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A A theoretical framework on extreme weather uncer-

tainty

In this section, we present a simple framework illustrating how extreme weather uncertainty

affects return volatility, which is summarized in Section II.A of the paper. We then use this

framework to extend the Merton (1987) model. This allows us to show that extreme weather

uncertainty, despite being idiosyncratic, can affect expected returns if investors are not fully

diversified.

A.1 Incidence and impact uncertainty

We specify firm i’s end-of-period cash flow as

C̃F i = Ii[µi + aiỸ + siϵ̃i + η̃iθ̃i]. (A.1)

As in Merton (1987), the notation ∼ over a variable denotes it is random and realized in

t + 1. The investors make their investment decisions at time t. In this section, we drop

these time subscripts to keep the notation parsimonious. The random market factor Ỹ is

distributed with E(Ỹ ) = 0 and E(Ỹ 2) = 1, and the idiosyncratic random variable ϵ̃i is
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independent of the market factor with E(ϵ̃i) = 0 and E(ϵ̃2i ) = 1. Ii denotes the investments

in the firm. The variables µi, ai, and si are firm-specific constants. The parameters are

the same as in Merton (1987) with the exception of the term η̃iθ̃i, which represents the

impact of an extreme weather event like a hurricane on a firm’s cash flows. The random

variable η̃i ∼ N(µη,i, σ
2
η,i) captures the impact of the extreme weather event conditional on

firm i being hit. The normal distribution accounts for our empirical finding that some firms

are also positively affected by an extreme weather event (see Section IV.D). However, our

derivation below does not rely on this assumption. The random variable θ̃i indicates whether

firm i is hit by the extreme weather event. θ̃i has a Bernoulli distribution (one draw of a

binomial distribution), θ̃i ∼ B(1, ϕ), where Pr(θ̃i = 1) = 1−Pr(θ̃i = 0) = ϕ and 0 ≤ ϕ ≤ 1.

Whether a firm will be hit by an extreme event is independent of the impact conditional on

being hit, i.e., E(η̃iθ̃i) = E(η̃i)E(θ̃i).

The two random variables η̃i and θ̃i are independent of the idiosyncratic random variable

ϵ̃i and the random market factor Ỹ . This formulation is motivated by the exogenous nature

of extreme weather events and the fact that local extreme weather events generally do not

have aggregate, economy-wide impacts (e.g., Strobl (2011)).

The return on firm i is then given by

R̃i =
C̃F i

Vi
= R̄i + biỸ + σiϵ̃i + g̃iθ̃i, (A.2)

where Vi is the value of the firm at the beginning of the period and R̄i ≡ Iiµi/Vi, bi ≡ Iiai/Vi,

σi ≡ siIi/Vi, and g̃i ≡ η̃iIi/Vi.

The variance of the return in equation (A.2) is

V ar(R̃i) = b2i + σ2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ), (A.3)

where µg,i ≡ µη,iIi/Vi and σg,i ≡ ση,iIi/Vi. The term σ2
g,iϕ is the expected impact uncertainty

and µ2
g,iϕ(1−ϕ) is the incidence uncertainty generated for the firm due to the extreme weather

event.1 The impact uncertainty is the uncertainty about the ultimate impact on the firm

conditional on the firm being hit by the extreme weather event. The incidence uncertainty

1The expected impact uncertainty and incidence uncertainty are obtained by V ar(g̃iθ̃i) = (E(g̃2i )E(θ̃2i )−
E(g̃i)

2E(θ̃i)
2), where E(g̃2i )E(θ̃2i ) = (V ar(g̃i) + E(g̃i)

2)(V ar(θ̃i) + E(θ̃i)
2) = µ2

g,iϕ+ σ2
g,iϕ.
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captures the uncertainty about whether the firm will be hit.

When µg,i = 0, meaning that an extreme weather event has no mean impact on firm

returns, incidence uncertainty does not contribute to total variance. In this case, V ar(R̃i)

varies with ϕ purely through the expected impact uncertainty, ϕσ2
g,i. For a given µg,i ̸= 0, in-

cidence uncertainty is highest when the probability of incidence, ϕ, is 0.5. Therefore, ϕmono-

tonically increases impact uncertainty but not incidence uncertainty. The non-monotonicity

of incidence uncertainty can be understood intuitively from there being no uncertainty about

the occurrence of an extreme weather event if ϕ is either 0 or 1. Intermediate values of ϕ gen-

erate greater uncertainty. As ϕ increases, incidence uncertainty increases (decreases) when

ϕ < 0.5 (ϕ > 0.5).

