insensitive to the number of cross-sectional observations used

to represent the yield curve.

24 A closed-form expression for % f :JrT EF [rs]ds is derived in Appendix F.
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One-step approach Two-step approach

Component 0. = 1 basis point | o. = 10 basis points || 0. = 1 basis point | 0. = 10 basis points

Mean MAE Mean MAE Mean MAE Mean MAE
Two-year yield | 0.09 0.24 0.08 2.04 0.66 1.23 0.77 2.80
Five-year yield | 0.18 0.33 0.19 2.23 -0.21 0.88 -0.23 2.67
Ten-year yield 0.25 0.33 0.24 1.72 -0.57 1.40 -0.67 2.67
Two-year EXP | -1.96 24.09 -1.67 24.27 -7.71 24.60 -7.08 27.81
Five-year EXP | -3.76 42.51 -2.95 42.15 -9.85 41.25 -9.36 43.84
Ten-year EXP | -5.20 59.37 -3.64 58.49 -11.55 56.81 -11.02 58.67
Two-year TP 2.05 24.09 1.75 24.23 8.36 24.64 7.85 27.64
Five-year TP 3.95 42.52 3.13 42.33 9.64 41.36 9.13 44.16
Ten-year TP 5.44 59.38 3.88 58.53 10.98 56.85 10.34 58.72

Table 12: Accuracy of the Yield Decomposition in the AFNS Model

The table reports the mean of the sampling distribution of the mean errors (Mean) and mean absolute
errors (MAE) for each component of the yield curve decomposition into expected future short rates
(EXP) and term premium (TP) at various maturities. The mean for a given maturity is obtained by
first computing the mean errors in each of the simulated samples across the T' = 196 observations,
and we then report the average of these means across the N = 100 simulated samples. Similarly,
the MAE for a given maturity is obtained by first computing the mean absolute errors in each of the
simulated samples across the 7' = 196 observations, and we then report the average of these absolute
means across the N = 100 simulated samples. All errors are shown in basis points and defined as the
true value minus the model-implied value. The parameter and state estimates in the AFNS model are
obtained by QML in the one-step approach and by ML in the two-step approach, where zero-coupon
synthetic yields are generated with the Svensson (1995) yield curve. The true yields and expected
future short rates are generated from the AFNS model as described in Section 5.1.

5.6 The Implementation of the Two-Step Approach

Given the widespread use of the conventional two-step approach, it seems useful to explore
whether its performance can be improved compared to Sections 5.3 and 5.4. The essential
decisions for the econometrician in the two-step approach are how many synthetic zero-coupon
yields to include when estimating the DTSM, and how these synthetic yields are extracted
from the panel of coupon bonds. We next analyze how decisions along each of these dimensions

affect the estimated parameters in the AFNS model.

5.6.1 The Number of Synthetic Yields

Our implementation of the two-step approach has so far used ten synthetic zero-coupon yields
to represent the thirty-year Canadian yield curve. But the choice of which synthetic yields to
include is likely to affect the performance of the two-step approach. In particular, it is likely
that there may exist a trade-off within the two-step approach between bias and efficiency for
the estimated parameters in the DTSM. The reason is as follows. To increase efficiency, it

is obviously desirable to use a large number of synthetic yields, but this is likely to come
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Extended sample Reduced sample
True - - - - - - - :
Par. 0c = 1 basis point | o. = 10 basis points 0. = 1 basis point | 0. = 10 basis points

value Mean | Std. dev. Mean Std. dev. Mean | Std. dev. Mean Std. dev.

xI | 0.1060 | 0.3609 0.2245 0.3914 0.2397 0.3802 0.2145 0.5419 0.3017
ki | 0.2157 | 0.5072 0.2961 0.5964 0.3518 0.5209 0.2959 0.6120 0.3488
kly | 0.7255 | 3.2985 2.3665 2.5187 1.6718 0.9266 0.4196 1.2340 0.5102

o1 | 0.0052 | 0.0048 0.0004 0.0051 0.0003 0.0050 0.0004 0.0061 0.0004
o022 | 0.0103 | 0.0103 0.0005 0.0111 0.0007 0.0105 0.0005 0.0114 0.0007
o33 | 0.0207 | 0.0399 0.0135 0.0351 0.0084 0.0195 0.0016 0.0235 0.0017

oF 0.0529 | 0.0556 0.0065 0.0550 0.0082 0.0496 0.0084 0.0508 0.0086
6 | -0.0275 | -0.0290 0.0118 -0.0287 0.0115 -0.0230 0.0107 -0.0243 0.0108
6 | -0.0230 | -0.0299 0.0097 -0.0278 0.0083 -0.0251 0.0060 -0.0260 0.0059

A 0.3747 | 0.3773 0.0178 0.3614 0.0210 0.4418 0.0308 0.4263 0.0256

Table 13: Accuracy of the Parameter Estimates: The Number of Synthetic Yields
The table reports the mean (Mean) and the standard deviation (Std. dev.) of the sampling distribution
for each of the estimated parameters in the AFNS model when using ML in the two-step approach,
with simulated samples of length 7' = 196 and N = 100 repetitions. The extended samples consists of
the 31 synthetic zero-coupon yields with maturities of 0.5, 1, 2,..., 30 year from the Svensson (1995)
yield curve. The reduced sample consists of six synthetic zero-coupon yields with maturities of 1, 2,
3,5, 7, and 10 years from the Svensson (1995) yield curve.

at the cost of also including some less precisely measured yields, and this could potentially
bias the coefficients in the DTSM. On the other hand, when only a few and very accurately
measured yields are included, then we minimize the risk of coefficient bias but at the cost of
low efficiency. The present section explores whether such a trade-off exist by implementing
the two-step approach on two different sets of samples that both represent the same data
generating process. The first is an extended sample of 31 synthetic yields with maturities of
0.5, 1, 2,..., 30 year. The second is a reduced sample of only six yields with maturities of 1,
2, 3,5, 7, and 10 years, where we omit the imprecisely estimated yields at the short and long
end of the thirty-year yield curve.

