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1 Introduction

The macroeconomics literature has not reached a consensus in identifying the most impor-
tant forces driving U.S. business cycles. Chari, Kehoe, and McGrattan (2007) conclude that
“effi ciency wedges” (e.g., labor productivity shocks) and “labor supply wedges” (e.g., labor
disutility shocks) are the main drivers of business cycles. Smets and Wouters (2007) find
that shocks to labor productivity and wage mark-ups account for most of the fluctuations
in output over the medium- to long-run. Justiniano, Primiceri, and Tambalotti (2010) con-
clude that an “investment shock”which appears in the law of motion for capital is the main
driver of business cycle fluctuations in output, hours, and investment. Christiano, Motto,
and Rostagno (2014) conclude that “risk shocks” (defined as the time-varying volatility of
firms’idiosyncratic productivity realizations) are the most important business cycle shocks.
Miao, Wang, and Xu (2015) find that a “sentiment shock” (which influences the size of a
rational stock price bubble) together with labor productivity shocks and labor supply shocks
are the most important business cycle shocks. Angeletos, Collard, and Dellas (2018) argue
that “confidence shocks”(which are orthogonal to fundamental shocks and arise from agents’
non-rational beliefs in the superior accuracy of their own productivity signals) are the main
drivers of business cycles. In an empirical follow-up paper, Angeletos, Collard, and Dellas
(2020) identify the “main business cycle shock”as a demand shock that does not strictly rely
on nominal rigidity, consistent with a confidence- or sentiment-type shock.
The fact that so many different studies can reach such different conclusions about the most

important business cycle shock tells us that the conclusions are likely influenced by the type
of model, or the type of data, employed in the exercise. It is worth noting that none of the
studies mentioned above consider U.S. asset return data measuring the equity risk premium
or the bond term premium.1 Moreover, none of these studies employ a model that allows for
fluctuations in capital’s share of income– a distinct feature of U.S. data. Numerous authors
have demonstrated that factor distribution shocks can help to explain the equity risk premium
in models with concentrated capital ownership.2

In this paper, I seek to identify the main drivers of U.S. business cycles and asset returns.
As noted by Campbell, Pflueger, and Viceira (2020), requiring a unified description of both
macroeconomic variables and asset prices imposes valuable discipline on any model that seeks
to explain the observed data. The framework for the analysis is a real business cycle model

1In estimating their model, Christiano, Motto, and Rostogno (2014) consider data on the value of the
stock market, credit to nonfinancial firms, the credit spread of bond yields, and the term spread of bond
yields. They evaluate their model using data on the cross-sectional dispersion of firm-level stock returns. In
estimating their model, Miao, Wang, and Xu (2015) consider data on the value of the stock market and the
Chicago Fed’s National Financial Conditions Index.

2See, for example, Danthine and Donaldson (2002), Guvenen (2009), Lansing (2015), Greenwald, Lettau,
and Ludvigson (2024), and Gaudio, Petrella, and Santoro (2023).
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with eight fundamental shocks and one “equity sentiment shock”that captures belief-driven
fluctuations. The eight fundamental shocks influence the representative agent’s risk aversion
coeffi cient, the disutility of labor supply, the productivity of three separate inputs that appear
in the law of motion for capital, capital’s share of income, the productivity of hours worked,
and the real value of coupon payments from a long-term bond.
To facilitate the replication of U.S. asset return data, the model includes an equity senti-

ment shock, a time-varying risk aversion coeffi cient (motivated by external habit formation),
a shock that influences the productivity of “investor effort”in the production of new capital,
and a shock that influences the real value of bond coupon payments. These four shocks allow
the model to exactly replicate quarterly U.S. data for the real return on equity (including
dividends) and the real returns on both short-term and long-term Treasury bonds. In so
doing, the model exactly replicates quarterly U.S. data for the equity risk premium and the
bond term premium.
To identify the nine model shocks (or wedges), I employ a version of the “business cycle

accounting”methodology developed by Chari, Kehoe, and McGrattan (2007).3 Other exam-
ples of this approach in the context of real business cycle models include Macnamara (2016),
Brinca, et al. (2016), and Brinca, Costa-Filho, and Loria (2024). Šustek (2011) extends the
approach to include two additional wedges that influence inflation and the short-term nom-
inal interest rate, but these additional wedges do not affect the behavior of the model’s real
variables.4 In contrast to these studies, the baseline model here is designed to replicate all
movements in the U.S. data, not just those associated with business cycle frequencies. To
identify the shocks, I employ quarterly U.S. data that excludes government consumption and
investment.5 The sequences of the nine shocks are “reverse-engineered”so that the model ex-
actly replicates the quarterly time paths of eleven macroeconomic variables and asset returns
(only nine of which are independent). As an alternative to estimation, I calibrate the model’s
parameters so that the steady state or trend values of the model variables exactly match the
U.S. data in 1972.Q3– a period when key U.S. macroeconomic ratios are all close to their
full-sample means.
To simplify the shock identification exercise, I assume that the boundedly-rational rep-

resentative agent in the model employs univariate forecast rules for each of the nine shocks.
A fully-rational agent, in contrast, would employ a nine-dimensional vector autoregression

3Throughout the paper, I use the term “shocks”to describe the exogenous stochastic variables that appear
in the model’s equilibrium conditions.

4Similarly, the bond coupon decay shock included here does not affect the behavior of the macroeconomic
variables or other asset prices.

5In a review of numerous business cycle accounting exercises in the literature, Brinca, Costa-Filho, and
Loria (2024) conclude that the ability of a government consumption wedge to explain economic fluctuations
“is very often either very small or nil.”

2



(VAR) to forecast the future shock values. Use of the VAR would imply that the agent has
knowledge of the complex correlation structure among the nine shock innovations. But this
correlation structure can only be observed ex post, after the model itself is used to identify
the shocks. I show in the Appendix that the use of an ex post estimated VAR instead of
the univariate forecast rules delivers only minor improvements in the accuracy of the shock
forecasts. The univariate shock forecasts are almost perfectly correlated with the VAR shock
forecasts, confirming that the univariate forecast rules are near rational.
Inclusion of the equity sentiment shock is motivated by a large literature that documents

links between movements in equity prices and measures of investor or consumer sentiment.6

Numerous studies find evidence of a significant empirical link between non-fundamental equity
price movements and the resulting investment decisions by firms.7 Recently, Bianchi, Lud-
vigson, and Ma (2022) and Bhandari, Borovička, and Ho (2024) present evidence that survey
forecasts of economic activity and inflation exhibit persistent “belief distortions” or “belief
wedges”relative to the true data generating process for the variables being forecasted. They
argue that fluctuations in these objects are important drivers of the associated macroeconomic
variables. The equity sentiment shock plays a similar role here.
The sentiment shock introduces a wedge between the agent’s subjective forecast of future

equity value and the “fundamentals-only” forecast. This wedge can be motivated by the
presence of a non-fundamental or “bubble”component of equity value. The non-fundamental
equity component does not affect bond prices directly, but it does influence the agent’s con-
sumption and thereby shift the stochastic discount factor that is used to determine the equi-
librium bond prices. Due to the self-referential nature of the model and the near-unity slope of
the equity market first order condition, the agent’s perception that movements in equity value
are partly driven by sentiment is close to self-fulfilling. I show that the agent’s perceived law
of motion for equity value delivers outcomes that are numerically very close to those generated
by the actual law of motion.
The value of the model-identified sentiment shock is negative in steady state, implying that

sentiment is “pessimistic”relative to fundamental equity value in 1972.Q3. This feature allows
the model to replicate the equity risk premium in the data while maintaining a low level of risk
aversion. Many studies show that incorporating some form of in-sample pessimistic bias about
fundamentals or future equity values can magnify the equity risk premium in standard asset
pricing models.8 In support of this idea, Velásquez-Giraldo (2023) documents that even among

6See, for example, Baker and Wurgler (2007), Schmeling (2009), Greenwood and Shleifer (2014), Huang,
et al. (2014), Adam, Marcet, and Beutel (2017), Frydman and Stillwagon (2018), and Lansing, LeRoy, and
Ma (2022), among others.

7See, for example, Chirinko and Schaller (2001), Goyal and Yamada (2004), Gilchrist, Himmelberg, and
Huberman (2005), and Campello and Graham (2013).

8See, for example, Reitz (1988), Cecchetti, Lam, and Mark (2000), Abel (2002), Cogley and Sargent (2008),
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college graduates, the average respondent in the Health and Retirement Study (HRS) holds
pessimistic beliefs about future equity returns relative to the historical distribution of actual
returns. Bhandari, Borovička, and Ho (2024) document evidence of time-varying pessimism
in survey forecasts about unemployment and inflation from the University of Michigan Survey
of Consumers.
The typical business cycle accounting exercise delivers wedges that exhibit significant

cross-correlations.9 I find strong positive correlations between innovations to sentiment, risk
aversion, and labor disutility. I also find strong positive correlations between innovations to
three shocks that appear in the capital law of motion. The factor distribution shock and the
labor productivity shock both appear in the aggregate production function. Innovations to
these two shocks are strongly negatively correlated with each other. These patterns motivate
three categories of shocks for the counterfactual scenarios: (1) only sentiment and preference
shocks, (2) only capital law of motion shocks, and (3) only production function shocks. These
categories roughly correspond to the three main building blocks of the model, namely, the
household utility function, the law of motion for capital, and the production function for
output. The counterfactual scenarios seek to identify the main source of fluctuations as
roughly coming from say, household demand factors, financial factors that influence capital
formation, or production/supply factors.
Brinca et al. (2016) state that business cycle accounting exercises “guide researchers to

focus on the key margins that need to be distorted in order to capture the nature of the
fluctuations.”Given the results, a more detailed model could then be developed to elaborate
on the microfoundations that give rise to such distortions.10 Looking ahead, the business cycle
accounting exercise performed here finds that there is no main source of fluctuations. Rather,
each of the three shock categories is important for explaining aspects of U.S. data since 1960.
As a preview of the results, the left panel of Figure 1 plots the model-identified sentiment

shock together with the University of Michigan’s consumer sentiment index (which is not used
in the shock identification procedure). The correlation coeffi cient between the two series is
0.67. The right panel of Figure 1 plots the model-identified risk aversion coeffi cient together
with a survey-based measure of investors’expected return on stocks over the next year, as
constructed by Nagel and Xu (2022a). The correlation coeffi cient between the two series is
0.56. The investor expected return series is also strongly correlated with the University of
Michigan’s consumer sentiment index. Similarly, the model-identified risk version coeffi cient
is strongly correlated with the model-identified sentiment shock.

Barro (2009), Gourio (2012), Bidder and Dew-Becker (2016), and Adam and Merkel (2019), among others.
9Using detrended quarterly U.S. data from 1959.Q1 to 2004.Q4, Chari, Kehoe, and McGrattan (2007, p.

810) report contemporaneous cross-correlations among their four model wedges that range from −0.88 to 0.61.
10But as a caveat, Brinca et al. (2016) demonstrate that the “prototype model”which is used to identify

the shocks/wedges may be equivalent to more than one type of detailed model.
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Model risk aversion is high when the agent’s expected return on stocks is high and when
stock market valuation is also high. Higher model risk aversion is achieved when agents
place more emphasis on interpersonal consumption comparisons during good times. This
pattern provides a partial fundamental justification for investors’higher expected returns on
stocks in good times. In contrast, models with countercyclical risk aversion deliver the exact
opposite result: risk aversion and expected returns on stocks are both low in good times when
stock market valuation is high (Campbell and Cochrane 1999, Cochrane 2017). Numerous
studies have demonstrated that investor survey evidence strongly contradicts the predictions
of models with countercyclical risk aversion.11

In the model of Campbell and Cochrane (1999), the time-varying risk aversion coeffi cient
is constructed to be countercyclical. Here, in contrast, I use the model together with U.S.
asset return data to identify a pro-cyclical risk aversion coeffi cient. The pro-cyclical nature of
the model’s risk aversion coeffi cient is consistent with the findings of several empirical studies.
Using a behavioral model of asset pricing, Barone-Adesi, Mancini, and Shefrin (2017) jointly
estimate time-varying values for sentiment, risk aversion, and time preference using weekly
data on returns and options prices for the Standard & Poor’s (S&P) 500 stock price index.
The estimated risk aversion coeffi cient is higher after market gains and lower after market
losses. Moreover, the estimated risk aversion coeffi cient is strongly correlated with sentiment
components that measure “excessive optimism” and “overconfidence.”Using monthly data
on options for the S&P 500 index, Kosolapova, Hanke and Weissensteiner (2023) estimate a
time-varying risk aversion coeffi cient for the marginal investor that is strongly pro-cyclical.
Their study builds on earlier work by Bliss and Panigirtzoglou (2004) who find that risk
aversion is lower during sample periods with high stock market volatility, such as crises. They
postulate that one explanation for this result is that the representative investor changes as
market volatility changes. This could occur if high risk-averse investors leave the equity
market during downturns or periods of high volatility, resulting in a lower average level of risk
aversion among investors who remain in the market.
Cochrane (2017, p. 966) observes: “There is no way to tell risk aversion– marginal

utility– from a probability distortion...without some restriction– some model that ties ei-
ther probability distortions or marginal utility to observables.”Along these lines, the model-
identified risk aversion coeffi cient represents marginal utility while the model-identified sen-
timent shock represents a probability distortion. Given the model and the other seven shock
sequences, the reverse-engineering exercise tells us how to separate marginal utility (risk aver-
sion) from a probability distortion (sentiment) in order to exactly replicate the U.S. data.