Figure A.1 presents a graphical illustration. The variance prior to an extreme weather

event, V ar(R̃i), varies with ϕ, the probability of incidence, using example parameters, base-

line firm variance b2i +σ
2
i = 0.16, and variance of impact σ2

g,i = 0.0025. The four dashed lines

have absolute values for expected impact µg,i of 0.1, 0.07, 0.05, and 0. The horizontal solid

line shows the level of variance conditional on the firm being hit by the extreme weather

event, V ar(R̃i|θ = 1) = b2i +σ
2
i +σ

2
g,i. The x-axis intersects the y-axis at the level of variance

if the firm is not hit by the extreme weather event, V ar(R̃i|θ = 0) = b2i + σ2
i . Prior to an

event, as the probability of incidence, ϕ, varies from 0 to 1, the relative contribution to total

variance from incidence uncertainty and expected impact uncertainty will vary depending

on the parameter values of µg and σ2
g . All else equal, as µg increases, the contribution of

incidence uncertainty to total variance increases. Incidence uncertainty at a given ϕ is the

vertical distance between a curve and the red dot-dash straight line depicting V ar(R̃i) when

µg,i = 0.2 This distance is largest for ϕ = 0.5.

Our main empirical analysis focuses on the impact uncertainty, σ2
g,i. We analyze the

uncertainty reflected in option prices and show that the impact uncertainty remains elevated

for several months after a hurricane makes landfall (see Section III.A). In Section III.E, we

analyze the uncertainty prior to a potential extreme weather event at different probabilities

of incidence, ϕ. The sum of incidence and expected impact uncertainty is estimated through

option price reactions to forecasts for specific hurricanes and for the hurricane season. We

2V ar(R̃i) will be greater than V ar(R̃i|θ = 1) when |µg,i| > 1√
ϕ
σg,i and ϕ is not 0 or 1. In the figure, this

is the case where the dashed lines are above the solid black line. When ϕ > 0 and at least one of µg,i or σg,i

is non-zero, V ar(R̃i) is always greater than V ar(R̃i|θ = 0).
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find that uncertainty responds strongly to increases in landfall probabilities of individual

hurricanes.

0.2 0.4 0.6 0.8 1.0
ϕ, probability 
of incidence
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Figure A.1: Expected variance as a function of the probability of an event

This figure shows the return variance, V ar(R̃i), prior to an extreme weather event, derived in equation (A.3),
as the probability of the event occurring, ϕ, varies from 0 to 1. In this figure, b2i +σ2

i = 0.16 and σ2
g,i = 0.0025.

The four dashed lines have absolute value for µg,i of 0.1, 0.07, 0.05, and 0, respectively. The horizontal solid

line is the level of variance conditional on the firm experiencing an event, V ar(R̃i|θ = 1) = b2i + σ2
i + σ2

g,i.

The x-axis is plotted at the variance level of a firm that is unaffected by the event, V ar(R̃i|θ = 0) = b2i +σ2
i .
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A.2 Expected returns

In this section, we extend the Merton (1987) model to show how extreme weather uncertainty

can affect expected returns. As in Merton (1987), two additional securities are assumed to

be present in the economy. The first is a riskless security with return Rf . The second is a

forward contract with cash settlement on the observed market factor Y . The return on the

forward contract is

R̃K+1 = R̄K+1 + Ỹ , (A.4)

where E(R̃K+1) = R̄K+1.

There are K firms in the economy. The fraction of wealth invested in firm i by investor

j is wi,j. The fraction of investor j’s wealth invested in the forward contract is wK+1,j. The

return on investor j’s portfolio can then be written as

R̃j = R̄j + bjỸ + ϵ̃j + g̃j θ̃j, (A.5)

where the exposure to the market factor is

bj = (
K∑
i=1

wi,jbi + wK+1,j), (A.6)

and the exposure to the idiosyncratic factors unrelated and related to the extreme weather

event, respectively, are

ϵ̃j =
K∑
i=1

wi,jσiϵ̃i (A.7)

g̃j θ̃j =
K∑
i=1

wi,j g̃iθ̃i. (A.8)

R̄j is the expected return without the extreme weather component as given in Merton (1987):

R̄j = Rf + bj(R̄K+1 −Rf ) +
K∑
i=1

wi,j∆i. (A.9)

To obtain equation (A.9), we use the fact that the portfolio share of the riskless security is
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wK+2,j = 1−
∑K+1

i=1 wi,j and set ∆i ≡ R̄i −Rf − bi(R̄K+1 −Rf ).

The variance and expected return of investor j’s portfolio can then be written as

V ar(R̃j) = b2j +
K∑
i=1

w2
i,j(σ

2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ)) (A.10)

and

E(R̃j) = R̄j +
K∑
i=1

wi,jµg,iϕ. (A.11)

For an investor with mean-variance preferences, the maximization problem is

Maxbj ,wj

[
E(R̃j)−

δj
2
V ar(R̃j)−

K∑
i=1

λi,jwi,j

]
, (A.12)

where wj is a vector with elements wi,j. The key element, as in Merton (1987), is the last

term. This term captures the constraint that investors cannot invest in securities that they

do not know about. Each investor j has a set of securities that they know about, denoted Sj,

and another set they do not know about, denoted Sc
j . The Kuhn-Tucker multiplier λi,j equals

zero if i is in Sj. If the investor does not know about security i, then wi,j = 0. This constraint

is motivated by empirical evidence that points to underdiversification of investors. Possible

explanations for this underdiversification are wide ranging, including factors like home bias

(see Coval and Moskowitz (1999)).

