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Abstract

A representative agent contemplates the possibility of an occasionally binding zero
lower bound (ZLB) on the nominal interest rate that is driven by switching between two
local equilibria, labeled the “targeted”and “deflation”solutions, respectively. This view
turns out to be true in simulations, thus validating the agent’s beliefs. I solve for the
time series of stochastic shocks and endogenous forecast weights that allow the model
to exactly replicate the observed time paths of U.S. data since 1988. The data since the
start of the ZLB episode in 2008.Q4 are best described as a time-varying mixture of the
two local equilibria.
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1 Introduction

The sample period from 1988 onwards is generally viewed as an example of consistent U.S.

monetary policy aimed at keeping inflation low while promoting sustainable growth and full

employment. Amazingly, the U.S. federal funds rate was pinned close to zero for 7 consecutive

years during this period. The U.S. economy is not alone in experiencing an extended period of

zero or mildly negative nominal interest rates in recent decades. Short-term nominal interest

rates in Japan have remained near zero since 1998.Q3 except for the relatively brief period

from 2006.Q4 to 2008.Q3. Short-term nominal interest rates in Switzerland and the United

Kingdom have been close to zero or slightly negative since 2009.Q1. Outside of these episodes,

all four countries exhibit a strong positive correlation between nominal interest rates and

inflation, consistent with the Fisher relationship.

Benhabib, Schmitt-Grohé, and Uribe (2001a,b) show that imposing a zero lower bound

(ZLB) on the nominal interest rate in a standard New Keynesian model gives rise to two

long-run endpoints (steady states).1 The basic idea is illustrated in Figure 1 which is adapted

from Bullard (2010). Using data from 1922.Q1 to 2017.Q4, the figure plots the 4-quarter

CPI inflation rate versus the nominal three-month Treasury bill yield. Nominal Treasury

yields encountered the ZLB during the 1930s and from 2008.Q4 though 2015.Q4. The two

intersections of the ZLB-augmented monetary policy rule (solid red line) with the Fisher

relationship (dashed black line) define two long-run endpoints. I refer to these two local

equilibria as the “targeted”and “deflation”solutions, respectively. The aim of this paper is

to develop a quantitative New Keynesian model that can account for the pattern of inflation

and interest rates observed in Figure 1 since 1988.

As is well known, the New Keynesian deflation equilibrium is locally indeterminate. I

therefore consider a minimum state variable (MSV) solution that rules out sunspot variables

and extra lags of fundamental state variables. Model variables in the deflation equilibrium

have distributions with lower means and higher variances than those in the targeted equilib-

rium. But the significant overlap in the various distributions creates a dilemma for an agent

1I use the terminology “long-run endpoints”rather than “steady states”because the model developed here
allows for permanent shifts in the long-run natural real rate of interest (r -star) which, in turn, can shift the
long-run values of some macroeconomic variables.
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who seeks to determine the degree to which a string of recent data observations are drawn

from one local equilibrium or the other.

The model incorporates an exogenous shock to the agent’s discount factor that gives rise to

movements in the short-run natural real rate of interest. The long-run endpoint of the natural

rate process (called r-star) is allowed to shift over time in a manner that approximates the

r-star series estimated by Laubach and Williams (2016).

The representative agent in the model contemplates the possibility of an occasionally

binding ZLB that is driven by switching between the two local equilibria. This view turns

out to be true in the simulations, thus validating the agent’s beliefs. The agent constructs

forecasts using a form of model averaging, where the time-varying forecast rule weights are

determined by recent performance, as measured by the root mean squared forecast errors

for the output gap and inflation (the two variables that the agent must forecast). Sustained

intervals when the short-run natural rate of interest remains below the Kalman filter estimate

of r-star (implying a negative natural rate gap) can induce the agent to place a substantially

higher weight on the deflation forecast rules, causing the deflation equilibrium to occasionally

become fully realized. These episodes are accompanied by highly negative output gaps, a

binding ZLB constraint, and low or negative inflation. But even outside of such episodes,

the agent may continue to assign a nontrivial weight to the deflation equilibrium, causing the

central bank to persistently undershoot its inflation target.

I solve for the time series of stochastic shocks and endogenous forecast weights that allow

the switching model to exactly replicate the observed time paths of the CBO output gap,

quarterly PCE inflation, and the federal funds rate since 1988. The data since the start

of the ZLB episode in 2008.Q4 are best described as a time-varying mixture of the two

local equilibria. The model-implied cost push shock turns positive from 2009.Q2 through

2013.Q1, thus helping to solve the “missing disinflation puzzle”(Coibion and Gorodnichenko

2015). The model-implied weight on the targeted forecast rules undergoes a sustained decline

starting in 2008.Q4. Even at the end of the data sample in 2017.Q4, the weight on the

targeted forecast rules is only 0.68, thus helping the switching model to account for the

persistent undershooting of the Fed’s inflation target from 2012 through 2017. In this way,
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the switching model provides a potential explanation for the “missing inflation puzzle” in

recent years (Jørgensen and Lansing 2019).

The path of expected inflation in the switching model starts to decline after 2008.Q4 and

remains below the Fed’s 2% inflation target through the end of the data sample. This pat-

tern is very similar to the 1-year expected inflation rate derived from inflation swap contracts

(Haubrich, Pennacchi, and Ritchken 2012). It is also strongly correlated with the 3-month

expected inflation rate implied by the Aruoba Term Structure of Inflation Expectations (AT-

SIX) framework (Arouba 2019). In a counterfactual exercise that employs the same time

series of exogenous shocks, I show that introducing a direct response to the natural rate gap

in the monetary policy rule helps to reduce downside fluctuations in the output gap and

inflation, thereby increasing the end-of-sample weight assigned to the targeted equilibrium

forecast rules.

The results in this paper are closely related to recent work by Aruoba and Schorfheide

(2016) and Aruoba, Cuba-Borda, and Schorfheide (2018). These authors construct models in

which the economy can switch back and forth between a targeted-inflation regime and a defla-

tion regime, depending on the realization of an exogenous sunspot variable. The two regimes

are analogous to the two local equilibria considered here. They employ various model specifi-

cations to infer whether interest rate and inflation observations in the data are more likely to

have been generated by one regime or the other. Aruoba, Cuba-Borda, and Schorfheide (2018)

conclude (p. 116) that: “the U.S. remained in the targeted-inflation regime during its ZLB

episode, with the possible exception of the early part of 2009 where evidence is ambiguous.”

An important premise underlying the results of Aruoba, Cuba-Borda, and Schorfheide

(2018) is that the observed data must come from one regime or the other. But given the

data, they compute the time-varying probability that the data was generated by one regime

or the other. In contrast, the switching model developed here generates data that is actually

a time-varying mixture of the model’s two local equilibria. This is due to the time-varying

forecast weights assigned by the representative agent in the model. The forecast weights,

in turn, influence the model-generated data. So, the deflation equilibrium can influence the

model-generated data even if it is never fully realized. Another important difference is that
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the probability of transitioning between the two local equilibria is endogenous here and can

therefore be influenced by a change in the monetary policy rule or other model parameters.

The switching model shares some similarities with the work of Sargent (1999) in which the

economy can endogenously transition between states of high versus low inflation, depending on

policymakers’perceptions about the slope of the long-run Phillips curve. Here, the endogenous

switching depends on the representative agent’s perceptions about the best forecast weights.

Another related paper is one by Dordal-i-Carrera, et al. (2016). These authors develop a

NewKeynesian model with volatile and persistent “risk shocks”(i.e., shocks that drive a wedge

between the nominal policy rate and the short-term bond rate) to account for infrequent but

long-lived ZLB episodes. A risk shock in their model is isomorphic to a short-run natural rate

shock here. Large adverse risk shocks are themselves infrequent and long-lived. Unlike here,

their analysis does not consider model solutions near the deflation equilibrium, but rather

focuses on scenarios in which fundamental shocks are large enough to push the targeted

equilibrium to a point where the ZLB becomes binding.2 In contrast, the model developed

here accounts for infrequent but long-lived ZLB episodes via endogenous switching between

two local equilibria, i.e., the shock process itself is not the sole driving force for the infrequent

and long-lived ZLB episodes.

As part of the quantitative analysis, I examine how raising the central bank’s inflation

target can influence the ZLB binding frequency and the volatility of macro variables in the

switching model. I find that even with an inflation target of 4%, the ZLB binding frequency

remains elevated at around 8% and the average duration of a ZLB episode is 12.4 quarters.

Once the deflation equilibrium is taken into account, raising the inflation target appears to

be a less effective solution for avoiding long-lived ZLB episodes.

The New Keynesian deflation equilibrium is often ignored in the literature because it is

not locally stable under typical least-squares learning algorithms. However, Mertens and

Ravn (2014) demonstrate that the deflation equilibrium remains quantitatively important

even in the presence of learning. A somewhat different conclusion is reached by Christiano,

Eichenbaum, and Johannsen (2018). Arifovic, Schmitt-Grohé, and Uribe (2018) demonstrate

2This is also the methodology pursued by Reifschneider and Williams (2000), Schmitt-Grohé and Uribe
(2010), Chung, et al. (2012), Coibion, Gorodnichenko, and Wieland (2012), and Kiley and Roberts (2017).
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that the deflation equilibria can be locally stable under a form of social learning. Armenter

(2018) considers an extension of Benhabib, Schmitt-Grohé and Uribe (2001a,b) in which

monetary policy is governed not by a Taylor-type rule, but rather by the optimal interest rate

rule under discretion that minimizes the central bank’s loss function. He shows that it may

not be possible to achieve the targeted equilibrium if agents’initial inflation expectations are

below the central bank’s inflation target.