11See, for example, Vissing-Jørgensen (2004), Amromin and Sharpe (2014), Greenwood and Shleifer (2014),
Adam, Marcet, Beutel (2017), Giglio, et al. (2021), Adam, Matveev, and Nagel (2021), and Nagel and Xu
(2022b).
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Using impulse response functions, I show that each of the three main shock categories noted
above can generate all or most of the features of a typical business cycle. For example, higher
sentiment together with higher risk aversion delivers a correlated increase in all macroeconomic
variables. Equity value increases but bond prices decline, implying an increase in bond yields.
The combination of these two highly correlated shocks delivers the features observed during a
typical economic boom or recovery. A positive innovation to capital’s share of income in the
production function delivers a very similar response pattern except that hours worked now
undergoes a small decline. Higher values for the capital law of motion shocks also deliver a
correlated increase in macroeconomic variables. Equity value declines on impact (with bond
prices) but then rises with investment. These results show that many key features of U.S.
business cycles can arise from a variety of sources within the model.12

Given the model-identified shock sequences, I perform the typical business cycle account-
ing exercises that involve counterfactual scenarios. Each scenario adds one category of shock
realizations while other shocks are set equal to steady state or trend values. To gauge the
importance of each shock category, I compute various summary statistics. For fluctuations at
business cycle frequencies, I compute the correlation coeffi cient between a detrended model
variable under a given shock scenario and the detrended U.S. variable. To gauge the im-
portance of each shock category for lower frequency movements, I first compute the squared
percentage gaps between the counterfactual model paths and the U.S. data paths for each
variable, without any detrending. A smaller gap measure implies that a given shock scenario
does a better job of explaining total movements in the U.S. variable. Following Brinca, et al.
(2016), and Brinca, Costa-Filho, and Loria (2024), I then normalize the cumulative squared
gaps across shock scenarios to construct an index that measures fraction of total movements
in each variable that can be explained by each shock scenario.
The correlation coeffi cients between the model and the U.S. data show that each of the

three main shock categories is the most important driver of at least one macroeconomic vari-
able or asset price. For example, the sentiment and preference shocks are the most important
drivers of business cycle movements in output, investment, hours worked, and the price of the
short-term bond (which determines the risk free rate of return). Recall that this category of
shocks includes the time-varying risk aversion coeffi cient and the labor disutilty shock. The
capital law of motion shocks are the most important drivers of business cycle movements in
the capital stock and equity value. The production function shocks are the most important
drivers of business cycle movements in consumption. But none of the three main shock cat-
egories can account for movements in the price of the long-term bond. Rather, this asset

12Along similar lines, Gaudio, Petrella, and Santoro (2023) show that correlated increases in macroeconomic
variables can arise from three different (but correlated) shocks that either appear in the production function
or influence capital accumulation.
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price is driven mainly by the highly-specific coupon decay shock. This last result tell us that
movements in the long-term bond price cannot be readily explained by shocks that account
for movements in equity value or the short-term bond price.
Another important result is that each of the three counterfactual shock scenarios can

account for a sizeable fraction of both business cycle movements and total movements in most
U.S. variables. For example, the correlation coeffi cients between detrended model output and
detrended U.S. output range from 0.40 to 0.69 across the three shock scenarios. For total
movements, no single shock category is clearly dominant for many of the variables, including
output. While some variables are driven by a single dominant shock category, the dominant
category is different for each of those variables. Taken as a whole, the results tell us that each
of the three main shock categories is important for explaining U.S. data since 1960.
Finally, I assess how each shock scenario performs in explaining the Great Recession

(2007.Q4 to 2009.Q2) versus the Covid recession (2019.Q4 to 2020.Q2). Starting from 2007.Q4,
I add one category of shock realizations while other shocks are set equal to steady state or
trend values. According to the model, the decline in U.S. output during the Great Recession
was driven mainly by capital law of motion shocks together with sentiment and preference
shocks. This is consistent with the idea that both financial and demand factors played a sig-
nificant role during the Great Recession. According to the model, the decline in U.S. output
during the Covid recession was driven mainly by sentiment and preference shocks together
with production function shocks. This is consistent with idea that both demand and supply
factors played a significant role in the Covid recession. Overall, the results tell us that U.S.
recessions have been driven by different types of shocks.
Some may wonder whether the finding that there is no “most important shock”is robust

to the use of a broader framework or a richer model. The answer can be found in the results of
the many previous studies that have already employed broader frameworks and richer models,
as reviewed above in the first paragraph of the introduction. Despite the additional model
complexities and the use of novel data or methods, each previous study reaches a different
conclusion about the most important shock. The application of Occam’s razor suggests that
the simplest explanation for the disagreement across studies is that there is no most important
shock to be found.
In discussing the identification of a “main business cycle shock,”Angeletos, Collard, and

Dellas (2020, p. 3054) acknowledge “In principle, any of the reduced-form objects contained
in our anatomy may map into a uninterpretable combination of multiple theoretical shocks,
none of which possesses the properties of the empirical object.”The results presented here
show that a complex combination of multiple theoretical shocks is indeed necessary to fully
explain the historical patterns of U.S. business cycles and asset returns. Finding a simpler
explanation for the historical patterns is likely to prove extremely diffi cult.

7



Additional related literature. The model-identified shocks are Solow-type residuals that
act as stand-ins for whatever time-varying model complexities are needed to replicate the
U.S. data. Cúrdia and Reis (2011), Andrle (2014), and Andrle, Br̊uha, and Solmaz (2017)
argue that the cross-correlation pattern of the identified shocks can provide useful information
about what may be needed to improve the model’s fit via endogenous mechanisms. Falter and
Wesselbaum (2018) examine the impact of correlated shocks in the context of three benchmark
macro models developed by Bernanke, Gertler, and Gilchrist (1999), Iacoviello (2005), and
Justiniano, Primiceri, and Tambalotti (2010). In each case, the model with correlated shocks
matches the data much better than the version with uncorrelated shocks. Gaudio, Petrella,
and Santoro (2023) consider a concentrated capital ownership model with three exogenous
shocks: A neutral technology shock (analogous to the labor productivity shock here), an
investment specific technology shock (analogous to a capital law of motion shock here), and
a factor share shock (analogous to the factor distribution shock here). The model allows
for cross-correlation among the three shock innovations, as governed by an estimated VAR.
A study by Morely, Nelson, and Zivot (2003) documents a significant negative correlation
between innovations to the trend versus cycle components of U.S. GDP, in contrast to the
orthogonal assumption embedded in most unobserved-component time series models. For
models with multiple shocks and occasionally binding constraints, Ascari and Mavroeidis
(2022) demonstrate that the existence of equilibrium requires interdependent restrictions on
the support of the various shocks. This “coherency condition” is not compatible with the
assumption of orthogonal shocks.
Layout. The remainder of this paper is organized as follows. Section 2 describes the model
and the manner in which I introduce equity sentiment. Section 3 describes the identification of
parameter values and the sequences of shock realizations so that the model exactly replicates
quarterly U.S. data from 1960.Q1 to 2022.Q4. Section 4 presents quantitative exercises,
including counterfactual shock scenarios. Section 5 concludes. The appendix provides details
of the model solution, the shock identification procedure, data sources and methods, and an
analysis of the representative agent’s forecast accuracy.

2 Model

The framework for the analysis is a real business cycle model that includes eight fundamental
shocks and one equity sentiment shock that captures belief-driven fluctuations. The repre-
sentative agent’s decision problem is to maximize

Ẽ0

∞∑
t=0

βt

[
log (ct − κtCt)−D exp (ut)

(h1,t + h2,t)
1+γ

1 + γ

]
, (1)
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subject to the budget constraint

ct + it = wth1,t + rtkt, (2)

where ct is real consumption, h1,t is hours worked in the production of output, h2,t is hours
worked in the production of new capital (called investor effort), it is investment, wt is the real
wage per hour, rt is the real rental rate per unit of capital, and kt is the stock of real physical
capital. All quantities are measured in per person terms. The parameter β > 0 is the agent’s
subjective time discount factor.
The symbol Ẽt represents the agent’s subjective expectation, conditional on information

available at time t. Under fully-rational expectations, Ẽt = Et, where Et corresponds to the
mathematical expectation operator evaluated using the objective distribution of all shocks,
which are assumed known to a fully-rational agent. I will also employ a “model-consistent”
expectation operator Em

t that delivers forecasts consistent with the actual laws of motion of
the relevant objects in the theoretical model which presumes orthogonal shocks. But as we
shall see, the model-identified shocks from U.S. data are not orthogonal. Hence, Em

t must be
viewed as boundedly-rational in the context of the U.S. data that the model seeks to replicate.
To allow for time-varying risk aversion, I assume that the representative agent derives

utility from individual consumption ct measured relative to a reference level that depends
on the amount of aggregate consumption per person Ct, which is viewed by the agent as
exogenous.13 The reference level of consumption is often defined in terms of Ct−1 or ct−1 as
opposed to Ct.14 But in the continuous-time limit, there is no distinction between the values of
Ct and Ct−1. Defining the reference level in terms of Ct reduces the number of endogenous state
variables and simplifies the equilibrium solution of the model without significantly influencing
the model-identified shocks.
The time-varying parameter κt determines the agent’s subjective coeffi cient of relative risk

aversion ηt according to the relationship

ηt ≡ −ct
Ucc(ct, Ct)

Uc(ct, Ct)
,

= −ct
−1/ (ct − κtCt)2

1/ (ct − κtCt)
=

1

1− κt
, (3)

where I have imposed the equilibrium condition ct = Ct in the second line of the expression.15

The agent’s time-varying risk aversion coeffi cient evolves according to the following stationary
13Maurer and Meier (2008) find strong empirical evidence for contemporaneous “peer-group effects” on

individual consumption decisions using panel data on U.S. household expenditures.
14See, for example, Otrok, Ravikumar and Whiteman (2002), Beaubrun-Diant and Tripier (2005), Chris-

tiano, Motto, and Rostagno (2014), and Lansing (2015).
15If the reference level of consumption is instead defined in terms of Ct−1, then the subjective risk aversion

coeffi cient is given by ηt = 1/(1− κt/gct ), where gct ≡ ct/ct−1 is the gross growth rate of real consumption per
person.
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law of motion

ηt = η
ρη
t−1 η

1−ρη exp (εη,t) ,
∣∣ρη∣∣ < 1, εη,t ∼ NID

(
0, σ2ε,η

)
, (4)

which ensures ηt > 0. The parameter ρη governs the persistence of the risk aversion coeffi cient
and εη,t is a normally and independently distributed (NID) innovation with mean zero and
variance σ2ε,η. The steady state level of risk aversion is given by η. For the quantitative
analysis, I will employ η = 1 such that κ = 0.16

The agent supplies labor to productive firms in the amount h1,t. Following Zhu (1995), the
agent also supplies “investor effort”in the amount h2,t that contributes to the production of
new capital, as described further below. The disutility of total labor supplied is governed by
the second term in (1), where D > 0, and γ ≥ 0. The Frisch elasticity of labor supply is given
by 1/γ. As γ →∞, the model reduces to one with fixed labor supply. Following Hall (1997), I
allow for a “labor disutility shock”ut (also called a labor supply shock in the literature) that
shifts the intratemporal trade-off between consumption and leisure. In support of this idea,
Kaplan and Schulhofer-Wohl (2018) find that labor disutility, as measured by “feelings about
work”from surveys, has shifted in significant ways since 1950. More generally, the shock ut
could also be interpreted as a “labor wedge” that captures fluctuations in the effective tax
rate on labor income. The labor disutility shock evolves according to the following stationary
AR(1) process.

ut = ρuut−1 + εu,t, |ρu| < 1, εu,t ∼ NID
(
0, σ2ε,u

)
. (5)

The representative agent derives income by supplying labor and capital services to identical
competitive firms. Firms produce output according to the technology

yt = Ak αtt [exp (zt) h1,t]
1−αt , A > 0, (6)

zt = zt−1 + µ + εz,t, εz,t ∼ NID
(
0, σ2ε,z

)
, (7)

αt = α
ρα
t−1 α

1−ρα exp (εα,t) , |ρα| < 1, εα,t ∼ NID
(
0, σ2ε,α

)
. (8)

In equation (6), zt represents a “labor productivity shock” that evolves as a random walk
with drift. The drift parameter µ > 0 determines the trend growth rate of output per person
in the economy. Stochastic variation in the production function exponent αt represents a
“factor distribution shock,”along the lines of Young (2004), Ríos-Rull and Santaeulàlia-Llopis
(2010), Lansing (2015), and Lansing and Markiewicz (2018). The logarithm of αt evolves as
a stationary AR(1) process.