The first-order conditions with respect to bj and wj are

0 =R̄K+1 −Rf − δjbj (A.13)

0 =∆i + µg,iϕ− δjwi,j(σ
2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))− λi,j, for i = 1, ..., K. (A.14)

The solutions for the market factor exposure and the portfolio weights for each firm are given
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by

bj =[R̄K+1 −Rf ]/δj (A.15)

wi,j =(∆i + µg,iϕ)/(δj(σ
2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ)), for i ∈ Sj (A.16)

wi,j =0, for i ∈ Sc
j (A.17)

wK+1,j =bj −
K∑
i=1

wi,jbi (A.18)

wK+2,j =1− bj +
K∑
i=1

wi,j(bi − 1). (A.19)

Based on the solutions for individual investor demand, we can aggregate across the N

investors in the economy to obtain equilibrium asset prices and expected returns. Following

Merton (1987), we assume that all the investors have the same risk aversion and initial

wealth, that is, δj = δ and Wj = W . Consequently, the exposure to the market factor given

in equation (A.15) is the same for every investor:

bj = b =
R̄K+1 −Rf

δ
. (A.20)

Using equation (A.16), we can write the aggregate demand for security i as

Di = NiW
∆i + µg,iϕ

δ(σ2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))

, (A.21)

where Ni investors know about security i. When denoting the total number of investors as

N , the equilibrium total wealth is M ≡ NW . The share of security i of the total market is

Vi
M

= xi =
qi(∆i + µg,iϕ)

δ(σ2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))

, (A.22)

where qi is the share of investors who know about the security, Ni/N , and Di = Vi in

equilibrium.

Using the definition of ∆i together with equations (A.20) and (A.22), the equilibrium
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expected return on security i is given by

E(R̃i) =R̄i + µg,iϕ = Rf + bibδ +∆i + µg,iϕ

=Rf + bibδ +
δxi(σ

2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ))

qi
. (A.23)

In the case where a firm is hit by the extreme weather event (i.e., ϕ = 1), the expected

return is

E(R̃i) = Rf + bibδ +
δxi(σ

2
i + σ2

g,i)

qi
. (A.24)

It follows from equations (A.23) and (A.24) that an increase in either the impact uncertainty

σ2
g,i or the incidence uncertainty µ

2
g,iϕ(1−ϕ) leads to a higher expected return. The derivative

of equation (A.23) with respect to the extreme weather component σ2
g,iϕ + µ2

g,iϕ(1 − ϕ) is

given by
∂E(R̃i)

∂(σ2
g,iϕ+ µ2

g,iϕ(1− ϕ))
=
δxi
qi
. (A.25)

The three parameters on the right-hand side of equation (A.25) are the share of investors

who know about a firm (qi), the risk aversion (δ), and the share of firm i of the total economy

(xi). All three parameters are non-negative.

We document in the paper that over the full sample, investors’ return volatility expec-

tations in response to hurricanes are too low compared to the subsequent realized volatility.

Table IV shows that the VRP (computed as the difference (in %) between the ex ante implied

and ex post realized volatility) is significantly lower after landfall for hit firms compared to

control firms. In our theoretical framework, this would imply that the investors’ expecta-

tions of σg,i are too low. Therefore, the expected return is smaller than it would be under

the correct expectation of σg,i and noisier to estimate empirically. This is a likely reason

for why we only find positive return effects for hurricanes post-Sandy, as shown in Table

VII. After Hurricane Sandy, the underreaction to the uncertainty from a hurricane shock

diminishes, and implied volatility is more in line with subsequent realized volatility for hit

firms, as shown in Table V.3

3There are other potential factors for more efficient pricing after Hurricane Sandy. For example, the
efficiency of investors’ expectations of the mean impact on a firm’s cash flow, µη,i, could have improved after
Hurricane Sandy. Such an efficiency improvement in cash flows expectations is more challenging to estimate
empirically due to the limited and low frequency firm-level cash flows expectations data.
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A.3 Firm value

We next investigate the impact of the extreme weather event on the value, that is, the price,

of firm i’s security. Using equation (A.23) and E(R̃i) = Iiµi/Vi + Iiµη,iϕ/Vi, we obtain

Vi =
Ii
Rf

[µi + µη,iϕ− aibδ −
δIi(s

2
i + σ2

η,iϕ+ µ2
η,iϕ(1− ϕ))

qiM
], (A.26)

where the definitions for bi, σi, σµ,i, and σg,i given in equations (A.2) and (A.3) and xi from

equation (A.22) are substituted in.