The estimated coefficients in the AFNS model from this simulation exercise are reported
in Table 13. We find somewhat surprisingly that the biases for “{317 /{52, Jﬁ, 0{5, and A
are smaller in the extended sample compared to the standard sample (in Table 10) and the
reduced sample. Still, it is hard to detect any efficiency gains from the extended sample for
these parameters, except possibly for A. Furthermore, we note that the estimates of /153 and
a?% have the largest biases in the extended sample, which also provides the most imprecise
estimates of k%, and o;. The performance of the reduced sample with six synthetic yields
is very similar to what we found for the standard sample with ten synthetic yields, meaning
that the reduced sample avoids the large biases we occasionally find in the extended sample
(e.g. in kly and ofy).

For each simulated sample and its related set of estimated parameters, Table 14 studies
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g Extended sample Reduced sample
tate - - - - - - - -
variable %= 1 basis point | o. = 10 basis points || o. = 1 basis point | o. = 10 basis points
Mean MAE Mean MAE Mean MAE Mean MAE
L, 40.27 41.36 34.44 34.78 -19.59 20.33 -7.31 14.52
Sy -35.83 37.46 -32.06 32.77 24.68 25.21 11.98 17.13
Cy -65.82 67.28 -43.46 54.12 -14.52 31.40 -23.80 43.47

Table 14: Accuracy of Estimated States: The Number of Synthetic Yields

The table reports the mean of the sampling distribution of the mean errors (Mean) and mean absolute
errors (MAE) of each estimated state variable in the AFNS model using ML in the two-step approach.
The mean is obtained by first computing the mean errors in each of the simulated samples across the
T = 196 observations, and we then report the average of these means across the N = 100 simulated
samples. Similarly, the MAE are obtained by first computing the mean absolute errors in each of the
simulated samples across the T' = 196 observations, and we then report the average of these absolute
means across the N = 100 simulated samples. The true states are generated from the AFNS model as
described in Section 5.1. The extended samples consists of the 31 synthetic zero-coupon yields with
maturities of 0.5, 1, 2,..., 30 year from the Svensson (1995) yield curve. The reduced sample consists
of six synthetic zero-coupon yields with maturities of 1, 2, 3, 5, 7, and 10 years from the Svensson
(1995) yield curve. All numbers are reported in basis points.

the accuracy of the filtered states. For the extended sample, we find large positive biases for
the level factor and large negative biases for the slope and curvature factor. For instance, the
mean error for the curvature factor is -66 basis points when o. = 10 basis points. The biases
in the reduced sample are much smaller than in the extended sample, and this also explains
the lower mean absolute errors (MAE) of the filtered states for the reduced sample compared
with the extended sample.

We draw two conclusions from this exercise. First, there does not appear to be an obvious
trade-off between bias and efficiency in the two-step approach when varying the number of
synthetic zero-coupon yields in the estimation of the DTSM. Second, the current practice
of using a relatively low number of synthetic yields (i.e. between six and ten) seems well
justified, at least when the synthetic yields are extracted based on the parametric discount

function in Svensson (1995).

5.6.2 Synthetic Nelson and Siegel (1987) Yields

An obvious difference between the true zero-coupon yields from the AFNS model and those
from the Svensson (1995) yield curve is that the latter allows for an extra "hump’ at the long
end of the yield curve compared to the AFNS model. Within our setting, this additional hump
clearly seems redundant and we therefore explore the effects of omitting it when extracting
synthetic zero-coupon yields from our simulated panels of bond prices. That is, we briefly
consider the case where the synthetic yields are extracted based on the parametric discount

function in Nelson and Siegel (1987), and we continue to use the same ten constant yield
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Svensson (1995) yields Nelson and Siegel (1987) yields

True

Par.
value

0. = 1 basis point | o. = 10 basis points o- = 1 basis point | . = 10 basis points

Mean | Std. dev. Mean Std. dev. Mean | Std. dev. Mean Std. dev.

kI | 0.1060 | 0.3457 0.2114 0.3549 0.2186 0.1320 0.1009 0.1611 0.1195
ki | 0.2157 | 0.5296 0.3069 0.6611 0.3883 0.5412 0.2813 0.6661 0.3739
kly | 0.7255 | 1.1519 0.6491 1.3011 0.5329 3.4829 2.9780 2.0118 1.1920

o1 | 0.0052 | 0.0047 0.0003 0.0048 0.0003 0.0029 0.0003 0.0033 0.0003
o022 | 0.0103 | 0.0105 0.0006 0.0117 0.0009 0.0107 0.0005 0.0118 0.0008
o33 | 0.0207 | 0.0242 0.0037 0.0265 0.0020 0.0417 0.0179 0.0332 0.0087

oF 0.0529 | 0.0506 0.0086 0.0513 0.0087 0.0516 0.0073 0.0502 0.0079
6 | -0.0275 | -0.0239 0.0112 -0.0247 0.0110 -0.0264 0.0127 -0.0239 0.0114
6 | -0.0230 | -0.0257 0.0062 -0.0261 0.0062 -0.0281 0.0110 -0.0258 0.0074

A 0.3747 | 0.4237 0.0314 0.4170 0.0264 0.4441 0.0310 0.4525 0.0268

Table 15: Accuracy of the Parameter Estimates: Different Synthetic Yields

The table reports the mean (Mean) and the standard deviation (Std. dev.) of the sampling distribution
for each of the estimated parameters in the AFNS model when using ML in the two-step approach on
synthetic yields from the Svensson (1995) and Nelson and Siegel (1987) yield curves. The true yields
are generated from the AFNS model as described in Section 5.1, with simulated samples of length
T =196 and N = 100 repetitions. For both types of yields we use the same ten constant maturities,
0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, and 30 years.

maturities as in Section 5.3.

Table 15 reports the results for the estimated coefficients in the AFNS model from this
simulation exercise, which we benchmark to the findings in Section 5.3 based on Svensson
(1995) yields. We generally find that the estimated coefficients are adversely affected by using
the more parsimonious specification of Nelson and Siegel (1987) to extract the synthetic yields.
Most notably, the biases for k15, 011, 022, 033, and \ increase somewhat when using the Nelson
and Siegel (1987) yields compared to the Svensson (1995) yields, whereas the opposite applies
for k1. Table 16 further shows, that the filtered state estimates with the Nelson and Siegel
(1987) yields are less efficient (as measured by MAE) compared to the Svensson (1995) yields,
whereas the mean errors are more similar across the two specifications.