16Greenwald, Lettau, and Ludvigson (2024) develop a related model where the risk aversion coeffi cient and
the risk free rate of return are each governed by an exogenous stochastic process.
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Profit maximization by firms yields the factor prices

wt = (1− αt) yt/h1,t, (9)

rt = αt yt/kt, (10)

which together imply yt = wth1,t + rtkt. From equation (10), stochastic variation in αt allows
the model to replicate fluctuations in the U.S. capital share of income, as represented by
rtkt/yt. Given the time series for αt, stochastic variation in zt allows equation (6) to replicate
fluctuations in U.S. output.
Resources devoted to investment together with investor effort contribute to the production

of new capital according to the following law of motion

kt+1 = B exp (vt) k
1−δt−ϕt
t iδtt [exp (zt) h2,t]

ϕt , B > 0, (11)

vt = ρvvt−1 + εv,t, |ρv| < 1, εv,t ∼ NID
(
0, σ2ε,v

)
, (12)

δt = δ
ρδ
t−1 δ

1−ρδ exp (εδ,t) , |ρδ| < 1, εδ,t ∼ NID
(
0, σ2ε,δ

)
, (13)

ϕt = ϕ
ρϕ
t−1 ϕ

1−ρϕ exp (εϕ,t) ,
∣∣ρϕ∣∣ < 1, εϕ,t ∼ NID

(
0, σ2ε,ϕ

)
, (14)

where the shocks vt, δt, and ϕt can be interpreted as capturing financial factors that impact
the supply of new capital and the price of claims to existing capital. A study by Greenwood,
Hercowitz, and Huffman (1988) was the first to demonstrate that shocks of this sort can be
an important driving force for business cycle fluctuations.17 The log-linear formulation of
equation (11) captures the presence of capital adjustment costs.18

Following Lansing and Markiewicz (2018), I allow for a “multiplier shock”vt that evolves
as a stationary AR(1) process. Stochastic variation in vt allows equation (11) to replicate
the time path of U.S. private nonresidential fixed assets. The variable δt is an “investment
shock” that represents stochastic variation in the elasticity of new capital with respect to
investment. The variable ϕt is an “investor effort shock”that represents stochastic variation
in the elasticity of new capital with respect to investor effort. Analogous to equation (6), the
productivity of investor effort is influenced by the labor productivity shock zt. The logarithms
of δt and ϕt evolve as stationary AR(1) processes.

17Other examples along these lines include Ambler and Paquet (1994), Justiniano, Primiceri, and Tambalotti
(2010), Liu, Waggoner, and Zha (2011), and Furlanetto and Seneca (2014).
18When δt < 1, one unit of new investment produces less than one unit of new capital. Lansing (2012)

shows that equation (11) with ϕt = 0 maps directly to a log-linear approximate version of the law of motion
for capital employed by Jermann (1998).
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The agent’s first-order conditions with respect to ct, h1,t, h2,t, and kt+1 are given by

λt = 1/ (ct − κtCt) = ηt/ct, (15)

D exp (ut) (h1,t + h2,t)
γ = λtwt, (16)

D exp (ut) (h1,t + h2,t)
γ = λtϕtit/ (δth2,t) , (17)

λtit/ (δtkt+1) = β Ẽtλt+1
[
rt+1 +

(
1− δt+1 − ϕt+1

)
it+1/ (δt+1kt+1)

]
, (18)

where λt is the Lagrange multiplier on the budget constraint (2). In equation (15), I have
imposed the equilibrium relationships ct = Ct and ηt = 1/(1− κt). In deriving equation (18),
I start by using the capital law of motion (11) to eliminate it from the budget constraint (2).
Combining equations (9), (16), and (17) yields the following expression for total hours

worked ht:

h1,t + h2,t︸ ︷︷ ︸
ht

=

{
ηt

D exp (ut)

[
(1− αt)

yt
ct

+
ϕt
δt

it
ct

]}1/(1+γ)
. (19)

Given the time series for the shocks αt, ηt, δt, and ϕt, stochastic variation in ut allows equation
(19) to replicate the time path of U.S. hours worked per person.
Since kt+1 is known at time t, equation (18) can be rewritten as follows

it/δt︸︷︷︸
ps,t

= Ẽt {Mt+1[αt+1yt+1 −
(
1 + ϕt+1/δt+1

)
it+1︸ ︷︷ ︸

dt+1

+ it+1/δt+1︸ ︷︷ ︸
ps,t+1

]}, (20)

whereMt+1 ≡ β
(
ηt+1/ηt

)
(ct+1/ct)

−1 is the equilibrium stochastic discount factor. The steady
state stochastic discount factor, given byM ≡ β exp(−µ), does not depend on the steady state
value η.
The rewritten first-order condition (20) is in the form of a standard asset pricing equation

where ps,t = it/δt is the market value of the agent’s equity shares in the firm. Equity shares are
assumed to exist in unit net supply and entitle the agent to a perpetual stream of dividends
starting in period t+ 1. From equations (16) and (17), we have ϕtit/δt = wth2,t. Dividends in
period t can therefore be written as

dt = αtyt − it − wth2,t, (21)

which shows that the shadow wage bill for investor effort subtracts from the residual cash
flow that can be paid out as dividends.
Stochastic variation in δt allows the model to replicate fluctuations in U.S. investment

conditional on U.S. equity value. Stochastic variation in ϕt allows the model to replicate
fluctuations in U.S. dividends. Stochastic variation in an “equity sentiment shock” st (in-
troduced below) allows ps,t in the model to replicate fluctuations in the real market value
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of the S&P 500 stock price index. In so doing, the model’s real equity return, given by
rs,t = (ps,t + dt)/ps,t−1 − 1, replicates the real return on the S&P 500 stock index.
In addition to equity shares, the representative agent can purchase default free bonds that

exist in zero net-supply. One-period discount bonds purchased at the price pb,t yield a single
payoff of one consumption unit per bond in period t + 1. Long-term bonds (consols) pur-
chased at the ex-coupon price pc,t yield a perpetual stream of stochastically-decaying coupon
payments (measured in consumption units) starting in period t+ 1. The equilibrium prices of
the bonds are determined by the following first-order conditions

pb,t = Em
t Mt+1, (22)

pc,t = Em
t Mt+1[1 + δc exp(ωt+1) pc,t+1], (23)

where Em
t implies that the agent’s bond market forecasts are consistent with the actual laws

of motion of the relevant objects in the theoretical model. Consequently, departures from
model-consistent expectations are restricted to the equity market and these departures turn
out to be very small. The variable δc,t+1 ≡ δc exp(ωt+1) is the stochastic decay rate of the
coupon received in period t+1. The parameter δc ∈ [0, 1) is the steady state decay rate which
influences the Macauly duration of the bond, i.e., the present-value weighted average maturity
of the bond’s cash flows.19 The shock ωt captures stochastic variation in the real value of the
bond coupon payment (for example, due to surprise inflation) and evolves according to the
following stationary AR(1) process

ωt = ρω ωt−1 + εω,t, |ρω| < 1, εω,t ∼ NID
(
0, σ2ε,ω

)
.

The model solutions for pb,t and pc,t are used to identify the sequences for the shocks ηt
and ωt. The risk free rate of return is given by rb,t+1 = 1/pb,t − 1, which is known at time t.
Fluctuations in ηt influence Mt+1 and thereby allow the model to replicate the real return on
a 3-month U.S. Treasury bill. The risky return on the long-term bond is given by rc,t+1 =

[1 + δc exp(ωt+1) pc,t+1]/pc,t − 1. Given the model-implied sequence for Mt+1, fluctuations in
ωt allow the model to replicate the real return on a long-term U.S. Treasury bond.

19The stochastic stream of coupon payments is given by: 1, δc exp(ωt+1), δ
2

c exp(ωt+1+ωt+2), δ
3

c exp(ωt+1+
ωt+2 + ωt+3)...
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2.1 Fundamental equity value

Defining the risk adjusted equity value-consumption ratio (a stationary variable) as xt ≡
ηtps,t/ct = ηtit/(δtct), the intertemporal first order condition (20) can be rewritten as follows

xt︸︷︷︸
ηtps,t/ct

= β Ẽt
{
ηt+1αt+1 yt+1/ct+1 +

(
1− δt+1 − ϕt+1

)
xt+1

}
= β Ẽt{ηt+1αt+1 +

[
1− δt+1 (1− αt+1)− ϕt+1

]
xt+1︸ ︷︷ ︸

qt+1

}, (24)

where I have substituted in for Mt+1 and collected terms dated t on the left side. In the
second line, I use the budget constraint (2) at time t + 1 and the definition of xt+1 to make
the substitution yt+1/ct+1 = 1 + δt+1xt+1/ηt+1.

At this point, it is convenient to define a nonlinear change of variables such that qt+1
represents the composite stationary variable that the agent must forecast.20 The agent’s
first-order condition (24) becomes xt = β Ẽt qt+1. Now using the definition of qt to make
the substitution xt = (qt − αtηt) / [1− δt (1− αt)− ϕt] in equation (24) yields the following
transformed version of the agent’s first order condition

qt = ηtαt + [1− δt (1− αt)− ϕt] βẼtqt+1. (25)

The fundamental equity value qft is obtained by solving equation (25) under the assumption
of model-consistent expectations such that Ẽtqft+1 = Em

t q
f
t+1. As shown in Appendix A, a log-

linear approximate version of the fundamental solution is given by

qft = q f
[
ηt
η

]γη [αt
α

]γα [δt
δ

]γδ [ϕt
ϕ

]γϕ
, (26)

where q f ≡ exp[Em
t log(qft)] and γη, γα, γδ, and γϕ are solution coeffi cients that depend on

model parameters and shock variances. Given the value of qft , we can recover the fundamental
equity value-consumption ratio as

pfs,t
ct

=
(qft − αt)/ηt

1− δt (1− αt)− ϕt
, (27)

which shows that pfs,t/ct will only move in response to the four fundamental shocks ηt, αt, δt,
and ϕt. Two of these shocks, δt and ϕt, appear in the law of motion for capital, ηt appears in the
utility function, and αt appears in the production function. Notably, the labor productivity
shock zt has no influence on this equity valuation ratio.

20This nonlinear change of variables technique and the associated solution method is also employed in
Lansing (2010, 2016) and Lansing and LeRoy (2014).
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2.2 Introducing equity sentiment

Pigou (1927, p. 73) attributed business cycle fluctuations partly to “psychological causes”
which lead people to make “errors of undue optimism or undue pessimism in their business
forecasts.”Keynes (1936, p. 156) likened the stock market to a “beauty contest”where par-
ticipants devote their efforts not to judging the underlying concept of beauty, but instead to
“anticipating what average opinion expects the average opinion to be.”Numerous empirical
studies starting with Shiller (1981) and LeRoy and Porter (1981) have shown that equity
prices appear to exhibit excess volatility when compared to fundamentals, as measured by the
discounted stream of ex post realized dividends.21 Kocherlakota (2010) remarks: “I believe
that [macroeconomists] are handicapping themselves by only looking at shocks to fundamen-
tals like preferences and technology. Phenomena like credit market crunches or asset market
bubbles rely on self-fulfilling beliefs about what others will do.”22 Recent empirical studies by
Bianchi, Ludvigson, and Ma (2022) and Bhandari, Borovička, and Ho (2024) find that “belief
distortions”or “belief wedges”are important drivers of key macroeconomic variables.
To capture the flavor of the above ideas, I postulate that the representative agent’s per-

ceived law of motion (PLM) for the composite variable qt allows for the possibility of depar-
tures from the fundamental value qft . Specifically, the agent’s PLM takes the form

qt = exp (st) q
f
t , (28)

st = s + ρs(st−1 − s) + εs,t, |ρs| < 1, εs,t ∼ NID
(
0, σ2ε,s

)
, (29)

where the sentiment shock st evolves as a stationary AR(1) process. The PLM predicts that
qt/q

f
t is increasing in st, where qt is the actual value observed in the data and q

f
t is the value

predicted by fundamentals from equation (26).23

The form of the PLM (28) can be motivated by the perception of a non-fundamental or
“bubble”component of equity value, denoted by qbt . Substituting qt = qft + qbt into equation
(28) yields the following perceived law of motion for the non-fundamental component of equity
value

qbt = [exp (st)− 1] qft . (30)

Unlike a rational bubble, equation (30) allows for the possibility of qbt < 0 when st < 0.

Equation (30) implies that fluctuations in st generate movements in qbt that, in turn, influence
movements in qt = qft + qbt .