The value of the security is affected by the extreme weather event through two com-

ponents. The value covaries positively with the first component µη,iϕ, which captures the

expected impact on the cash flow of the firm. The second component, σ2
η,iIiϕ+Iiµ

2
η,iϕ(1−ϕ),

captures the impact of the extreme weather event on the cash flow variance of the firm. An

increase in this second component lowers the security’s value, because the cash flows are

discounted more heavily.
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B Data

B.1 Details on hurricane landfall region data

We use hurricane track data collated from the National Oceanographic and Atmospheric

Administration (NOAA), which can be found in the National Hurricane Center’s (NHC)

hurricane archives (see https://www.nhc.noaa.gov/archive) to determine which counties are

located in hurricane landfall regions. NOAA publishes forecast advisory text files from the

inception of a storm until the storm dissolves. Every six hours a new file is published with the

coordinates of the eye of a storm. The file also contains information on the storm category,

indicating whether the storm was, for example, a tropical depression or a hurricane. For the

landfall sample, we select all the storms for which the eye gets within 50 miles of at least one

county while being of hurricane level strength. Many storms in NOAA’s hurricane archive

never get close to landfall.

To determine the landfall region of each hurricane, we first hand-collect the landfall times

of the hurricanes from NOAA’s Tropical Cyclone Reports, which can also be found in the

hurricane archives. Then we include all counties in the landfall region that were at one

point within a radius of the storm’s eye as the hurricane moves within a time window of

24 hours before and after the landfall time. Having this time window around the landfall

time ensures that we capture counties that lie more inland and counties that are close to the

eye before the actual landfall for hurricanes that move along the coast. Also, because we

only require the storm to be hurricane-level strength at landfall, as described previously, this

methodology captures counties that are affected by strong rainfall even when the storm’s

wind speeds fall below hurricane level after landfall. While 24 hours is our baseline time

window, we also analyze additional time windows, namely 12, 36, and 48 hours, and the

results are qualitatively similar.

The radius R that we use most for our main analyses is 200 miles. Based on reanalysis

data for hurricanes, which are released by NOAA anywhere from weeks to months after

hurricanes have occurred, we find that the average outer border of a hurricane storm system—

the area where wind speeds are at least 34 knots (KT)—is 219 miles from the eye of the

storm. Although the 200-mile radius is a bit lower than this empirical measure, in practice

the two measures align well because we include a county in the landfall region if the landfall

region includes the county centroid but not necessarily the whole county. We also perform
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analyses where landfall exposure is based on a radius of 50 miles. This reflects a more intense

treatment level and aligns fairly well with the average observed 64 KT wind speed radius of

73 miles. Table B.1 shows that the average hurricane has 212 counties within the 200-mile

radius landfall region, but only 27 counties for the 50-mile radius landfall region.

B.2 Details on hurricane forecast data

We use wind speed forecast advisories from NOAA, which can also be found in the NHC’s

hurricane archives. For each tropical storm, NOAA issues text files in real time that contain

wind speed forecasts for up to five days out for selected locations largely along the coast.

These forecasts are an output of the same models that NOAA uses to create graphical

forecasts like that in Figure B.1. NOAA updates these forecasts every six hours and archives

are available for storms starting in 2007. We obtain the forecasts just before market close

for each trading day in our analysis and exclude forecasts made on the day of landfall to

distinguish between price reactions to forecasts and landfall. Figure B.2 provides an example

of a wind speed forecast advisory text file. The file lists the locations in the first column, and

then provides for each location and up to three different wind speeds (34 KT, 50 KT, and

64 KT) the daily and cumulative probabilities (the latter in parentheses) of that location

experiencing wind above the respective thresholds between 12 and 120 hours out.

We implement a two-stage process to translate these wind speed forecasts into a list

of counties in the forecast path of a hurricane. First, we apply a series of probability

thresholds—a minimum reported cumulative probability 5 days (120 hours) out for a 64

KT wind speed—ranging from 1% to 50% to determine which locations in the text files

are in the forecast path. For example, when we apply a probability threshold of 1% for 64

KT wind, Surf City, North Carolina, is the only location on the list in Figure B.2 that is

considered exposed on that day. (Note that although we focus on the 64 KT wind speed,

our results are qualitatively similar when we use the 34 KT wind speed.) We then identify

the counties for these exposed locations. Because the locations in the NOAA advisories are

not exhaustive, leaving gaps between listed locations, in a second step, we add to our list

of exposed counties the counties that are within a 75-mile radius of the counties from the

counties identified in the first step.4 The 75-mile radius balances Type I errors (which we

4We use Census county centroids for this purpose, which can be found at: https://www2.census.gov/geo/
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can see when larger radii include locations typically included in the advisory files but not

for the given forecast) and Type II errors (which we can see when smaller radii leave gaps

in between reported locations.) However, our results are robust to using other reasonable

radii.

