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CAN PANDEMIC-INDUCED JOB UNCERTAINTY STIMULATE
AUTOMATION?

SYLVAIN LEDUC AND ZHENG LIU

Abstract. The COVID-19 pandemic has raised concerns about the future of work. The

pandemic may become recurrent, necessitating repeated adoptions of social distancing mea-

sures (voluntary or mandatory), creating substantial uncertainty about worker productivity.

But robots are not susceptible to the virus. Thus, pandemic-induced job uncertainty may

boost the incentive for automation. However, elevated uncertainty also reduces aggregate

demand and reduces the value of new investment in automation. We assess the importance

of automation in driving business cycle dynamics following an increase in job uncertainty in

a quantitative New Keynesian DSGE framework. We find that, all else being equal, job un-

certainty does stimulate automation, and increased automation helps mitigate the negative

impact of uncertainty on aggregate demand.

I. Introduction

The COVID-19 pandemic has led to severe global economic disruptions. To slow the

spread of the virus, countries have adopted strict social distancing measures and shelter-in-

place orders. By shutting down non-essential businesses and forcing workers to stay home,

these necessary public health policy measures contributed to further depressing economic

activity.

The pandemic will eventually taper, allowing economic activity to recover. However,

absent the discovery of vaccines and treatments, new waves of the pandemic may return,

forcing governments to reintroduce social distancing and lockdown measures and thereby

creating recurrent disruptions to economic activity. The distinct possibility of recurring

future waves of the pandemic creates persistent uncertainty, which may have long-lasting

impact on human behavior and economic activity. Reflecting the uncertainty caused by

COVID-19, the VIX surged recently to levels above those observed during the global financial
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crisis in 2008-09 (Figure 1). Anticipating potential future disruptions from the pandemic,

households and firms may postpone long-term decisions, such as investment and hiring. The

pandemic-induced uncertainty can thus have potentially important consequences for the

depth of the downturn and the strength of the recovery.

In this paper, we examine the macroeconomic consequences of pandemic-induced uncer-

tainty surrounding future labor productivity (hereafter, employment uncertainty). We focus

on this type of uncertainty because the uncertain nature of the pandemic gives rise to un-

certainty about future labor productivity. Workers can be exposed to health risks, and

social distancing measures can reduce labor productivity by hindering the ability to work.

But robots do not get sick. If a production process can be automated, a firm can use a

robot instead of a worker to perform some risky tasks. In this sense, automation provides

a hedge against job uncertainty stemming from the pandemic. However, a priori, job un-

certainty may not necessarily translate into more automation, since higher uncertainty also

reduces aggregate demand and has recessionary effects on the macroeconomy (Leduc and

Liu, 2016). To assess the macro impact of the pandemic-induced job uncertainty when firms

can automate to cope with future labor market disruptions, one needs a quantitative general

equilibrium framework.

We provide such a framework. We build on Leduc and Liu (2019) and develop a New

Keynesian model with automation and labor market search frictions. In line with Acemoglu

and Restrepo (2018) and Zeira (1998), firms in our model first choose whether or not to adopt

a robot to perform a set of tasks, and only nonautomated tasks (or vacancies) are available

for hiring workers. We interpret automation as a labor-substituting technology. Thus, robots

in our model are different from the physical capital in the standard macro models. In the

beginning of each period, a firm observes an i.i.d. cost of automation and decides whether or

not to automate an unfilled job position that is carried over from the previous period. If the

cost of automation lies below a threshold determined by the net benefit of automation, then

the firm adopts a robot for production and takes the job vacancy offline. The probability of

automation is thus the cumulative density of automation costs evaluated at the automation

threshold. If the job position is not automated, then the firm posts the vacancy in the

labor market to search for a potential match with a job seeker. If the match is successful,

the vacancy will be filled with a worker, and both the firm and the worker obtain their

respective employment surplus from bargaining over the wage rate. If no match is formed,

then the vacancy remains open and the firm obtains the continuation value of the vacancy,



PANDEMIC-INDUCED JOB UNCERTAINTY 3

including the option to automate the position in future periods.1 We also show that our

results are robust to assuming that firms can directly automate an existing job.

Firms’ automation decisions partly depend on current and expected future worker produc-

tivity, which fluctuates due to labor-specific productivity shocks. These shocks capture the

effects that the pandemic may have on workers’ health and the impact of social distancing

measures on their ability to work. We consider second-moment shocks to the labor-specific

productivity in addition to the standard first-moment shocks. The productivity of robots

is not subject to pandemic-related shocks, because the pandemic and the associated social

distancing measures do not impede the robots’ ability to operate.2

We incorporate price rigidities into this environment and estimate the model to fit quar-

terly U.S. time series data from 1985:Q1 to 2018:Q4. In our estimation, we do not consider

pandemic-induced uncertainty shocks to labor-specific productivity, since pandemics are not

observed in our sample. Therefore, the onset of the pandemic is unanticipated and the fluc-

tuations in the observed macroeconomic variables have been driven by other shocks. We

parameterize the model based on our estimation and calibration using the pre-2019 data.

We then turn on the uncertainty shock to labor-specific productivity (i.e., job uncertainty)

to examine its macroeconomic effects.

We show that a pandemic-induced job uncertainty leads firms to adopt more robots, which

mitigates the recessionary effects from heightened uncertainty. An increase in uncertainty

first contributes to a substantial and persistent increase in unemployment and a fall in infla-

tion because uncertainty raises precautionary savings and reduces aggregate demand, similar

to the effects in Leduc and Liu (2016). Other things being equal, the decline in economic

activity reduces firms’ incentives to automate, since the value of automation declines in a

recession. However, heightened job uncertainty also boosts the incentive for firms to shift

technologies toward automation, because the productivity of robots is not susceptible to the

pandemic. Under our calibration, this technology-shifting effect dominates the recessionary

effect such that the automation probability increases with job uncertainty. Since robots and

workers are perfectly substitutable, the increase in automation reduces employment. Yet,

increased automation also boosts employment through a separate channel, since the higher

automation probability increases the value of a vacancy, resulting in more vacancy creation

1We interpret a job position broadly as consisting of a bundle of tasks, which are ex ante identical, but

a fraction of which will be automated depending on the realization of the idiosyncratic costs of automation.

This approach simplifies our analysis significantly. We have considered an alternative timing of the automa-

tion decisions, under which firms first post the job vacancies for hiring workers, and then decide whether or

not to automate the unfilled vacancies. The results are similar.
2Automated processes may need human assistance. However, these operations can often be conducted

remotely and are thus less subject to health risks and social distancing measures.
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and posting. In addition, the increase in automation raises labor productivity because more

output can be produced with a given number of workers. Overall, while job uncertainty raises

unemployment and reduces inflation, the option of automation mitigates these recessionary

effects.3

The pandemic-induced job uncertainty has markedly different effects from a reduction in

the level of labor productivity. Both types of shocks generate a recession, but they operate

through different channels. The uncertainty shock reduces aggregate demand and therefore

pushes up unemployment and lowers inflation. In contrast, the first-moment shock reduces

potential output and therefore raises both unemployment and inflation. More importantly,

the two types of shocks have different impacts on automation. While uncertainty about

worker productivity induces firms to shift technology toward automation and thus increases

robot adoption, a negative labor productivity shock generates a large recession that reduces

the incentive to automate. The decline in automation amplifies the initial negative shock to

labor productivity.

Since the outbreak of the COVID-19 pandemic, there has been a burgeoning literature

studying the impact of pandemics on the economy. Several studies attempt to shed light on

the economic impact of COVID-19 and the effectiveness of public health policy interventions

based on historical experience such as the 1918 Spanish flu pandemic or the 2003 SARS

outbreak.4 There have also been a growing number of theoretical studies on the economic

impact of the pandemic and the efficacy of alternative policy interventions. Some of these

theoretical studies build on the susceptible-infected-recovered (SIR) framework initially pro-

posed by Kermack and McKendrick (1927).5 Some other studies build on the New Keynesian

framework and incorporate features that capture the disruptive effects of pandemic shocks

on economic activity.6

Our work complements this literature. While the existing studies examine the direct dis-

ruptive effects of the pandemic on the economy, we focus on the business cycle dynamics

3Our model’s implication that automation rises in a recession is consistent with empirical evidence. For

example, Hershbein and Kahn (2018) use MSA and firm-level data to show that, in the 2008-09 Great Re-

cession, firms raised skill requirements for workers and increased capital investment, such that the recession

accelerated routine-biased technological changes. Jaimovich and Siu (2018) also show that job losses in rou-

tine occupations have been concentrated in economic downturns since the mid-1980s, and the disappearance

of the routine-skill jobs has contributed to the jobless recoveries. To the extent that automation displaces

jobs in routine occupations, these empirical findings lend support to our theory.
4Examples include Correia et al. (2020), Barro et al. (2020), Jorda et al. (2020), Ma et al. (2020), and

Fang et al. (2020), among others.
5Examples include Atkeson (2020), Berger et al. (2020b), Chudik et al. (2020), Eichenbaum et al. (2020),

Garibaldi et al. (2020), Glover et al. (2020), and Jones et al. (2020), among many others.
6Examples include Faria e Castro (2020) and Guerrieri et al. (2020), among others.
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triggered by the pandemic. In particular, we examine how increases in job uncertainty as-

sociated with worker health risks would drive macroeconomic fluctuations. In this sense,

our paper also contributes to the literature about the macroeconomic effects of uncertainty

shocks.7 We show that a shock to job uncertainty has markedly different macroeconomic

effects than the standard first-moment shock to labor productivity, and that the option to

automate a production process enables firms to mitigate the adverse impact of uncertainty.