24 In equilibrium, the agent’s perception that movements in qt
21Lansing and LeRoy (2014) provide an update on this literature.
22There are a variety of ways in which sentiment or animal spirits-type mechanisms can be incorporated

into quantitative business cycle models. For a brief review, see Lansing (2019).
23Yu (2013) introduces a persistent sentiment shock that acts as a wedge between the actual versus perceived

laws of motion for consumption growth in an endowment economy.
24Lansing (2012) examines a bubble component of equity value that is driven by fluctuations in fundamental

technology shocks.
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are partly driven by sentiment is close to self-fulfilling. The value of qbt does not affect bond
prices directly, but it does influence the agent’s consumption and thereby shift the stochastic
discount factor Mt+1 that is used to determine the equilibrium bond prices.
Given the PLM (28), the agent’s subjective forecast for next period’s equity value can be

computed as follows

Ẽtqt+1 = exp
[
s+ ρs(st − s) + σ2ε,s/2

]
Em
t q

f
t+1,

= exp(s+ σ2ε,s/2 + γ2ησ
2
ε,η/2 + γ2ασ

2
ε,α/2 + γ2δσ

2
ε,δ/2 + γ2δσ

2
ε,ϕ/2) q f︸ ︷︷ ︸

q

× exp[ρs(st − s)]
[
ηt
η

]ρηγη [αt
α

]ραγα [δt
δ

]ρδγδ [ϕt
ϕ

]ρϕγϕ
, (31)

where Em
t q

f
t+1 is the model-consistent “fundamentals-only”forecast that is computed from the

fundamental solution (26). The term exp
[
s+ ρs(st − s) + σ2ε,s/2

]
in equation (31) acts as a

wedge between the agent’s subjective forecast and the fundamentals-only forecast. The basic
structure of equation (31) is consistent with the empirical results of Frydman and Stillwagon
(2018) who find that investors’expectations about future stock returns from surveys are driven
by both fundamental and behavioral factors.
Substituting the agent’s subjective forecast (31) into the transformed first order condition

(25) yields the actual law of motion (ALM) for qt. The first order condition is “self-referential,”
meaning that the actual value of qt depends in part on the agent’s subjective forecast Ẽtqt+1.
From the perspective of any individual agent, switching to the fundamentals-only forecast
would appear to reduce forecast accuracy, so there is no incentive to switch.25 When the
intercept term ηtαt in equation (25) is close to zero, the first order condition approximates a no-
arbitrage bubble condition for which there may exist a continuum of self-fulfilling solutions.26

But even when ηtαt > 0, the actual value of qt can closely approximate the value predicted
by the PLM (28) if the slope coeffi cient [1− δt (1− αt)− ϕt] β that multiplies Ẽtqt+1 is close
to 1.0. I will show that this near-unity property of the slope coeffi cient is satisfied in the
quantitative version of the model. Consequently, the agent’s perception that movements in
equity value are partly driven by sentiment is close to self-fulfilling. The near-unity slope
of equation (25) implies that the value of qbt from equation (30) approximately satisfies the
following no-arbitrage condition

qbt = [1− δt (1− αt)− ϕt] βẼtqbt+1. (32)

25Lansing (2006) explores the concept of “forecast lock-in”using a simple asset pricing model with extrap-
olative expectations.
26Lansing (2010) provides examples of rational bubble solutions in an endowment economy.
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Given the realized value of qt, we can recover the equity value-consumption ratio as

ps,t
ct

=
(qt − αt)/ηt

1− δt (1− αt)− ϕt
, (33)

where qt = q (ηt, αt, δt, ϕt, st) . Hence in equilibrium, ps,t/ct will be partly driven by senti-
ment because the agent’s subjective forecast (31) makes use of the sentiment variable. Using
equation (33), we can recover the risk adjusted equity value-consumption ratio as

xt ≡
ηtps,t
ct

=
ηtit
δtct

=
qt − αt

1− δt (1− αt)− ϕt
, (34)

where xt = x (ηt, αt, δt, ϕt, st) . Alternatively, since xt = β Ẽtqt+1, we can recover xt by
multiplying the agent’s subjective forecast (31) by β.

2.3 Equilibrium macroeconomic variables and asset returns

Given the equilibrium value of xt from equation (34), the equilibrium values of the other
macroeconomic variables can be computed using the following equations

ht =
{
D−1 exp (−ut) [(1− αt)(ηt + δtxt) + ϕtxt]

}1/(1+γ)
, (35)

h1,t = {[(1− αt)(ηt + δtxt)] / [(1− αt)(ηt + δtxt) + ϕtxt]}ht, (36)

h2,t = {ϕtxt/ [(1− αt)(ηt + δtxt) + ϕtxt]}ht, (37)

yt = Ak αtt [exp (zt) h1,t]
1−αt , (38)

ct = [ηt/(ηt + δtxt)] yt, (39)

it = [δtxt/(ηt + δtxt)] yt, (40)

pst = it/δt, (41)

dt = αt yt − (1 + ϕt/δt)it, (42)

where I have made use of equation (19) and the budget relationships yt/ct = 1 + δtxt/ηt, and
it/ct = δtxt/ηt.

Notice that the factor distribution shock αt appears either directly or indirectly in equa-
tions (35) through (42). Efforts to explain movements in these variables using an otherwise
similar model with αt = α for all t could therefore distort the importance of the other model
shocks.
The equilibrium paths of ps,t and dt pin down the real equity return rs,t. The equilibrium

paths of the bond prices pb,t and pc,t are obtained by solving equations (22) and (23). The
solutions, which pin down the real bond returns rb,t and rc,t, are contained in Appendix B.
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3 Parameter values

Figure 2 plots the U.S. data versions of ten model variables. The sources and methods used
to construct these variables, plus the long-term bond return, are described in Appendix D.
Table 1 shows that six U.S. macroeconomic ratios are all close to their full-sample means in
1972.Q3. As an alternative to estimation, I calibrate parameter values so that the steady
state or trend values of the model variables are exactly equal to the values observed in the
data in 1972.Q3.27 Table 2 summarizes the model parameter values.

Table 1. U.S. macroeconomic ratios, 1960.Q1 to 2022.Q4
Ratio ct/yt it/yt kt/yt rtkt/yt ps,t/yt dt/yt
1972.Q3 value 0.713 0.287 9.243 0.361 4.216 0.040
Mean 0.727 0.273 9.190 0.383 4.018 0.036
Std. Dev. 0.018 0.018 0.411 0.027 1.501 0.012

Table 2. Model parameter values
Parameter Value Description/Target

η 1 Risk aversion coeffi cient = 1 in 1972.Q3
γ 1 Frisch labor supply elasticity = 1/γ = 1.
α 0.361 Capital income share = 0.361 in 1972.Q3.
A 0.999 kt/yt = 9.243 with yt = 1 and zt = 0 in 1972.Q3.
δ 0.068 it/yt = 0.287 in 1972.Q3.
ϕ 0.008 dt/yt = 0.040 in 1972.Q3.
B 1.341 B(it/kt)

δt [exp(zt)h2,t/kt]
ϕt = exp(µ) in 1972.Q3.

D 10.482 h1,t + h2,t = 0.3 in 1972.Q3.
s −0.225 ps,t/yt = 4.216 in 1972.Q3.
β 0.9998 rb,t = 0.248% in 1972.Q3.
δc 0.944 rc,t = 0.872% in 1972.Q3.

The steady state value η = 1 implies κ = 0 such that the agent’s utility function exhibits
no habit component in steady state. The value of γ is chosen to deliver an aggregate Frisch
labor supply elasticity of 1/γ = 1. This value is consistent with empirical evidence presented
by Kneip, Merz, and Storjohann (2020) who estimate an aggregate Frisch elasticity that ranges
between 0.85 and 1.06 using panel data on German men from 2000 to 2013. Given a time
endowment normalized to one, the value of the parameter D achieves the steady state target
h1,t + h2,t = 0.3, implying that the representative agent spends about one-third of available
time engaged in market work or investor effort. The values of the parameters A and B achieve

27Many studies, such as Smets and Wouters (2007), Christiano, Motto, and Rostagno (2014), and Miao,
Wang, and Xu (2015) employ a combination of calibration and estimation to pin down their model’s parameter
values. While estimation is typically viewed as more rigorous than calibration, Meenagh, Minford, andWickens
(2021) show that Bayesian and maximum likelihood estimation methods can both deliver significantly biased
estimates of the true model’s parameter values.
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the steady state targets of kt/yt = 9.243 and kt+1/kt = exp(µ) in 1972.Q3 when yt = 1 and
zt = 0, as implied by equations (6) and (11).
The model-implied values of ps,t/yt and rb,t in 1972.Q3 depend on numerous model parame-

ters, including s, β, and various shock variances which are determined by the data replication
exercise (for details, see Appendices A and B). Given candidate shock sequences and their cor-
responding variances, the values of s and β are determined iteratively until the model-implied
values for ps,t/yt and rb,t match the corresponding values in U.S. data and the shock sequences
have converged. The resulting value s = −0.225 in 1972.Q3 implies that equity sentiment is
“pessimistic”relative to fundamental value in steady state. As noted in the introduction, this
feature allows the model to replicate the mean equity risk premium in the data without the
need for high levels of risk aversion. In section 5.2, I examine the sensitivity of the model’s
mean asset returns to alternative values of s.28

I solve for the sequences of shock realizations that allow the calibrated model to exactly
replicate the observed time paths of eleven U.S. macroeconomic variables and asset returns.
These are the ten time series plotted in Figure 2 plus the real return on a long-term U.S.
Treasury bond. Of these eleven time series, only nine are independent since yt = ct + it

and rs,t = (ps,t + dt)/ps,t−1 − 1. The model has nine shocks, so each shock series is uniquely
identified. The nine model shocks are: st (equity sentiment), ηt (risk aversion), ut (labor
disutility), vt (capital law multiplier), δt (capital law exponent on investment), ϕt (capital law
exponent on investor effort), αt (factor distribution), zt (labor productivity), and ωt (bond
coupon decay rate). Appendix C provides the details of the shock identification procedure.29

Table 3 shows the values of the shock parameters implied by the identification exercise.
The persistence parameters are computed by running an ordinary least squares regression on
each shock sequence with the constant term constrained to coincide with the steady state
value in 1972.Q3. The shock innovations are then computed using the univariate law of
motion for each shock. All nine shocks exhibit very strong persistence– a typical result in
the business cycle literature.30 The strong shock persistence allows model variables that are
presumed stationary (e.g., hours worked per person, capital’s share of income, and the equity
value-consumption ratio) to be able to replicate the sustained upward or downward trends
observed in U.S. data.
28In a similar framework with only six fundamental shocks, Lansing (2019) sets s = 0. That version of the

model cannot replicate the U.S. equity risk premium or the risk free rate of return.
29For similar shock identification exercises, but in the context of different models, see Lansing and

Markiewicz (2018), Gelain, Lansing, and Natvik (2018), Buckman, et al. (2020), and Lansing (2021).
30See, for example, Christiano, Motto, and Rostagno (2014, p. 44).
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Table 3. Model-identified shock parameters
Shock Values

Equity sentiment, st ρs = 0.9432 σε,s = 0.1039
Risk aversion, ηt ρη = 0.8987 σε,η = 0.1248
Labor disutility, ut ρu = 0.9480 σε,u = 0.1305
Capital law multiplier, vt ρv = 0.9808 σε,v = 0.0363
Capital law exponent on investment, δt ρδ = 0.9825 σε,δ = 0.0840
Capital law exponent on investor effort, ϕt ρϕ = 0.9916 σε,ϕ = 0.1390
Factor distribution, αt ρα = 0.9968 σε,α = 0.0138
Labor productivity, zt µ = 0.0050 σε,z = 0.0233
Bond coupon decay rate, ωt ρω = 0.9836 σε,ω = 0.0064

4 Model-identified shocks

Figure 3 plots the nine model-identified shock sequences. By construction, all shocks are equal
to their steady state or trend values in 1972.Q3.31 The equity sentiment shock fluctuates
between −0.98 and 0.05, thereby allowing the model to replicate movements in the U.S. ratio
ps,t/yt. As described in Appendix D, ps,t/yt is the nominal market capitalization of the S&P
500 stock price index divided by a model-consistent measure of nominal output. The sentiment
shock reaches its two highest values in 2001.Q1 and 2001.Q4, near the peak of the NASDAQ
technology stock boom. The two lowest values occur during the recession quarters of 1982.Q3
and 2009.Q2.
The risk aversion coeffi cient ηt fluctuates mildly between 0.46 and 1.32, thereby allowing

the model to replicate the smooth behavior of the U.S. risk free rate of return, as plotted
in Figure 2.32 The maximum value occurs in 2001.Q4 while the minimum value occurs in
1982.Q3. Movements in ηt exhibit a strong positive correlation with movements in st. As
demonstrated below in Section 5.3, this correlation pattern allows the model to match the
comovement of U.S. macroeconomic variables and asset prices over the business cycle.
The labor disutility shock ut exhibits a net downward trend over time, allowing the model

to match the net upward trend of total hours worked per person in the data, as shown earlier
in Figure 2. The net upward trend in ht occurs despite the net downward trend in labor’s share
of income that results from the net increase in the factor distribution shock αt. Movements in
ut are positively correlated with movements in st and ηt. This correlation pattern allows the
model to match both the amplitude and comovement of macroeconomic variables and asset
prices over the business cycle.

31The trend value of zt is constructed as zt = zt−1 + µ, where µ is the sample mean of ∆zt and zt = zt = 0
in 1972.Q3.
32As noted by Cochrane (2017, p. 947), a risk aversion coeffi cient of 25 under power utility would imply

that a 1 percentage point rise in mean consumption growth results in a 25 percentage point rise in the risk-free
rate.
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The multiplier shock vt in the capital law of motion (11) is positively correlated with
the other two capital law of motion shocks δt and ϕt.