Thus, restricting the parametric discount function for extracting synthetic zero-coupon
yields compared to the specification in Svensson (1995) does not improve the performance
of the conventional two-step approach. In terms of practical relevance, this finding provides
support for the widely used synthetic U.S. Treasury yields constructed by Giirkaynak et
al. (2007, 2010).

5.7 Summarizing the Main Insights From the Monte Carlo Study

The main insight from this Monte Carlo study is that the considered DTSM may be esti-
mated more reliably by using directly observed market prices on coupon bonds instead of

synthetic zero-coupon yields. Although these synthetic zero-coupon yields are estimated very
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g Svensson (1995) yields Nelson and Siegel (1987) yields
tate - - - - - . - -
variable %= 1 basis point | o. = 10 basis points || o. = 1 basis point | o. = 10 basis points
Mean MAE Mean MAE Mean MAE Mean MAE
L -8.93 10.80 -3.05 9.66 6.69 39.44 -10.69 22.45
Sy 14.28 15.67 7.45 13.46 -2.78 37.30 15.13 26.69
Cy -21.70 32.33 -25.06 42.62 -43.72 74.43 -24.83 56.51

Table 16: Accuracy of Estimated States: Different Synthetic Yields

The table reports the mean of the sampling distribution of the mean errors (Mean) and mean absolute
errors (MAE) of each estimated state variable in the AFNS model using ML in the two-step approach
based on Svensson (1995) and Nelson and Siegel (1987) yields, each with the same ten maturities, 0.25,
0.5,1,2,3,5,7,10, 20, and 30 years. The mean is obtained by first computing the mean errors in each
of the simulated samples across the T = 196 observations, and we then report the average of these
means across the N = 100 simulated samples. Similarly, the MAE are obtained by first computing the
mean absolute errors in each of the simulated samples across the T' = 196 observations, and we then
report the average of these absolute means across the N = 100 simulated samples. The true states are
generated from the AFNS model as described in Section 5.1. All numbers are reported in basis points.

accurately with well-established curve-fitting techniques, we nevertheless find that seemingly
negligible errors in these synthetic yields do affect the estimated parameters in DTSMs. In
particular, all risk-neutral parameters are estimated with smaller biases and greater efficiency
in the proposed one-step approach compared with the conventional two-step approach. This
improvement is partly explained by the more densely representation of the yield curve in the
one-step approach through the entire panel of coupon bond prices, and partly by the omission
of seemingly negligible estimation errors in the synthetic zero-coupon yields. We also find that
parameters in the P-dynamics benefit from a one-step approach, although these parameters
are unrelated to the Q)-dynamics with an essential affine specification for the market prices of
risk. This improvement therefore arises mainly because the states are estimated with lower

biases and greater precision in the one-step approach compared to the two-step approach.?’

6 Forecasting the Canadian Three-Month Yield

The previous analysis has shown that parameters and latent states in the AFNS model are
estimated with smaller biases and greater effeciency by the one-step approach when compared
to the conventional two-step approach. The present section explores whether these advantages
are sufficiently large to improve the ability of the AFNS model to forecast short-term bond
yields out of sample.

We structure the forecast exercise to match the timing and frequency of the Consensus

Forecasts, which serves as our benchmark, given that it is the survey for the Canadian econ-

25One potential minor caveat with our current Monte Carlo study is its relatively small number of simulations
(N = 100). Ongoing work explores the robustness of our findings when N is increased to 1,000.
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Model Mean RMSE MAE
Consensus Forecasts -84.97 122.25 85.07

AFNS model:

One-step approach

All coupon bond prices -79.52  115.80  89.08
Two-step approach

Bank of Canada yields, standard sample -91.75 126.53  96.11
Bank of Canada yields, extended sample -100.98 130.03 101.60
Bank of Canada yields, reduced sample -80.91  120.09 87.76

Svensson (1995) yields, standard sample  -83.10 115.90 88.01
Svensson (1995) yields, extended sample -98.76  128.47 100.52
Svensson (1995) yields, reduced sample -81.94 118.96  86.62

Table 17: Summary Statistics of Forecast Errors
All forecasts are created via independent-factor models with diagonal K. All numbers are measured
in basis points.

omy with the longest history and largest panel of professional forecasters. To get a reasonable
handle on the persistence of the states in the AFNS model, we begin the forecast analysis
in December 2006. At the start of each month, the participants of the Consensus Forecasts
submit their projections no later than the date indicated on the front page of the monthly
release of the survey. Since we estimate our model with end-of-month data, we generate the
corresponding model forecasts from the estimated model dynamics and filtered states for the
month before the survey release. In this way, the model is handicapped by about a week rel-
ative to the survey panel. We adopt this cautious approach to ensure that the AFNS model
does not use recent end-of-month information, which may have been unavailable to partici-
pants in the Consensus Forecasts. This implies that the reported results are conservative in
terms of evaluating the forecasting ability of the AFNS model relative to the survey panel.
Accordingly, the AFNS model is estimated in real time by adding one month of data to the
sample at the time from December 2006 to April 2016, producing a total of 113 monthly
estimations and forecasts.

Table 17 summarizes the outcome of this forecasting exercise for the Canadian three-
month yield. The Consensus Forecasts overpredict the level of this yield during our forecasting
period, given its negative mean errors of -84.97 basis points. We see the same tendency in
the forecasts from the AFNS model, where the use of the one-step approach to estimate this
model gives the smallest (numerically) mean errors of —79.52 basis points. This version of

the AFNS model is also seen to outperform the Consensus Forecasts in terms of root mean
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square errors (RMSE), which are 115.80 basis points for the AFNS model but 122.25 basis
points for Consensus Forecasts. However, when using the mean absolute errors (MAE), we
obtain the opposite ranking. In line with our simulation study in Section 5, we also find that
a reduced sample with only six synthetic yields in the two-step approach does better than
using an extended sample with 31 synthetic yields.

Accordingly, the proposed one-step approach can also be used to generate competitive out
of sample forecasts when compared to surveys and the conventional two-step approach with

a limited number of yields.