2 Model

The framework for the analysis is a three equation New Keynesian model, augmented by a

zero lower bound constraint on the nominal policy interest rate. The log-linear version of the

standard New Keynesian model is taken to represent a set of global equilibrium conditions,

with the only nonlinearity coming from the ZLB. The setup is a reduced form version of a

fully-specified nonlinear New Keynesian DSGE model, but has the advantage of delivering

transparency of the model’s dynamics.3

Private-sector behavior is governed by the following global equilibrium conditions:

yt = Êt yt+1 − α[it − Êt πt+1 − rt] + νt, (1)

πt = βÊt πt+1 + κyt + ut, (2)

where equation (1) is the representative agent’s consumption Euler equation and equation (2)

is the Phillips curve that is derived from the representative firm’s optimal pricing decision.

The variable yt is the output gap (the log deviation of real output from potential output), πt

is the quarterly inflation rate (log difference of the price level), it is the nominal policy interest

rate, and rt is the short-run natural real rate of interest.4 As explained further below, the

agent’s subjective expectations operator Êt will approximate a rational expectations operator

when solving for the two sets of linear forecast rules associated with each of the two local

equilibria. None of the results in the paper are sensitive to the introduction of a discount

3Armenter (2018) adopts a similar approach in computing the optimal monetary policy under discretion
in the presence of two steady states.

4Describing rt as the short-run natural rate is consistent with terminologies employed by Barsky, Justiniano,
and Melosi (2014), Cúrdia (2015), and Del Negro, et al. (2017).
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factor applied to the term Êt yt+1 in equation (1), along the lines of McKay, Nakamura, and

Steinsson (2017).

Fluctuations in rt can be interpreted as arising from changes in the agent’s rate of time

preference or changes in the expected growth rate of potential output.5 As is common in the

literature, rt is considered observable by all agents. The time series process for rt is given by

rt = ρr rt−1 + (1− ρr) r∗t + εt, εt ∼ N
(
0, σ2ε

)
, (3)

r∗t = r∗t−1 + ηt, ηt ∼ N
(
0, σ2η

)
, (4)

where |ρr| < 1. Equations (3) and (4) summarize a “shifting endpoint” time series process

since the long-run natural rate of interest r∗t can vary over time due to the permanent shock

ηt. I will refer to the unobservable r
∗
t as “r-star.”The empirical strategies of Laubach and

Williams (2016), Lubik and Matthes (2015), and Kiley (2019) all treat r-star as a long-run

concept. In any given period, the short-run natural rate rt can deviate from r∗t as influenced

by the history of a temporary shock, represented by εt. Kozicki and Tinsely (2012) employ

this type of process to describe U.S. inflation. When ρr = 0, we recover the random walk plus

noise process employed by Stock and Watson (2007) to describe U.S. inflation.6

The “natural rate gap” is defined as rt − Etr∗t , where Etr∗t represents the Kalman filter

estimate of r-star. The distinction between the short-run and long-run natural rates of interest

is a concept that has been emphasized frequently by Fed policymakers in speeches (Yellen 2015,

Dudley 2015, and Fischer 2016). The agent’s rational forecast for the natural rate gap at any

horizon h ≥ 1 is given by

Et
(
rt+h − r∗t+h

)
= (ρr)

h (rt − Etr∗t ) , (5)

which implies that the gap is expected to shrink to zero as the forecast horizon h increases.

5Specifically, we have rt ≡ − log [β exp (ζt)] + γEt∆ȳt+1, where ζt is a shock to the agent’s time discount
factor β, ȳt is the logarithm of real potential output, and γ = α−1 is the coeffi cient of relative risk aversion.
For the derivation, see Hamilton, et al. (2016) or Gust, Johannsen, and Lopez-Salido (2017).

6But unlike here, Stock and Watson (2007) allow for stochastic volatility in the permanent and temporary
shocks.
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In Supplementary Appendix A, I show that the Kalman filter expression for Etr∗t is

Etr
∗
t = λ

[
rt − ρr rt−1

1− ρr

]
+ (1− λ) Et−1r

∗
t−1, (6)

λ =
− (1− ρr)

2 φ+ (1− ρr)
√

(1− ρr)
2 φ2 + 4φ

2
, (7)

where λ is the Kalman gain parameter and φ ≡ σ2η/σ
2
ε. For the quantitative analysis, the

values of ρr and λ are chosen so that the time path of Etr
∗
t from equation (6) approximates

the one-sided r-star series estimated by Laubach and Williams (2016, updated) for the sample

period 1988.Q1 to 2017.Q4. Their estimation strategy assumes that r-star exhibits a unit root,

consistent with equation (4). Equations (3) and (6) imply that rt − Etr∗t is stationary.

The variable νt represents a demand shock that is distinct from fluctuations in rt. Along

the lines of Bomfim (2001) and Lorenzoni (2009), the presence of νt in equation (1) can

be motivated by the existence of measurement error or noisy signals about macroeconomic

variables. Alternatively, νt can be viewed as capturing fluctuations in the sensitivity of the

output gap to changes in it. The variable ut in equation (2) represents a cost-push shock that

can be motivated by a time-varying elasticity of substitution among goods or a time-varying

tax rate on labor income. The shocks evolve according to following stationary laws of motion:

νt = ρννt−1 + εν,t, εν,t ∼ N
[
0, σ2ν

(
1− ρ2ν

)]
, (8)

ut = ρuut−1 + εu,t, εu,t ∼ N
[
0, σ2u

(
1− ρ2u

)]
, (9)

where |ρν | < 1 and |ρu| < 1.

The central bank’s monetary policy rule is given by

i∗t = ρi∗t−1 + (1− ρ) [Etr
∗
t + π∗ + gπ (πt − π∗) + gy (yt − y∗) + gr (rt − Etr∗t )] , (10)

πt = ω πt + (1− ω) πt−1, (11)

it = 0.5 i∗t + 0.5

√
(i∗t )

2, (12)

where i∗t is the desired nominal interest rate that responds to deviations of recent inflation πt

from the central bank’s target rate π∗ and to deviations of the output gap from its targeted

endpoint y∗. The policy rule also allows for a direct response to the natural rate gap, along
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the lines of the policy rules considered by Cúrdia, et al. (2015) and Gust, Johannsen, and

Lopez-Salido (2017).

The quantity Etr∗t +π∗ represents the targeted endpoint of i∗t . Including Etr
∗
t in the policy

rule implies that monetary policymakers continually update their estimate of the unobservable

r-star. Support for this idea can be found in the Federal Open Market Committee’s Summary

of Economic Projections (SEP). Meeting participants provide their views on the projected

paths of macroeconomic variables over the next three calendar years and in the longer run.

The median SEP projection for r-star can be inferred by subtracting the median longer-

run projection for inflation from the median longer-run projection for the nominal federal

funds rate. The r-star projection computed in this way has ratcheted down over time, as

documented by Lansing (2016).

Equation (11) defines recent inflation πt as an exponentially-weighted moving average of

current and past quarterly inflation rates so as to approximate the compound average inflation

rate over the past 4 quarters– a typical central bank target variable.7 Equation (12) is a

computationally convenient way of imposing the ZLB constraint in model simulations where

the four endogenous variables yt, πt, i∗t and it are all determined simultaneously by solving a

nonlinear system of four equations each period.8 The parameter ρ ∈ [0, 1) governs the degree

of interest rate smoothing as i∗t adjusts partially each period toward the value implied by

the terms in square brackets. Similar to the policy rule employed by Dordal-i-Carrera, et al.

(2016), equation (10) keeps track of past negative values of i∗t , thereby exhibiting a form of

commitment to keep interest rates “lower for longer”whenever the ZLB becomes binding.

2.1 Long-run endpoints

The Fisher relationship is embedded in the non-stochastic version of equation (1).9 Conse-

quently, when gπ > 1, the model has two long-run endpoints (steady states) as shown originally

7Specifically, the value of ω is set to achieve πt ' [Π3
j=0(1 + πt−j)]

0.25 − 1
8The computation procedure is described in Section 2.3 and in Supplementary Appendices B and C.

Equation (12) is readily generalized to allow for negative nominal interest rates by imposing the constraint

it = ELB + 0.5 (i∗t − ELB) + 0.5

√
(i∗t − ELB)

2
, where ELB ≤ 0 is the “effective lower bound” on the

nominal policy interest rate.
9Uribe (2018) examines the strength of Fisherian effects in both empirical and optimizing models. He finds

a that a permanent increase in the nominal interest rate causes inflation to increase immediately.
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by Benhabib, Schmitt-Grohé, and Uribe (2001a,b). The novelty here is that the long-run end-

points of some macroeconomic variables can shift due to shifts in r∗t . Straightforward computa-

tions using the model equations yield the following long-run endpoints for the targeted equilib-

rium: πt = π∗, yt = y∗ ≡ π∗ (1− β) /κ, and i∗t = it = r∗t +π∗. For the deflation equilibrium, the

long-run endpoints are πt = −r∗t , yt = −r∗t (1− β) /κ, i∗t = (r∗t + π∗) [1− gπ − gy (1− β) /κ] ,

and it = 0.

In the model simulations, I impose bounds on fluctuations in r∗t that are based on the

range of r-star estimates observed in the data since 1988.

2.2 Local linear forecast rules

Given the linearity of the model aside from the ZLB, it is straightforward to derive the agent’s

rational decision rules for yt and πt in the vicinity of the long-run endpoints associated with

each of the two local equilibria. For the targeted equilibrium, the local decision rules are

unique linear functions of the six state variables rt, Etr∗t , πt−1, i
∗
t−1, νt, and ut. For the

deflation equilibrium, I solve for the minimum state variable (MSV) solution which abstracts

from extraneous sunspot variables and extra lags of fundamental state variables.10 For both

equilibria, the current estimate of r-star, given by Etr∗t , is a state variable. For the targeted

equilibrium, Etr∗t is a state variable because its appears in the monetary policy rule (10). For

the deflation equilibrium, Etr∗t is a state variable because it pins down the agent’s current

estimates of the long-run endpoints for πt and yt.