33 Consequently, vt is almost perfectly
negatively correlated with the quantity 1 − δt − ϕt, representing the exponent on kt in the
capital law of motion. This correlation pattern allows the model to match the smooth time
path of kt in the data while simultaneously matching the more-volatile time paths of it and
ps,t = it/δt. Fluctuations in the investor effort shock ϕt allow the model to match the time
path of dt in the data. The positive correlation between innovations to δt and ϕt allows the
model to replicate the comovement between ps,t and dt in the data.
The factor distribution shock αt, representing capital’s share of income, fluctuates around

its steady state value until experiencing a sustained upward trend starting around 2005. As
described in Appendix D, αt is measured as one minus the ratio of employee compensation to
gross value added of the corporate business sector.34 A study by Bergholt, Furlanetto, and
Maffei-Faccioli (2022) finds that automation and rising markups of firms’prices are the main
drivers of the rise in the U.S. capital income share.
The labor productivity shock zt evolves close to trend from around 1970 until the onset of

Great Recession in 2008. The shock remains well below trend at the end of the data sample
in 2022.Q4. The decline in zt after the Great Recession partially offsets the concurrent rise
in αt so as to replicate the path of U.S. output. But even before 2005, innovations to these
two shocks are strongly negatively correlated. Figure 4 also plots an alternative sequence for
zt that is identified by an otherwise similar Cobb-Douglas production function with αt = α

for all t. The alternative sequence for zt is very different from the model-identified sequence
from 2005 onward. The correlation coeffi cient between innovations to αt and innovations to
the alternative sequence for zt is positive at 0.22. Given that αt appears either directly or
indirectly in equations (35) through (42), imposing αt = α would also yield different sequences
for the other model-identified shocks. This example illustrates how details of the assumed
model can influence the patterns of identified shocks.
Finally, the bond coupon decay rate shock ωt exhibits a net upward trend over time. This

pattern allows the model to match the net increase in the real return on a long-term Treasury
bond that derives mainly from the secular decline in U.S. inflation. The value of ωt drops
sharply at the end of the data sample, coinciding with a surge in U.S. inflation that acts to

33Throughout the paper, I refer to vt, δt, and ϕt as the “capital law of motion shocks”because these shocks
only appear in equation (11). While the labor productivity shock zt also appears in equation (11), it has only
minor effects on kt+1 because the investor effort shock ϕt fluctuates at very low values that range between
0.003 and 0.058. Movements in total labor hours ht are dominated by movements in h1,t. The average value
of the ratio h1,t/ht in U.S. data from 1960.Q1 to 2022.Q4 is 0.89.
34Fernald (2014) uses smoothed quarterly data on capital’s share of income to identify a quarterly

time series for total factor productivity using a Cobb-Douglas production function. The correlation co-
effi cent between αt and Fernald’s measure of capital’s share is 0.986 using updated data available from
https://www.johnfernald.net/TFP.
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reduce the real return on the U.S. long-term bond. Movements in ωt over time also allow the
model to capture the shifting correlation pattern between returns on bonds versus equities,
as documented by Campbell, Pflueger, and Viceira (2020).
Table 4 compares the standard deviation of the model-identified shock innovations before

and after 1984. This date corresponds to the approximate start of what had previously
been labeled as the “Great Moderation”(e.g., Stock and Watson 2002). Innovation volatility
declines in the post-1984 sub-sample for the three capital law of motion shocks vt, δt, and
ϕt. But for the remaining six shocks, innovation volatility rises in the post-1984 sub-sample,
particularly for the two production function shocks αt and zt. Qualitatively similar results
are obtained if the second sub-sample ends in 2019.Q4 to avoid the influence of the severe
but brief Covid recession. Overall, the results in Table 4 do not support the notion that
macroeconomic or financial volatility has declined in recent decades.

Table 4. Standard deviation of shock innovations
Innovation 1960.Q2 to 1983.Q4 1984.Q1 to 2022.Q4 Change

εs,t 0.1008 0.1060 +5.15%
εη,t 0.1244 0.1253 +0.71%
εu,t 0.1287 0.1320 +2.54%
εv,t 0.0371 0.0357 −3.71%
εδ,t 0.0878 0.0808 −8.03%
εϕ,t 0.1547 0.1286 −16.9%
εα,t 0.0120 0.0148 +23.9%
εz,t 0.0177 0.0260 +47.4%
εω,t 0.0057 0.0069 +21.2%

Note: Last column is the percent change in volatility from pre- to post-1984 sample periods.

Table 5 shows the contemporaneous cross correlations among the nine shock innovations.
There are strong positive correlations between εs,t (sentiment), εη,t (risk aversion), and εu,t
(labor disutility). There are also strong positive correlations between εv,t, εδ,t, and εϕ,t (cap-
ital law of motion). The first group of innovations is negatively correlated with the second
group. There is a strong negative correlation between εα,t (factor distribution) and εz,t (labor
productivity), but these two innovations are mostly weakly correlated with the other innova-
tions. While there are sizeable positive correlations between εω,t (bond coupon decay rate)
and the first group of innovations noted above, the coupon decay shock only reacts to these
innovations; it does not influence the evolution of the macroeconomic variables or other asset
prices.
The correlation patterns in Table 5 motivate three categories of shocks for the counter-

factual scenarios: (1) only sentiment and preference shocks: st, ηt, and ut, (2) only capital
law of motion shocks: vt, δt, and ϕt, and (3) only production function shocks: αt and zt.
These categories roughly correspond to the three main building blocks of the model, namely,
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the household utility function, the law of motion for capital, and the production function for
output.35 The counterfactual scenarios will seek to isolate the main source of fluctuations as
roughly coming from either household demand factors, financial factors that influence capital
formation, or production/supply factors.

Table 5. Contemporaneous cross correlations of shock innovations
Innovation εs,t εη,t εu,t εv,t εδ,t εϕ,t εα,t εz,t εω,t

εs,t 1.00 0.98 0.97 −0.62 −0.38 −0.36 −0.19 0.31 0.68
εη,t 1.00 0.97 −0.51 −0.26 −0.29 −0.13 0.26 0.70
εu,t 1.00 −0.50 −0.28 −0.28 −0.18 0.31 0.73
εv,t 1.00 0.89 0.66 0.12 −0.13 −0.12
εδ,t 1.00 0.51 −0.04 0.05 −0.03
εϕ,t 1.00 0.46 −0.38 −0.10
εα,t 1.00 −0.89 −0.20
εz,t 1.00 0.28
εω,t 1.00

Note: Correlation coeffi cients computed for the sample period from 1960.Q2 to 2022.Q4. Bold entries

indicate strong correlations that motivate the three main shock categories for counterfactual scenarios.

Recall that the boundedly-rational agent in the model employs univariate forecast rules for
each of the nine shocks. Under full information rational expectations, the agent would employ
forecast rules that capture the complex correlation structure in Table 5. Appendix E examines
the potential improvement in forecast accuracy from taking into account the shock correlation
structure. Specifically, I compare the accuracy of the model’s univariate forecast rules to
the accuracy of forecasts derived from a 1-lag VAR estimated on the nine model-identified
shock sequences. Use of the ex post estimated VAR delivers only minor improvements in the
accuracy of the shock forecasts. The univariate shock forecasts are almost perfectly correlated
with the VAR shock forecasts, confirming that the univariate forecast rules are near rational.

5 Quantitative properties of the model

5.1 Actual versus perceived law of motion

Figure 4 provides insight into the near self-fulfilling nature of the agent’s perceived law of
motion (28). The left panel plots the equilibrium quantity log(qt/q

f
t) versus the value of the

sentiment shock st. For this exercise, all fundamental shocks are set to their steady state values.
The agent’s perceived law of motion predicts that log(qt/q

f
t) should increase with st along the

45-degree line with slope = 1. The actual law of motion implies that log(qt/q
f
t) increases along

35While the equity sentiment shock st does not enter directly in the household utility function it strongly
comoves with the two preference shocks ηt and ut.
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a line with slope ' 0.9. For any given value of st, the value of log(qt/q
f
t) predicted by the

two lines are numerically very close. For example when st = s, the perceived law of motion
predicts log(qt/q

f
t) = −0.225 whereas the actual law of motion predicts log(qt/q

f
t) = −0.207.

The close approximation of the PLM to the ALM occurs because the slope coeffi cient
applied to the agent’s subjective forecast Ẽtqt+1 in the transformed first order condition (25)
is always close to 1, as given by [1− δt (1− αt)− ϕt] β. From 1960.Q1 to 2022.Q4, the slope
coeffi cient fluctuates between 0.85 and 0.97 with a steady state value of 0.95. Consequently,
the agent’s subjective forecast has a very strong influence on the actual value of qt.

5.2 Effect of steady state sentiment

The value s = −0.225 allows the model to replicate the equity risk premium in U.S. data
while maintaining a low level of risk aversion. Table 6 shows the sensitivity of the model’s
mean asset returns to higher values of sentiment in each period. Specifically, I shift up the
entire sequence of model-identified sentiment shocks by a constant amount so as to achieve
the steady state value s ′ > s in 1972.Q3. The sequences of the eight fundamental shocks are
unchanged from the baseline model.

Table 6. Effect of steady state sentiment on mean asset returns
Steady state sentiment rs,t rb,t rc,t rs,t − rb,t rs,t − rc,t rc,t − rb,t
s = −0.225, Baseline model 2.04 0.37 0.98 1.67 1.06 0.61
s ′ = −0.1 1.33 0.72 1.19 0.61 0.13 0.48
s ′ = 0 0.83 1.00 1.38 −0.17 −0.55 0.38
s ′ = 0.1 0.39 1.28 1.58 −0.89 −1.18 0.29
s ′ = 0.225 −0.08 1.64 1.84 −1.72 −1.92 0.20
Notes: Each number is the mean quarterly real return (measured in percent) from 1960.Q2 to 2022.Q4

under a given steady state value of the equity sentiment shock in 1972.Q3. The top row shows the mean

quarterly returns in U.S. data that are matched in the baseline model with the shock realizations st.
Other rows use the shock realizations s′t = st + (s ′ − s), such that s′t = s ′ in 1972.Q3.

As s ′ increases, the equity return rs,t declines. At the same time, both bond returns rise,
with the risk free rate rb,t increasing by more than the long-term bond return rc,t. Increased
optimism serves to shrink, and eventually eliminate, both the mean equity risk premium and
the mean bond term premium. For example, when sentiment is neutral in steady state such
that s ′ = 0, the mean equity risk premium relative to rb,t is −0.17% per quarter. In contrast,
the baseline model with s = −0.225 delivers a mean equity risk premium of 1.67% per quarter.

5.3 Impulse response functions

Figure 5 plots three sets of impulse response functions from the model. Each set of panels
show how macroeconomic variables and asset prices respond to positive innovations of one
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standard deviation in size coming from each of the three main shock categories noted earlier.
For illustrative purposes in this exercise, I set the persistence parameters for all shocks to a
value of 0.9 so that the impulse response functions for each shock category decay over the
same number of periods.
The left panels of Figure 5 shows the effects of simultaneous positive innovations to sen-

timent st and risk aversion ηt. Recall from Table 4 that there is a strong positive correlation
between innovations to st, ηt, and ut . Higher sentiment together with higher risk aversion
delivers a correlated increase in all macroeconomic variables. Equity value increases but bond
prices decline, implying an increase in bond yields. The combination of these two highly
correlated shocks allows the model to capture the features observed during a typical economic
boom or recovery. Adding a simultaneous positive innovation to the labor disutility shock
ut serves to dampen the correlated upward movements in the macroeconomic variables and
equity value, but has little effect on bond prices. Taken together, the positive correlations
among the innovations to st, ηt, and ut allow the model to replicate both the amplitude and
comovement of fluctuations in U.S. macroeconomic variables and asset prices.
Recall that higher risk aversion in the model derives from a higher value for the time-

varying coeffi cient κt that multiplies the external reference level of consumption. The model-
identified value of κt implies that agents place more emphasis on interpersonal consumption
comparisons during good times. The fact that model-identified risk aversion is higher during
good times provides a fundamental justification for investors’higher expectations of future
stock market returns during good times, as measured by surveys (Figure 1). As discussed
in the introduction, several empirical studies find evidence of pro-cyclical risk aversion using
data on option prices for the S&P 500 stock index.
The middle panels of Figure 5 show the effects of a positive innovation to the factor

distribution shock αt, representing an increase in capital’s share of income. An increase in αt
delivers a response pattern that is very similar to that shown in the left panels of Figure 5,
except that hours worked now undergoes a small decline. Recall from Table 4 that there is
a strong negative correlation between innovations to the two production function shocks αt
and zt. Adding a simultaneous negative innovation to the labor productivity shock zt serves
to dampen the responses of most variables without changing the basic pattern.36

The right panels of Figure 5 show the effects of simultaneous positive innovations to the
three capital law of motion shocks vt, δt and ϕt, as motivated by the correlation patterns in
Table 4. The innovations deliver an immediate increase in output, hours worked, and invest-
ment. But since the capital stock cannot respond immediately, the initial increase in output
is not suffi cient to allow both consumption and investment to increase on impact. Consump-

36Due to the logarithmic utility function in consumption (1), any innovation to zt generates exactly offsetting
income and substitution on hours worked, leaving the response pattern for ht unchanged.
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tion drops slightly on impact, but then increases as the capital stock rises in response to the
higher value of the multiplier shock vt and higher investment. Overall, the exercise leads to a
correlated increase in the macroeconomic variables. Notice however that equity value, given
by ps,t = it/δt, declines on impact (with bond prices) but then rises with investment. This
happens because the higher value of the shock δt dominates the initial increase in investment,
but the subsequent rise in investment pushes up ps,t.
The main takeaway from Figure 5 is that each of the three main shock categories can

generate all or most of the features of a typical business cycle. I will elaborate further on this
point below.