To our knowledge, the automation channel for the transmission of pandemic-induced uncer-

tainty is novel to the literature.8

II. The New Keynesian model with automation and labor market frictions

We present a New Keynesian model with automation and labor market frictions. The

model builds on Leduc and Liu (2019) and incorporates nominal rigidities and uncertainty

shocks. Final goods output is the sum of the intermediate goods produced by workers

and by robots. Since robots are perfect substitutes for workers in production, they are

different from the physical capital in the standard neoclassical production functions, where

capital and labor are complementary inputs.9 Retailers use intermediate goods to produce

differentiated consumption goods subject to nominal rigidities. The final good, an aggregate

of the differentiated goods, is used for household consumption and also for paying the costs

of vacancy posting, vacancy creation, and robot adoption.

To keep automation decisions tractable, we impose some assumptions on the timing of

events. In the beginning of period t, a job separation shock δt is realized. Workers who

lose their jobs add to the stock of unemployment from the previous period, forming the

7The literature on uncertainty shocks has grown rapidly since the important contribution of Bloom

(2009). It is beyond the scope of our paper to provide an exhaustive list of the recent contributions to this

literature. For recent surveys of this literature, see Bloom (2014) and Fernández-Villaverde and Guerrón-

Quintana (2020). Dietrich et al. (2020) provide survey-based evidence that COVID-19 has induced large

uncertainty in household expectations of future output growth and inflation. For other recent empirical

studies of the macroeconomic effects of uncertainty induced by COVID-19, see Baker et al. (2020) and Leduc

and Liu (2020a). Our focus on the impact of uncertainty shocks on labor market outcomes in a framework

with search frictions is related to that in Leduc and Liu (2016) and den Haan et al. (2020).
8Recent contributions to the literature on automation and the labor market include, for example, Autor

(2015), Acemoglu and Restrepo (2017, 2018), Graetz and Michaels (2018), Leduc and Liu (2019), and

Jaimovich et al. (2020).
9Krusell et al. (2000) study a neoclassical model in which capital equipment complements skilled labor

but substitutes for unskilled labor. The relation between robots and workers in our model is analogous to

the relation between equipment and unskilled labor in their model. For simplicity, we abstract from labor

heterogeneity (skilled vs. unskilled). See He and Liu (2008) for a general equilibrium version of the model

with skill accumulations and equipment-skill complementarity.
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pool of job seekers ut. Firms post vacancies vt at a fixed cost κ. The stock of vacancies vt

includes the unfilled vacancies that were not automated at the end of period t− 1, the jobs

separated in the beginning of period t, and new vacancies created in the beginning of period

t. Creating a new vacancy incurs a fixed cost, which is drawn from an i.i.d. distribution

G(·), as in Leduc and Liu (2019). In the labor market, a matching technology transforms

job seekers and vacancies into an employment relation, with a wage rate determined through

Nash bargaining between the employer and the job seeker. Once an employment relation

is formed, production takes place, and the firm receives the employment value. An unfilled

vacancy can be either carried forward to the next period or automated at a fixed cost. Similar

to the vacancy creation cost, the automation cost x is drawn from an i.i.d. distribution F (x).

If a firm draws an automation cost that is below a threshold value x∗t , then the firm adopts

a robot and closes the job opening. In that case, the firm obtains the automation value.

Otherwise, the vacancy remains open and the firm receives the continuation value of the

vacancy. Newly adopted robots add to the stock of automation, which becomes obsolete

over time at a constant rate ρo.

II.1. The Labor Market. In the beginning of period t, there are Nt−1 existing job matches.

A job separation shock displaces a fraction δt of those matches, so that the measure of

unemployed job seekers is given by

ut = 1− (1− δt)Nt−1, (1)

where we have assumed full labor force participation and normalized the size of the labor

force to one.

The job separation rate shock δt follows the stationary stochastic process

ln δt = (1− ρδ) ln δ̄ + ρδ ln δt−1 + σδεδt, (2)

where ρδ is the persistence parameter, σδ denotes the standard deviation of the innovation,

and the term εδt is an i.i.d. standard normal process. The term δ̄ denotes the mean rate of

job separation.

The stock of vacancies vt in the beginning of period t consists of the vacancies in period

t − 1 that were not filled with workers and not automated, plus the separated employment

matches and newly created vacancies. The law of motion for vacancies is given by

vt = (1− qvt−1)(1− qat−1)vt−1 + δtNt−1 + ηt, (3)

where qvt−1 denotes the job filling rate in period t − 1, qat−1 denotes the automation rate in

period t− 1, and ηt denotes the newly created vacancies (i.e., entry).
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In the labor market, new job matches (denoted by mt) are formed between job seekers

and open vacancies based on the matching function

mt = µuαt v
1−α
t , (4)

where µ is a scale parameter that measures match efficiency and α ∈ (0, 1) is the elasticity

of job matches with respect to the number of job seekers.

The flow of new job matches adds to the employment pool, and job separations subtract

from it. Aggregate employment evolves according to the law of motion

Nt = (1− δt)Nt−1 +mt. (5)

At the end of period t, the searching workers who failed to find a job match remain

unemployed. Thus, unemployment is given by

Ut = ut −mt = 1−Nt. (6)

For convenience, we define the job finding probability qut as

qut =
mt

ut
. (7)

Similarly, we define the job filling probability qvt as

qvt =
mt

vt
. (8)

II.2. The firms. A firm makes automation decisions in the beginning of the period t. Adopt-

ing a robot requires a fixed cost x in units of consumption goods. The fixed cost is drawn

from the i.i.d. distribution G(x). A firm chooses to adopt a robot if and only if the cost

of automation is less than the benefit. For any given benefit of automation, there exists a

threshold value x∗t in the support of the distribution G(x), such that automation occurs if

and only if x ≤ x∗t . If the firm adopts a robot to replace the job position, then the vacancy

will be taken offline and not available for hiring a worker. Thus, the automation threshold

x∗t depends on the value of automation (denoted by Jat ) relative to the value of a vacancy

(denoted by Jvt ). In particular, the threshold for automation decision is given by

x∗t = Jat − Jvt . (9)

The probability of automation is then given by the cumulative density of the automation

costs evaluated at x∗t . That is,

qat = G(x∗t ). (10)

The flow of automated job positions adds to the stock of automatons (denoted by At),

which becomes obsolete at the rate ρo ∈ [0, 1] in each period. Thus, At evolves according to

the law of motion

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (11)
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where qat (1− qvt−1)vt−1 is the number of newly automated job positions.

Once adopted, a robot produces Ztζat units of output, where Zt denotes a neutral tech-

nology shock and ζat denotes an automation-specific shock. The neutral technology shock

Zt follows the stochastic process

lnZt = (1− ρz) ln Z̄ + ρz lnZt−1 + σzεzt. (12)

The parameter ρz ∈ (−1, 1) measures the persistence of the technology shock and σz is the

standard deviation of the innovation. The term εzt is an i.i.d. standard normal process.

The term Z̄ is the steady-state level of the technology shock.10 The automation-specific

technology shock ζat follows a stochastic process that is independent of the neutral technology

shock Zt. In particular, ζat follows the stationary process

ln ζat = (1− ρa) ln ζ̄a + ρa ln ζa,t−1 + σaεat. (13)

The parameter ρa ∈ (−1, 1) measures the persistence of the automation-specific technology

shock, the term ζ̄ is the steady-state level of the automation-specific technology shock, the

term σa denotes the standard deviation of the innovation, and the term εζt is an i.i.d.

standard normal process.

Operating the robot incurs a flow fixed cost of κa. The value of automation satisfies the

Bellman equation

Jat = pmtZtζat(1− κa) + (1− ρo)EtDt,t+1J
a
t+1, (14)

where pmt denotes the relative price of intermediate goods (in units of final consumption

goods), the term κa captures the flow costs of automated production (such as energy, facili-

ties, and space rental), and Dt,t+1 is a stochastic discount factor of the households.

If the automation cost exceeds the threshold x∗t , then the vacancy will be posted in the

labor market for hiring a worker. In addition, newly separated jobs and newly created

vacancies add to the stock of vacancies for hiring workers. Following Leduc and Liu (2020b),

we assume that creating a new vacancy incurs an entry cost e in units of consumption goods.

The entry cost is drawn from an i.i.d. distribution F (e). A new vacancy is created if and

only if the net value of entry is non-negative. The benefit of creating a new vacancy is the

vacancy value Jvt . Thus, the number of new vacancies ηt is given by the cumulative density

of the entry costs evaluated at Jvt . That is,

ηt = F (Jvt ). (15)

Posting a vacancy incurs a per-period fixed cost κ (in units of final consumption goods).

If the vacancy is filled (with the probability qvt ), the firm obtains the employment value

10The model can easily be extended to allow for trend growth. We do not present that version of the

model to simplify presentation.
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Jet . Otherwise, the firm carries over the unfilled vacancy to the next period, which will be

automated with the probability qat+1. If the vacancy is automated, then the firm obtains the

automation value Jat+1; otherwise, the vacancy will remain open, and the firm receives the

continuation value Jvt+1. Thus, the vacancy value satisfies the Bellman equation

Jvt = −κ+ qvt J
e
t + (1− qvt )EtDt,t+1

[
qat+1J

a
t+1 + (1− qat+1)Jvt+1

]
. (16)

If a firm successfully hires a worker, then it can produce Ztζlt units of intermediate goods.