Table B.2 reports summary statistics on the hurricane forecast data. Panel A shows that

the number of storms for which we observe forecasts decreases as the probability threshold

increases. Panel A also reports the mean, median, and standard deviation of the number

of county-day observations for which we have hurricane forecasts for each storm at a given

probability threshold. There are 52 storms with forecasts at or above a minimum probability

threshold of 1%, with the average storm having 360 county-day observations at or above

that threshold. There are only 12 storms with forecasts at or above a minimum probability

threshold of 50%. Panel B presents the observation count by days to resolution at a given

probability threshold.

In Figure B.3, we plot the counties used for the seasonal outlook analysis in Section

III.E.2. NOAA releases seasonal outlooks every May for the hurricane season from June

to November. Panel A of Figure B.4 shows there is significant variation in these outlooks.

Dating back to 2001, each seasonal outlook reports the probability that the season will

be above-normal, near-normal, or below-normal.5 The scatter plot in Figure B.4 Panel B

shows only a weakly positive relationship between the seasonal outlooks and the number of

hurricanes making landfall in a given year.

tiger/TIGER2017/COUNTY/.
5See, for example, National Weather Service “NOAA 2012 Atlantic Hurricane Season Outlook” at https:

//www.cpc.ncep.noaa.gov/products/outlooks/hurricane2012/May/hurricane.shtml.
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Table B.1: Summary statistics of counties in hurricane landfall regions

This table reports summary statistics on the number of counties in the hurricane landfall regions derived
from NOAA data as described in Section B.1 of this Internet Appendix. The data span from 1996 to 2019.
Column 1 specifies the radius around the eye of the hurricane used to calculate the landfall region.

Across all hurricanes By hurricane

Radius Hurricanes Total counties Unique counties Average Std. dev. Median

200 miles 37 7,856 1,482 212.324 110.767 194
100 miles 37 2,920 1,047 78.919 49.252 69
50 miles 37 1,010 621 27.297 18.080 25
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Figure B.1: Example of a hurricane forecast

This figure from NOAA illustrates the five-day forecast for Hurricane Sandy on October 27, 2012. We obtain
and process text data derived from the same raw data underpinning such hurricane forecast visualizations.
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Figure B.2: Partial sample raw text file for wind speed forecast data
This figure shows a portion of a NOAA wind speed forecast text file for Hurricane Matthew on October 6,
2016. The left column shows selected locations with wind speed probabilities of at least 1% at the speed
of at least 34 knots (KT) within the 120 hours following the time of the forecast. The next column shows
which wind speed the probabilities for a given row pertain to. When a location has a probability of at least
1% of achieving 64 KT wind, then it will also show rows for 34 and 50 KT winds. In each of the following
columns, the first number is the probability of the wind speed within that time frame while the number in
parentheses reflects the cumulative probability of experiencing that wind speed at some point by the end of
that period. For example, Surf City, NC, has an 11% probability of experiencing 34 KT winds during the
12-hour window occurring 36-48 hours from the time of the forecast. The cumulative probability that Surf
City, NC will have experienced 34 KT winds within the next 48 hours is 17%.
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Table B.2: Summary statistics of hurricane forecast data

This table reports summary statistics of NOAA wind speed forecasts from 2007 to 2019 for storms forecast
to make landfall within five days with wind speeds of at least 64KT with a given minimum probability. Panel
A reports the mean, median, and standard deviation of the number of county-day observations for which we
have hurricane forecasts for each storm at a given probability threshold. Panel B presents the observation
count by days to resolution (hurricane landfall or, in the case of “misses,” dissipation at sea) at a given
probability threshold.

Panel A: Summary statistics of county-day forecast observations per storm

Probability ≥

1 10 20 40 50

Storms 52 22 16 13 12

County-day observations 18,700 3,278 1,745 801 565

Mean 359.615 149.000 109.063 61.615 47.083

Median 147.500 101.000 72.000 50.000 37.500

Std. dev. 451.903 160.261 109.833 57.412 36.167

Panel B: Number of county-day forecast observations

Days to dissipation or
landfall

Probability ≥

1 10 20 40 50

1 2661 774 601 392 318

2 4254 919 444 177 144

3 3736 604 228 85 28

4 3066 505 204 57 39

5 2246 221 143 45 15
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(a) Atlantic and Gulf counties
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(b) Historical probability of hurricane landfall

Figure B.3: Coastal counties and hurricanes

This figure shows the coastal counties used for the analysis in Section III.E.2 of the paper. Panel A shows
all the counties that are either directly bordering the Atlantic/Gulf coast or are within 50 miles of a county
that does. Panel B depicts the historical probability of a county being in a hurricane landfall region at least
once in a year. The plotted probabilities are as of 2019 and computed based on a historical window of 30
years. The landfall regions are based on a 50-mile radius around the eye of the hurricane.
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Figure B.4: NOAA’s Atlantic and Gulf Hurricane Season Outlook