7 Conclusion

This paper demonstrates the advantages of estimating DTSMs directly on actual bond prices
as opposed to using a limited number of synthetic zero-coupon yields. For our Canadian
sample of 105 bonds, we find that the risk-neutral parameters are those which are mostly
affected by using this one-step approach, and that seemingly small differences between two
data sets of synthetic yields with identical maturities can affect the estimated parameters
in DTSMs. We also find that estimation of a DTSM by the one-step approach gives a
substantially closer fit to actual bond prices than implied by the same model when it is
estimated by the conventional two-step approach. This shows that the use of synthetic yields
in the two-step approach may add a considerable amount of noise to the predicted bond prices
from an estimated DTSM.

We also explore the finite-sample properties of the proposed one-step approach and the
conventional two-step approach in a Monte Carlo study. A novel feature of this simulation
experiment is to work at the level of coupon bonds to account for estimation uncertainty in the
construction of synthetic zero-coupon yields. The main insight from this Monte Carlo study
is that the risk-neutral parameters in DTSMs are estimated with smaller biases and greater
efficiency in the one-step approach when compared to the conventional two-step approach.

There are obviously other advantages to estimating DTSMs directly on bond prices than
what is covered in the present paper. For example, DTSMs could be augmented with bond-
specific characteristics to enhance our understanding of liquidity premiums and their dynamics
as in Fontaine and Garcia (2012) and Andreasen et al. (2017). Similarly, the proposed one-
step approach reveals directly which bonds trade cheap or at a premium relative to the
overall market, and this could be useful for portfolio management, arbitrage trading, and

market surveillance. We leave these and other applications for future research.
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Appendix A: Characteristics of Canadian Government Bonds

Tables 18 to 20 provide the contractual characteristics of all 105 bonds and the number of monthly
observations for each bond. Our sample includes all fixed-coupon bonds issued between January 2000 and
April 2016 as well as 13 earlier bonds issued from 1990 to 1999. Generally, since 2008, each bond has had three
or more auctions and its final total amount outstanding has been CAD 9 billion or more, which represents a

substantial amount of notional.

. No. Issuance Number of | Total notional

Bond: coupon, maturity .

obs. Date Amount auctions amount
(1) 10.5% 3/15/2021" 196 | 12/15/1990 n.a. n.a. 567
(2) 9.75% 6/1/2021+ 196 5/9/1991 n.a. n.a. 286
(3) 9.25% 6/1/2022* 196 | 12/15/1991 n.a. n.a. 206
(4) 8% 6/1/2023" 196 | 8/17/1992 n.a. n.a. 2,358
(5) 9% 6/1/2025* 196 8/2/1994 n.a. n.a. 2,303
(6) 8% 6/1/2027" 196 5/1/1996 n.a. n.a. 4,036
(7) 5.75% 6/1/2029 196 2/2/1998 n.a. n.a. 10,950
(8) 4.5% 6/1/2001 14 12/15/1998 3,500 2 7,000
(9) 5% 9/1/2004* 53 3/1/1999 2,500 4 10,850
(10) 5.25% 12/1/2001 20 6/15/1999 3,500 2 7,000
(11) 5.5% 6/1/2010Jr 122 8/3/1999 2,600 4 10,400
(12) 6% 9/1/2005* 65 11/15/1999 2,800 4 11,100
(13) 5.75% 6/1/2002 26 12/1/1999 3,600 2 7,200
(14) 6% 6/1/2011Jr 131 5/1/2000 2,600 6 15,000
(15) 6% 12/1/2002 27 6/15/2000 3,600 2 7,100
(16) 5.75% 9/1/2006* 67 11/14,/2000 2,500 4 10,000
(17) 5.75% 6/1/2003 28 11/24,/2000 3,500 2 7,000
(18) 5% 12/1/2003 27 6/15/2001 3,500 2 7,000
(19) 5.75% 6/1/2033% 175 | 10/15/2001 2,000 6 10,700
(20) 5.25% 6/1/2012Jr 125 | 10/29/2001 2,500 4 9,900
(21) 4.5% 9/1/2007* 67 11/19/2001 2,500 4 9,800
(22) 3.5% 6/1/2004 28 11/30/2001 3,500 2 7,000
(23) 4.25% 12/1/2004 28 5/31/2002 3,500 2 6,500
(24) 5.25% 6/1/2013Jr 125 11/4/2002 2,400 4 9,600
(25) 4.25% 9/1/2008" 67 11/18/2002 2,400 4 9,400
(26) 3.5% 6/1/2005 28 11/29/2002 3,500 2 7,000
(27) 3% 12/1/2005 27 6/13/2003 2,700 2 5,200
(28) 5% 6/1/2014Jr 125 | 10/20/2003 2,400 4 9,100
(29) 4.25% 9/1/2009 67 12/1/2003 2,300 4 8,800
(30) 3% 6/1/2006 27 12/19/2003 3,500 2 7,000
(31) 3.25% 12/1/2006 28 5/28,/2004 2,800 2 5,600
(32) 5% 6,/1/2037" 142 7/19/2004 1,500 8 11,000
(33) 4.5% 6/1/2015T 125 | 10/18/2004 2,100 4 8,400
(34) 4% 9/1/2010* 67 11/22/2004 2,100 4 8,100
(35) 3% 6/1/2007 27 12/10/2004 2,800 2 5,300

Table 18: Sample of Canadian Government Fixed-Coupon Bonds

The table reports the characteristics, first issuance date and amount, the total number of auctions, and
total amount issued in millions of Canadian dollars for the Canadian government fixed-coupon bonds in the
sample. Also reported are the number of monthly observation dates for each bond during the sample period
from January 31, 2000, to April 29, 2016. Asterisk * indicates five-year bonds, dagger { indicates ten-year
bonds, plus + indicates thirty-year bonds, and cross X indicates fifty-year bonds based on the official maturity

grouping used by the Bank of Canada.
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. No. Issuance Number of | Total notional

Bond: coupon, maturity .