The decision rule coeffi cients that multiply the natural rate gap rt −Etr∗t in the deflation

equilibrium are larger in magnitude than those in the targeted equilibrium (see Supplemen-

tary Appendices B and C). Consequently, the deflation equilibrium exhibits more volatility

and undergoes a more severe recession in response to an adverse shock sequence that causes

the natural rate gap to become persistently negative. The higher volatility in the deflation

equilibrium is due to the binding ZLB which prevents the central bank from taking action to

mitigate the consequences of the adverse shock sequence.

Given the local linear decision rules, I construct the agent’s local linear forecast rules for

10For background on MSV solutions, see McCallum (1999).
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yt+1 and πt+1 in each of the two equilibria. The local linear forecast rules for the targeted

equilibrium are derived under the assumption that i∗t > 0 for all t and hence ignore the

possibility that a shock sequence could be large enough to cause the ZLB to become binding.

Based on model simulations, the targeted equilibrium experiences a binding ZLB in only 1.08%

of the periods, with an average duration of 5.2 quarters. The local linear forecast rules for the

deflation equilibrium are derived under the assumption that i∗t ≤ 0 for all t and hence ignore

the possibility that a shock sequence could be large enough to cause the ZLB to become slack.

Based on model simulations, the deflation equilibrium experiences a binding ZLB in 79.3% of

the periods, with an average duration of 37.9 quarters. The average duration of a slack ZLB

episode in the deflation equilibrium is 9.9 quarters. It is important to recognize, however, that

the agent in the switching model (described below) never encounters these statistics because

they pertain to environments with no forecast switching.

In the switching model, the agent’s subjective forecasts for yt+1 and πt+1 allow for the

possibility of an occasionally binding ZLB that is driven by switching between two local

equilibria. The two sets of linear forecast rules employed for each of the two local equilibria

are valid in the vicinities of their respective long-run endpoints. In simulations of the switching

model, the agent’s forecast errors for yt+1 and πt+1 are close to white noise.11

Aruoba, Cuba-Borda, and Schorfheide (2018) solve for piece-wise Chebyshev polynomial

decision rules to account for the occasionally binding nature of the ZLB constraint within each

of the two regimes of their model (analogous to the two local equilibria here). They report

(p. 104), that the probability of hitting the ZLB in the targeted-inflation regime is “virtually

zero”given the pre-crisis distribution of shocks. In the deflation regime, the probability of

hitting the ZLB is 89%. These statistics are similar to those obtained here using the local

linear forecast rules.

Focusing only on the targeted equilibrium, Richter and Throckmorton (2016) compare a

linear model solution in which agents’forecasts do not account for the possibility of hitting the

ZLB (but the ZLB is imposed in simulations, as is done here) to a nonlinear model solution

in which agents’ forecasts do account for this possibility. They report that the posterior

11Properties of the agent’s forecast errors in each of the two local equilibria and in the switching model are
provided in Supplementary Appendix E.
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distributions and marginal likelihoods of the two models are quite similar. But the nonlinear

model predicts higher output volatility and more-negative skewness in output and inflation

during the ZLB episode.

2.3 Endogenous forecast switching

I now consider an agent who contemplates the possibility of an occasionally binding ZLB that

is driven by switching between the two local equilibria. The agent in the switching model can

be viewed as an econometrician trying to identify the best forecast rule for the environment.

The agent constructs forecasts using a form of model averaging– a technique that is often

employed to improve forecast performance in environments where the true data generating

process is unknown (Timmerman 2006). Along the lines of Bullard (2010), the agent is aware

of the two local equilibria and is concerned about the possibility of getting stuck in a deflation

trap. The agent’s subjective forecasts in the switching model are given by

Êt yt+1 = µtÊ
targ
t yt+1 + (1− µt) Êdeflt yt+1, (13)

Êt πt+1 = µtÊ
targ
t πt+1 + (1− µt) Êdeflt πt+1, (14)

where Êtargt and Êdeflt represent the predictions implied by the linear forecast rules associated

with each of the two local equilibria. The variable µt is the weight assigned to the forecasts

implied by the targeted equilibrium and 1−µt is the weight assigned to the forecasts implied

by the deflation equilibrium. The value of µt is chosen to optimize forecast performance over

a window of recent data. Specifically, µt is the value that minimizes:

RMSFEt−1 =
Tw∑
j=1

{
1
Tw

[
yt−j − µtÊ

targ
t−j−1 yt−j − (1− µt) Ê defl

t−j−1 yt−j

]2
+ 1
Tw

[
πt−j − µtÊ

targ
t−j−1 πt−j − (1− µt) Ê defl

t−j−1 πt−j

]2}0.5
, (15)

which shows that µt is computed using data dated t−1 or earlier. In the simulations, I impose

the restriction 0 ≤ µt ≤ 1.

Given the realizations of the exogenous variables rt, νt, and ut, together with Etr∗t from

equation (6), the representative agent computes the conditional forecasts from equations (13)

and (14) with µt given by the value that minimizes equation (15). Given these forecasts, the
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realizations of the four endogenous variables yt, πt, i∗t and it are determined simultaneously

each period by solving the nonlinear system of four equations given by (1), (2), (10), and (12).

3 Parameter values

Table 1 shows the baseline parameter values used in the quantitative analysis. The value

α = 0.15 for the interest rate sensitivity coeffi cient in equation (1) implies a coeffi cient of

relative risk aversion of 1/α ' 6.7. This value is consistent with the small empirical sensitivity

of consumption to changes in the interest rate, as shown originally by Campbell and Mankiw

(1989). The values β = 0.995 and κ = 0.025 imply a low rate time preference together with a

relatively flat Phillips curve. The parameters that govern the demand shock in equation (8)

and the cost push shock in equation (9) are computed from a quantitative exercise (described

in Section 4.3) in which I solve for the sequences of νt and ut that allow the switching model

to exactly replicate the observed time paths of U.S. data since 1988.

The inflation target of π∗ = 0.02 is based on the Federal Open Market Committee’s

(FOMC) stated goal of 2% inflation, as measured by the 4-quarter change in the personal

consumption expenditures (PCE) price index. I choose ω = 0.456 to minimize the squared

deviation between the 4-quarter PCE inflation rate and the exponentially-weighted moving

average of quarterly PCE inflation computed from equation (11) for the period 1961.Q1 to

2017.Q4. When ω = 0.456, the cumulative weight on the first four terms πt through πt−3 in the

moving average is 0.912. In simulations, the mean, standard deviation, and autocorrelation

statistics for πt are nearly identical to those for the 4-quarter inflation rate. The monetary

policy rule coeffi cients gπ, gy and ρ are based on the Taylor (1999) rule, augmented to allow

for a realistic amount of inertia in the desired nominal policy rate. The baseline calibration

sets gr = 0, but I consider a counterfactual exercise with gr > 0.

For the short-run natural rate rt, I use the series estimated by Cúrdia, et al. (2015).12

Similar results are obtained using the short-run natural rate series estimated by Del Negro,

et al. (2017). The top left panel of Figure 3 plots the rt series from 1988.Q1 to 2017.Q4

12Updated data are from www.frbsf.org/economic-research/economists/vasco-curdia/.
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together with the Laubach-Williams one-sided estimate of r-star.13 When ρr = 0.875 and

λ = 0.015, the Kalman filter expression for Etr∗t from equation (6) closely approximates the

path of the Laubach-Williams r-star series. Similar results are obtained if ρr and λ are chosen

to approximate an alternative r-star series estimated by Lubik and Matthes (2015). Given

the considerable uncertainty surrounding estimates of r-star, any observed differences between

the estimated series are not statistically significant.

Given the values of ρr and λ, I solve for the value φ ≡ σ2η/σ
2
ε = 0.0146 to satisfy the

Kalman gain formula (7). Given φ, I solve for the value of σε that allows the model-predicted

standard deviation of ∆rt to match the corresponding value in the data for the period 1988.Q1

to 2017.Q4. Finally, given φ and σε, we have ση = σε
√
φ.

The window length for computing the agent’s forecast fitness measure from equation (15) is

set to Tw = 8 quarters. In simulations, this value produces a ZLB binding frequency of around

16%– reasonably close to the frequency observed in U.S. data since 1988. I also examine the

sensitivity of the results to a lower value of Tw. Lower values of Tw serve to increase the ZLB

binding frequency.

For the baseline simulation, I impose the bounds 0.0006 ≤ r∗t ≤ 0.0422, which corresponds

to the range of values for the model-implied Etr∗t series.
14 Based on a life cycle model cal-

ibrated to the U.S. economy in 2015, Eggertsson, Mehrotra, and Robbins (2019) compute

a steady-state natural rate of −1.5%. In a representative agent model, r-star influences the

mean risk free rate of return. The mean risk free rate can be negative if the product of the co-

effi cient of relative risk aversion and the variance of consumption growth are suffi ciently high,

implying a very strong precautionary saving motive.15 Using a small macroeconomic model

together with global data, Kiley (2019) estimates an r-star value of −1% for the U.S. economy

in 2019. To allow for more negative values of r-star, I consider an alternative simulation that

13The r -star series is from https://www.newyorkfed.org/research/policy/rstar and is based on data available
on April 1, 2019.
14Alternatively, one could model r∗t as a “bounded random walk” along the lines described by Nicolau

(2002). But this approach involves additional parameters and presumes that the agent has prior knowledge
of the upper and lower bounds on r∗t .
15Assuming iid consumption growth and power utility, the mean risk free rate is given by E[log(Rft+1)] =
− log (β) + γx − γ2σ2x/2, where β is the discount factor, γ is the coeffi cient of relative risk aversion, x is the
mean growth rate of real per capita consumption and σ2x is the corresponding variance. For details of the
derivation, see Lansing and LeRoy (2014).
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imposes the bounds −0.02 ≤ r∗t ≤ 0.02.