Panel A shows the probability of an “above average” hurricane season announced in the May Outlook that
NOAA issues each year in advance of the Atlantic and Gulf hurricane season. An above average designation
is based on the number of hurricanes predicted to form in the Atlantic Ocean and the Gulf. Panel B depicts
the relationship between NOAA’s season outlook and the number of hurricanes that ultimately make landfall
in a season.
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B.3 Mapping NETS to financial data

We map firm-level establishment data from NETS to firm level options and stock data by

matching on firm name and headquarter address in two steps.6

In the first step, we map NETS data to the CRSP/Compustat Merged data. We require

that the firms have a name, ZIP Code, city, and street address. After cleaning the firm

names by deleting words like INC and CORP, we require that a successful mapping between

NETS and CRSP/Compustat data satisfies two conditions. The first condition is that there

is match in the first two words of the company name (or first word for a one-word name like

“Starbucks”) and headquarter ZIP Code and city. However, this first condition will lead to

some false matches because the first two words in some firm names are generic and based

on their location (e.g., Santa Barbara Restaurant Group). In these cases, the ZIP Code and

city do not necessarily result in a quality match. Therefore, we impose a second condition,

which requires that for a given match at least N − 1 words of the name are the same, where

N is the maximum number of words in the firm’s NETS and CRSP/Compustat names. In

addition, the street number or at least two words of the address have to be the same. Then,

we manually confirm that the mapping is correct.

In a second step, we extend the mapping from CRSP/Compustat to OptionMetrics and

Refinitiv based on the CUSIPs for the firms’ stocks.

6We note that NETS, which has data on both public and private firms, includes over 50 million firms.
Simply conducting a fuzzy string match and checking the matches manually is therefore not feasible.
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C Additional methodology description and analysis

C.1 Textual analysis of calls between analysts, investors, and firm

management

Table C.1 shows the dictionary of terms we use to identify the five channels discussed in

calls between analysts, investors, and firm management, in the aftermath of a hurricane

hit: business interruption, physical damages, insurance, supply, and demand. Paragraphs

in the call transcripts can be lengthy and discuss a variety topics unrelated to hurricanes.

Such paragraphs could lead to false positives in terms of identifying discussions of economic

channels in relation to hurricanes. Therefore, our analysis focuses on paragraphs that are

either 100 words or less or that are no longer than 300 words and mention hurricanes within

the first 50 words or first fifth of the paragraph.

Tables C.2 and C.3 show results of an analysis in which we estimate how the VRP (i.e.,

the spread between the ex ante market expectations of future volatility and ex post realized

volatility) responds to hurricane landfall exposure under different economic channels of im-

pact. The dependent variable in each case is the VRP averaged over a month after landfall.

The independent variable of interest is the frequency of discussions of a particular channel

over the six months post landfall interacted with LandfallRegionExposure. This interac-

tion variable measures the relevance of a particular economic channel for the uncertainty

generated by a hurricane. These regressions estimate the relationship between VRP and dis-

cussions between analysts, investors, and firm management. The interpretation is not causal.

Ideally, we would observe which channels generate uncertainty at the same frequency as the

VRP, but analyst calls are generally pre-scheduled and occur mostly at quarterly or lower

frequencies. If, when a firm is hit, investors underestimate the uncertainty generated for the

firm through a particular channel, VRP will be negatively related to subsequent discussions

of that channel in relation to the hurricane. In other words, the implied volatility reflected

in option markets is particularly low compared to the subsequent realized volatility when

that channel is generating uncertainty. If investors do not underestimate the uncertainty

generated through a particular channel, VRP will be unrelated to subsequent discussions of

that channel when discussing hurricane impacts.

The results in Table C.2 indicate that market underreactions increase with discussions of
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business interruption, physical damages, demand, and supply. The supply channel generates

the strongest investor underreaction, which is in line with investors not accurately anticipat-

ing supply issues that are material to firm performance. This result is consistent with the

prior literature showing investors are inattentive to shocks to suppliers (see, for example,

Menzly and Ozbas (2010)). Another potential explanation is that investors do not have a

good understanding of where firm suppliers are located and therefore fail to account for the

exposure of suppliers to extreme weather events.

Interestingly, investors do not underreact to the uncertainty generated through the insur-

ance channel, suggesting that they pay more attention and/or have a better understanding

of the uncertainty that can be generated due to the lack of insurance coverage or the extent

of possible delays and disputes before insurance claims are paid. Consistent with our find-

ings in Section III.B, the analysis of VRP after Hurricane Sandy in Table C.3 shows that

the underreactions in response to the channels shown in Table C.2 reversed after Hurricane

Sandy.
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Table C.1: Dictionary for economic channels related to hurricane impacts

This table shows the terms used to identify the discussion of an economic channel in relation to hurricanes in
transcript data of calls between analysts, investors, and firm management. A particular channel is identified
if one of the terms below occurs in a paragraph that also discusses some form of the terms “hurricane” or
“tropical storm.” An asterisk (∗) indicates a wildcard, meaning that the word can end with any combination
of letters following the root shown. The channels and associated terms in this dictionary are based on careful
examination of a random sample constituting 5% of all hurricane paragraphs in the transcript data.