The term ζlt = ζ̄l measures the relative efficiency of workers, capturing the disruptions of

the COVID-19 pandemic on worker productivity. Since the pandemic was not observed in

our sample that ends in 2018, we keep ζlt constant at its average value ζ̄l for calibrating and

estimating the model parameters and shock processes. When we study the macroeconomic

implications of the pandemic-induced job uncertainty, we turn on the ζlt shock, and study

the transmission channels of both the first-moment shock (which captures disruptions of the

pandemic to the level of worker productivity) and the second-moment shock (which captures

the job uncertainty stemming from the pandemic).

The value of employment satisfies the Bellman equation

Jet = pmtZtζlt − wt + EtDt,t+1

{
(1− δt+1)Jet+1 + δt+1J

v
t+1

}
, (17)

where wt denotes the real wage rate. Hiring a worker generates a flow profit pmtZtζlt−wt in

the current period. If the job is separated in the next period (with probability δt+1), then

the firm receives the vacancy value Jvt+1. Otherwise, the firm receives the continuation value

of employment.

II.3. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βtΘt [ln (Ct − γcCt−1)− χNt] , (18)

where E [·] is an expectation operator, Ct denotes consumption, and Nt denotes the fraction

of household members who are employed. The parameter β ∈ (0, 1) denotes the subjective

discount factor, the parameter γc measures habit persistence, and the term Θt denotes an

exogenous shifter to the subjective discount factor.

The discount factor shock θt ≡ Θt
Θt−1

follows the stationary stochastic process

ln θt = ρθ ln θt−1 + σθεθt. (19)

In this shock process, ρθ is the persistence parameter, σθ is the standard deviation of the

innovation, and the term εθt is an i.i.d. standard normal process. Here, we have implicitly

assumed that the mean value of θ is one.
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The representative household chooses consumption Ct and savings Bt to maximize the

utility function (18) subject to the sequence of budget constraints

Ct +
Bt

RtPt
=
Bt−1

Pt
+ wtNt + φ(1−Nt) + dt − Tt, ∀t ≥ 0, (20)

where Rt denotes the gross nominal interest rate, dt denotes the household’s share of firm

profits, and Tt denotes lump-sum taxes. The aggregate price of final consumption goods is

given by Pt. The parameter φ measures the flow benefits of unemployment.

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max ln (Ct − γcCt−1)− χNt + βEtθt+1Vt+1(Bt, Nt), (21)

subject to the budget constraint (20) and the employment law of motion (5), the latter of

which can be written as

Nt = (1− δt)Nt−1 + quut, (22)

where we have used the definition of the job finding probability qut = mt
ut

, with the measure

of job seekers ut given by Eq. (1). In the optimizing decisions, the household takes the

economy-wide job finding rate qut as given.

Define the employment surplus (i.e., the value of employment relative to unemployment)

as SHt ≡ 1
Λt

∂Vt(Bt−1,Nt−1)
∂Nt

, where the marginal utility of consumption is given by

Λt =
1

Ct − γcCt−1

− Etβθt+1γc
1

Ct+1 − γcCt
. (23)

We show in Appendix A that the employment surplus satisfies the Bellman equation

SHt = wt − φ−
χ

Λt

+ EtDt,t+1(1− qut+1)(1− δt+1)SHt+1, (24)

where Dt,t+1 ≡ βθt+1Λt+1

Λt
is the stochastic discount factor, which applies to both the house-

hold’s intertemporal optimization and firms’ decisions.

The employment surplus has a straightforward economic interpretation. If the household

adds a new worker in period t, then the current-period gain would be wage income net of the

opportunity costs of working, including unemployment benefits and the disutility of working.

The household also enjoys the continuation value of employment if the employment relation

continues. Having an extra worker today adds to the employment pool tomorrow (if the

employment relation survives job separation); however, adding a worker today would also

reduce the pool of searching workers tomorrow, a fraction qut+1 of whom would be able to

find jobs. Thus, the marginal effect of adding a new worker in period t on employment in

period t + 1 is given by (1 − qut+1)(1 − δt+1), resulting in the effective continuation value of

employment shown in the last term of Eq. (24).
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We also show in Appendix A that the household’s optimizing consumption-savings decision

implies the intertemporal Euler equation

1 = EtDt,t+1
Rt

πt+1

, (25)

where πt+1 = Pt+1

Pt
denotes the inflation rate.

II.4. The Nash bargaining wage. When a job match is formed, the wage rate is deter-

mined through Nash bargaining. The bargaining wage optimally splits the joint surplus of

a job match between the worker and the firm. The worker’s employment surplus is given

by SHt in Eq. (24). The firm’s surplus is given by Jet − Jvt . The possibility of automation

affects the value of a vacancy and thus indirectly affects the firm’s reservation value and its

bargaining decisions.

The Nash bargaining problem is given by

max
wt

(
SHt
)b

(Jet − Jvt )1−b , (26)

where b ∈ (0, 1) represents the bargaining weight for workers.

Define the total surplus as

St ≡ Jet − Jvt + SHt . (27)

Then the bargaining solution is given by

Jet − Jvt = (1− b)St, SHt = bSt. (28)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 − b of the

total surplus St and the household’s surplus is a fraction b of the total surplus.

The bargaining solution (28) and the expression for household surplus in equation (24)

together imply that the Nash bargaining wage wNt satisfies the Bellman equation

b

1− b
(Jet − Jvt ) = wNt − φ−

χ

Λt

+EtDt,t+1(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1). (29)

We do not impose any real wage rigidities. Thus, the equilibrium real wage rate is just

the Nash bargaining wage rate. That is, wt = wNt .

II.5. The Aggregation Sector. Denote by Yt the final consumption good, which is a basket

of differentiated retail goods. Denote by Yt(j) a type j retail good for j ∈ [0, 1]. We assume

that

Yt =

(∫ 1

0

Yt(j)
ε−1
ε

) ε
ε−1

(30)
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where epsilon > 1 is the elasticity of substitution between differentiated products. Expen-

diture minimizing implies that demand for a type j retail good is inversely related to the

relative price, with the demand schedule given by

Y d
t (j) =

(
Pt(j)

Pt

)−ε
Yt, (31)

where Y d
t (j) and Pt(j) denote the demand for and the price of a retail good of type j,

respectively. Zero profit in the aggregation sector implies that the price index Pt is related

to the individual prices Pt(j) through the relation

Pt =

(∫ 1

0

Pt(j)
1

1−ε

)1−ε

. (32)

II.6. The retail goods producers. There is a continuum of retailers, each producing a

differentiated product using a homogeneous intermediate good as input. The production

function of a retail good of type j ∈ [0, 1] is given by

Yt(j) = Xt(j), (33)

where Xt(j) is the input of intermediate goods used by retailer j and Yt(j) is the output.

The retail goods producers are price takers in the input market and monopolistic competitor

in the product markets, where they set prices for their products, taking as given the demand

schedule and the price index.

Following Rotemberg (1982), we assume that price adjustments are subject to the qua-

dratic cost
Ωp

2

(
Pt(j)

π
γp
t−1π

1−γpPt−1(j)
− 1

)2

Yt, (34)

where the parameter Ωp ≥ 0 measures the cost of price adjustments and γp is the parameter

for dynamic inflation indexation (Christiano et al., 2005).

Price adjustment costs are in units of aggregate output. A retail firm that produces good

j chooses Pt(j) to maximize profit

Et

∞∑
i=0

βiθt+iΛt+i

Λt

[(
Pt+i(j)

Pt+i
− pm,t+i

)
Y d
t+i(j)−

Ωp

2

(
Pt+i(j)

π
γp
t+i−1π

1−γpPt+i−1(j)
− 1

)2

Yt+i

]
.

(35)

The optimal price-setting decision implies that, in a symmetric equilibrium with Pt(j) = Pt

for all j, we have

pmt =
ε− 1

ε
+

Ωp

ε

[
πt

π
γp
t−1π

1−γp

(
πt

π
γp
t−1π

1−γp
− 1

)
− Et

βθt+1Λt+i

Λt

Yt+1

Yt

πt+1

π
γp
t π

1−γp

(
πt+1

π
γp
t π

1−γp
− 1

)]
.

(36)

Absent price adjustment costs (i.e., Ωp = 0), the optimal pricing rule implies that real

marginal cost pmt equals the inverse of the price markup (with the markup given by µp = ε
ε−1

).



PANDEMIC-INDUCED JOB UNCERTAINTY 13

II.7. Government policy. The monetary authority follows the Taylor rule

Rt

R
=

(
Rt−1

R

)ρr [(πt
π

)φπ ( Ut
U∗t

)−φu
4

]1−ρf

exp(εrt), (37)

where the inflation target is given by the steady-state inflation rate π, U∗t denotes the un-

employment rate in the flexible-price equilibrium (i.e., the natural rate of unemployment),

and εrt is an i.i.d. monetary policy shock. The parameter ρr measures the persistence of the

interest rate adjustments (i.e., interest-rate smoothing). The parameters φπ and φu measure

the responsiveness of the interest rate to deviations of inflation from the target and changes

in the unemployment gap, respectively.

The government finances an exogenous stream of spending Gt and unemployment benefit

payments φ through lump-sum taxes. We assume that the government balances the budget

in each period such that

Gt + φ(1−Nt) = Tt. (38)

The government spending shock Gt follows the stationary stochastic process

lnGt = (1− ρg) ln Ḡ+ ρg lnGt−1 + σgεgt. (39)

The term Ḡ denotes the mean level of government spending, the parameter ρg measures

the persistence of the shock, and the parameter σg denotes the standard deviation of the

innovation. The term εgt is an i.i.d. standard normal process.