obs. Date Amount auctions amount
(36) 2.75% 12/1/2007 27 6/10,/2005 3,400 2 6,800
(37) 4% 6/1/2016T 124 11/7/2005 2,100 4 8,700
(38) 3.75% 9/1/2011* 67 11/21/2005 1,900 4 8,000
(39) 3.75% 6/1,/2008 27 12/16/2005 2,400 1 2,400
(40) 4.25% 12/1/2008 27 6/16,/2006 3,400 2 6,800
(41) 4% 6/1/2017T 115 | 10/16/2006 2,300 4 9,800
(42) 3.75% 6/1/2012* 64 11/6,/2006 2,000 3 6,000
(43) 3.75% 6/1/2009 28 11/17/2006 2,400 1 2,400
(44) 4.25% 12/1/2009 28 5/25/2007 3,500 2 7,100
(45) 4.25% 6/1/2018T 103 | 10/29/2007 2,500 5 10,100
(46) 3.75% 6/1/2010 28 11/30/2007 3,300 1 3,300
(47) 3.5% 6/1/2013" 61 2/25/2008 2,000 5 15,000
(48) 2.75% 12/1/2010 28 5/23/2008 3,500 3 11,600
(49) 4% 6/1/20414r 95 6/9/2008 1,400 10 14,100
(50) 3.75% 6/1/2019Jr 91 10/6,/2008 2,500 5 16,000
(51) 3% 6/1/2014* 65 10/21/2008 3,000 4 16,000
(52) 1.25% 6/1/2011 26 1/27/2009 4,500 3 11,000
(53) 2% 12/1/2014* 65 4/20,/2009 3,000 5 15,000
(54) 1% 9/1/2011 25 5/8/2009 3,500 3 10,000
(55) 2% 9/1/2012 37 6/1/2009 3,500 5 16,500
(56) 1.25% 12/1/2011 25 8/21,/2009 3,000 3 9,500
(57) 3.5% 6/1/2020T 80 9/8/2009 3,000 4 12,500
(58) 1.5% 3/1/2012 25 11/16/2009 3,000 3 9,000
(59) 2.5% 6/1/2015* 64 11/23/2009 3,000 3 9,000
(60) 1.75% 3/1/2013 35 12/14/2009 3,200 6 18,600
(61) 1.5% 6/1/2012 24 3/12/2010 3,000 3 9,000
(62) 3% 12/1/2015* 65 4/19/2010 3,500 3 10,500
(63) 2.5% 9/1/2013 37 5/17/2010 3,000 3 9,200
(64) 3.25% 6/1/2021T 70 7/19/2010 3,000 4 11,500
(65) 1.5% 12/1/2012 25 8/13/2010 3,000 4 12,000
(66) 2% 6/1/2016* 64 11/8/2010 3,500 3 9,900
(67) 2% 3/1/2014 36 12/13/2010 3,200 3 9,600
(68) 2% 8/1/2013 25 4/8/2011 3,500 3 10,500
(69) 2.75% 9/1/2016* 61 4/26/2011 3,500 3 10,500
(70) 2.25% 8/1/2014 37 5/2/2011 3,000 5 15,600

Table 19: Sample of Canadian Government Fixed-Coupon Bonds cont.

The table reports the characteristics, first issuance date and amount, the total number of auctions, and
total amount issued in millions of Canadian dollars for the Canadian government fixed-coupon bonds in the
sample. Also reported are the number of monthly observation dates for each bond during the sample period
from January 31, 2000, to April 29, 2016. Asterisk * indicates five-year bonds, dagger { indicates ten-year
bonds, plus + indicates thirty-year bonds, and cross X indicates fifty-year bonds based on the official maturity

grouping used by the Bank of Canada.
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Bond: coupon, maturity No. Issuance Number of | Total notional
’ obs. Date Amount auctions amount
(71) 3.5% 12/1/2045+ 59 6/13/2011 1,400 10 14,400
(72) 1.5% 11/1/2013 25 7/15/2011 3,500 3 10,500
(73) 2.75% 6/1/2022Jr 58 8/2/2011 2,500 5 12,700
(74) 1.5% 3/1/2017" 55 10/17/2011 3,500 3 10,500
(75) 1% 2/1/2014 25 10/21/2011 3,500 3 10,500
(76) 1% 2/1/2015 36 11/7/2011 3,000 5 15,600
(77) 0.75% 5/1/2014 24 1/13/2012 3,500 3 10,500
(78) 1.5% 8/1/2015 37 4/30/2012 2,900 5 15,300
(79) 1.5% 8/1/2017* 48 5/14/2012 3,400 3 10,200
(80) 1% 11/1/2014 26 6/22/2012 3,300 3 9,900
(81) 1.5% 6/1/2023T 46 7/30/2012 2,600 5 14,200
(82) 1.25% 2/1/2016 37 10/15/2012 2,700 5 14,700
(83) 1.25% 3/1/2018* 42 11/13/2012 3,400 3 10,200
(84) 1% 5/1/2015 24 1/18/2013 3,300 3 9,900
(85) 1% 8/1/2016 37 4/15/2013 2,700 6 17,100
(86) 1.25% 9/1/2018* 36 5/13/2013 3,400 3 10,200
(87) 2.5% 6/1/2024Jr 35 7/2/2013 2,800 5 13,800
(88) 1% 11/1/2015 25 7/26/2013 3,300 3 9,900
(89) 1.5% 2/1/2017 31 10/15/2013 2,700 6 17,100
(90) 1.75% 3/1/2019* 30 11/12/2013 3,400 3 10,200
(91) 1% 5/1/2016 25 1/31/2014 3,300 3 10,000
(92) 1.75% 9/1/2019* 25 4/14/2014 3,400 3 10,200
(93) 2.75% 12/1/2064* 25 4/28/2014 n.a. n.a. 3,500
(94) 1.25% 8/1/2017 24 5/20/2014 2,700 6 19,100
(95) 2.75% 12/1/20484r 24 6/2/2014 1,400 5 7,000
(96) 2.25% 6/1/2025Jr 23 6/30/2014 2,700 5 13,100
(97) 1% 11/1/2016 21 8/15/2014 3,400 3 10,200
(98) 1.5% 3/1/2020" 19 10/14/2014 3,400 3 10,200
(99) 1.25% 2/1/2018 18 11/10/2014 2,700 6 19,200
(100) 0.25% 5/1/2017 15 2/13/2015 3,400 3 10,400
(101) 0.75% 9/1/2020 13 4/13/2015 3,300 4 13,000
(102) 1.5% 6/1/2026Jr 10 7/21/2015 2,500 4 10,500
(103) 0.25% 11/1/2017 9 8/7/2015 3,300 4 13,400
(104) 0.75% 3/1/2021* 7 10/19/2015 3,300 4 13,800
(105) 0.25% 5/1/2018 3 2/5/2016 3,700 3 11,100

Table 20: Sample of Canadian Government Fixed-Coupon Bonds cont.