Business Interruption Physical Damages Insurance Supply Demand

cancel* AND flight* cleanup claim* AND settle* availability admission*
curtail* AND production clean* up insur* shortage* buyer*
disrupt* damage* uninsur* AND suppli* cancel* AND
downtime OR down time destr* AND NOT(health* supply NOT flight*
evacuat* NOT(demand destr*) OR admission* third party demand
interrupt* rebuil* OR patient* upstream downstream
knock* out remediat* OR physician*) order* AND
offline repair* NOT(in order to)
outage* replac* subscrib*
reopen* wipe* AND out [in
restart* same sentence]
restor* AND
(service OR power)

resume*
schedul*
shut in
shutdown* OR shut down*
suspend*
without power
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Table C.2: Economic channels and investor underreaction

This table reports the coefficients and test statistics of panel regressions estimating how VRP respond to
hurricane landfall exposure under different economic channels of impact. The dependent variable is the
VRP (in %) averaged over the first month (20 trading days) after landfall. The VRP is computed as the
difference between the ex ante implied and ex post realized volatility, as specified in equation (2) in the
paper. The independent variable is the share (from 0 to 1) of a firm’s establishments that are in a 200-mile
radius of the hurricane eye at landfall interacted with the number of paragraphs discussing both the specified
channel and hurricanes in post-landfall calls between analysts, investors, and firm management. The columns
show results, respectively, for the business interruption, physical damages, insurance, supply, and demand
channels. The data span from 2002 to 2019. T-statistics are shown in parentheses. The standard errors
are clustered by county based on a firm’s largest exposure. Controls include landfall exposure on its own
and landfall exposure interacted with an indicator for hurricane discussion. Firm and time fixed effects are
included. The time fixed effect can be interpreted as a hurricane fixed effect because each hurricane enters
the regression as one separate time period. The significance of each coefficient estimate is indicated by * for
p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: VRP (in %) avg. over 1 month post landfall, V RP i,Th
L+20

LandfallRegionExposurei,R,h ×
Business interruption -2.151

(-1.633)
Physical damages -1.790∗∗

(-2.491)
Insurance -3.049

(-0.895)
Supply -5.955∗∗

(-2.459)
Demand -1.931∗

(-1.791)

Firm FE Yes Yes Yes Yes Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes

Adjusted R2 (%) 39.051 39.053 39.042 39.083 39.037
Observations 17,824 17,824 17,824 17,824 17,824
Obs. Landfall Exposure > 0 11,235 11,235 11,235 11,235 11,235
Obs. Landfall Exposure ≥ 0.25 1,108 1,108 1,108 1,108 1,108
Hurricanes 28 28 28 28 28
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Table C.3: Economic channels, investor underreaction, and Hurricane Sandy

This table reports the coefficients and test statistics of panel regressions estimating how VRP respond to
hurricane landfall exposure under different economic channels of impact and allows for differential effects
after Hurricane Sandy. The dependent variable is the VRP (in %) averaged over the first month after
landfall. The VRP is computed as the difference between the ex ante implied and ex post realized volatility,
as specified in equation (2) in the paper. The independent variable is the share (from 0 to 1) of a firm’s
establishments that are in a 200-mile radius of the hurricane eye at landfall interacted with the number
of paragraphs discussing both the specified channel and hurricanes in post-landfall calls between analysts,
investors, and firm management. This variable is then also interacted with with an indicator variable that
takes a value of one when the hurricane occurred after Hurricane Sandy (post-Sandy). The columns show
results, respectively, for the business interruption, physical damages, insurance, supply, and demand channels.
The data span from 2002 to 2019. T-statistics are shown in parentheses. The standard errors are clustered
by county based on a firm’s largest establishment share. Controls include pre- and post-Sandy landfall
exposure on its own and interacted with an indicator for hurricane discussion. Firm and time fixed effects
are included. The time fixed effect can be interpreted as a hurricane fixed effect because each hurricane
enters the regression as one separate time period. The significance of each coefficient estimate is indicated
by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: VRP (in %) avg. over 1 month post landfall, V RP i,Th
L+20

LandfallRegionExposurei,R,h ×
Business interruption -3.873∗∗∗

(-3.895)
Business interruption × post-Sandy 5.781∗∗∗

(4.227)
Physical damages -2.039∗∗∗

(-2.723)
Physical damages × post-Sandy 3.563∗∗∗

(2.806)
Insurance -2.465

(-0.648)
Insurance × post-Sandy 3.379

(0.566)
Supply -6.892∗∗

(-2.352)
Supply × post-Sandy 5.067

(0.959)
Demand -2.820∗∗

(-2.089)
Demand × post-Sandy 3.112

(1.530)