4 Quantitative analysis

4.1 Results for a simplified model

The model is self-referential, meaning that the agent’s subjective forecasts from equations

(13) and (14) tend to strongly influence the subsequent trajectories of yt and πt. If the rep-

resentative agent starts putting some weight on the deflation equilibrium forecast rules, then

the model economy will generate data that tends to confirm the agent’s belief that putting

some weight on the deflation equilibrium forecast rules helps to improve forecast performance.

This idea can be illustrated using a simplified version of the model that imposes ρ = 0, ω = 1,

σν = 0, σu = 0, and ση = 0. Under these settings, i∗t−1 and πt−1 drop out as state variables,

the shocks νt and ut are zero for all t, and r∗ is constant. I set r∗ = 0.0079, corresponding

to the mean of the rt series estimated by Cúrdia, et al. (2015). Other parameter values are

identical to those shown in Table 1. Closed form expressions for the decision rules associated

with each of the two local equilibria are provided in Supplementary Appendix D.

To understand the self-confirming nature of the agent’s forecasts, consider a situation when

rt ' r∗ > 0 for several periods in a row. In this case, the agent’s weighted-average forecast

rule for inflation from equation (14) would be given by Êtπt+1 ' µtπ
∗ + (1− µt) (−r∗). An

arbitrary reduction in µt would serve to decrease Êtπt+1, thereby putting downward pressure

on πt via the Phillips curve equation (2). When πt goes down, the deflation equilibrium

forecast of −r∗ from the previous period will be viewed as having improved its performance

relative to the targeted equilibrium forecast of π∗. This result, in turn, motivates the agent

to reduce µt+1 in the subsequent period. These various movements are all reversed for an

arbitrary increase in µt. The presence of stochastic shocks simply adds noise and sampling

variation to these basic self-confirming dynamics.

If the agent could somehow commit to employing the forecast weight µt = 1 for all t, then

yt and πt would always fluctuate around the targeted endpoints. But if the agent seeks to

improve forecast performance by employing other values such that 0 ≤ µt < 1, then sustained

departures away from the targeted endpoints become possible. Interestingly, it is agent’s
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subjective belief in the possibility of the deflation equilibrium that allows it to occasionally

become a reality.

Later in Section 4.3, I use the full switching model to extract the time-varying forecast

weight µt implied by U.S. data from 1988 onward. Here I use the simplified model to validate

the methodology. Specifically, the simplified model is used to generate simulated data for yt

and πt using an exogenous weight µ on the targeted forecast rules, where µ undergoes a series

of infrequent shifts. The switching model’s algorithm for determining µt is to minimize the

RMSFE statistic from equation (15) with Tw = 8. Applying this algorithm to the model’s

simulated data for yt and πt produces a time series for µt that optimizes forecast performance

over the past 8 quarters. The results of the validation exercise are plotted in Figure 2. The

switching model’s algorithm for determining µt (thin red line) successfully tracks the actual

value of µ (thick blue line) that is being used to generate the data.

4.2 U.S. data around the ZLB episode

As a prelude to the U.S. data replication exercise involving the full switching model, Figure 3

plots the relevant data from 1988.Q1 to 2017.Q4. The top left panel shows that the short-run

natural rate of interest rt remains below the model-implied value of Etr∗t from 2007.Q4 (the

start of the Great Recession) onward, implying a negative natural rate gap. The bottom

left panel shows that the nominal federal funds rate it was approximately zero from 2008.Q4

through 2015.Q4. Assuming i∗t = it in 2008.Q4, the desired federal funds rate from 2009.Q1

through 2015.Q4 is computed using the calibrated policy rule (10) with Etr∗t given by model-

implied value from equation (6), πt given by the 4-quarter PCE inflation rate, and yt given

by the CBO output gap. From 2016.Q1 onward, I assume i∗t = it.

The top right panel of Figure 3 shows that the 4-quarter PCE inflation rate was negative

for three consecutive quarters in 2009 and remains mostly below the Fed’s 2% inflation target

from 2012.Q2 onward. The bottom right panel shows that the Great Recession was very

severe, pushing the CBO output gap down to −6.1% at the business cycle trough in 2009.Q2.

This was the most severe economic contraction since 1947 as measured by the peak-to-trough

decline in real GDP. The output gap is negative through 2017.Q4, more than eight years after
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the Great Recession ended. The various endpoints plotted in Figure 3 are computed using

the expressions in Section 2.1, with r∗t set equal to the model-implied value of Etr
∗
t . As Etr

∗
t

approaches zero or becomes negative, the so-called “deflation”equilibrium is characterized by

zero or low positive inflation, allowing this equilibrium to provide a better fit of recent U.S.

inflation data.

4.3 Replicating U.S. data with the switching model

Given the U.S. data counterparts for the model variables, I use the calibrated switching

model to solve for the time series of the two persistent shocks νt and ut and the endogenous

forecast weight µt that are needed to exactly replicate the data from 1988.Q2 onward.16 For

this computation, the agent’s subjective forecasts Êtyt+1 and Êtπt+1 are constructed as the

weighted averages shown in equations (13) and (14), but with U.S. data inserted for the state

variables that appear in the two sets of local linear forecast rules. The initial conditions at

1988.Q1 are the U.S. data values of the state variables together with νt = ut = 0. The natural

rate gap rt −Etr∗t is given by the difference between the short-run natural rate from Cúrdia,

et al. (2015) and the model-implied value of Etr∗t from equation (6). The variable yt is the

CBO output gap, πt is quarterly PCE inflation, and πt ' π4,t is 4-quarter PCE inflation.

The variable it is the nominal federal funds rate. I set i∗t = it except during the interval

from 2009.Q1 through 2015.Q4. During this interval, i∗t is given by the value implied by the

calibrated policy rule (10), as plotted earlier in Figure 3. Starting in 1990.Q2, the endogenous

forecast weight µt is computed each period so as to minimize the RMSFE statistic from

equation (15) with Tw = 8. Before 1990.Q2, I impose µt = 1. The shock persistence parameters

ρν and ρu influence the values of the coeffi cients in the local linear forecast rules. I start

with initial guesses for ρν and ρu and then repeat the replication exercise until approximate

convergence. The resulting standard deviations of νt and ut are 0.003 and 0.010, respectively,

with ρν = 0.85 and ρu = 0.32.

The results of the data replication exercise are plotted in Figure 4. The top left panel plots

the model-implied shocks νt and ut. Both shocks go from positive to negative at the start of

16For similar reverse-engineering exercises in the context of different economic settings, see Lansing and
Markiewicz (2018), Gelain, Lansing, and Natvik (2018), and Lansing (2019).
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the ZLB episode in 2008.Q4. These adverse shocks allow the model to exactly replicate the

sharp drops in the CBO output gap and PCE inflation shown earlier in Figure 3. The cost

push shock ut turns positive from 2009.Q2 through 2013.Q1, thus helping to solve the “missing

disinflation puzzle.”

The top right panel of Figure 4 compares the RMSFE of the deflation forecast rules

to the RMSFE of the targeted forecast rules. The performance gap between the two sets

of forecast rules initially narrows with the onset of the ZLB episode in 2008.Q4. This result

leads to an initial sharp drop in the weight µt assigned to targeted forecast rules (bottom right

panel). The performance gap narrows even further after 2012.Q2 when the Fed consistently

undershoots its 2% inflation target, inducing a further decline in µt. At the end of the data

sample in 2017.Q4, the value of µt is 0.68 and the RMSFE of the switching model forecast

rules lies below the RMSFE of the targeted forecast rules. Recall that the long-run endpoint

for πt in the deflation equilibrium is −r∗t . Since Etr∗t is close to zero at the end of the U.S.

data sample, putting some weight on the deflation forecast rules helps to account for the

observation of below-target inflation in the U.S. data.

The bottom left panel of Figure 4 compares the switching model prediction for expected

inflation Êt πt+1 to two U.S. data series that are not explicitly replicated. These are the 1-

year expected inflation rate derived from inflation swap contracts and the 3-month expected

inflation rate implied by the Aruoba Term Structure of Inflation Expectations (ATSIX) frame-

work.17 Expected inflation from the switching model starts to decline after 2008.Q4 and re-

mains below the Fed’s 2% inflation target through the end of the data sample. This pattern

is very similar to the expected inflation series from swap contracts. The ATSIX expected

inflation series also experiences a sharp drop in 2008.Q4 followed by an eventual recovery to

2%, but the series nevertheless remains below its pre-recession level at the end of the data

sample. The correlation coeffi cients between the model’s expected inflation series and the two

U.S. data series are 0.81 and 0.63, respectively.

Of course, one could solve for different sequences of νt and ut that would allow the targeted

17Expected inflation from swap contracts is available from the Federal Reserve Bank of Cleveland. Expected
inflation from ATSIX is available from the Federal Reserve Bank of Philadelphia from 1998 onward. The
ATSIX data from 1992 through 1997 was kindly provided by Boroğan Aruoba.

17



equilibrium with µt = 1 for all t, or the deflation equilibrium with µt = 0 for all t, to similarly

replicate the U.S. data. But the RMSFE minimization procedure employed by the agent

prefers a time-varying mixture of the two local equilibria with 0 < µt ≤ 1.

The bottom right panel of Figure 4 also shows the results for an alternative exercise that

employs the same sequences for the shocks νt and ut, but instead sets rt equal to Etr∗t in the

data so that the natural rate gap is zero for all t. The resulting forecast weight µt now stays

much closer to 1.0. This alternative exercise shows that the persistently negative natural rate

gap in the data is an important contributor to the downward drift in the forecast weight µt.