6 Counterfactual shock scenarios

In this section, I undertake business cycle accounting exercises that involve counterfactual
shock scenarios. Each scenario adds one category of shock realizations while other shocks are
set equal to steady state or trend values. Any shock innovation variance terms that appear
as constants in the model’s equilibrium solution remain in place, regardless of the scenario.
This procedure ensures that the values of the endogenous variables in 1972.Q3 remain fixed
across counterfactual scenarios.37 The agent’s forecasts of future shock values that determine
the model solution are based on univariate forecast rules, so omitting any given sequence of
shock realizations does not affect the model solution or the agent’s forecasts for the remaining
shocks. Each counterfactual simulation starts at the model steady state in 1972.Q3 and then
uses the model solution to compute the counterfactual values of model variables before and
after 1972.Q3. To compute the counterfactual values before 1972.Q3, I invert the capital law
of motion (11) to solve for kt as a function of kt+1, it, h2,t, vt, δt, ϕt and zt.

6.1 Business cycle importance of shocks

To gauge the importance of each shock category for business cycle fluctuations, I compute the
correlation coeffi cient between a detrended model variable under a given shock scenario and
the detrended U.S. variable. The detrended paths are constructed by taking logarithms and
applying the Hodrick-Prescott filter with a smoothing parameter of 1600.38 The counterfac-
tual scenarios represent each of the three main shock categories in isolation, plus a separate
scenario involving only the bond coupon decay shock. Table 7 summarizes the results for five

37For example, equation (31) shows that the value of q in 1972.Q3 is influenced by numerous innovation
variance terms.
38Similar results are obtained if a shock category’s importance is ranked by the fit of a regression that

projects the detrended U.S. variable onto a constant and the detrended model variable.
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macroeconomic variables: yt, ct, it, ht, kt, and three asset prices: ps,t, ps,t, pc,t. A boldface
entry in the table indicates the largest correlation coeffi cient for each variable.

Table 7. Model versus data correlation coeffi cients: Detrended variables
Shock scenario yt ct it ht kt ps,t pb,t pc,t
Baseline model = U.S. data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Only sentiment & preference shocks 0.69 0.47 0.67 0.98 0.09 0.71 0.53 −0.21
Only capital law of motion shocks 0.40 0.16 0.45 −0.17 0.49 0.96 0.17 0.15
Only production function shocks 0.52 0.71 0.22 −0.16 0.24 0.22 0.10 −0.15
Only bond coupon decay shock 0.14 0.06 0.18 0.10 0.07 0.04 0.04 0.84
Notes: Each number is the correlation coeffi cient between the detrended path of the model variable under a

given shock scenario and the detrended path of the U.S. data variable. Each scenario adds one category of

shock realizations while other shocks are set equal to steady state or trend values. Boldface indicates the

largest correlation coeffi cient for each variable.

In Table 7, each of the three main shock categories is the most important driver of at
least one macroeconomic variable or asset price. For example, the sentiment and preference
shocks are the most important drivers of business cycle movements in output, investment,
hours worked, and the price of the short-term bond (which determines the risk free rate of
return). Recall that this category of shocks includes the time-varying risk aversion coeffi cient
and the labor disutilty shock. The capital law of motion shocks are the most important drivers
of business cycle movements in the capital stock and equity value. The production function
shocks are the most important drivers of business cycle movements in consumption. But none
of the three main shock categories can account for movements in the price of the long-term
bond. Rather, this asset price is driven mainly by the highly-specific coupon decay shock.
This last result tell us that movements in the price of a long-term U.S. Treasury bond cannot
be readily explained by shocks that account for movements in the S&P 500 stock index or
movements in the price of a short-term Treasury bond.
Table 7 further shows that each of the three main shock categories can deliver sizeable

correlation coeffi cients for more than one variable. For detrended output, the correlation
coeffi cients across the three main shock scenarios range from 0.40 to 0.69. For detrended
equity value, the correlation coeffi cients range from 0.22 to 0.96, but the ordering across
scenarios is now different.
Figure 6 compares the detrended paths of model output and model equity value (red lines)

to the corresponding U.S. data (black lines) for each of the three main shock categories. The
results confirm that business cycle movements in U.S. output and equity value can be plausibly
driven by multiple types of shocks.
Chari, Kehoe, and McGrattan (2007) conclude that wedges involving labor productivity

and labor supply are the main drivers of business cycles. For comparison with the results pre-
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sented here, a labor productivity wedge would fall into the production function category while
a labor supply wedge would fall into the sentiment and preference category. Table 7 shows that
both of these shock categories can deliver sizeable correlation coeffi cients for detrended output
and consumption. But production function shocks deliver only weak correlation coeffi cients
for detrended asset prices.
Justiniano, Primiceri, and Tambalotti (2010) conclude that investment shocks are the main

drivers of business cycle movements in output, hours, and investment. Table 7 shows that the
capital law of motion shocks can indeed deliver sizeable correlation coeffi cients for detrended
output, investment, and equity value, but not for detrended hours worked or detrended bond
prices. Unlike the setup in Justiniano, Primiceri, and Tambalotti (2010), shocks to the capital
law of motion in the model developed here are tasked with explaining movements in equity
value and equity dividends, leaving the task of explaining hours worked and bond prices to
other shocks.

6.2 Importance of shocks without detrending

To gauge the importance of each shock category for lower frequency movements, I first com-
pute the squared percentage gaps between the counterfactual model paths and the U.S. data
paths for each variable, without any detrending. A smaller gap measure implies that a given
shock scenario does a better job of explaining total movements in a given U.S. variable. Fol-
lowing Brinca, et al. (2016), and Brinca, Costa-Filho, and Loria (2024), I then normalize
the cumulative squared gaps across shock scenarios to construct an index that measures the
fraction of total movements in each variable that can be explained by each shock scenario.
For example, I compute the following gap accounting statistic for output yt

θiy =
1/Σt(y

i
t/yt − 1)2

Σj [1/Σt(yit/yt − 1)2]
, (43)

where Σt(y
i
t/yt−1)2 is the cumulative squared percentage gap that results from counterfactual

shock scenario i and j = 3 is the number of different shock scenarios. When all three shock
categories are present, the gap is zero each period and the model can explain 100% of the
total movements in each U.S. variable considered.39

Table 8 presents the gap accounting statistics for each variable. Figure 7 displays the
counterfactual shock scenarios and the associated gaps for output yt and equity value ps,t. The
scenario with only sentiment and preference shocks provides the best visual fit of fluctuations
in U.S. output while the scenario with only capital law of motion shocks provides the best

39For this exercise, I do not compute a gap accounting statistic for the long-term bond price pc,t because
the highly-specific bond coupon decay shock ωt is not part of the three main shock categories that form the
denominator of equation (43).
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visual fit of fluctuations in U.S. equity value. These visual rankings are confirmed by the
ranking of the gap accounting statistics in Table 8.

Table 8. Gap accounting statistics without detrending
Shock scenario yt ct it ht kt ps,t pb,t
Baseline model = U.S. data 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Only sentiment & preference shocks 0.41 0.35 0.53 0.90 0.40 0.12 0.11
Only capital law of motion shocks 0.29 0.28 0.35 0.06 0.48 0.81 0.14
Only production function shocks 0.30 0.37 0.12 0.04 0.12 0.07 0.75
Notes: Each number represents the fraction of total movements in a given U.S. variable that can be

explained by each shock scenario, computed along the lines of equation (43). Boldface indicates

the largest fraction for each variable.

From Table 8, we see that each of the three main shock categories can account for a sizeable
fraction of total movements in the variables yt, ct, it, and kt, implying that no single shock
category is clearly dominant. In contrast, total movements in the variables ht, ps,t and pb,t
are driven mainly by a single dominant shock category, but the dominant shock category is
different for each variable. Specifically, the three largest gap accounting statistics in Table 8
are 0.90 for ht with only sentiment and preference shocks, 0.81 for ps,t with only capital law
of motion shocks, and 0.75 for pb,t with only production function shocks.
If we compare the correlation coeffi cients in Table 7 to the gap accounting statistics in

Table 8, we see that the shock category which is the most important driver of business cycle
movements in a given variable is usually, but not always, the most important driver of total
movements in the same variable. The single exception is the short-term bond price pb,t. In this
case, the sentiment and preference shocks are the most important drivers of business cycle
movements whereas the production function shocks are the most important drivers of total
movements. Taken as a whole, the results in Tables 7 and 8 tell us that each of the three
main shock categories is important for explaining aspects of U.S. data since 1960.
The scenario with only production function shocks delivers the lowest gap accounting

statistic for equity value ps,t at 0.07. Recall that this category of shocks includes αt which
governs capital’s share of income. Using concentrated capital ownership models (i.e., capital
owners versus workers), studies by Lansing (2015), Greenwald, Lettau, and Ludvigson (2024),
and Gaudio, Petrella, and Santoro (2023) all identify a large role for shocks to capital’s share
of income in explaining U.S. equity returns. The equity return in the concentrated capital
ownership model is highly sensitive to the presence of factor distribution shocks because these
shocks impact the volatility of equity dividends which, in turn, strongly influences the volatility
of capital owners’consumption growth. But in the representative agent framework employed
here, the same sequence of factor distribution shocks has much less impact on the volatility of
the representative agent’s consumption growth, thereby muting the resulting impact on equity
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value and equity returns.40 This example demonstrates that conclusions regarding the relative
importance of any given shock for macroeconomic or financial variables can be model-specific.

6.3 Great Recession versus Covid recession

Previous business cycle accounting studies have shown that the main drivers of recessions
can differ across episodes or countries. Brinca, et al. (2016) find that a labor wedge is the
most important driver of the Great Recession in the U.S. but an effi ciency wedge is the most
important driver of the Great Recession in most other countries. Brinca, Costa-Filho, and
Loria (2024) find that an effi ciency wedge is the most important driver of the U.S. recessions
in 1973 and 1990 which were characterized by spikes in oil prices.
As a final exercise, I assess how each shock scenario performs in explaining the Great

Recession (2007.Q4 to 2009.Q2) versus the Covid recession (2019.Q4 to 2020.Q2). Starting
from 2007.Q4, I add one category of shock realizations while other shocks are set equal to
steady state or trend values. Figure 8 displays the counterfactual shock scenarios and the
associated gaps for two key variables: output yt and equity value ps,t.
According to the model, the declines in yt and ps,t during the Great Recession are driven

mainly by the capital law of motion shocks (red line) together with the sentiment and pref-
erence shocks (blue line). The importance of these two shock categories is consistent with
the idea that both financial and demand factors played a significant role during the Great
Recession, in line with the findings of Mian and Sufi (2010) and Gertler and Gilchrist (2018).
The production function shocks do not contribute much to the declines in either yt or ps,t
during the Great Recession, confirming the findings of Brinca, et al. (2016) with regard to
the U.S. effi ciency wedge.
The decline in yt during the Covid recession is driven mainly by the sentiment and prefer-

ence shocks (blue line) together with production function shocks (green line). The importance
of these two shock categories is consistent with idea that both demand and supply factors
played a significant role in the Covid recession, in line with the findings of Ferroni, Fisher, and
Melosi (2024), Smets and Wouters (2024), and Bai, et al. (2024). The decline in ps,t during
the Covid recession is driven mainly by capital law of motion shocks (red line) together with
production function shocks (green line). Overall, the results tell us that U.S. recessions can
be driven by different types of shocks.

