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This supplement contains three sections. In the first section, we restate some useful
definitions and theorems about functionals that were used in the proofs of our proposition
2. In the second section, we include the proofs of Theorems 4, and 7. In the third section,
we give additional details about the relationship between our asymptotics and Freyberger

(2015)’s asymptotics.

1 Definitions and Theorems about Functionals

Definition. Suppose f : U — Y is a mapping from an open subset U C X of a Banach
space to another Banach space Y. Then, f is Fréchet Differentiable at ug € U if there is
a bounded linear map D f(ug) : X — Y such that for every € > 0, there is a § > 0 such that

whenever 0 < ||u — || < J, we have

1/ (w) = f(uo) = Df(uo) - (u = o]

[l = ol

< €.

The Fréchet Derivative of f at ug, Df(ug), is related to the directional derivative (some-
times called the Gateaux Derivative) of f at ug in the direction h:
th) —
Df(ug) - h = tim LTI = () _ v )

t—0 t

The Mean Value Theorem can be extended to Fréchet differentiable functionals.

Theorem. (Mean Value Theorem) Let U C X be an open and convex subset of a Banach
space X and let f : U — Y be a C* mapping from U to a Banach space Y. For u,v € U,



assume {(1 —t)u + tv|t € [0,1]} C U. Then,

F(0) = flu) = / DF(1— tyu + to)dt - (v — u)
:Df(u)-(v—u)+/0 (Df((1 —t)u+tv) — Df(u))dt - (v —u).

Corollary. (Intermediate Value Theorem) Let U C X be an open convex subset of a Banach
space X and let f: U — R be C* map. For all u,v € U , there exists a ¢ = (1 —t)u+tv for
some t € [0,1] such that f(v) — f(u) = Df(c) - (v —u).

2 Additional Proofs of Theorems

2.1 Proof of Theorem 4

PrROOF. First we will show stochastic equicontinuity. Recall that the implicit function
theorem applied to s(d, X, F;6) = S implies that 6 () is a continuously differentiable
function of §. By the intermediate value theorem, there exists 6 € [0,6] such that

51 (0) — b, (6) = 248 (9 — 6,). Tt follows that
19 (0) =4 (6o) — (v (6) = (6o))
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Recall that 85 9) =0 and 85(9) = ( Zr LG5 <5 X, v, )) & Zle Gy, <S,X, vr;6’>. If
)

we can show that F [sup HZ 20u(6 H } < o0 , then since == is continuous in # and © is a
)
compact set, we will have that the uniform law of large numbers holds (see e.g. Lemma 2.4

in Newey and McFadden (1994)):
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Recall that Z, € RY* for finite L and that E [sup HZ 26,(6 H } <+VLE {sup
2 6€0

Ztaét 9)” ]



< 00. Note that

It therefore suffices to show that £ [sup HZt —8?9(: ) H
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We showed in lemma 1 that [ Vsg:(d:, Xy, v,;0)dF (v,) is strictly diagonally dominant for
all 0, 6;, X;, and F', which implies %25:1 Vsg: (8¢, Xy, v,50) is strictly diagonally dominant
for all 0, §;, and X;. The Ahlberg-Nilson-Varah bound (Ahlberg and Nilson (1963); Varah
(1975)) states that for all t = 1...T",

R —1
1 A 1
sup (Eg Vg <6t,Xt7UT;9>> < sup— - )
€6 mincicr (|af'(0)] = 32,4 ¥ (0)])

where a(0) is the i, jth element of £ S Vs (St, Xty Up; 9). Since a)’ (A) € (—1,0)U(0,1)
. -1
(% Zf:l Végt <5t7 Xt7 Ur; 0))

C. Next we show F [sup H% Zle Vo, g (&, X, U 9) H } < oo by showing that the vector
0cO o0

for all 6, there exists a constant C' such that max sup <

t=1..Tgco

E [sup% SR W < oo for all j = 1....J. Note that for all t = 1.7, j = 1...J,
[SC)
and r =1...R,

0gjt (&; Xt, Ur; 9)

Sup

6O 00,
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— ! 2, . — _

oo |1+ Zke/\/(t) exp(Oxt + frkt) ’ 1+ Zke]\/(t) exp(Okt + fhrke)

< maz |11, 20,) 0 v | sup

T k=1 0cO

exp(O;1 + fnje) m > ket €TP(Okt + Hrke)
1+ Zk@\/(t) exp(Ore + frke) 1+ ZkeN(t) exp(Ope + frke)

s Zmaz, |1, 7] 0 n.