Can the results of the data replication exercise be reconciled with those of Arouba, Cuba-

Borda, and Schorfheide (2018), henceforth ACS? I believe so. Recall that ACS conclude that

“the U.S. remained in the targeted-inflation regime during its ZLB episode, with the possible

exception of the early part of 2009 where evidence is ambiguous.”18 First, according to the

ACS model, the economy must be in either the targeted-inflation regime or the deflation

regime. In contrast, the data replication exercise tells us that the U.S. data since 2008.Q4 are

best described as a time-varying mixture of the two local equilibria. But ACS do not allow

for such a mixture. Second, while ACS explicitly consider model uncertainty, a number of

their model parameters are fixed during the estimation routine. The most notable of these is

r-star which is held constant at 0.86%. The uncertainty surrounding point estimates of r-star

is extremely large. It could easily be the case that true value of r-star is significantly lower, or

even negative as suggested by Eggertsson, Mehrotra, and Robbins (2019) and Kiley (2019).

The model-implied value of Etr∗t in Figure 3 is approximately zero in 2017.Q4. If r-star is

zero or even negative, then the so-called “deflation”equilibrium need not be characterized by

actual negative inflation. Putting some weight on this “low inflation”equilibrium would help

the model explain a sustained period of below-target inflation.

18More specifically, they acknowledge (p. 111) that across the six specifications of their model, “there is
some uncertainty which vindicates Bullard (2010)’s concern of the possibility of a shift to the deflationary
regime.”
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4.4 Counterfactual exercise: Policy response to natural rate gap

As noted above, the persistently negative natural rate gap in the U.S. data is an important

contributor to the post-2008 downward drift in the forecast weight µt. Here I show that

allowing for a direct response to rt−Etr∗t in the policy rule (10) can achieve better economic

outcomes. Along similar lines, Gust, Johannsen, and Lopez-Salido (2017) show that allowing

for a direct response to rt in a Taylor-type rule can achieve results that are similar to optimal

discretionary policy. Cúrdia, et al. (2015) present evidence suggesting that the Fed may indeed

respond directly to rt. Responding to the natural rate gap would not represent a major shift

in the conduct of monetary policy and is an idea that can be communicated readily to the

public. As noted earlier, Fed policymakers have frequently discussed the concept of a natural

rate gap in speeches (Yellen 2015, Dudley 2015, and Fischer 2016). Price level targeting, in

contrast, would involve significant complications, such as choosing and clearly communicating

the reference dates for when the targeted price level trajectory begins or ends (Bernanke 2017).

It can be shown that when ρ = 0 (no interest rate smoothing), setting gr = 1 in the

targeted equilibrium fully stabilizes both yt and πt against fluctuations in rt − Etr∗t . It turns

out that an even stronger response with gr > 1 can further improve outcomes when ρ = 0.8,

as in the calibration employed here.

Figure 5 shows the results of a counterfactual exercise that employs the same initial condi-

tions and the same sequences for νt, ut, rt, and Etr∗t as in Figure 4, but now imposes gr = 1.5

in the monetary policy rule. Relative to the baseline exercise, the counterfactual exercise

lengthens the ZLB episode by 7 quarters, but it succeeds in reducing downside fluctuations

in the output gap and inflation, thereby increasing the end-of-sample weight µt assigned to

the targeted forecast rules. In 2017.Q4, the value of µt is now 0.80 versus 0.68 in the baseline

exercise. As a caveat, the considerable uncertainty surrounding estimates of the natural rate

gap could mitigate these improved outcomes.

4.5 Switching model simulations

Additional insights can be obtained from stochastic simulations of the switching model. Figure

6 plots the distributions of macro variables in the switching model versus the corresponding
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distributions in the two local equilibria. Each of the three distributions is based on a 300,000

period simulation using the same sequences of exogenous shocks.19 Macro variables in the

deflation equilibrium have distributions with lower means but higher variances than those

in the targeted equilibrium. But the significant overlap in the various distributions creates

a dilemma for an agent who seeks to determine the degree to which a string of recent data

observations are drawn from one local equilibrium or the other. Variables in the switching

model have means that are somewhat lower and variances that are somewhat higher than

those in the targeted equilibrium. Consequently, the central bank in the switching model

undershoots its inflation target and the volatilities of the output gap and inflation are both

higher than those in the targeted equilibrium.

Hills, Nakata, and Schmidt (2019) show that the risk of encountering the ZLB in the future

can shift agents’expectations such that the central bank undershoots its inflation target in

the present. Something similar is at work here. When the representative agent increases

the weight on the deflation equilibrium forecast rules, this can cause realized inflation to

undershoot the central bank’s target for a sustained interval, even when the ZLB is not

binding. The switching model allows for low-frequency swings in the level of inflation that

are driven solely by expectational feedback, not by changes in the monetary policy rule.20

As mentioned above, the U.S. output gap reached −6.1% at the trough of the Great

Recession in 2009.Q2. The bottom right panel of Figure 6 shows that the likelihood of such

an event in the targeted equilibrium is essentially zero. In contrast, a Great Recession-type

episode is rare but plausible in the switching model. Severe recessions can happen in the

switching model due to the larger response coeffi cients on the natural rate gap rt −Etr∗t and

the demand shock νt in the deflation equilibrium decision rule for yt. These larger response

coeffi cients (which also appear in the deflation equilibrium forecast rules) have more influence

on the switching model as the forecast weight µt declines. Lower values of µt cause adverse

19Computational details for the two local equilibria are provided in Supplementary Appendices B and C.
The representative agent’s local linear forecast rules assume that either the ZLB is never binding (targeted) or
always binding (deflation). But in the stochastic simulations, the ZLB can be sometimes binding or sometimes
slack, as determined by equation (12).
20Lansing (2009) achieves a similar result in a model where the representative agent’s forecast rule for

quarterly inflation is based on a perceived law of motion that follows a Stock and Watson (2007) type time
series process.
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realizations of rt − Etr∗t or νt to be transmitted more forcefully to the output gap.

Some have argued that the deflation equilibrium does not provide a convincing explanation

of the sluggish U.S. output recovery following the Great Recession because the steady state

level of real activity in the deflation equilibrium is not much below the steady state level of

real activity in the targeted equilibrium. However, this argument fails to account for the out-

of-steady-state behavior of the deflation equilibrium which is highly responsive to a negative

natural rate gap. A negative natural rate gap puts strong downward pressure on yt in the

deflation equilibrium. The U.S. natural rate gap has remained significantly negative since the

Great Recession ended, as can be seen in the top left panel of Figure 3. Consequently, putting

some forecast weight on the deflation equilibrium can help to explain the sluggish U.S. output

recovery even if the deflation equilibrium is never fully realized in the data.

Table 2 provides a quantitative comparison between the U.S. data and the results of the

switching model simulations.21 For the most part, the statistics generated by the baseline

switching model compare favorably to those in U.S. data since 1988. For example, the switch-

ing model predicts a ZLB binding frequency of 15.8% versus 24.2% in the data. Going forward,

the ZLB binding frequency in U.S. data is likely to decline over time, assuming that the previ-

ous 7-year ZLB episode was a rare event. Notice, however, that the mean 4-quarter inflation

rate in the switching model is only 0.92% versus 2.16% in the data. This particular model

prediction is more in line with data from Japan than the United States. But as shown in the

next column of Table 2, the mean 4-quarter inflation rate increases to 1.41% if r∗t is allowed to

dip further into negative territory during the simulations. Recall that the long-run endpoint

of πt in the deflation equilibrium is −r∗t . Allowing for more negative values of r∗t therefore

serves to increase the mean inflation rate in both the deflation equilibrium and the switching

model. The wide confidence intervals surrounding empirical estimates of r-star would not rule

out true values that are more negative. When r∗t ∈ [−0.02, 0.02], the ZLB binding frequency

increases to 28.3%, which is now higher than the U.S. data value of 24.2%.

The mean forecast weight µt in the baseline switching model simulation is 0.73 with a

standard deviation of 0.27. Given these statistics, the value of µt can often fluctuate near 1

21The corresponding statistics from simulations of the targeted equilibrium and the deflation equilibrium
are provided in Supplementary Appendix E.
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or 0 for sustained intervals. Smaller values for the window length Tw that is used to compute

the RMSFE statistic from equation (15) serve to increase the frequency of forecast switches

towards the deflation equilibrium. For example, when Tw = 4, the mean value of µt declines

to 0.62, the ZLB binding frequency increases to 25.2%, the average ZLB duration increases

to 16.1 quarters, and the mean value of π4,t decreases to 0.48%.

Recall that the interest rate smoothing term can be interpreted as a form of forward

guidance to keep i∗t “lower for longer” whenever the ZLB becomes binding. The presence

of this guidance in the baseline simulation with ρ = 0.8 serves to reduce the ZLB binding

frequency relative to the ρ = 0 case. Setting ρ = 0 delivers a higher ZLB binding frequency

of 24%, but the ZLB episodes exhibit a shorter duration of 5.4 quarters on average.

The last column of Table 2 shows the results of a simulation where gr = 1.5, analogous

to the counterfactual exercise in Section 4.4. Relative to the baseline simulation with gr = 0,

introducing a direct policy response to the natural rate gap serves to increase the mean weight

µt assigned to the targeted forecast rules and reduces the volatilities of yt and π4,t. The ZLB

binding frequency is slightly decreased and the episodes exhibit a shorter duration on average.

Using data from all advanced economies since 1950, Dordal-i-Carrera et al. (2016) estimate

an average ZLB binding frequency of 7.5% and an average duration for ZLB episodes of 14

quarters. Excluding the high inflation period from 1968 to 1984 serves to raise the average

ZLB binding frequency and the average ZLB duration to 10% and 18 quarters, respectively.