II.8. Search equilibrium. In a search equilibrium, the markets for bonds and goods both

clear. Since the aggregate bond supply is zero, the bond market-clearing condition implies

that

Bt = 0. (40)

Goods market clearing requires that consumption, government spending, vacancy post-

ing costs, automation costs, vacancy creation costs, and price adjustment costs add up to

aggregate production. This requirement yields the aggregate resource constraint

Ct +Gt +κvt +κaZtζatAt + (1− qvt−1)vt−1

∫ x∗t

0

xdG(x) +

∫ Jvt

0

edF (e) +
Ωp

2

(πt
π
− 1
)2

Yt = Yt,

(41)

where Yt denotes aggregate output, which equals the sum of goods produced by workers and

by robots and is given by

Yt = ZtζltNt + ZtζatAt. (42)

The equilibrium conditions are summarized in Appendix B.
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III. Empirical Strategies

We use the model to study the macro impact of job uncertainty (i.e., the second-moment

shock to worker-specific productivity). For this purpose, we solve the model based on third-

order approximations to the equilibrium conditions.11 To solve the model requires assigning

values to the parameters. We first calibrate a subset of the parameters to match steady-

state observations and the empirical literature. We then estimate the remaining structural

parameters and the shock processes to fit U.S. time-series data. To estimate the model,

we solve the log-linearized equilibrium conditions around the steady state and fit the model

to the data. In our estimation, we keep work-specific productivity constant (i.e., ζlt = ζ̄l).

Since COVID-19 was not observed in our data sample from 1985 to 2018, we view that the

pandemic-induced shocks to worker productivity—both the first moment and the second

moment shocks—have not been an important source of macroeconomic fluctuations in our

sample. We then use the estimated model to examine the macroeconomic effects of the

pandemic-induced shocks to both the level and the uncertainty about worker productivity.

We focus on the parameterized distribution functions

F (e) =
(e
ē

)ηv
, G(x) =

(x
x̄

)ηa
, (43)

where ē > 0 and x̄ > 0 are the scale parameters and ηv > 0 and ηa > 0 are the shape

parameters of the distribution functions. Following Leduc and Liu (2019), we set ηv = 1 and

ηa = 1, so that both the vacancy creation cost and the automation cost follow a uniform

distribution. We estimate the scale parameters ē and x̄ and the shock processes by fitting

the model to U.S. time series data.

III.1. Steady-state equilibrium and parameter calibration. Table 1 shows the cali-

brated parameter values. We consider a quarterly model. We set the subjective discount

factor to β = 0.99, so that the model implies an annualized real interest rate of about 4

percent in the steady state. We set the matching function elasticity to α = 0.5, in line

with the literature (Blanchard and Gaĺı, 2010; Gertler and Trigari, 2009). Following Hall

and Milgrom (2008), we set the worker bargaining weight to b = 0.5 and the unemploy-

ment benefit parameter to φ = 0.25. Based on the data from the Job Openings and Labor

Turnover Survey (JOLTS), we calibrate the steady-state job separation rate to δ̄ = 0.10 at

the quarterly frequency. We set ρo = 0.03, so that robots depreciate at an average annual

rate of 12 percent. We normalize the level of labor productivity to Z̄ = 1, the worker-specific

productivity to ζ̄l = 1, and automation-specific productivity to ζ̄a = 1. We calibrate ε = 11,

11We summarize the equilibrium conditions, the steady state, and the log-linearized system in the appen-

dix. For a description of the solution methods, see Leduc and Liu (2016).
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implying a 10 percent average retail price markup (i.e., µp = 1.1). Given the markup, we

obtain the steady-state relative price of intermediate goods given by pm = 1
µp
.

We target a steady-state unemployment rate of U = 0.059, corresponding to the average

unemployment rate in our sample from 1985 to 2018. The steady-state employment is then

given by N = 1−U , hiring rate by m = δ̄N , the number of job seekers by u = 1− (1− δ̄)N ,

and the job finding rate by qu = m
u

. We target a steady-state job filling rate of qv = 0.71 per

quarter, in line with the calibration of den Haan et al. (2000). The implied stock of vacancies

is v = m
qv

. The scale of the matching efficiency is then given by µ = m
uαv1−α

= 0.66. We set

the flow cost of operating robots to κa = 0.98. Given the average productivities Z̄ = ζ̄a = 1,

this implies a quarterly profit of 1.8 percent of the revenue by using a robot for production.

The steady-state automation value Ja can then be solved from the Bellman equation (14).

Conditional on Ja and the estimated values of ē and x̄ (see below for estimation details),

we use the vacancy creation condition (15), the automation adoption condition (9), and law

of motion for vacancies (3) to obtain the steady-state probability of automation, which is

given by

qa =
Ja

x̄+ βē(1− qv)v
.

Given qa and v, the law of motion for vacancies implies that the flow of new vacancies

is given by η = qa(1 − qv)v. The vacancy value is then given by Jv = ēη. The stock of

automation A can be solved from the law of motion (11), which reduces to ρoA = qa(1 −
qv)v = η in the steady state. Thus, in the steady state, the newly created vacancies equal

the flow of automated jobs that become obsolete.

With A and N solved, we obtain the aggregate output Y = Z̄(ζ̄lN + ζ̄aA). We calibrate

the vacancy posting cost to κ = 0.0918, so that the steady-state vacancy posting cost is 1

percent of aggregate output (i.e., κv = 0.01Y ).

Given Jv and Ja, we obtain the cutoff point for robot adoption x∗ = Ja − Jv. The match

value Je can be solved from the Bellman equation for vacancies (16), and the equilibrium real

wage rate can be obtained from the Bellman equation for employment (17). Steady-state

consumption is solved from the resource constraint (41). We then infer the value of χ from

the expression for bargaining surplus in Eq. (29).

III.2. Estimation. We estimate the remaining structural parameters and the shock pro-

cesses by fitting the DSGE model to quarterly U.S. time series. The structural parameters

to be estimated include the vacancy creation cost parameter ē, the robot adoption cost pa-

rameter x̄, the habit persistence parameter γc, the price adjustment cost parameter Ωp, the

dynamic inflation indexation parameter γp, and the interest-rate smoothing parameter ρr. In

addition, we estimate the parameters of the six shocks in the model: the neutral technology
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shock Zt, the automation-specific shock ζat, the discount factor shock θt, the job separation

shock δt, the monetary policy shock εrt, and the government spending shock Gt.

III.2.1. Data and measurement. We fit the model to six quarterly time series: the unemploy-

ment rate, the job vacancy rate, the growth rate of average labor productivity in the nonfarm

business sector, the growth rate of the real wage rate, the inflation rate, and a measure of

the nominal interest rate. The sample covers the period from 1985:Q1 to 2018:Q4.12

The unemployment rate in the data (denoted by Udata
t ) corresponds to the end-of-period

unemployment rate in the model Ut. We demean the unemployment rate data (in log units)

and relate it to our model variable according to the measurement equation

ln(Udata
t )− ln(Ūdata) = Ût, (44)

where Ūdata denotes the sample average of the unemployment rate in the data and Ût denotes

the log-deviations of the unemployment rate in the model from its steady-state value.

Similarly, we use demeaned vacancy rate data (also in log units) and relate it to the model

variable according to

ln(vdatat )− ln(v̄data) = v̂t, (45)

where v̄data denotes the sample average of the vacancy rate data and v̂t denotes the log-

deviations of the vacancy rate in the model from its steady-state value. Our vacancy series

for the periods prior to 2001 is the vacancy rate constructed by the Help Wanted Index. For

the periods after 2001, we use the vacancy rate from JOLTS.

In the data, we measure labor productivity by real output per person in the nonfarm busi-

ness sector. We use the demeaned quarterly log-growth rate of labor productivity (denoted

by ∆ ln pdatat ) and relate it to our model variable according to

∆ ln(pdatat )−∆ ln(pdata) = Ŷt − N̂t − (Ŷt−1 − N̂t−1), (46)

where ∆ ln(pdata) denotes the sample average of productivity growth, and Ŷt and N̂t denote

the log-deviations of aggregate output and employment from their steady-state levels in our

model.

We measure the real wage rate in the data by real compensations per worker in the nonfarm

business sector. We relate the observed real wage growth (denoted by ∆ ln(wdatat )) to the

model variables by the measurement equation

∆ ln(wdatat )−∆ ln(wdata) = ŵt − ŵt−1, (47)

where ∆ ln(wdata) denotes the sample average of wage growth in the data and ŵt denotes

the log-deviations of real wages from its steady-state level in the model.

12We present details of these time-series and their sources in Appendix C.
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The inflation rate is measured by the quarterly log-growth rate of the personal consumption

expenditure price index (PCEPI), taken from the Bureau of Economic Analysis (BEA).

The observed inflation rate (denoted by πdatat ) is related to the model variables by the

measurement equation

πdatat − πdata = π̂t, (48)

where πdata denotes the sample average of the PCEPI inflation rate in the data and π̂t denotes

the log-deviation of inflation from its steady-state value in the model.