8g]t(5t Xt,vr; 0)
002

| <

< 0o by assumption, £ {sup =

Since E Lmlc-z'% ‘ [1,x]t] o Uy

[R S —1 Moz ’ [1,xﬁ} ov || <ooand E lggg Haét } <
CE [6 p %Zrzl Vo, 0t (&,Xt,vr;Q)H < 00. This combined with E [||Z;]| ] < oo im-
€ [e%e}
plies that F {sup Zi= 20u(6 )H < 0o which implies that FE {sup Zi= aétw) H ] < 00. It follows
that 0cO 00 0cO
96, (0) 1 09, (6
ggg Z Z 392 Té%ﬁ}oof ; Bz 005 ] H

Additionally, since E [||Z,X]]|,] < oo, the weak law of large numbers implies that

= 0,(1).
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Therefore, stochastic equicontinuity holds:

sup v/m |3 (0) =4 (60) — (v (0) =7 (o))l / (1 + Vm 10 — 6o]])
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Using similar arguments, we can show that for all #',0” € ©,
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O,(1) since E {sup HZ il G)H } < oo and E[||Z,X]|,] < 0.
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Since v (0) = Tl}y_)} T Ly~ [Zt (5t (0) — Xtelﬂ is continuous in f, © is a compact set,
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and ||5 (6) — v (8)] = 0 for each 6, Lemma 2.9 in Newey and McFadden (1994) implies that

sup |5 (8) = (8)|| = 0.
0coO

2.2 Proof of Theorem 7

PRroOOF. Recall that

99 (6 T & .
00)_ ( 36 (5.0 )) £ 26 (5 x00).

We showed in theorem 4 that £ {sup
0cO
in 6, by Lemma 4.3 of Newey and McFadden (1994) and the weak law of large numbers,

Zt 95+(0 )H :| < 0. Since & Oy and é)g_éf) is continuous
2
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Since we also assumed F || Z,X]||, < oo and Z, (5,5 (0) — X{91> is integrable for 6 in a neigh-

borhood of 6y, we can interchange differentiation and expectation so that plimf =T.
Furthermore, Wy = 21 & W = -1 Therefore, I'Wy I 5 T'WT.
To show that ) 5 2, note that since 5 ((%) 2 5 , oL 0y, and there exists k,, | 0 such that

E

sup ‘ Z <5t (0) — Xt’01> H] < 00, by Lemma 4.3 of Newey and McFadden (1994),
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t=1

To show that 3, 2 %, we first show that maz Hh (vr, ) —h (5 QO)H 20, where
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h (vy;00) = T ZZt (/ Visgi(dor, Xt v; Go)dFo(U)) (9¢(00t: X, vy 60) — Eu[ge(Sor, Xe, 03 600)]) -
t=1



Note that for all t = 1...7, Vsg; (0¢, Xy, vy; ) is continuous in 6; and 0, and Vsg; (04, X3, v,-50) €
(=1,0) U (0,1) for all 6, X, v,, and 6. Since 6 % 6y and & <92) % 6, by Lemma 4.3 of
Newey and McFadden (1994),

max 20.

t=1

Zvagt 5t7Xt7Ur7 —/V&Qt(éot,Xt,Ur;eo)dFO@T)

[e.e]

By the Continuous Mapping Theorem,

-1
t?l’LlafL' ( ZVggt 5t7Xt7Ur70)) — (/ Vagt(éot,Xt,U;e())dFo(U)) ﬁ) 0.

[e.9]

Similarly, note that for all t = 1...T", g; (s, X, v,-; 0) is continuous in é; and 0, and g; (§;, Xy, v,;0) €
(0,1) for all &, X, v,, and 6. Since 6 % 6, and & ((%) % 60, by Lemma 4.3 of Newey and
McFadden (1994),

p

ma:c = 0.
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Note that the Ahlberg-Nilson-Varah (Ahlberg and Nilson (1963); Varah (1975)) bound on
the strictly diagonally dominant matrices | Vsg: (dor, Xt, vy 00) dF (v,) implies that there

exists a constant C such that

< C.
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Also, since g; (0¢, Xy, v,;0) € (0,1) for all 6;, Xy, v, and 0, there exists B such that

< B.
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We assumed in theorem 4 that E || Z;||, < oo, which implies that || Z;| = O, (1).

Furthermore, we assumed
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Therefore,
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Then it follows that

i (vr:0) B @;é)’
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I
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Note that % ZR B (vr;00) b (vy;60)" is a two-sample V-statistic, which is known to satisfy a
weak law of large numbers (see e.g. van der Vaart (1998)). Therefore, for k (0p;, X¢, v,;00) =
—Z4 (f V(Sgt(CSOt;Xta v; QO)dFO(U))il (gt(éotaXta Ur; 90) - Ev[gt<50t7Xta v; 90)])7

R
Z il (vr; 90 (vp; 90), 5E [/f (0t, Xt vr3 00) K (or, Xo, vy 90)/} = Y.