The table reports the characteristics, first issuance date and amount, the total number of auctions, and
total amount issued in millions of Canadian dollars for the Canadian government fixed-coupon bonds in the
sample. Also reported are the number of monthly observation dates for each bond during the sample period
from January 31, 2000, to April 29, 2016. Asterisk * indicates five-year bonds, dagger { indicates ten-year
bonds, plus + indicates thirty-year bonds, and cross X indicates fifty-year bonds based on the official maturity

grouping used by the Bank of Canada.
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Appendix B: Construction of Zero-Coupon Yields

This section describes how we construct zero-coupon yields by the Svensson (1995) discount function using
the panel of Canadian government fixed-coupon bond prices analyzed in the main text. The Svensson (1995)

yield curve has a flexible functional form given by
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where we impose the restrictions that A1 > A2 > 0. This function contains the level, slope, and curvature
components known from Nelson and Siegel (1987) and augments them with an additional curvature factor to
provide a better fit to the long end of the yield curve. The corresponding discount function is easily obtained
as P7(1) = e ¥*()7. Now, consider the value at time ¢ of a fixed-coupon bond with maturity at ¢ + 7 that
pays an annual coupon C' semi-annually. Its price, denoted P;(7,C), is simply the sum of its remaining cash

flow payments weighted by the zero-coupon bond price function P7°(7):
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For each observation date, the parameters in the Svensson (1995) curve, (Bo, 51, B2, 83, A1, A2), are estimated

by optimizing the following objective function

Ny, t 1
. data,i /\1 2
min E ﬁ(Pt - P})7,
i=1 "t

where n,,; is the number of coupon bond prices observed on day ¢, Ptd“m’i is the observed price for bond
number i, I/DE is its price implied by the Svensson (1995) discount function, and D} is its duration, which
is model-free and calculated before estimation based on the Macaulay formula. The stated objective is to
minimize the weighted sum of the squared deviations between the actual bond prices and the predicted prices,
where the weights are the inverse of the durations of each individual security. This is identical to the objective
function used by Giirkaynak et al. (2007, 2010). The optimization for each observation date is started at the

same parameter vector:

Bo 0.04173257
B —0.02703468
B | | —0.05262533
Bs | | 0.02054742
At 0.8378759
Ao 0.09652915

Tables 21 and 22 report the summary statistics of the mean errors and the mean absolute errors for
the ten constant-maturity zero-coupon yields constructed using the Svensson (1995) yield curve as described
above when the underlying bond prices are simulated from the AFNS model as described in Section 5.1 with

measurement error standard deviation equal to 0. = 1 basis point and o. = 10 basis points, respectively.
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Maturity Mean errors, 0. = 1 basis point
in months | Mean | Std. dev. || 5 percentile | 157 quartile | Median | 3"% quartile | 95 percentile
3 -4.09 2.83 -9.48 -5.70 -3.75 -2.16 0.09
6 -2.37 1.69 -5.78 -3.34 -1.99 -1.21 -0.18
12 -0.32 0.42 -1.19 -0.61 -0.26 0.01 0.20
24 0.78 0.60 -0.17 0.39 0.69 1.07 1.82
36 0.43 0.47 -0.10 0.07 0.30 0.73 1.32
60 -0.48 0.37 -1.11 -0.68 -0.45 -0.25 0.05
84 -0.67 0.62 -1.94 -1.00 -0.51 -0.21 0.07
120 -0.34 0.48 -1.06 -0.71 -0.27 0.05 0.31
240 0.64 0.68 -0.36 0.07 0.57 1.02 1.91
360 -1.32 1.14 -3.12 -2.23 -1.36 -0.49 0.41
Maturity Mean absolute errors, . = 1 basis point
in months | Mean | Std. dev. || 5 percentile | 15 quartile | Median | 3"¢ quartile | 95 percentile
3 6.79 2.55 4.00 4.80 6.15 7.84 11.57
6 3.89 1.63 2.19 2.64 3.42 4.65 6.99
12 1.05 0.40 0.57 0.76 0.95 1.28 1.83
24 1.42 0.51 0.87 1.03 1.27 1.64 2.35
36 0.99 0.45 0.49 0.66 0.84 1.23 1.84
60 1.05 0.25 0.74 0.87 1.01 1.14 1.49
84 1.26 0.56 0.62 0.81 1.08 1.56 2.34
120 0.94 0.28 0.61 0.73 0.86 1.11 1.43
240 1.46 0.53 0.85 1.04 1.38 1.72 2.64
360 3.09 0.81 1.93 2.40 2.97 3.62 4.62

Table 21: Summary Statistics of Errors of Constructed Yields

The top panel reports the summary statistics of the mean errors between the true zero-coupon bond yields and

the zero-coupon bond yields constructed using the Svensson (1995) yield curve based on N = 100 simulated

data sets generated by the independent-factor AFNS model, each with a distribution of coupon bond prices

identical to the sample of Canadian fixed-coupon bond prices described in Section 2 and with each simulated

bond price being added an i.i.d. measurement error with zero mean and a uniform measurement error standard

deviation of o. = 1 basis point scaled by the bond’s duration. The bottom panel reports the corresponding

summary statistics of the mean absolute errors. All numbers are measured in basis points.
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Maturity Mean errors, o. = 10 basis points
in months | Mean | Std. dev. || 5 percentile | 157 quartile | Median | 3"% quartile | 95 percentile
3 -3.00 2.59 -7.12 -4.61 -2.79 -1.02 1.44
6 -1.74 1.54 -4.37 -2.72 -1.66 -0.58 0.71
12 -0.24 0.48 -1.07 -0.54 -0.30 0.06 0.67
24 0.52 0.57 -0.52 0.22 0.46 0.85 1.43
36 0.24 0.44 -0.37 -0.11 0.23 0.56 1.04
60 -0.34 0.45 -1.16 -0.63 -0.26 -0.03 0.25
84 -0.37 0.58 -1.56 -0.64 -0.28 0.06 0.34
120 -0.14 0.43 -0.85 -0.52 -0.04 0.18 0.43
240 0.27 0.65 -0.90 -0.18 0.31 0.61 1.19
360 -0.90 1.31 -3.07 -1.78 -1.16 0.13 1.16
Maturity Mean absolute errors, o. = 10 basis points
in months | Mean | Std. dev. || 5 percentile | 15 quartile | Median | 3"¢ quartile | 95 percentile
3 12.48 1.44 10.47 11.50 12.21 13.15 15.58
6 7.84 0.91 6.67 7.24 7.62 8.33 9.34
12 3.58 0.27 3.17 3.41 3.54 3.77 4.05
24 3.52 0.26 3.09 3.36 3.52 3.69 3.93
36 3.12 0.22 2.78 2.96 3.12 3.30 3.46
60 3.13 0.22 2.80 2.97 3.14 3.28 3.50
84 3.30 0.21 2.96 3.17 3.30 3.42 3.64
120 2.88 0.21 2.48 2.75 2.85 3.00 3.19
240 3.76 0.34 3.23 3.49 3.80 3.99 4.26
360 9.34 1.28 7.58 8.48 9.12 10.13 11.53