The nominal interest rate in our model is the return on a one-period risk-free nominal

bond, corresponding to the three-month Treasury bills. Our sample covers the post-2008

period, during which U.S. monetary policy was constrained by the zero lower bound (ZLB)

on the short-term nominal interest rate. The ZLB presents a computational challenge for

estimating the DSGE model based on log-linearized equilibrium conditions. To work around

the ZLB issue, we consider the yields on the two-year Treasury notes (denoted by R
(2)
t ).13

Unlike the three-month Treasury bills rate, the two-year Treasury yields did not reach the

zero lower bound. More importantly, the use of this longer-term interest rate helps capture

the effects of unconventional monetary policy, which is designed to lower yields on long-

term securities. To a first-order approximation, the two-year Treasury yields in the data are

related to the short-term interest rate in the model by the measurement equation

R
(2)
t −R(2) =

1

2

7∑
j=0

R̂t+j, (49)

where R(2) denotes the sample average of the two-year Treasury yields (annualized), and

R̂t denotes the log-deviation of the short-term nominal interest rate in the model from its

steady-state value.

III.2.2. Prior distributions and posterior estimates. The prior and posterior distributions of

the estimated parameters from our benchmark model are displayed in Table 2.

The priors for the structural parameters ē and x̄ are drawn from the gamma distribution.

We assume that the prior mean of each of these three parameters is 5, with a standard

deviation of 1. The priors for the habit persistence parameter γc is drawn from the beta

distribution, with a mean of 0.6 and a standard deviation of 0.1. The price adjustment cost

parameter Ωp has its priors drawn from the gamma distribution, with a mean of 50 and a

standard deviation of 5. The priors of the inflation indexation parameter γp is drawn from

the beta distribution, with a mean of 0.75 and a standard deviation of 0.1.

13Swanson and Williams (2014) argue that the Federal Reserve’s forward guidance policy typically at-

tempts to influence the two-year Treasury bond yields. Gertler and Karadi (2015) also argue for the use of

a long-term interest rate as an indicator of monetary policy in a VAR.
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The priors of the persistence parameter of each shock are drawn from the beta distribution

with a mean of 0.8 and a standard deviation of 0.1. The priors of the volatility parameter

of each shock are drawn from an inverse gamma distribution with a mean of 0.01 and a

standard deviation of 0.1.

The posterior estimates and the 90 percent probability intervals for the posterior distri-

butions are displayed in the last three columns of Table 2. The posterior mean estimate

of the vacancy creation cost parameter is ē = 2.14. The posterior mean estimates of the

automation cost parameter is x̄ = 1.15. These parameters imply a steady-state share of

output produced by automation of A/Y = 0.34. Thus, our model implies that, in the long

run, about 34 percent of the jobs will be performed by robots, which lies in the range of

the estimates in the empirical literature (Nedelkoska and Quintini, 2018). The 90 percent

probability intervals indicate that the data are informative about the structural parameters.

The price adjustment cost parameter has a posterior mean of Ωp = 26.86, with a tight 90

percent probability band. The posterior estimation shows that habit persistence and inflation

indexation are not important for our model to match the time-series data. In contrast, these

real rigidities and nominal frictions play an important role in generating realistic dynamics

in the standard DSGE model without automation and search frictions [e.g., Christiano et al.

(2005) and Smets and Wouters (2007)].

The posterior estimation suggests that the shock to neutral technology is highly persistent.

The automation-specific shock is less persistent but more volatile than the neutral technology

shock. The government spending shock, which captures aggregate demand shocks, is both

persistent and volatile. There is also evidence of substantial interest-rate smoothing in the

Taylor rule (ρr = 0.87). The 90 percent probability intervals suggest that the data are

informative for all the structural parameters and the shock processes.14

IV. Macroeconomic Implications

We first examine the macroeconomic implications of pandemic-induced decline in labor

productivity, which will help contrast the impact of employment uncertainty. For this pur-

pose, we turn on the labor-specific productivity shock ζlt. We assume that the pandemic-

induced labor productivity shock follows the stationary stochastic process

ln ζlt = (1− ρl) ln ζ̄l + ρl ln ζl,t−1 + σltεlt. (50)

The parameter ρl ∈ (−1, 1) measures the persistence and the term ζ̄l is the mean level of

the shock. The term εlt is an i.i.d. standard normal process.

14The unconditional forecast variance decompositions are shown in Table A1 and discussed in Appen-

dix D.1.
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The term σlt in Eq. (50) is a second-moment shock to the labor-specific technology. It

captures the uncertainty in an employment relation, which we call “job uncertainty.” The

COVID-19 pandemic has led to massive social distancing, both voluntary and mandatory.

Many businesses have been closed, leaving millions of workers jobless. Even for those workers

who can keep their jobs and work from home, labor productivity has been significantly

hampered. Without vaccine or treatment developed, the pandemic could recur, creating

substantial uncertainty about future labor productivity. We capture this kind of uncertainty

parsimoniously by the second-moment shock to the labor-specific technology, that is σlt. The

uncertainty shock follows the stationary process

lnσlt = (1− ρσ) ln σ̄l + ρσ lnσl,t−1 + σσεσt. (51)

The parameter ρσ ∈ (−1, 1) is the persistence of the uncertainty shock, the parameter σ̄l > 0

is the mean level of uncertainty, and the term σσ > 0 is the standard deviation of the

innovation in the uncertainty shock process. The term εσt is an i.i.d. standard normal

process.

Since COVID-19 caused economic disruptions only recently, we do not sufficient data

for calibrating the parameters in the pandemic-induced shock to workers’ productivity. In

our baseline model, we calibrate the autocorrelation and the average volatility of the first-

moment shock to be the same as those for the estimated TFP shock. In particular, we

set ρl = 0.9725 and σ̄l = 0.0103. For the second-moment shock process, we calibrate the

persistence parameter to ρσ = 0.95 and the volatility parameter to σσ = 0.01. We examine

alternative calibrations of the persistence of the second-moment shock for robustness.

IV.1. A job uncertainty shock. Figure 2 shows the impulse responses of some key macroe-

conomic variables following a rise in job uncertainty (i.e., a positive shock to σlt). As job

uncertainty increases, aggregate demand falls, raising unemployment and lowering inflation

and the interest rate. The decline in aggregate demand also discourages vacancy creation

and posting, reducing the number of vacancies and hiring, and thus further contributing to

the rise in unemployment. As labor demand falls, real wages decline.

Facing increased job uncertainty, firms would want to shift the production technology from

using workers to using robots. At the same time, the uncertainty shock reduces aggregate

demand, and the recessionary effects make it less attractive to adopt robots. Under our

calibration, the technology-shifting effect dominates the recessionary effect, leading to an

increase in the automation probability when productivity uncertainty rises. The increase in

automation allows the firm to produce more output using a given number of workers, improv-

ing labor productivity. The improved labor productivity partly mitigates the recessionary

effects of the uncertainty shock on unemployment and vacancies. Aggregate output initially
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falls, reflecting weakened aggregate demand from uncertainty, but it eventually rises, driven

by the endogenously improved productivity stemming from increased automation.

Figure 3 compares the impulse responses from the benchmark model (the solid blue lines)

and those from a counterfactual version of the model without the automation channel (the

red dashed lines). The counterfactual is identical to our benchmark model, except that the

variables related to automation are kept constant at their steady-state levels. Absent the

automation channel, the aggregate demand channel of uncertainty would prevail, leading to

a sharper increase in unemployment and a greater decline in inflation than in the benchmark

economy. Accordingly, monetary policy responds by cutting the short-term nominal interest

rate more aggressively.15 In contrast, with the option to automate, firms would have the

ability to shift part of the production toward robots when job uncertainty rises; and this

technology-shifting effect mitigates the recessionary effects of uncertainty. In our model, the

automation mechanism mutes the increase in unemployment (relative to its ergodic mean)

by about 1/3 (from 0.72 percent to 0.48 percent); it also dampens the decline in inflation by

about about 40% (from -0.29 percent to -0.17 percent).

There are important interactions between the aggregate demand channel of uncertainty

and the automation mechanism. Figure 4 compares the impulse responses in the benchmark

model (the blue solid lines) and those from the flexible-price version of the model (red dashed

lines). In both the benchmark economy and the flexible-price economy, households would

respond to an increase in uncertainty by increasing precautionary savings. All else being

equal, precautionary savings reduce the real interest rate, raising the present value of an

employment relation and automation and therefore generating expansionary macroeconomic

effects. When prices are sticky, as in our benchmark model, the increase in precautionary

savings is associated with a reduction in consumption; and the fall in aggregate demand

leads to a recession [e.g., Basu and Bundick (2017) and Leduc and Liu (2016)]. If prices

are flexible, however, the precautionary saving effect prevails, leading to a boom following

the uncertainty shock. As shown in the figure, in the flexible-price version of the model,

an increase in job uncertainty reduces unemployment, increases vacancies, and raises the

automation probability and labor productivity, leading to an expansion in aggregate output.

Thus, in our model, a job uncertainty shock raises potential output but depresses actual

output, resulting in a decline in the output gap and inflation.16

15In the no-automation counterfactual (the red dashed lines in the Figure 3), the robot-produced portion

of output is constant at the steady state level, such that all variations in aggregate output come from changes

in worker-produced output. In response to an uncertainty shock, both output and employment decline, but

employment is more sensitive and thus declines by more, resulting in an increase in labor productivity.
16Since the pandemic might be recurring, it is possible that agents expect higher uncertainty several

quarters in the future but not today. To explore this possibility, we have examined the effects of a news
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IV.2. A negative first-moment shock to the level of labor-specific productivity.

We now show that the macroeconomic effects of job uncertainty are markedly different from

those of a negative first-moment shock to worker productivity (i.e., a decline in the level of

ζlt).

Figure 5 displays the impulse responses to a negative shock to ζlt in our benchmark model.