For the period of consistent U.S. monetary policy since 1988, the single ZLB episode lasted

29 quarters.

Figure 7 plots the distribution of ZLB durations in the switching model versus the cor-

responding distributions in the two local equilibria. Unlike the targeted equilibrium, the

switching model can produce infrequent and long-lived ZLB episodes in response to small,

normally distributed shocks. The average ZLB duration in the switching model is 12.9 quar-

ters, with a maximum observed duration in the simulation of 166 quarters. From Figure 7, we

see that a 29 quarter ZLB episode is an extremely rare event in the targeted equilibrium but

can occur with about 5% frequency in the switching model. To account for infrequent and

long-lived ZLB episodes in the targeted equilibrium, Dordal-i-Carreras, et al. (2016) develop
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a model with large, infrequent, and long-lived shocks.

4.6 Effect of raising the inflation target

In a press conference held on June 14, 2017, Fed Chair Janet Yellen stated that determining

the appropriate level of the inflation target “is one of the most important questions facing

monetary policy around the world in the future.”Numerous authors make the case for a higher

inflation target using frameworks that ignore the deflation equilibrium.22 This methodology

may understate the benefits of a higher inflation target because the analysis does not take

into account the possibility that a higher target could help prevent switching to the volatile

deflation equilibrium where recessions are more severe. Aruoba and Schorfheide (2016) ex-

amine the welfare implications of a 4% inflation target in a framework that does consider the

possibility of switching to the deflation equilibrium via an exogenous sunspot shock. They

conclude (p. 395) that “the case for a higher inflation target is not particularly strong.”

It’s worth noting, however, that the probability of switching to the deflation equilibrium in

the Aruoba-Schorfheide model is invariant to changes in the inflation target. In contrast,

the framework developed here has the potential to reduce the probability of switching to the

deflation equilibrium.

Table 3 shows the effects of raising the central bank’s inflation target when either gr = 0 or

gr = 1.5. In both cases, raising π∗ reduces the ZLB binding frequency and the mean duration

of ZLB episodes. Higher values of π∗ serve to reduce the volatility of yt because the volatile

deflation equilibrium is now avoided more often. But at the same time, higher values of π∗

serve to increase the volatility of π4,t. This is because higher values of π∗ widen the spread

between the two inflation distributions implied by the two local equilibria. This causes the

mean inflation rate to shift by a larger amount when a forecast switch inevitably does occur.

From Table 3 we see that an increase in π∗ can reduce, but not eliminate, the endogenous

switches towards the deflation equilibrium. Even with an inflation target of 4%, the ZLB

binding frequency remains relatively high at around 8% and the average duration of a ZLB

episode is 10 to 12 quarters. Once the possibility of switching to the deflation equilibrium

22See, for example, Blanchard, Dell’Ariccia, and Mauro (2010), Ball and Mazumder (2011), and Ball (2013).
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is taken into account, raising the inflation target appears to be a less effective solution for

avoiding long-lived ZLB episodes.

Coibion, Gorodnichenko, and Wieland (2012) calibrate their model to deliver a ZLB bind-

ing frequency equal to that observed in U.S. data going back to the year 1950. From the start

of 1950 to 2017.Q4, the ZLB was binding in 29 out of 272 quarters, or 10.7% of the time.

The average CPI inflation rate in U.S. data since 1950 is around 4%. Table 3 shows that the

switching model with π∗ = 0.04 delivers a ZLB binding frequency of about 8%– reasonably

close to the U.S. value of 10.7% going back to 1950. Taking into account the micro-founded

welfare costs of positive and variable inflation, Coibion, Gorodnichenko, and Wieland (2012)

compute an optimal inflation rate for their model which is relatively low, less than 2% per

year. Their analysis is extended by Dordal-i-Carrera, et al. (2016) who modify the shock

process in the model to match the now-higher ZLB binding frequency implied by additional

years of data for the U.S. and other advanced economies. The optimal inflation rate for the

modified model lies in the range of 2.5% to 4%.

Following Kiley and Roberts (2017), a simple loss function approach can be used to quan-

tify the various trade-offs that are involved in raising the inflation target. The trade-offs here

include: (1) reducing the likelihood of endogenous switches towards the volatile deflation equi-

librium and thereby lowering the ZLB binding frequency, (2) inducing shifts in the volatilities

of inflation and the output gap, and (3) introducing economic distortions that come from a

higher average inflation. The loss function takes the form

Loss = E
{

[π4,t − 0.02]2 + [yt − 0.02 (1− β) /κ]2
}
, (16)

where the values 0.02 and 0.02 (1− β) /κ are the targeted endpoints when π∗ = 0.02. The

presumption is that the central bank in the baseline calibration with π∗ = 0.02 has chosen to

target the “optimal”levels of π4,t and yt. Hence, any shift away from the original target values

when adopting π∗ > 0.02 would introduce economic distortions that are taken into account

by the loss function.

Table 3 shows that the loss value is reduced in going from π∗ = 0.02 to π∗ = 0.03 when

either gr = 0 or gr = 1.5. For any given value of π∗, the loss value is reduced in going from

gr = 0 to gr = 1.5. Notice, however, that the magnitudes of the various loss reductions are
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relatively minor. It should be noted that this analysis does not consider any potential loss of

central bank credibility that might arise from an upward shift in the inflation target. Overall,

it would appear that the net gains from raising the inflation target in the switching model are

small– consistent with the conclusions of Aruoba and Schorfheide (2016).

5 Conclusion

Standard New Keynesian models subject to a ZLB constraint exhibit two long-run endpoints

(steady states) that are associated with two local equilibria. Most studies employing New

Keynesian models focus solely on the targeted equilibrium and ignore the deflation equilib-

rium. But there appears to be no clear theoretical or empirical reason why the deflation

equilibrium should be ruled out. Indeed, Bullard (2010) concludes that by “promising to

remain at zero for a long time,” central banks may inadvertently coordinate private-sector

expectations so as to become stuck in the deflation equilibrium.

I examine a version of the New Keynesian model with a time-varying r-star and endogenous

forecast switching based on past performance. The model can produce severe recessions

and long-lived ZLB episodes when the short-run natural rate of interest remains persistently

below r-star, implying a negative natural rate gap. This situation puts downward pressure

on the output gap and inflation, inducing the representative agent to place increased weight

on the deflation equilibrium forecast rules. Escape from the deflation equilibrium occurs

endogenously when the natural rate gap eventually turns positive. But even in normal times,

a non-trivial weight assigned to the deflation equilibrium forecast rules may cause the central

bank to undershoot its inflation target and magnify the volatilities of macro variables relative

to the targeted equilibrium.

I show that the switching model can exactly replicate the observed time paths of the U.S.

output gap, quarterly PCE inflation, and the federal funds rate since 1988. The replication

exercise tells us that the U.S. data since the start of the ZLB episode in 2008.Q4 are best

described as a time-varying mixture of the targeted equilibrium and the deflation equilibrium.

Simulations with the model suggest that: (1) including a direct response to the natural rate

gap in the monetary policy rule can result in improved economic outcomes and (2) raising the
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inflation target can reduce, but not eliminate, the endogenous switches towards the deflation

equilibrium.
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A Appendix: Kalman filter estimate of r-star

Straightforward computations using the laws of motion (3) and (4) yield the following expres-

sion for the unconditional variance of ∆rt ≡ rt − rt−1:

V ar (∆rt) = σ2ε

[
(1− ρr)φ+ 2

1 + ρr

]
, (A.1)

where φ ≡ σ2η/σ
2
ε. Given the calibrated values of ρr and λ that fit the Laubach-Williams

r-star series, the implied value of φ can be computed using the optimal Kalman gain formula

(7). Given the value of φ, the implied value of σε can be inferred from equation (A.1) using

the observed value of V ar (∆rt) from the U.S. data. Given φ and σε, we have ση = σε
√
φ.

Solving equation (3) for r∗t yields:

r∗t =
rt − ρrrt−1

1− ρr︸ ︷︷ ︸
Signal

− εt︸︷︷︸
Noise

, (A.2)

where the first term represents the signal and the second term represents the noise. Equation

(4) shows that the Kalman filter estimate of r∗t , denoted by Etr
∗
t , is a weighted average of the

signal and the previous period’s estimate Et−1 r∗t−1, where the weight assigned to the signal is

the Kalman gain parameter λ.

The one step ahead forecast error for rt+1 is given by

errt+1 = rt+1 − Etrt+1,

= rt+1 − [ρrrt + (1− ρr)Etr∗t ] ,

= εt+1 + (1− ρr) ηt+1 + (1− ρr) (r∗t − Etr∗t ) , (A.3)

where the last term in (A.3) represents the estimation error for r∗t . The optimal value of λ

minimizes the mean squared forecast error, as given by

E
(
err2t+1

)
= σ2ε

[
1 + (1− ρr)

2 φ
]

+ (1− ρr)
2 V ar (r∗t − Etr∗t ) . (A.4)

where V ar (r∗t − Etr∗t ) is the unconditional variance of the estimation error.