Table 22: Summary Statistics of Errors of Constructed Yields

The top panel reports the summary statistics of the mean errors between the true zero-coupon bond yields and

the zero-coupon bond yields constructed using the Svensson (1995) yield curve based on N = 100 simulated

data sets generated by the independent-factor AFNS model, each with a distribution of coupon bond prices

identical to the sample of Canadian fixed-coupon bond prices described in Section 2 and with each simulated

bond price being added an i.i.d. measurement error with zero mean and a uniform measurement error standard

deviation of o¢

= 10 basis points scaled by the bond’s duration. The bottom panel reports the corresponding

summary statistics of the mean absolute errors. All numbers are measured in basis points.
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Appendix C: The Extended Kalman Filter Estimation

This appendix describes the model estimations based on the Kalman filter and the extended Kalman filter.

For affine Gaussian models in general, the conditional mean vector and the conditional covariance matrix are?S

EP[XiiadlFi] = (I—exp(—KPAL))0" + exp(—KT At)X;,

VvE _ AL ke, 1—(KP)s
[XeqaelFe] = e I ds,
t

where At is the time between observations. Conditional moments of discrete observations are computed and

the state transition equation is obtained as
Xy = (I — exp(—K"At)0” + exp(— K" At) Xy a¢ + &,

where &; refers to the Gaussian state innovations.

In the standard Kalman filter, the measurement equation is linear

Yyt = A+ BX; + &,

() =16) 6wl

where the matrix H is assumed to be diagonal, while the matrix @ has the following structure

and the assumed error structure is

At ,
Q= / e K oy (KD s g
0

In addition, the transition and measurement errors are assumed to be orthogonal to the initial states. Due to
the assumed stationarity, the Kalman filter is initialized at the unconditional mean and variance of the state
variables under the P-measure, i.e., Xo = oF and Yo = Ooo eiKPSEE'f(KP),Sds. Denote the information
available at time ¢t by Y: = (y1,¥2,...,yt), and denote model parameters by 1. Let At = 1 and consider period
t — 1 and suppose that the state update X:_1 and its mean square error matrix 3;_; have been obtained. The
prediction step is

Xijpo1 = B [Xe|Yeoa] = @7 (¢) + €7 () X1,

Sepee1 = O () D1 0N () + Qu(e)),

where &0 = (I — exp(—~K"A))07, &X' = exp(— K" At), and Q, = [ e K" oxx/~ (K s g,

In the time-t update step, Xy;—; is improved by using the additional information contained in Y, i.e.,
X¢ = B[X¢|Yy] = Xppo1 + Seje 1 B() F Moy,

St =St — See1 BO) FT B) S,

where
vi =y — Elys|Yic1] = ye — A(Y) — B(¥) Xypi—1,

Fy = cov(vi) = B(¥)Sye—1B(W) + H(¥),

H(Y) = diag(o2(m1), ..., 02(TN)).

26Throughout, conditional and unconditional covariance matrices are calculated using the analytical solutions
provided in Fisher and Gilles (1996).
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At this point, the Kalman filter has delivered all ingredients needed to evaluate the Gaussian log likelihood,

which reads
d 1
LEEE () =logl(y1,...,yr; ¥ E_ ( — —log(2m) — log |Fy| — EvéFflvt)

where N is the number of observed yields. Now, the likelihood is numerically maximized with respect to
1) using the Nelder-Mead simplex algorithm. Upon convergence, the standard errors are obtained from the

estimated covariance matrix,

S 111 Dlogli(P) Dlogli(B) -1
Q@) == [_ > B o0 ] ’

t=1

where ZZ denotes the estimated model parameters.

In model estimations with coupon bond prices in the one-step approach and for the B-AFNS model using

the two-step approach, the extended Kalman filter is needed because the measurement equations are no longer
affine functions of the states. Instead, the measurement equation takes the general form

Pi(th, )

00 L — (X th, T 3
D;(té,ﬂ) g( ty O7T7¢)+5t

In the extended Kalman filter, this equation is linearized using a first-order Taylor expansion around the best
guess of X; in the prediction step of the Kalman filter algorithm. Thus, in the notation introduced above, this

best guess is denoted X;|;_; and the approximation is given by

89(Xta t67 Tiy 7/})

Xeith, 78, 0) &~ g(Xyje1; to, 7", Xt — Xypo1)-
9( X5 6, 7%, 9) = g(Xepe—13to, 7, 0) + X, Xt:Xm,l( t t)t—1)

Thus, by defining

89(Xt;t077_ 71/}) Xt\tfl and Bt(¢) = ag(XtQtoﬂ' 77‘/})

A = g(Xipe— ;ti7 i7 - ’
t(¥) = g( tlt—1500, T P) X, Xe=Xj11 X, X=Xy

the measurement equation can be given on an affine form as

Pi(ty, ")

Dé(té,’?’i) = At(l/’) + Bt(d))Xt +5i7

and the steps in the algorithm proceed as previously described, except that the standard errors are obtained

from

HeML (1;) _1ly : Z 310glt $) dlogLi(9) HD) ™,

o

where H (1)).is the Hessian matrix evaluated as described in Harvey (1989).
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Appendix D: The One-Step Approach and Full ML Estimation