The shock reduces aggregate output, the automation probability, and labor productivity,

leading to a recession. Unemployment initially falls, since prices are sticky and firms need

to meet demand at the preset prices; the decline in worker productivity requires firms to use

more workers for production (Gaĺı, 1999). However, after the initial decline, unemployment

rises persistently above its steady-state level. By reducing the level of productivity, the shock

leads to an increase in inflation, suggesting that the first-moment shock generates a recession

by reducing potential output.

Figure 6 shows the effects of the first-moment shock on potential output. The figure dis-

plays the impulse responses following the negative productivity shock in both the benchmark

model (the blue solid lines) and the flexible-price version (the red dashed lines). When prices

are flexible, output falls persistently following the decline in productivity, and unemployment

rises persistently. The automation probability also declines, reinforcing the initial drop in

labor productivity.

Overall, although both the uncertainty shock and the negative first-moment productivity

shock generate a recession, they work through different mechanisms. Uncertainty shock de-

presses aggregate demand, leading to a rise in unemployment and a decline in inflation, with

the recessionary effects partially offset by the shift of production toward automation. The

first-moment shock generates a decline in aggregate activity by reducing potential output,

leading to a rise in inflation. Following the first-moment shock, the direct recessionary effects

discourage firms from adopting robots, lowering the automation probability and reinforcing

the initial decline in labor productivity.

IV.3. Robustness. We consider the robustness of our findings for different parameters in

the uncertainty shock process and an alternative approach to modeling automation,.

IV.3.1. Less persistent job uncertainty shocks. In the baseline model, we assume that the

pandemic-induced uncertainty shock is very persistent, with an AR(1) parameter of ρσ =

0.95. Such uncertainty might dissipate more quickly if, for example, a vaccine or treatment

is discovered in a short period. This would make the job uncertainty shock less persistent.

We now examine the robustness of our results in a scenario with less persistent uncertainty

shock to uncertainty in the spirit of Berger et al. (2020a). As we discuss in Appendix D.2, the impulse

responses to a news shock to uncertainty are qualitatively similar to those following a contemporaneous

shock to uncertainty.
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shocks. In particular, we set the AR(1) parameter of the uncertainty shock to ρσ = 0.8

instead of 0.95.

Figure 7 displays the impulse responses in the baseline model (the blue solid lines) vs. the

alternative scenario with less persistent uncertainty (the red dashed lines). If job uncertainty

were to dissipate more quickly, then the negative effects on aggregate demand would be

dampened, leading to smaller increases in unemployment and smaller declines in inflation and

the nominal interest rate. As in the baseline case, the increased job uncertainty stimulates

firms’ incentive to adopt robots, raising the automation probability despite the declines in

aggregate demand. With a less persistent job uncertainty shock, however, the increase in

the automation probability becomes more muted. Accordingly, labor productivity increases

by less than in the baseline case.

Overall, a less persistent job uncertainty shock produces qualitatively similar impulse

responses of the macroeconomic variables, although the effects are smaller in magnitude

than in the baseline case.

IV.3.2. Automating jobs instead of vacancies. In our baseline model, we assume that firms

can choose to automate an unfilled vacancy if the net benefit of automation is sufficiently

high. A plausible alternative setup is to allow firms to automate an existing job instead of an

unfilled vacancy. We consider such a framework and show that the main results are robust.

We describe the main ingredients in the alternative model here and relegate the details to

Appendix E.1.

In the beginning of period t, after observing all aggregate shocks, a firm can decide whether

or not to replace a worker in an existing job match by a robot. The firm draws a cost x of

automation from an i.i.d. distribution F (x) and chooses to automate if the cost lies below

the expected benefits of automation. There exists a threshold level of the automation cost—

denoted by x∗t—such that the firm automates the job position if and only if x ≤ x∗t . Thus,

the automation probability is given by

qat = F (x∗t ). (52)

If the firm adopts a robot, it obtains the automation value Jat (see Eq. (14)) but gives up

the employment value Jet . Thus, the automation threshold is given by

x∗t = Jat − Jet , (53)

where the employment value Jet takes into account the possibility of automation, and it

satisfies the Bellman equation

Jet = pmtZtζlt − wt + Etβθt+1
Λt+1

Λt

{
δt+1J

v
t+1 + (1− δt+1)

[
qat+1J

a
t+1 + (1− qat+1)Jet+1

]}
. (54)
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A job match yields the flow profit pmtZtζlt − wt in period t. In period t+ 1, the job can be

exogenously separated, in which case the firm obtains the vacancy value Jvt+1. If the job is

not separated, it can be automated with the probability qat+1, in which case the firm obtains

the automation value Jat+1. If the job is neither separated nor automated, then the firm

obtains the continuation value of employment Jet+1.

Since a fraction of nonseparated jobs are automated, aggregate employment follows the

law of motion

Nt = (1− δt)(1− qat )Nt−1 +mt. (55)

We summarize the complete set of equilibrium conditions in Appendix E.1. We describe

the estimation results in Appendix E.2.

Figure 8 shows the impulse responses following a job uncertainty shock. Similar to what

we find in the benchmark model, in this alternative setup where firms have the option

to automate an existing job instead of an unfilled vacancy, the uncertainty shock raises

unemployment and lowers inflation and the nominal interest rate, suggesting that it leads

a decline in aggregate demand, which monetary policy accommodates. In addition, job

uncertainty boosts the incentive for firms to use robots to replace workers, increasing the

automation probability and labor productivity. Thus, the increase in automation mitigates

the recessionary effects of uncertainty, as in our benchmark setup. Under our estimated

parameters (see Appendix E.1 for the estimation details), an employment uncertainty shock

raises aggregate output, although it also raises unemployment, reflecting the improved labor

productivity through automation.

A notable difference from the benchmark model lies in the impulse response of vacancies.

In the benchmark model, job uncertainty reduces the number of vacancies, partly reflecting

the increase in automation probability (since unfilled vacancies can be automated in the

baseline model). Here, firms can automate an existing job instead of a vacancy, and thus

automation acts like an endogenous job separation (see Eq. (55)). As before, uncertainty first

reduces aggregate demand, discouraging vacancy creation and posting. But at the same time,

job uncertainty increases automation, leading to more job separation, and firms respond by

posting more vacancies. The aggregate demand effect and the job separation effect work in

opposing directions, generating a small initial decline in vacancies and persistent increases

in subsequent periods.

V. Conclusion

The COVID-19 pandemic has caused massive disruptions of economic activity. It has

also raised concerns about the future of work. Absent a quick discovery of vaccines and

treatments, workers will remain susceptible to the coronavirus, hindering their ability to work
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and creating uncertainty about worker productivity and the value of employment relations.

Such employment uncertainty can boost the incentive for automation, because robots are

able to perform contact-intensive and high-risk tasks, but they do not get sick.

We have studied the role of automation in an environment where the pandemic creates

job uncertainty. Our New Keynesian DSGE model features endogenous automation deci-

sions and labor market search frictions. We show that the option of automation allows the

firm to mitigate the adverse impact of uncertainty about worker productivity. Absent the

automation channel, an uncertainty shock would lead to a much deeper recession, with a

sharper increase in unemployment and a larger decline in inflation. We also find that uncer-

tainty shocks work through a different channel than a negative shock to the level of labor

productivity: uncertainty generates a recession by depressing aggregate demand, whereas a

negative productivity shock generates a recession by reducing potential output.

There are a few caveats to our study. By design, our model does not address the direct

disruptions to the economy from the pandemic. Our focus is on the business cycle dynamics

triggered by the pandemic events. In addition, we do not address the efficacy of policy inter-

ventions when job uncertainty increases. Policies such as expanded unemployment insurance

benefits or universal basic income have the potential to alleviate the adverse impact of job

uncertainty by better insuring income risks and therefore mitigating the decline in aggregate

demand. Monetary policy accommodation may also help. Studying these policy issues is an

important subject for future research. Our DSGE model provides a useful first step.
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.99

φ Unemployment benefit 0.25

α Elasticity of matching function 0.50

µ Matching efficiency 0.6606

δ̄ Job separation rate 0.10

ρo Automation obsolescence rate 0.03

κ Vacancy posting cost 0.1068

b Nash bargaining weight 0.50

ηv Elasticity of vacancy creation cost 1

ηa Elasticity of automation cost 1

κa Flow cost of automated production 0.98

χ Disutility of working 0.9137

Z̄ Mean value of neutral technology shock 1

ζ̄l Mean value of worker-specific productivity 1

ζ̄a Mean value of automation-specific productivity 1

ε Elasticity of substitution between differentiated retail goods 11

φπ Taylor rule coefficient for inflation 1.5

φu Taylor rule coefficient for unemployment gap 0.5
G
Y

Steady-state share of government spending in output 0.2
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Table 2. Estimated parameters

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

ē scale for vacancy creation cost G [5, 1] 2.1425 1.6778 2.4642

x̄ scale for robot adoption cost G [5, 1] 1.1534 1.0550 1.2447

γc habit persistence B [0.6, 0.1] 0.1106 0.0781 0.1403

Ωp price adjustment costs G [50, 5] 26.8645 24.4572 28.6892

γp dynamic inflation indexation B [0.75, 0.1] 0.1789 0.1260 0.2406

ρz AR(1) of neutral technology shock B [0.8, 0.1] 0.9725 0.9604 0.9835

ρθ AR(1) of discount factor shock B [0.8, 0.1] 0.9161 0.8966 0.9375

ρδ AR(1) of separation shock B [0.8, 0.1] 0.9296 0.9077 0.9559

ρa AR(1) of automation-specific shock B [0.8, 0.1] 0.9284 0.9093 0.9487

ρg AR(1) of government spending shock B [0.8, 0.1] 0.9815 0.9656 0.9968

ρr interest rate smoothing parameter B [0.8, 0.1] 0.8606 0.8238 0.8947

σz std of tech shock IG [0.01, 0.1] 0.0103 0.0095 0.0112

σθ std of discount factor shock IG [0.01, 0.1] 0.0018 0.0014 0.0021

σδ std of separation shock IG [0.01, 0.1] 0.0453 0.0415 0.0499

σa std of automation-specific shock IG [0.01, 0.1] 0.0304 0.0266 0.0339

σg std of government spending shock IG [0.01, 0.1] 0.0329 0.0297 0.0363

σr std of monetary policy shock IG [0.01, 0.1] 0.0023 0.0019 0.0026

Note: This table shows our baseline estimation results. For the prior distribution types, we use G to denote

the gamma distribution, B the beta distribution, and IG the inverse gamma distribution.
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Figure 1. The Chicago Board Options Exchange Volatility Index (VIX):

Daily series since 2007
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Figure 2. Impulse responses to a job uncertainty shock in the benchmark model.
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Figure 3. Impulse responses to a job uncertainty shock in the benchmark

model (blue solid lines) and the counterfactual with no automation (red dashed

lines).
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Figure 4. Impulse responses to a job uncertainty shock in the benchmark

model (blue solid lines) and the flexible-price model (red dashed lines).