The law of motion for the estimation error follows directly from equation (6) and can be

written as

r∗t − Etr∗t = λ

[
zt − ρr zt−1

1− ρr

]
+ (1− λ)

(
r∗t−1 − Et−1 r∗t−1

)
−
[

1− λ− ρr
1− ρr

]
ηt, (A.5)
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where zt ≡ rt− r∗t is the true natural rate gap. The law of motion for zt follows directly from

equations (3) and (4) and can be written as

zt = ρr zt−1 − ρr ηt + εt. (A.6)

Starting from equations (A.5) and (A.6), we can compute the following expression for the

unconditional variance of the estimation error

V ar (r∗t − Etr∗t ) = σ2ε

{
λ (ρ2rφ+ 1) + (1− λ− ρr) [(1− λ) (1− ρr) /λ+ ρr]φ

(2− λ) (1− ρr)
2

}
, (A.7)

which can be substituted into equation (A.4) to obtain a complicated expression for E
(
err2t+1

)
in terms of λ. From this expression, we can compute the gradient

∂E
(
err2t+1

)
∂λ

=
2
[
λ2 − (1− λ) (1− ρr)

2 φ
]

(2− λ)2 λ2
. (A.8)

Setting the gradient equal to zero yields a quadratic equation in λ. The root that minimizes

E
(
err2t+1

)
is given by equation (7) in the text.

B Appendix: Targeted equilibrium

To solve for the local linear forecast rules associated with the targeted equilibrium, I assume

that i∗t = it > 0 for all t. This assumption is valid in a vicinity of the targeted equilibrium’s

long-run endpoints. Starting from equation (10) we have:

i∗t = ρi∗t−1 + (1− ρ) [Etr
∗
t + π∗ + gπ ω (πt − π∗) + gπ (1− ω) (πt−1 − π∗)

+ gy (yt − y∗) + gr (rt − Etr∗t )], (B.1)

where I have used equation (11) to eliminate πt.

When i∗t = it > 0, equation (B.1) together with the Euler equation (1) and the Phillips

curve (2) form a linear system of three equations in the three unknown decision rules for yt,

πt, and i∗t . The state variables are: rt, Etr
∗
t , πt−1, i

∗
t−1 , νt, and ut. Standard techniques yield

a set of linear decision rules of the form

 yt − π∗ (1− β) /κ
πt − π∗
i∗t − (Etr

∗
t + π∗)

 = A


rt − Etr∗t
πt−1 − π∗
i∗t−1 − Etr∗t − π∗
νt
ut

 , (B.2)
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where A is a 3 × 5 matrix of decision rule coeffi cients. For the parameter values shown in

Table 1, the matrix A is

A =

 0.638 −0.155 −0.386 3.844 −0.178
0.083 −0.017 −0.033 0.425 1.436
0.139 0.130 0.718 0.826 0.161

 . (B.3)

Iterating the linear decision rules in (B.2) ahead one period and then taking the conditional

expectation of both sides yields the following set of linear forecast rules associated with the

targeted equilibrium:

Êtargt yt+1 = y∗ +A11ρr (rt − Etr∗t ) +A12 (πt − π∗) +A13 (i∗t − Etr∗t − π∗) +

A14ρννt +A15ρuut, (B.4)

Êtargt πt+1 = π∗ +A21ρr (rt − Etr∗t ) +A22 (πt − π∗) +A23 (i∗t − Etr∗t − π∗) +

A24ρννt +A25ρuut, (B.5)

where Ai j represents the corresponding element of the matrix A and I have substituted in

Et
(
rt+1 − Et+1r∗t+1

)
= ρr (rt − Etr∗t ). Notice that the forecast rules depend on the realization

of πt because πt depends on πt via equation (11). Also, the forecast rules depend on the

realization of i∗t due to the interest rate smoothing term in (B.1). Hence, the model solution

allows for simultaneity between the agent’s forecasts and the realized values of πt and i∗t .

The local linear forecast rules (B.4) and (B.5) are derived under the assumption that

i∗t = it > 0. However, in the stochastic simulation of the targeted equilibrium, I allow for an

occasionally binding ZLB. When simulating the model, I substitute the local linear forecast

rules given by (B.4) and (B.5) into the global equilibrium conditions (1) and (2). Together

with the monetary policy rule (B.1) and the ZLB constraint (12), this procedure yields a

system of four equations that are solved each period to obtain the four realizations yt, πt, i∗t ,

and it.

C Appendix: Deflation equilibrium

To solve for the local linear forecast rules associated with the deflation equilibrium, I assume

i∗t ≤ 0 such that it = 0 for all t. This assumption is valid in a vicinity of the deflation equi-

librium’s long-run endpoints. Equation (B.1) applies unchanged to the deflation equilibrium,
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as does the Phillips curve (2). However, due to the binding ZLB, the Euler equation (1) now

becomes

yt = Et yt+1 + α[Et πt+1 + rt] + νt. (C.1)

When it = 0, equation (C.1) together with equations (B.1) and (2) form a linear system

of three equations in the three unknown decision rules for yt, πt, and i∗t . The state variables

are: rt, Etr∗t , πt−1, i
∗
t−1 , νt, and ut. The minimum state variable (MSV) solution yields a set

of linear decision rules of the form yt − (−Etr∗t ) (1− β) /κ
πt − (−Etr∗t )
i∗t − (Etr

∗
t + π∗) [1− gπ − gy (1− β) /κ]

 = B


rt − Etr∗t
πt−1 − (−Etr∗t )
i∗t−1 − (Etr

∗
t + π∗) [1− gπ − gy (1− β) /κ]

νt
ut

 ,
(C.2)

where B is a 3× 5 matrix of constant coeffi cients. The MSV solution implies B12 = B22 = 0

and B13 = B23 = 0. For the parameter values shown in Table 1, the matrix B is

B =

 1.505 0 0 7.732 0.104
0.291 0 0 1.253 1.471
0.341 0.163 0.8 1.718 0.222

 . (C.3)

Comparing the first column of matrix B in (C.3) to the first column of matrix A in (B.3)

shows that a shock to the natural rate gap rt − Etr∗t will be transmitted more forcefully to

macro variables in the deflation equilibrium than in targeted equilibrium. Specifically, we

have
B11
A11

= 2.4,
B21
A21

= 3.5,
B31
A31

= 2.5. (C.4)

For the special case when ρ = gr = 0 and ω = 1, it is straightforward to derive the following

analytical relationship between the decision rule coeffi cients for the two local equilibria:

B11
A11

=
B21
A21

=
B31
A31

= 1 +
α [κgπ + (1− βρr) gy]

(1− βρr) (1− ρr)− ακρr
> 1. (C.5)

Iterating the linear decision rules in (C.2) ahead one period and then taking the conditional

expectation of both sides yields the following set of local linear forecast rules for the deflation

equilibrium:

Êdeflt yt+1 = −Etr∗t (1− β) /κ+B11ρr (rt − Etr∗t ) +B14ρννt +B15ρuut, (C.6)

Êdeflt πt+1 = −Etr∗t +B21ρr (rt − Etr∗t ) +B24ρννt +B25ρuut, (C.7)
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where the MSV solution implies B12 = B22 = 0 and B13 = B23 = 0 and I have substituted in

Et
(
rt+1 − Et+1r∗t+1

)
= ρr (rt − Etr∗t ).

The local linear forecast rules (C.6) and (C.7) are derived under the assumption that

it = 0. However, in the stochastic simulation of the deflation equilibrium, I allow for an

occasionally slack ZLB. When simulating the model, I substitute the local linear forecast

rules given by (C.6) and (C.7) into the global equilibrium conditions (1) and (2). Together

with the monetary policy rule (B.1) and the ZLB constraint (12), this procedure yields a

system of four equations that are solved each period to obtain the four realizations yt, πt, i∗t ,

and it.

D Appendix: Simplified model

This appendix provides closed-form expressions for the decision rules associated with each of

the two local equilibria in the simplified model that is used in Section 4.1. Starting from the

original model, the simplified model imposes ρ = 0, ω = 1, σν = 0, σu = 0, and ση = 0. Under

these settings, i∗t−1 and πt−1 drop out as state variables, the shocks νt and ut are zero for all

t, and r-star is constant.

The targeted equilibrium decision rules are yt − π∗ (1− β) /κ
πt − π∗
i∗t − (r∗ + π∗)

 = A [rt − r∗] , (D.1)

where the elements of the matrix A are given by

A =



α (1− βρr) (1− gr)
(1− ρr + αgy) (1− βρr) + ακ (gπ − ρr)

ακ (1− gr)
(1− ρr + αgy) (1− βρr) + ακ (gπ − ρr)

gr +
[ακgπ + αgy (1− βρr)] (1− gr)

(1− ρr + αgy) (1− βρr) + ακ (gπ − ρr)


,

(D.2)

which shows that setting gr = 1 will completely stabilize yt and πt against fluctuations in the

natural rate gap rt − r∗.
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The deflation equilibrium decision rules are yt − (−r∗) (1− β) /κ
πt − (−r∗)
i∗t − (r∗ + π∗) [1− gπ − gy (1− β) /κ]

 = B [rt − r∗] , (D.3)

where the elements of the matrix B for the MSV solution are given by

B =



α (1− βρr)
(1− ρr) (1− βρr)− ακρr

ακ

(1− ρr) (1− βρr)− ακρr

gr +
ακgπ + αgy (1− βρr)

(1− ρr) (1− βρr)− ακρr


. (D.4)
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E Appendix: Supplementary Tables

Table E.1. Unconditional Moments: Data versus Model
Model Simulations

U.S. Data
1988.Q1-2017.Q4

Targeted
Equilibrium

Deflation
Equilibrium

Switching
Model

% periods it = 0 24.2% 1.08% 79.3% 15.8%
Mean ZLB duration 29 qtrs. 5.2 qtrs. 37.9 qtrs. 12.9 qtrs.
Max. ZLB duration 29 qtrs. 29 qtrs. 375 qtrs. 166 qtrs.
Mean yt −1.37% 0.40% −0.49% 0.45%
Std. Dev. 1.85% 1.42% 3.43% 2.03%
Corr. Lag 1 0.95 0.79 0.86 0.83
Mean π4,t 2.16% 1.99% −2.18% 0.92%
Std. Dev. 1.10% 0.91% 1.62% 1.52%
Corr. Lag 1 0.89 0.84 0.95 0.94
Mean i∗t 3.04% 4.17% −2.98% 2.60%
Std. Dev. 3.24% 1.85% 3.54% 2.98%
Corr. Lag 1 0.99 0.98 0.98 0.99
Notes: The ZLB episode in U.S. data is from 2008.Q4 through 2015.Q4. Model results are computed from

a 300,000 period simulation. π4,t ≡ [Π3
j=0(1 + πt−j)]

0.25 − 1.