To describe the procedure for concentrating out Xi.r of the log-likelihood function in equation (10),

observe that

oL (’lZ)D/l:T)

e = —diRy" (Xi — h(Xi—1;0)) (13)

thx (Xe;9) Ry’ (X1 — h(Xe;0))
—9x (Xe;9) Roy (Yo — g (Xe;9))
= 0
fort =1,2,...,T, where di = 0 and d¢ = 1 for ¢ > 1. The matrix hx (X¢;¢) = W and denotes the ng X ns
t

Jacobian of h (X;1) with respect to Xy, and similarly, gx (X¢;¢) = W with dimensions ny,: X ny. Let
t

X{Z;« denote the points around which the system in (8) and (9) is linearized. That is,
Vi=g (X750) +gx (X750) (X0 - x7) + e, (14)

Xen = h (X50) + hx (X50) (X0 = X0) + win. (15)

For a given value of 1, let XLT (1) denote the state estimates from running the Kalman smoother on the
linearized system in equations (14) and (15). As shown in Durbin and Koopman (2001), X1.7 (¢) then solves

the following system of equations

—dey (X = b (X200) - hx (X0050) (X () - X)) (16)
e (X0O) B2 (X~ h (X150) — b (X059) (X ) - X))
—gx (Xt(i)”/;),R;tl (yt _9<Xt(i>;w) —gx (Xt(i);w) (X} ) —Xt(“))
=0
for t = 1,2,...,T. Accordingly, when X; (1)) = X" (1) for all ¢, the conditions in equations (16) reduces to

those in equations (13), meaning that X1.7 (1) is the ML estimates of the states for a given value of 1. The

iterative procedure to find this solution is as follows:

Step 1 Run the Extended Kalman filter and smoother on the system in equations (8) and (9) to obtain
XEET (). Set i =1 and let X{1). (v) = X7 ().

Step 2 Run the Extended Kalman filter and smoother on the linearized system in equations (14) and (15) to
obtain Xi.7 (¥).

Step 3 If | X; () — Xt(i) (1/))‘ > ¢ for any t, where € is a small number, let i =i+ 1 and X{Z} (¥) = Xir ()

and go to step 2, otherwise stop.

Let X1.1 (1) denote the states from this procedure, which depends on 1. The concentrated log-likelihood
function is then L€ (¢|Y1.7) = L (%Xlch () |Y1;:r)7 which we optimize across 1 to obtain the ML estimates.

The asymptotic standard errors for 1/A)ML are obtained in a standard fashion, i.e.,

AVar (dare) = [i ¢ (i) ¢ (m)’} - (17)

t=1

where the concentrated score s{ (’lZ)A{L) is computed by numerical differentiation of L (¢|Y1.7).
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Appendix E: Full ML Estimation with Stochastic Volatility

Suppose X; evolves as

Xip1 = h(Xg;0) + f (Xt 0413 0) (18)

where the f-function accommodates stochastic volatility in the dynamics of X;. Lagging equation (18) by one

period and inserting it into equation (8) gives

Yo = g(h(Xe-1;0) + f (Xe1,60)50) + vt (19)
G(Xt—1,5650)
[ X, ] _ [h(xﬂ;e)w(xﬂ,et) } +[ 0 ]
Et41 0 Upf1

~ /
where ut+1 ~ NZD (0, R.). Thus, by expanding the state vector to X; = [ X, 1 € } , the law of motion
in equation (18) with nonlinearities between the states and the innovations can be rewritten into an extended

system with only linear innovations as in equations (8) and (9).
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Appendix F: Formulas for Short Rate Expectations and Term
Premiums

In this appendix, we derive the analytical formulas for short-rate expectations and term premiums in the
independent-factor AFNS model. Recall that term premium is defined as

1 t+1 P
TP(1) =ye(1) — ;/ E; [rs]ds.
t
Furthermore, recall that for affine stochastic differential equations of the form

dX; = K7 (07 — X1)dt + Sdw”,

the conditional expectation is given by

El[Xiir] = (I — exp(—=KT7))0" + exp(—K'7) X:.

In the AFNS model, the instantaneous short rate is defined as

re = Ly + S,

while the specification of the P-dynamics considered is given by

dL; kb0 0 or Lt on 0 0 dwlt
s, | =1 o «& o0 o | -1 s dt+| 0 o522 0 dwSF
dc; 0 0 ki or Cy 0 0 o33 dw ot

Thus, the mean-reversion matrix is given by
K11 0 0
P P
K = 0 K929 0
0 0 ki
Its matrix exponential can be calculated analytically and is given by
P
e~ T 0 0
exp(—KPT) = 0 e BT 0
0 0 e rhT

Now, the conditional mean of the state variables is

e 0 L —6F 0F + e~ "7 (L, — 6F)
El (X =0 + 0 erET S —0F | = oF +erim(s, —0F)
0 0 e mssT Cy —0F OF 4+ ¢33 (Cy — OF)

In order to get back to the term premium formula, we note that the conditional expectation of the instantaneous
short rate process is:

El[r]

EF L. + S

0F 4 e 1D (L, — P) 498 4 e "0 (s, — gF).

Next, we integrate the expected short rate over the time interval from ¢ to ¢t 4+ 7 as in the definition of the term
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premium:

T p TP Pl(s—t P P Do(s—t P
/ B [rs]ds / (91 e CTN(L, —0F) + 05 + e 20708, — 03 >)d3
t t

P P
1 _ 7&117' 1 _ *N22T
(OF + 057 + (Lt — 07) — 5 + (S¢ — 0 ) —
K11 Koo

The relevant term to go into the term premium formula is the average expected short rate

1 t+7 P P P P 1— 67&{317' P 1_67ﬁ§27
= E; [rs]lds=0 0 Li—0)———+ (St — 03 ) ———
S B = 0 4 0f (L= 0D (5 - 06) T
The final expression for the term premium is then given by
1 t+7 P
TR() = wr)-1 [ Efpds
t
1— —AT 1— —AT _ A
= Lt ———S+(— —e”)ct—ﬂ
AT AT T
1—e "7 py1l— e~ 22T
—07 — 08 — (L, — 67 — (St —03))———
1 2 — (Lt 1) s (St 2) e
1— e riim 1—e™ 1 e rom 1—e A
( kDT et AT Kb, T i AT ¢ K
_ P _ P
1—e 117 P 1 — e "227 P A(T)
ROT KT T
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