PANDEMIC-INDUCED JOB UNCERTAINTY 31

0 5 10 15 20

0

1

2

P
e

rc
e

n
t 

d
e

v
ia

ti
o

n
s Unemployment

0 5 10 15 20

0

0.1

0.2

Inflation

0 5 10 15 20

0.06

0.07

0.08
Interest rate

0 5 10 15 20

-1

-0.5

0

0.5

Vacancies

0 5 10 15 20

-1

-0.5

0

Automation probability

0 5 10 15 20

-0.7

-0.65

Labor productivity

0 5 10 15 20

Quarters

-1

-0.8

Real wages

0 5 10 15 20

Quarters

-0.8

-0.75

-0.7

Aggregate output
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ductivity in the benchmark model.
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Figure 6. Impulse responses to a first-moment negative shock to labor pro-

ductivity in the benchmark model (blue solid lines) and the flexible-price model

(red dashed lines).
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Figure 7. Impulse responses to a job uncertainty shock in the benchmark

model (blue solid lines) and the alternative scenario with a less persistent job

uncertainty shock (red dashed lines).
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Figure 8. Impulse responses to a job uncertainty shock in the alternative

setup where firms can automate jobs instead of vacancies.
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Appendix A. Derivations of household’s optimizing conditions

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max ln (Ct − γcCt−1)− χNt + βEtθt+1Vt+1(Bt, Nt), (A1)

subject to the budget constraint

Ct +
Bt

rt
= Bt−1 + wtNt + φ(1−Nt) + dt − Tt, (A2)

and the law of motion for employment

Nt = (1− δt)Nt−1 + qut ut, (A3)

where the measure of job seekers is given by

ut = 1− (1− δt)Nt−1. (A4)

The household chooses Ct, Bt, and Nt, taking prices and the average job finding rate as

given.

Denote by Λt the Lagrangian multiplier for the budget constraint (A2). The first-order

condition with respect to consumption implies that

Λt =
1

Ct − γcCt−1

− Et
βθt+1γc

Ct+1 − γcCt
. (A5)

The optimizing decision for Bt implies that

Λt

rt
= βEtθt+1

∂Vt+1(Bt, Nt)

∂Bt

. (A6)

The envelope condition with respect to Bt−1 implies that

∂Vt(Bt−1, Nt−1)

∂Bt−1

= Λt. (A7)

We thus obtain the intertemporal Euler equation

1 = Et
βθt+1Λt+1

Λt

rt, (A8)

which is equation (25) in the text.

The envelope condition with respect to Nt−1 implies that

∂Vt(Bt−1, Nt−1)

∂Nt−1

=

[
Λt(wt − φ)− χ+ βEtθt+1

∂Vt+1(Bt, Nt)

∂Nt

]
∂Nt

∂Nt−1

. (A9)

Equations (A3) and (A4) imply that

∂Nt

∂Nt−1

= (1− δt)(1− qut ) (A10)
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and that
∂ut
∂Nt−1

= −(1− δt). (A11)

Define the employment surplus (i.e., the value of employment relative to unemployment)

as

SHt =
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt

=
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt−1

∂Nt−1

∂Nt

=
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt−1

1

(1− δt)(1− qu(st))
.

(A12)

Thus, SHt is the value for the household to send an additional worker to work in period t.

Then the envelope condition (A9) implies that

SHt = wt − φ−
χ

Λt

+ Et
βθt+1Λt+1

Λt

(1− δt+1)(1− qut+1)SHt+1. (A13)

The employment surplus SHt derived here corresponds to equation (24) in the text, and it is

the relevant surplus for the household in the Nash bargaining problem.

Appendix B. Summary of equilibrium conditions

A search equilibrium is a system of 21 equations for 21 variables summarized in the vector

[Ct, Rt, πt, pmt, Yt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt, J

e
t , J

v
t , J

a
t , wt, At, x

∗
t ,Λt] .

We write the equations in the same order as in the dynare code.

(1) Household marginal utility of consumption:

Λt =
1

Ct − γcCt−1

− Et
βθt+1γc

Ct+1 − γcCt
. (A14)

(2) Household’s bond Euler equation:

1 = Etβθt+1
Λt+1

Λt

Rt

πt+1

, (A15)

(3) Matching function

mt = µuαt v
1−α
t , (A16)

(4) Job finding rate

qut =
mt

ut
, (A17)

(5) Vacancy filling rate

qvt =
mt

vt
, (A18)

(6) Employment dynamics

Nt = (1− δt)Nt−1 +mt, (A19)

(7) Number of searching workers

ut = 1− (1− δt)Nt−1, (A20)
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(8) Unemployment

Ut = 1−Nt, (A21)

(9) Vacancy dynamics

vt = (1− qvt−1)(1− qat )vt−1 + δtNt−1 + ηt, (A22)

(10) Automation dynamics

At = (1− ρo)At−1 + (1− qvt−1)qat vt−1, (A23)

(11) Automation value

Jat = pmtZtζat(1− κa) + (1− ρo)Etβθt+1
Λt+1

Λt

Jat+1, (A24)

(12) Vacancy value

Jvt = −κ+ qvt J
e
t + (1− qvt )Etβθt+1

Λt+1

Λt

[
(1− qat+1)Jvt+1 + qat+1J

a
t+1

]
. (A25)

(13) Employment value

Jet = pmtZtζlt − wt + Etβθt+1
Λt+1

Λt

{
(1− δt+1)Jet+1 + δt+1J

v
t+1

}
, (A26)

(14) Automation threshold

x∗t = Jat − Jvt , (A27)

(15) Robot adoption

qat =

(
x∗t
x̄

)ηa
, (A28)

(16) Vacancy creation

ηt =

(
Jvt
ē

)ηe
, (A29)

(17) Aggregate output

Yt = ZtζltNt + ZtζatAt. (A30)

(18) Resource constraint

Yt = Ct +Gt + κvt + κaZtζatAt +
ηa

1 + ηa
qat x

∗
t (1− qvt−1)vt−1 +

ηe
1 + ηe

ηtJ
v
t

+
Ωp

2

(
πt

π
γp
t−1π

1−γp
− 1

)2

Yt, (A31)

(19) Nash bargaining wage

b

1− b
(Jet − Jvt ) = wt − φ−

χ

Λt

+ Etβθt+1
Λt+1

Λt

(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1), (A32)
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(20) With dynamic inflation indexation, the Phillips curve is given by

pmt =
ε− 1

ε
+

Ωp

ε

[
πt

π
γp
t−1π

1−γp

(
πt

π
γp
t−1π

1−γp
− 1

)
− Et

βθt+1Λt+i

Λt

Yt+1

Yt

πt+1

π
γp
t π

1−γp

(
πt+1

π
γp
t π

1−γp
− 1

)]
(A33)

where γp measures the importance of dynamic indexation.

(21) Taylor rule

Rt

R
=

(
Rt−1

R

)ρr [(πt
π

)φπ ( Ut
U∗t

)−φu
4

]1−ρr

exp(εrt).

Appendix C. Data

We fit the DSGE model to six quarterly U.S. time series: the unemployment rate, the job

vacancy rate, real wage growth, labor productivity growth, inflation, and a measure of the

nominal interest rate. The sample covers the period from 1985:Q1 to 2018:Q4.

(1) Unemployment: Civilian unemployment rate (16 years and over) from the Bureau

of Labor Statistics, seasonally adjusted monthly series (LRUSECON in Haver).

(2) Job vacancies: For pre-2001 periods, we use the vacancy rate constructed by Bar-

nichon (2010) based on the Help Wanted Index. For the periods starting in 2001, we

use the job openings from the Job Openings and Labor Turnover Survey (JOLTS),

seasonally adjusted monthly series (LIJTLA@USECON in Haver).

(3) Real wages: real compensation per worker in the nonfarm business sector. We

first compute the nominal wage rate as the ratio of nonfarm business compensa-

tion for all persons (LXNFF@USECON in Haver) to nonfarm business employment

(LXNFM@USECON) and then deflate it using the nonfarm business sector implicit

price deflator (LXNFI@USECON).

(4) Labor productivity: nonfarm business sector real output per person (LXNFS@USECON

in Haver).

(5) Inflation: Quarterly log-growth rates of the personal consumption expenditure chain

price index (JCM@USNA in Haver, seasonally adjusted and annualized).