Table E.2. Properties of Representative Agent’s Forecast Errors
Model Simulations

Statistic
Targeted
Equilibrium

Deflation
Equilibrium

Switching
Model

Corr(erryt+1, err
y
t ) 0.001 −0.006 0.019

Corr(errπt+1, err
π
t ) 0.003 0.002 0.074

E
(
erryt+1

)
−0.0001% −0.057% 0.013%

E
(
errπt+1

)
−0.0027% −0.004% 0.004%√

E[(erryt+1)
2] 0.871% 1.771% 1.129%√

E[
(
errπt+1

)2
] 1.369% 1.418% 1.392%

Notes: Model results are computed from a 300,000 period simulation.
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Table 1. Baseline Parameter Values
Parameter Value Description/Target

α 0.15 Interest rate coeffi cient in Euler equation.
β 0.995 Discount factor in Phillips curve.
κ 0.025 Output gap coeffi cient in Phillips curve.
σν 0.003 Std. dev. of demand shock.
σu 0.010 Std. dev. of cost push shock.
ρν 0.85 Persistence of demand shock.
ρu 0.32 Persistence of cost push shock.
π∗ 0.02 Fed inflation target.
ω 0.456 πt ' 4-quarter inflation rate.
gπ 1.5 Policy rule response to inflation.
gy 1.0 Policy rule response to output gap.
gr 0.0 Policy rule response to natural rate gap.
ρ 0.8 Interest rate smoothing parameter.
ρr 0.875 Persistence parameter for rt.
λ 0.015 Kalman gain for Etr∗t .
σε 0.0098 Std. dev. of temporary shock to rt.
ση 0.0012 Std. dev. of permanent shock to rt.
Tw 8 Window length in qtrs. for forecast evaluation.
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Table 2. Switching Model Simulations: Sensitivity Analysis
Statistic U.S. Data Baseline r∗t ∈ [−0.02, 0.02] Tw = 4 ρ = 0 gr = 1.5

% periods it = 0 24.2% 15.8% 28.3% 25.2% 24.0% 15.2%
Mean ZLB duration 29 qtrs. 12.9 qtrs. 12.2 qtrs. 16.1 qtrs. 5.4 qtrs. 10.4 qtrs.
Max. ZLB duration 29 qtrs. 166 qtrs. 148 qtrs. 163 qtrs. 100 qtrs. 147 qtrs.
Mean µt 0.76 0.73 0.70 0.62 0.69 0.77
Mean yt −1.37% 0.45% 0.30% 0.29% 0.20% 0.48%
Mean π4,t 2.16% 0.92% 1.41% 0.48% 0.74% 1.10%
Mean i∗t 3.04% 2.60% 1.05% 1.79% 2.09% 2.91%
Std. dev. yt 1.85% 2.03% 2.18% 2.39% 2.12% 1.55%
Std. dev. π4,t 1.10% 1.52% 1.26% 1.83% 1.66% 1.41%
Std. dev. i∗t 3.24% 2.98% 2.70% 3.65% 3.87% 3.27%
Notes: The sample period for the U.S. data is 1988.Q1 to 2017.Q4. The ZLB episode in U.S. data runs from 2008.Q4

through 2015.Q4. Model results are computed from a 300,000 period simulation. π4,t ≡ [Π3
j=0(1 + πt−j)]

0.25 − 1.
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Table 3. Effect of Raising the Inflation Target in Switching Model
Statistic π∗ = 0.02 π∗ = 0.03 π∗ = 0.04 π∗ = 0.05

gr = 0
% periods it = 0 15.8% 11.5% 7.6% 4.7%
Mean ZLB duration 12.9 qtrs. 12.5 qtrs. 12.4 qtrs. 11.2 qtrs.
Max. ZLB duration 166 qtrs. 166 qtrs. 165 qtrs. 216 qtrs.
Mean µt 0.73 0.75 0.77 0.79
Std. dev. yt 2.03% 1.95% 1.87% 1.80%
Std. dev. π4,t 1.52% 1.60% 1.65% 1.68%
Std. dev. i∗t 2.98% 3.03% 3.02% 2.96%√
Loss 2.76% 2.55% 2.65% 3.06%

gr = 1.5
% periods it = 0 15.2% 11.1% 7.7% 5.3%
Mean ZLB duration 10.4 qtrs. 10.2 qtrs. 9.9 qtrs. 9.7 qtrs.
Max. ZLB duration 147 qtrs. 148 qtrs. 148 qtrs. 147 qtrs.
Mean µt 0.77 0.79 0.80 0.81
Std. dev. yt 1.55% 1.50% 1.46% 1.41%
Std. dev. π4,t 1.41% 1.51% 1.59% 1.65%
Std. dev. i∗t 3.27% 3.30% 3.31% 3.29%√
Loss 2.28% 2.16% 2.38% 2.90%

Note: Model results are computed from a 300,000 period simulation.
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Figure 1: U.S. Nominal Interest Rates and Inflation

Notes: The two intersections of the ZLB-augmented monetary policy rule (solid red line) with the
Fisher relationship (dashed black line) define two long-run endpoints. The monetary policy rule is
it = r∗ + π∗ + gπ (π4,t − π∗) with r∗ = 0.01, π∗ = 0.02 and gπ = 1.5. The Fisher relationship is
it = r∗ + π4,t.
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Figure 2: Results for a Simplified Model

Notes: The simplified model imposes ρ = 0, ω = 1, σν = σu = 0, and ση = 0. The model is used to
generate data for yt and πt using an exogenous weight µ on the targeted forecast rules, where µ undergoes
a series of infrequent shifts (thick blue line). The switching model’s algorithm for determining the time-
varying forecast weight µt is to minimize the RMSFE statistic from equation (15) with Tw = 8.
Applying this algorithm to the simulated data for yt and πt produces a time series for the weight µt
(thin red line). The switching model’s algorithm for determining µt successfully tracks the actual value
of µ that is being used to generate the data.
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Figure 3: U.S. Data

Notes: The short-run natural rate of interest rt remains below the model-implied value of Etr∗t from
2007.Q4 onward, implying a negative natural rate gap. The nominal federal funds rate it is approx-
imately zero from 2008.Q4 through 2015.Q4. Assuming i∗t = it in 2008.Q4, the desired federal funds
rate from 2009.Q1 through 2015.Q4 is computed using the calibrated policy rule (10). From 2016.Q1
onwards, I assume i∗t = it. The top right panel shows that the 4-quarter PCE inflation rate was negative
for three consecutive quarters in 2009 and is mostly below the Fed’s 2% inflation target from 2012.Q2
onward. The Great Recession was very severe, pushing the CBO output gap down to −6.1% at the
business cycle trough in 2009.Q2. The various endpoints plotted in the figure are computed using the
expressions in Section 2.1, with r∗t set equal to the model-implied value of Etr

∗
t .
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Figure 4: Replicating U.S. Data with the Switching Model

Notes: Given the U.S. data counterparts for the model variables, I solve for the implied time series
of stochastic shocks and endogenous forecast rule weights that allow the switching model to exactly
replicate the observed time paths of U.S. data. The model-implied shocks νt and ut go from positive to
negative at the start of the ZLB episode in 2008.Q4. The top right panel shows that the performance gap
between the two sets of forecast rules initially narrows with the onset of the ZLB episode in 2008.Q4.
The performance gap narrows even further after 2012.Q2 when the Fed persistently undershoots its
2% inflation target. At the end of the data sample in 2017.Q4, the weight µt assigned to the targeted
forecast rules is 0.68. In the bottom left panel, the correlation coeffi cients between the switching model’s
expected inflation series and the two U.S. data expected inflation series are 0.81 (inflation swaps) and
0.63 (ATSIX), respectively.
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Figure 5: Counterfactual Exercise: Policy Response to Natural Rate Gap

Notes: The counterfactual exercise employs the same initial conditions and the same sequences for νt,
ut, rt, and Etr

∗
t as in Figure 4, but the monetary policy rule is now changed to allow for a direct

response to the natural rate gap with gr = 1.5. Relative to the baseline exercise, the counterfactual
exercise lengthens the ZLB episode by 7 quarters, but it succeeds in reducing downside fluctuations in
the output gap and inflation, thereby increasing the end-of-sample weight µt assigned to the targeted
forecast rules.
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Figure 6: Distributions of Endogenous Variables

Notes: Model variables in the deflation equilibrium have distributions with lower means but higher
variances than those in the targeted equilibrium. But the significant overlap in the various distributions
creates a dilemma for an agent who seeks to determine the degree to which a string of recent data
observations are drawn from one local equilibrium or the other. The central bank in the switching
model undershoots its inflation target and the volatilities of the output gap and inflation are both
higher relative to the targeted equilibrium. The bottom right panel shows that the likelihood of a
−6.1% output gap in the targeted equilibrium is essentially zero. In contrast, a Great Recession-type
episode is plausible in the switching model.
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Figure 7: Distributions of ZLB Duration

Notes: Unlike the targeted equilibrium, the switching model can produce infrequent but long-lived ZLB
episodes in response to small, normally distributed shocks. A 29 quarter ZLB episode (the duration
observed in U.S. data since 1988) is an extremely rare event in the targeted equilibrium but can occur
with about 5% frequency in the switching model.
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