40This point is demonstrated numerically by Lansing (2015, p. 83) and Gaudio, Petrella, and Santoro (2023,
p. 33).
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7 Conclusion

I have used a standard real business cycle model to solve for the sequences of nine stochastic
shocks (or wedges) that allow the model to exactly replicate the quarterly time paths of U.S.
macroeconomic variables and asset returns since 1960. The model-identified sentiment shock
is negative in steady state, allowing the model to match the U.S. equity risk premium with a
low level of risk aversion. The model-identified risk aversion coeffi cient is higher in good times,
when agents place more emphasis on interpersonal consumption comparisons. This pattern
provides a justification for investors’higher expectations of future stock market returns during
good times, as measured by surveys. It is also consistent with several empirical studies that
estimate measures of time-varying risk aversion using option prices for the S&P 500 stock
index.
The cross-correlation patterns among the identified shock innovations motivate three main

shock categories as candidates for the most important driver of U.S. business cycles and
asset returns: (1) sentiment and preference shocks, (2) capital law of motion shocks, and (3)
production function shocks. These categories roughly correspond to the three main building
blocks of the model: the household utility function, the law of motion for capital, and the
production function for output.
Using impulse response functions, I show that each of the three main shock categories

can generate all or most of the features of a typical business cycle. Counterfactual scenarios
show that each of the three main shock categories is the most important driver of business
cycle movements and total movements in at least one macroeconomic variable or asset price.
For most variables, no single shock category is clearly dominant in explaining the observed
movements in U.S. data. While some variables are driven by a single dominant shock category,
the dominant category is different for each of those variables. Movements in the price of a long-
term U.S. Treasury bond cannot be readily explained by shocks that account for movements
in the S&P 500 stock index or movements in the price of a short-term Treasury bond. An
analysis of the Great Recession versus the Covid recession shows that the shock categories
which account for the declines in U.S. output and equity value differ across the two recession
episodes.
The model incorporates a shock to capital’s share of income which replicates fluctuations

of this object in U.S. data. Models that do not allow for such shocks are likely to provide a
distorted view of the importance of other model shocks. More generally, conclusions about
the most important shock can be strongly influenced by the type of model, or the type of
data, used in the exercise. Rather than continuing to search for the elusive “most important
shock,”it is perhaps time to conclude that the object of the search does not exist.
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Appendix

A Fundamental equity value

This appendix provides details of the fundamental solution for qft shown in equation (26).
First imposing model-consistent expectations and then log-linearizing the right-side of the
fundamentals-only version of the transformed first order condition (25) yields

qft = b0

[
ηt
η

]b1 [αt
α

]b2 [δt
δ

]b3 [ϕt
ϕ

]b4
Em
t

[
qft+1
q f

]b5
, (A.1)

where bi for i = 0 to 5 are Taylor-series coeffi cients and q f ≡ exp[Em log(qft)]. The expressions
for the Taylor-series coeffi cients are

b0 = α η +
[
1− δ (1− α)− ϕ

]
β q f , (A.2)

b1 =
α η

α η +
[
1− δ (1− α)− ϕ

]
β q f

, (A.3)

b2 =
α
(
η + δβ q f

)
α η +

[
1− δ (1− α)− ϕ

]
β q f

, (A.4)

b3 =
−δ (1− α) β q f

α η +
[
1− δ (1− α)− ϕ

]
β q f

, (A.5)

b4 =
−ϕβ q f

α η +
[
1− δ (1− α)− ϕ

]
β q f

(A.6)

b5 =

[
1− δ (1− α)− ϕ

]
β q f

α η +
[
1− δ (1− α)− ϕ

]
β q f

, (A.7)

A conjecture for the fundamental solution takes the form of equation (26). The conjectured
solution is iterated ahead one period and then substituted into the right-side of equation (A.1)
together with the laws of motion for ηt+1, αt+1, δt+1 and ϕt+1 from equations (4), (8), (13)
and (14), respectively. After evaluating the model-consistent expectation and then collecting
terms, we have

qft = b0 exp
[(
γηb5

)2
σ2ε,η/2 + (γαb5)

2 σ2ε,α/2 + (γδb5)
2 σ2ε,δ/2 +

(
γϕb5

)2
σ2ε,ϕ/2

]
︸ ︷︷ ︸

= q f

×
[
ηt
η

]b1 + ρηγηb5︸ ︷︷ ︸
= γη ×

[αt
α

]b2 + ραγαb5︸ ︷︷ ︸
= γα ×

[
δt

δ

]b3 + ρδγδb5︸ ︷︷ ︸
= γδ ×

[
ϕt
ϕ

]b4 + ρϕγϕb5︸ ︷︷ ︸
= γϕ (A.8)

which yields five equations in the five solution coeffi cients q f , γη, γα, γδ, and γϕ. For the
baseline calibration, the resulting solution coeffi cients are q f = 7.342, γη = 0.339, γα = 1.413,

γδ = −0.660, and γϕ = −0.142.
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B Equilibrium bond prices

This appendix outlines the solutions for the equilibrium bond prices pb,t and pc,t using equa-
tions (22) and (23). The equilibrium stochastic discount factor can be written as follows

Mt+1 = β
ηt+1
ηt
× ct/yt
ct+1/yt+1

× yt
yt+1

= β

[
ηt+1 + δt+1xt+1

ηt + δtxt

]
yt
yt+1

, (B.1)

where I have made use of the equilibrium budget relationship ct/yt = ηt/(ηt + δtxt) from
equation (39).
Making use of equation (6), the term yt/yt+1 in equation (B.1) can be written as

yt
yt+1

=
exp(zt) k

αt
n,t h

1−αt
1,t

exp(zt+1) k
αt+1
n,t+1 h

1−αt+1
1,t+1

, (B.2)

where kn,t ≡ kt exp(−zt) is the normalized capital stock, a stationary variable. Starting from
equation (11), the law of motion for the normalized capital stock is given by

kn,t+1 = exp(zt − zt+1)B exp(vt) k
1−ϕt
n,t

[
it
yt

yt
kt

]δt
h
ϕt
2,t,

= exp(zt − zt+1)B exp(vt) k
1−ϕt−δt(1−αt)
n,t

[
δtxt

ηt + δtxt
Ah1−αt1,t

]δt
h
ϕt
2,t. (B.3)

Equations (36) and (37) can be used to substitute for h1,t, h1,t+1, and h2,t in equations (B.2)
and (B.3). Then, since xt depends on the equilibrium solution for qt, equation (34) can be used
to make the substitutions xt = x (ηt, αt, δt, ϕt, st) and xt+1 = x

(
ηt+1, αt+1, δt+1, ϕt+1, st+1

)
in equations (B.1) through (B.3). After these various substitutions, a log-linear approximation
of the stochastic discount factor takes the form

Mt+1 ' β exp(−µ)

[
ηt
η

]m1 [αt
α

]m2 [δt
δ

]m3 [ϕt
ϕ

]m4 [kn.t
kn

]m5
× exp [m6vt + m7ut + m8(st − s) + m9εη,t+1 + m10εα,t+1]

× exp [m11εδ,t+1 + m12εϕ,t+1 + m13εz,t+1 + m14εu,t+1 + m15εs,t+1] , (B.4)

where m1 through m15 are Taylor series coeffi cients and the laws of motions for the shocks
have been used to eliminate ηt+1, αt+1, δt+1, ϕt+1, zt+1, ut+1, and st+1. The steady state value
of kn is given by kt exp(−zt) in 1972.Q3, where zt is the trend value of zt constructed as
zt = zt−1 + µ such that µ is the sample mean of ∆zt and zt = zt = 0 in 1972.Q3. Given
equation (B.4), it is straightforward to compute pb,t = Em

t Mt+1 and rb,t = 1/pb,t − 1, where
Em
t is the model-consistent expectation based on orthogonal shocks.
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The long-term bond pricing equation (23) can be approximated as follows

pc,t ' Em
t Mt+1(1 + δc pc)

[
pc,t+1
pc

]bc
exp(bc ωt+1), (B.5)

where bc = δc pc/(1 + δc pc) is a Taylor series coeffi cient. A conjectured solution for equation
(B.5) takes the form

pc,t = pc

[
ηt
η

]n1 [αt
α

]n2 [δt
δ

]n3 [ϕt
ϕ

]n4 [kn.t
kn

]n5
exp [n6vt + n7ut + n8(st − s) + n9ωt] . (B.6)

The conjectured solution (B.6) is iterated ahead one period and then substituted into the
approximated long-term bond pricing equation (B.5) together with the expression for Mt+1

from equation (B.4). Collecting terms and then evaluating the model-consistent expectation
yields a set of ten equations in the ten solution coeffi cients given by pc and n1 through n9.

The value of pc depends on the coupon decay parameter δc and numerous shock variances.
Given the shock variances, I solve for the value of δc such that pc,t = pc = 20 in 1972.Q3.
The target value of pc is arbitrary and has no affect on the model-implied sequence for the
long-term bond return, as given by rc,t = [1 + δc exp(ωt) pc,t]/pc,t−1 − 1.

C Shock identification procedure

The sequence for the factor distribution shock αt is directly pinned down by U.S. data on
capital’s share of income. Data for U.S. total hours worked per person ht are plotted in
Figure 2. By equating the right-sides of the two equilibrium conditions (16) and (17), the
model-implied sequences for h1,t and h2,t are constructed using the following equations

h1,t = ht[1 + (ϕt/δt) (it/yt)/(1− αt)]−1 = ht

[
(1− αt)yt
yt − dt − it

]
, (C.1)

h2,t = ht − h1,t = ht

[
αtyt − dt − it
yt − dt − it

]
, (C.2)

where I have made use of wt = (1 − αt)yt/h1,t and dt = αtyt − (1 + ϕt/δt) it. The right-side
values of αt, ht, yt, dt, and it in equations (C.1) and (C.2) are given by the U.S. data plotted
in Figure 2.
Given the model-implied sequences for h1,t and h2,t, the sequences for the shocks zt, δt, ϕt

and vt are uniquely pinned down using the following equations:

zt =
[
log (yt)− log(Akαtt h

1−αt
1,t )

]
/(1− αt), (C.3)

δt = it/ps,t, (C.4)

ϕt = δt (αtyt − dt − it) /it (C.5)

vt = log (kt+1/kt)− log (B)− δt log (it/kt) + ϕt log [kt exp (−zt) /h2,t] , (C.6)
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where the right-side values of the macroeconomic variables are given by the U.S. data plotted
in Figure 2. If a shock appears on the right side, then it takes on the value identified in a
previous equation.41

The sequences for the shocks ut, st, and ηt are determined iteratively by solving the
following set of simultaneous equations

ut = log {ηt(1− αt)/[(ct/yt) Dh1,t htγ]} , (C.7)

st = s− (1/ρs) (s+ σ2ε,s/2) + (1/ρs) log
[
ηt (ps,t/ct)/(βE

m
t q

f
t+1)
]
, (C.8)

ηt = η
{
pb,tβ

−1 exp(µ) [αt/α]−m2 [δt/δ]
−m3 [ϕt/ϕ]−m4 [kn.t/kn]−m5

× exp
[
−m6vt −m7ut −m8(st − s)−m9σ

2
ε,η/2−m10σ

2
ε,α/2−m11σ

2
ε,δ/2

]
× exp

[
−m12σ

2
ε,ϕ/2−m13σ

2
ε,z/2−m14σ

2
ε,u/2−m15σ

2
ε,s/2

]}1/m1 , (C.9)

where equation (C.7) is the equilibrium labor supply condition (35), equation (C.8) is the
equity market first order condition (24), and equation (C.9) is the short-term bond pricing
equation (22) that determines the value of pb,t at the start of quarter t. I assume that pb,t in
the data is given by the inverse of the U.S. gross risk free rate of return computed from the
start of quarter t to the end of quarter t. The model-consistent, fundamentals-only forecast
Em
t q

f
t+1 that appears in equation (C.8) is computed using the fundamental solution (26). The

fundamentals-only forecast depends on the shocks ηt, αt, δt, and ϕt which are determined
from equations (C.3) through (C.9).
Various parameters and shock variances that appear in equations (C.8) and (C.9) are ini-

tially undetermined, but influence the computed sequences for ut, st, and ηt. These parameters
and shock variances include s, β, ρs, σε,s, σε,η, and σε,u. Starting from initial guesses for these
parameter values and shock variances, together with initial guesses for the sequences of ut, st,
and ηt, equations (C.7) through (C.9) are iterated until convergence is achieved. After each
iteration, new guesses for the sequences of ut, st and ηt are computed as an exponentially-
weighted moving average of the current and past sequences of shock realizations implied by
equations (C.7) through (C.9). In practice, convergence to 8 decimal places takes around 50
iterations.
To identify the bond coupon decay rate shock ωt, I first solve the equilibrium bond price

solution (B.6) for exp(ωt), yielding

exp (ωt) =
{

[pc,t/pc][ηt/η]−n1 [αt/α]−n2 [δt/δ]
−n3 [ϕt/ϕ]−n4 [kn.t/kn]−n5

× exp [−n6vt − n7ut − n8(st − s)]}1/n9 , (C.10)

where pc,t = pc in 1972.Q3 such that ωt = 0. Next, I substitute equation (C.10) into the
definition of the gross bond return given by 1 + rc,t = [1 + δc exp(ωt) pc,t]/pc,t−1 and then solve

41Since the computation of vt requires data at time t+1, I set the end-of-sample shock value to vT = ρvvT−1,
where T = 2022.Q4.
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for pc,t. This procedure yields

pc,t =
{
pc[ pc,t−1(1 + rc,t)/δc − 1/δc]

n9 [ηt/η]n1 [αt/α]n2 [δt/δ]
n3 [ϕt/ϕ]n4 [kn.t/kn]n5

× exp [n6vt + n7ut + n8(st − s)]}1/(1+n9) , (C.11)

where 1 + rc,t is the U.S. gross real bond return in quarter t. Given the sequences for the
previously-identified shocks, equation (C.11) is used to construct the equilibrium sequence for
pc,t for t > 1972.Q3, starting with pc,t−1 = pc. For t < 1972.Q3, equation (C.11) is inverted to
solve for pc,t−1 as a function of pc,t and the previously-identified shocks.
Given the equilibrium sequence for pc,t from 1960.Q1 to 2022.Q4, equation (C.10) is used

to recover the model-implied sequence for exp(ωt). The stochastic coupon decay rate is given
by δc,t ≡ δc exp(ωt).