:U |

We have shown that 3 = min (1, £) Q + min (1,%) S BT = (1ARQ+ (1AL/E)D,

Therefore,
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AsyVar M - (f’WTf>lf’WT§)WTf (f’WTf‘) 2 (WD) ' I'WEWT (D'WT) !

3 Comparison with Freyberger (2015)

We reproduce the formulas for ®; and ®5 in Freyberger (2015) and compare them to our
and Y. In the following expressions, we reproduce Freyberger (2015)’s notation under the
assumption of overlapping simulation draws: v,;, = v, for all t. First note that Freyberger

(2015) uses vj; when defining the market shares while we use g;;.

exp (X]/'tgl + &+ ,urjt)
L+ Zkex\/(t) exp (Xp,00 + &je + forkt)

Ot (9,$t,€tjpt) = /Vt (Q,flft»ft,?)) ap; (U) = /gt (6t7Xt7U;9) dF (U)

Vit (vatvgtvvr) = = gt (6t7Xt7U7";0)



Freyberger (2015) defines Hy; as the Jacobian matrix of the true market shares with respect
to &, which is the same as our Jacobian matrix of the true market shares with respect to
0y = Xt + &.

Ooy (90, gt (005 POt) , Pot
0§

oy D [ a0 G o103 00) dF ().

Freyberger (2015) also defines
€ort = Wt (007 T, gt (007 POta St) avr) - /Vt (90a T, gt (HOa POta St) 7U) dPOt (U) .

Freyberger (2015) uses z; € R7*? to denote the matrix of instruments for market ¢ while we
use Z; € RP*/. His expression for ®; coincides with our 2 under our assumption that the

data are 1.1.d. across markets.

T
, 1
¢, =limFE T tz; 2& (0o, Pot, 5¢) & (0o, Pot, st) 21

T—o0

T—o0

T
_ 1
— lim E - ; Zy (8ot — X1001) (60: — X1601) Z,

= E [Z, (60t — X{001) (60e — X1001)' Z}] = Q.
Freyberger (2015)’s @5 is not exactly the same as our ¥, but only differs by a o(1) term.
To see this, note that 5 = jézm % ZtT:l Var [ng&leom} can be rewritten using the fact that
—00

v, are 1.i.d. as %QngoVar [%{ ZtT:l Zle q (Zy, Xy, vy 0y, 50t)], where

1
q(Zs, X, 07500, 000) = — 24 (/ Vgt (0ot, X¢,v;60) dFy (U)) <gt (0ot X¢,vp560) — /gt (0ot, X, v 00) dFy (W)) .

Recall that %{ Zthl Zle q (Zy, Xi, 0500, 00) is a two-sample U-statistic whose decompo-
sition is

R

T
1 1
TR Z Z q (Zt, Xt, vr; 00, 0or) = = Z h (vy;60) + 0, (1).

t=1 r=1 —1

1
h (vr;00) = — / {Zt (/ Vsgt (dot, Xt,v;00) dFo (v)> (gt (d0¢, Xt,vr;00) — /gt (0ot, Xt,vr; 00) dFo (UT)) } dP (Zt, Xt,&t) .



It follows that ®, = lim Var [h (v,;600) + 0, (1)] = B4 4 0(1). Next we explain why &; = Q

T—oo

and <f>2 = f]h. Note that

]:It _ Joy (9,122&,3%) _ %idiag (Vt (&%&,ét,%)) — (é,xt,gt,vr> Uy (é7xtvét,v7.)/

r=1

1 & - .
= 0 ZVagt <6t;Xt7Ur’;9> .

r’'=1

Uy (&%;éﬁ,%) =1 (&%;étﬂjr) — Ot (é7xtaét7 Prt)
. . 1 & . .
=0t <5t7Xt7Ur;0) - l_%;gt (5t>Xt7Ur’;6> .

It follows that

T T
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R T
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t=1

We can also show that our standard errors are the same as Freyberger (2015)’s standard er-
. . L. N N
rors. Our estimate of the finite sample variance of 6 is % (F’ WTF> I'WerXWoI (F’ WTF>

where
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N AN\ —1 . N N N /oA A\ —1
5 (Ewl) W (@) + 5, ) Wil (T'Wl)  is Freyberger (2015)'s estimate of the f-

nite sample variance of 6.
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