(6) Nominal interest rate: Two-year Treasury note yields at constant maturity (FCM2@USECON

in Haver, annualized).

Appendix D. Additional quantitative results

D.1. Forecast error variance decompositions from the estimation. Table A1 shows

the forecast error variance decomposition results from the estimated model. Most fluctua-

tions in unemployment and vacancies are driven by aggregate demand shocks (government

spending shocks). Job separation shocks and the neutral technology shocks together ac-

count for about 20 percent of the vacancy fluctuations. The variance of productivity growth
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Table A1. Forecasting Error Variance Decomposition

Variables Neutral Discount Job Automation- Government Monetary

technology factor separation specific spending policy

Unemployment 9.01 1.58 0.43 0.99 87.88 0.11

Vacancy 7.74 1.46 12.37 0.87 77.30 0.27

Productivity growth 35.91 0.71 0.82 50.15 12.15 0.26

Real wage growth 47.68 14.71 0.14 0.04 13.90 23.53

Inflation 11.74 24.43 0.38 0.24 29.81 33.41

Two-year Treasury 36.53 55.08 0.87 0.52 6.18 0.82

Note: The numbers reported are the posterior mean contributions (in percentage terms) of each shock to

the forecast error variances of the variables listed in the rows.

is mainly accounted for by the neutral technology shock and the automation-specific technol-

ogy shock. Real wage growth is driven by the two technology shocks as well as the shocks to

monetary policy and government spending. Inflation fluctuations in our model are driven by

the three types of demand shocks: discount factor, government spending, and monetary pol-

icy. Fluctuations in the observed two-year Treasury notes are driven mainly by the discount

factor shocks and, to a lesser extent, the neutral technology shock.

D.2. News shocks to productivity uncertainty. We have also examined the macro

effects of news shocks to employment uncertainty. In particular, we generalize the stochastic

process of the second-moment shock to labor-specific productivity in Eq (51) to include a

news component:

lnσlt = (1− ρσ) ln σ̄l + ρσ lnσl,t−1 + σσεσt + σνενt−4, (A34)

where ενt−4 is an i.i.d. standard normal process that captures news shocks to the uncertainty

four quarters ahead, and σν is the standard deviation of the news shock.

Figure A1 displays the impulse responses following a positive news shock to job uncertainty.

The qualitative (and quantitative) effects of the news shock to uncertainty are broadly similar

to those of the contemporaneous uncertainty shock shown in Figure 2. In particular, the

shock reduces aggregate demand and therefore pushes up unemployment and pushes down

inflation and the nominal interest rate. It reduces vacancies as well. Firms respond to

the news shock to uncertainty by shifting technologies toward more automation, raising the

automation probability, boosting labor productivity, and therefore partially mitigating the

recessionary effects of the news shock to uncertainty.
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In the counterfactual case with no fluctuations in automation, Figure A2 shows that

unemployment would have risen more sharply and inflation would have fallen more sharply

(see the red dashed lines). In this counterfactual environment, firms do not have the option

of automating production when worker productivity uncertainty is expected to rise. In this

case, automation cannot be used to mitigate the decline in aggregate demand caused by the

expected rise in uncertainty.

Similar to the case with contemporaneous uncertainty shocks to worker productivity, Fig-

ure A3 shows that news of job uncertainty has expansionary effects when prices are flexible

(see the red dashed lines). With flexible prices, the aggregate demand channel is shut off, and

precautionary savings by the households reduces the real interest rate, boosting the present

value of automation and employment, leading to increases in hiring workers and adopting

robots, despite that the two technologies are perfect substitutes.
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Figure A1. Impulse responses to a news shock to job uncertainty in the

benchmark model.
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Figure A2. Impulse responses to a news shock to job uncertainty in the

benchmark model (blue solid lines) and the counterfactual with no automation

(red dashed lines).
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Figure A3. Impulse responses to a news shock to job uncertainty in the

benchmark model (blue solid lines) and the flexible-price model (red dashed

lines).

Appendix E. Automating a job instead of a vacancy

E.1. Summary of equilibrium conditions. A search equilibrium is a system of 21 equa-

tions for 21 variables summarized in the vector

[Ct, Rt, πt, pmt, Yt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt, J

e
t , J

v
t , J

a
t , wt, At, x

∗
t ,Λt] .

We write the equations in the same order as in the dynare code.

(1) Household marginal utility of consumption:

Λt =
1

Ct − γcCt−1

− Et
βθt+1γc

Ct+1 − γcCt
. (A35)

(2) Household’s bond Euler equation:

1 = Etβθt+1
Λt+1

Λt

Rt

πt+1

, (A36)

(3) Matching function

mt = µuαt v
1−α
t , (A37)
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(4) Job finding rate

qut =
mt

ut
, (A38)

(5) Vacancy filling rate

qvt =
mt

vt
, (A39)

(6) Employment dynamics

Nt = (1− δt)(1− qat )Nt−1 +mt, (A40)

(7) Number of searching workers

ut = 1− (1− δt)(1− qat )Nt−1, (A41)

(8) Unemployment

Ut = 1−Nt, (A42)

(9) Vacancy dynamics

vt = (1− qvt−1)vt−1 + δtNt−1 + ηt, (A43)

(10) Automation dynamics

At = (1− ρo)At−1 + qat (1− δt)Nt−1, (A44)

(11) Automation value

Jat = pmtZtζat(1− κa) + (1− ρo)Etβθt+1
Λt+1

Λt

Jat+1, (A45)

(12) Vacancy value

Jvt = −κ+ qvt J
e
t + (1− qvt )Etβθt+1

Λt+1

Λt

Jvt+1. (A46)

(13) Employment value

Jet = pmtZtζlt−wt+Etβθt+1
Λt+1

Λt

{
δt+1J

v
t+1 + (1− δt+1)

[
qat+1J

a
t+1 + (1− qat+1)Jet+1

]}
, (A47)

(14) Automation threshold

x∗t = Jat − Jet , (A48)

(15) Robot adoption

qat =

(
x∗t
x̄

)ηa
, (A49)

(16) Vacancy creation

ηt =

(
Jvt
ē

)ηe
, (A50)

(17) Aggregate output

Yt = ZtζltNt + ZtζatAt. (A51)
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(18) Resource constraint

Yt = Ct +Gt + κvt + κaZtζatAt +
ηa

1 + ηa
qat x

∗
t (1− δt)Nt−1 +

ηe
1 + ηe

ηtJ
v
t

+
Ωp

2

(
πt

π
γp
t−1π

1−γp
− 1

)2

Yt, (A52)

(19) Nash bargaining wage

b

1− b
(Jet − Jvt ) = wt − φ−

χ

Λt

+ Etβθt+1
Λt+1

Λt

(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1), (A53)

(20) With dynamic inflation indexation, the Phillips curve is given by

pmt =
ε− 1

ε
+

Ωp

ε

[
πt

π
γp
t−1π

1−γp

(
πt

π
γp
t−1π

1−γp
− 1

)
− Et

βθt+1Λt+i

Λt

Yt+1

Yt

πt+1

π
γp
t π

1−γp

(
πt+1

π
γp
t π

1−γp
− 1

)]
(A54)

where γp measures the importance of dynamic indexation.

(21) Taylor rule

Rt

R
=

(
Rt−1

R

)ρr [(πt
π

)φπ ( Ut
U∗t

)−φu
4

]1−ρr

exp(εrt)

E.2. Parameter estimation. The calibrated parameters are the same as in the baseline

model (see Table 1). We estimate the model in which firms can automate an existing job

instead of a vacancy, using the same six time series described in main text. Table A2 shows

the estimation results.
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Table A2. Estimated parameters in the model in which jobs can be automated

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

ē scale for vacancy creation cost G [5, 1] 4.4695 3.6432 5.4099

x̄ scale for robot adoption cost G [5, 1] 1.2180 0.9772 1.5192

γc habit persistence B [0.6, 0.1] 0.1729 0.1119 0.2343

Ωp price adjustment costs G [50, 5] 30.7226 26.7524 34.7989

γp dynamic inflation indexation B [0.75, 0.1] 0.1458 0.1074 0.1880

ρz AR(1) of neutral technology shock B [0.8, 0.1] 0.9830 0.9758 0.9905

ρθ AR(1) of discount factor shock B [0.8, 0.1] 0.9195 0.9027 0.9366

ρδ AR(1) of separation shock B [0.8, 0.1] 0.9831 0.9716 0.9959

ρa AR(1) of automation-specific shock B [0.8, 0.1] 0.7906 0.7181 0.8562

ρg AR(1) of government spending shock B [0.8, 0.1] 0.9810 0.9655 0.9946

ρr interest rate smoothing parameter B [0.8, 0.1] 0.8603 0.8335 0.8876

σz std of tech shock IG [0.01, 0.1] 0.0142 0.0130 0.0157

σθ std of discount factor shock IG [0.01, 0.1] 0.0016 0.0013 0.0018

σδ std of separation shock IG [0.01, 0.1] 0.1023 0.0918 0.1139

σa std of automation-specific shock IG [0.01, 0.1] 0.0221 0.0196 0.0249

σg std of government spending shock IG [0.01, 0.1] 0.0192 0.0172 0.0208

σr std of monetary policy shock IG [0.01, 0.1] 0.0024 0.0019 0.0028

Note: This table shows our estimation results in the alternative setup where firms can automate an ex-

isting job instead of an unfilled vacancy. For the prior distribution types, we use G to denote the gamma

distribution, B the beta distribution, and IG the inverse gamma distribution.
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