After each iteration of the shock identification exercise, the parameters governing the per-
sistence and volatility of the model-implied shocks are recomputed using the shock sequences
obtained from the previous iteration. The persistence parameters are computed by running
an OLS regression on the univariate law of motion for the shock where the constant term in
the regression is constrained to coincide with the model steady state value in 1972.Q3.

D Data sources and methods

I start with data on nominal personal consumption expenditures on nondurable goods plus
services (Ct) , nominal private nonresidential fixed investment plus nominal personal consump-
tion expenditures on durable goods (It) , the corresponding chain-type price indices for each
of the various nominal expenditure categories that sum to Ct and It, and U.S. population.
All of this data are from the Federal Reserve Bank of St. Louis’FRED database. I define
the nominal ratios Ct/Yt and It/Yt, where Yt ≡ Ct + It. The nominal ratios capture shifts in
relative prices. I deflate Yt by an output price index constructed as the weighted-average of
the chain-type price indices for each of the various nominal expenditure categories that sum
to Ct and It. The weights each period are the categories’nominal expenditure ratios relative
to Yt. After dividing by U.S. population, the level of real output per person yt is normalized to
1.0 in 1972.Q3. The real per person series for ct and it are then constructed by applying the
nominal ratios Ct/Yt and It/Yt to the constructed yt series. In this way, the real per person
series for ct and it reflect the same resource allocation ratios as the nominal per person series.
Data for ht are hours worked of all persons in the nonfarm business sector from FRED,

divided by U.S. population and then normalized to equal 0.3 in 1972.Q3.42

The data for kt are constructed using the historical-cost net stock of private nonresidential
fixed assets plus the historical-cost net stock of consumer durable goods, both in billions of
dollars at year end, from the Bureau of Economic Analysis (BEA), NIPA Table 4.3, line 1

42The hours data are from https://fred.stlouisfed.org/series/HOANBS.
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and Table 8.3, line 1, respectively. The data are only available at annual frequency, so I
first create a quarterly series by log-linear interpolation. The nominal capital stock series is
deflated using the output price index described above and then divided by U.S. population. I
normalize the real per person series for kt to deliver a target value of it/kt = 0.031 in 1972.Q3.
The target value is arbitrary given that the model parameters B and δ can be adjusted to hit
any desired target value. I choose the target value of it/kt to coincide with the steady state
value implied by a model with no capital adjustment costs, such that it/kt = kt+1/kt− 1 + δ′,

where kt+1/kt = exp(0.006) is the mean quarterly growth rate of the real capital stock per
person series described above and δ′ = 0.025 is a typical quarterly depreciation rate.
I calibrate the value of A in the production function (6) to yield yt = 1 in 1972.Q3 when

kt is equal to the normalized capital stock and zt = 0 in 1972.Q3. This procedure yields
A = 0.9989 and a sample mean of kt/yt = 9.190 from 1960.Q1 to 2022.Q4.
Following Lansing (2015) and Lansing and Markiewicz (2018), capital’s share of income

is measured as one minus the ratio of employee compensation to gross value added of the
corporate business sector. Both series are from the BEA, NIPA Table 1.14, lines 1 and 4.
To construct data for ps,t, I start with the nominal market capitalization of the S&P 500

stock index from www.siblisresearch.com. The nominal market capitalization is deflated using
the output price index described above and then divided by U.S. population to create a series
for real equity value per person.
Quarterly data on the nominal end-of-quarter closing value of the S&P 500 stock index,

nominal dividends, the nominal risk free rate of return (based on a 3-month Treasury bill),
and the nominal return on a long-term Treasury bond (based on a maturity of approximately
20 years) are from Welch and Goyal (2008).43 The gross nominal return on the S&P 500
stock index in quarter t is defined as (Pt +Dt/4)/Pt−1, where Pt is the end-of-quarter closing
value of the index and Dt is cumulative nominal dividends over the past 4 quarters. Gross
nominal asset returns are converted to gross real returns by dividing by 1 + πt where πt is
the quarterly inflation rate computed using the output price index described above.44 Given
the gross real equity return 1 + rs,t and the constructed data for real equity value per person
ps,t, I compute a consistent series for real dividends per person as dt = (1 + rs,t)ps,t−1 − ps,t.
The gross nominal returns on the 3-month Treasury bill and the long-term Treasury bond are
similarly divided by 1 + πt to obtain the gross real bond returns 1 + rb,t and 1 + rc,t.

The consumer sentiment series plotted in Figure 1 is from the University of Michigan’s
Survey of Consumers.45 The survey data on investors’expected stock returns over the next
year is from Nagel and Xu (2022a).46 The series is constructed by combining information from

43Updated data through the end of 2022 are available from Amit Goyal’s website:
https://sites.google.com/view/agoyal145.
44The correlation coeffi cient between πt and the quarterly inflation rate computed using the personal con-

sumption expenditures (PCE) price index is 0.9.
45See www.sca.isr.umich.edu/tables.html.
46The data are available from https://voices.uchicago.edu/stefannagel/code-and-data/.
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the UBS/Gallup survey, the Conference Board survey, the University of Michigan’s Survey of
Consumers, plus several smaller surveys of brokerage and investment firm customers.

E Forecast accuracy comparison

The boundedly-rational agent in the model employs univariate forecast rules for each of the
nine shocks. Under full information rational expectations, the agent would employ forecast
rules that capture the complex correlation structure in Table 5. As detailed in Appendix
C, the five shocks αt, zt, vt, δt, and ϕt are identified directly from the data or from model
equilibrium conditions that do not involve the agent’s conditional forecasts. The remaining
four shocks st, ηt, ut, and ωt are identified from model equilibrium conditions that do involve
the agent’s conditional forecasts, so the assumption of bounded-rationalilty has some influence
the resulting sequences for these four shocks.
Table E.1 examines the potential improvement in forecast accuracy from taking into ac-

count the complex shock correlation structure. Specifically, I compare the accuracy of the
model’s univariate forecast rules to the accuracy of forecasts derived from a 1-lag VAR esti-
mated on the nine model-identified shock sequences for the period 1960.Q3 to 2022.Q4. Both
sets of forecast rules are obtained by running ordinary least squares (OLS) regressions in
which the constant terms are constrained to coincide with the steady state or trend values of
the shocks in 1972.Q3. For all nine shocks, use of the VAR improves forecast accuracy by less
than 9% as measured by the mean absolute forecast error (MAFE). The last column of Table
E.1 shows that the univariate shock forecasts are almost perfectly correlated with the VAR
shock forecasts. These results confirm that the univariate forecast rules are near rational.

Table E.1: 1-Quarter-Ahead Shock Forecasts
Forecast
Object

Univariate
MAFE

VAR
MAFE

VAR
Improvement

Forecast
Correlation

st+1 − s 0.0750 0.0724 −3.37% 0.987
log(ηt+1/η) 0.0933 0.0872 −6.60% 0.974

ut+1 0.0966 0.0895 −7.29% 0.973
vt+1 0.0257 0.0254 −1.45% 0.998

log(δt+1/δ) 0.0624 0.0595 −4.70% 0.999
log(ϕt+1/ϕ) 0.0991 0.0951 −4.02% 0.998
log(αt+1/α) 0.0096 0.0089 −7.41% 0.996
∆zt+1 − µ 0.0164 0.0156 −4.74% 0.999
ωt+1 0.0047 0.0043 −8.55% 0.995

Notes: MAFE = mean absolute forecast error. Univariate forecasts are computed using

the shock parameters in Tables 1 and 2. The VAR forecasts are computed from a 1-lag

VAR estimated on the model-identified shocks with constant terms in the regression

constrained to coincide with the steady state shock values in 1972.Q3.
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Table E.2 examines the potential improvement in forecast accuracy from an ex post OLS
regression that projects each model forecast object in period t + 1 onto the relevant model
state variables in period t. The three model forecast objects are qt+1, Mt+1, and qc,t+1 ≡
Mt+1[1 + δc exp(ωt+1) pc,t+1] which appear in the three equilibrium conditions (25), (22), and
(23). The mean values of these forecast objects from 1960.Q2 to 2022.Q4 are 4.943, 1.000, and
31.65, respectively. The relevant model state variables are those included in the corresponding
model forecasts which are computed as described in Appendices A and B. As in the model,
the constant terms in the ex post OLS regressions are constrained to coincide with the steady
state or trend values of the model state variables in 1972.Q3. The OLS regressions represent
the best the agent can do in exploiting any cross correlations between the relevant model state
variables when forecasting qt+1, Mt+1, or qc,t+1. In the case of all three forecast objects, use of
the ex post OLS regressions improves forecast accuracy by less than 8% as measured by the
MAFE.

Table E.2: 1-Quarter-Ahead Model Forecasts
Forecast
Object

Model
MAFE

OLS
MAFE

OLS
Improvement

qt+1 0.571 0.555 −2.78%
Mt+1 0.092 0.085 −7.44%
qc,t+1 3.64 3.37 −7.41%

Notes: MAFE = mean absolute forecast error. Model forecasts

are computed as described in Appendices A and B. The OLS

projection forecasts are computed by regressing each forecast

object on the relevant model state variables in period t with
constant terms constrained to coincide with the model steady

state values in 1972.Q3.
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Figure 1: Model-identi�ed sentiment and risk aversion

Notes: The model-identi�ed sentiment shock (left panel) is strongly correlated with the Uni-
versity of Michigan�s consumer sentiment index (which is not used in the shock identi�cation
procedure). The model-identi�ed risk aversion coe¢ cient (right panel) is strongly correlated
with a survey-based measure of investors�expected stock returns over the next year from Nagel
and Xu (2022a). Data series are described in Appendix D.
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Figure 2: U.S. macroeconomic variables and asset returns

Notes: The baseline model exactly replicates the quarterly time paths of all ten U.S. variables
plotted above plus the real return on a long-term U.S. Treasury bond from 1960 to 2022. Data
series are described in Appendix D.
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Figure 3: Model-identi�ed shocks

Notes: The equity sentiment shock is strongly correlated with the time-varying risk aversion
coe¢ cient �t and the labor disutility shock ut: The three capital law of motion shocks vt; �t;
and 't are strongly correlated with each other. Innovations to the factor distribution shock �t
are negatively correlated with innovations to the labor productivity shock zt: These patterns
motivate three categories of shocks for the counterfactual scenarios: (1) only sentiment and
preference shocks, (2) only capital law of motion shocks, and (3) only production function
shocks. The bottom middle panel plots an alternative sequence for zt that is identi�ed by an
otherwise similar model with �t = � for all t:
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Figure 4: Actual versus Perceived Law of Motion

Notes: The agent�s perceived law of motion (28) predicts values for the quantity log(qt=qft) that
are numerically very close to those generated by the actual law of motion. This is because the
slope of the equity market �rst order condition (25) is always close to 1. Consequently, the
agent�s perception that equity value is partly driven by sentiment is close to self-ful�lling.
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Figure 5: Impulse response functions

Notes: Positive innovations to each of the three main shock categories can generate all or most
of the features of a typical business cycle. Higher sentiment together with higher risk aversion
(left panels) produces a correlated increase in macroeconomic variables. Equity value increases
but bond prices decline, implying an increase in bond yields. A higher capital income share
(middle panels) delivers a similar response pattern except that hours worked now undergoes a
small decline. Higher values for the three capital law of motion shocks (right panels) also leads
to a correlated increase in macroeconomic variables but equity value now declines together
with bond prices.
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Figure 6: Importance of shock categories for detrended output and equity value

Notes: The panels compare the detrended paths of model output and model equity value (red
lines) to the corresponding U.S. data (black lines) under three di¤erent shock scenarios. A
large positive correlation coe¢ cient implies that a given category of shocks is an important
driver of business cycle movements in the U.S. variable. For detrended output, the correlation
coe¢ cients range from 0.40 to 0.69. For detrended equity value, the correlation coe¢ cients
range from 0.22 to 0.96. These results con�rm that business cycle movements in U.S. output
and equity value can be plausibly driven by multiple types of shocks.
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Figure 7: Counterfactual shock scenarios

Notes: Each counterfactual scenario adds one category of shock realizations (as indicated)
while other shocks are set equal to steady state or trend values. The scenario with only
sentiment and preference shocks (blue line) provides the best �t of �uctuations in U.S. output
(left panel). The scenario with only the capital law of motion shocks (red line) provides the
best �t of �uctuations in U.S. equity value (right panel).
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Figure 8: Great Recession versus Covid recession

Notes: According to the model, the declines in yt and ps;t during the Great Recession (2007.Q4
to 2009.Q2) are driven mainly by the capital law of motion shocks (red line) together with the
sentiment and preference shocks (blue line). The production function shocks do not contribute
much to the declines in either U.S. variable during this episode. The decline in yt during the
Covid recession (2019.Q4 to 2020.Q2) is driven mainly by the sentiment and preference shocks
(blue line) together with production function shocks (green line). The decline in ps;t during
the Covid recession is driven mainly by capital law of motion shocks (red line) together with
production function shocks (green line). Overall, the results tell us that U.S. recessions can be
driven by di¤erent types of shocks.
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