Firm FE Yes Yes Yes Yes Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes

Adjusted R2 (%) 39.162 39.128 39.105 39.152 39.113
Observations 17,824 17,824 17,824 17,824 17,824
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C.2 Cash flow and discount rate decomposition

In this section, we test whether price changes of stocks of firms hit by hurricanes are driven

by discount rate or cash flow news. For this purpose, we adapt the framework of Chen, Da,

and Zhao (2013), who use earnings forecasts and the corresponding implied cost of capital

(ICC) to decompose price changes into discount rate and cash flow news. This methodology

does not resort to stock return predictability as in, for example, Campbell and Shiller (1988)

and Vuolteenaho (2002). Stock return predictability is generally found at longer horizons,

but the methodology of Chen, Da, and Zhao (2013) can be used at horizons as short as a

month. This allows us to better isolate in time the impact of a hurricane. However, while the

main focus in our paper is on implied and realized daily return volatility, the methodology

used in this section decomposes the variance of monthly capital gain returns.

The ICC is the value of q that solves the standard present value of future dividends

formula:

Pi,t =
15∑
k=1

FEi,t+k(1− bi,t+k)

(1 + qi,t)k
+

FEi,t+16

qi,t(1 + qi,t)15
= f(ci,t, qi,t), (C.1)

where Pi,t is the stock price of firm i on day t, FEi,t+k is the k years ahead consensus earnings

per share (EPS) forecast from the Institutional Brokers Estimate System, and bi,t+k is the

plow back rate. We follow Pástor, Sinha, and Swaminathan (2008) and Chen, Da, and Zhao

(2013) and consider forecasts up to a 16-year horizon and denote this series of earnings

forecast as ci,t.

As shown by Chen, Da, and Zhao (2013), the cash flow and discount rate components of

the capital gain return, Retxi,t+m = (Pi,t+m − Pi,t)/Pi,t, are given by

CFi,t:t+m =

(
f(ci,t+m, qi,t+m)− f(ci,t, qi,t+m)

Pi,t

+
f(ci,t+m, qi,t)− f(ci,t, qi,t)

Pi,t

)
/2 (C.2)

DRi,t:t+m =

(
f(ci,t, qi,t+m)− f(ci,t, qi,t)

Pi,t

+
f(ci,t+m, qi,t+m)− f(ci,t+m, qi,t)

Pi,t

)
/2, (C.3)

where we set m to be one month. The discount rate and cash flow shares of the capital gain

return variance are then obtained as

V ar(Retxi,t:t+m) = Cov(CFi,t:t+m, Retxi,t:t+m) + Cov(DRi,t:t+m, Retxi,t:t+m) (C.4)

1 =
Cov(CFi,t:t+m, Retxi,t:t+m)

V ar(Retxi,t:t+m)
+
Cov(DRi,t:t+m, Retxi,t:t+m)

V ar(Retxi,t:t+m)
, (C.5)
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where the two terms in equation (C.5) are the slope coefficients of regressing the cash flow

and discount rate components on the capital gain return. Importantly, the variance of the

capital gain return differs from the implied volatility used in the analyses in the paper. While

the implied volatility provides an expectation of daily return variation, the variance of the

capital gain return is realized and monthly. The EPS forecasts used here are not updated

daily, and this makes it impossible to decompose the returns at a daily frequency.

To estimate whether the share of variance driven by cash flow news (as opposed to dis-

count rate news) differs significantly between firms that are hit by a hurricane and firms

that are not, we split firm-month observations into two samples. The first sample (“hit”)

contains all firm-month observations in which firms have at least 10% (25%) of their estab-

lishments in the landfall region in a given month. The second sample (“control”) contains

the remaining control firm-month observations. We estimate a pooled regression for each of

the two samples with CFi,t:t+m and DRi,t:t+m being the dependent variables, respectively,

and Retxi,t:t+m being the independent variable.7 By construction, the cash flow and discount

rate news shares add up to one in this variance decomposition.

Table C.4 presents the results for the hit and control samples. The results confirm that

the return variance and the variances of the cash flow and discount rate return components

are higher for hit observations than for control observations. We also show the difference

between hit and control return observations in cash flow news shares and discount rate news

shares, respectively, as well as the lower and upper 95% confidence bands of these differences.

Our estimates of the discount rate and cash flow shares for the control observations are

generally comparable to the estimates in Chen, Da, and Zhao (2013), whose sample ends in

2010. Further, the Hit-Control columns reveal that the shares of discount rate and cash flow

news in the variance decomposition for the hit firms are not significantly different from the

control firms. Overall, these results suggest that the increase in variance after a firm is hit

by a hurricane is driven not only by impacts on expected firm cash flows. The rate at which

the expected cash flows are discounted also changes.

7Chen, Da, and Zhao (2013) estimate the regression for each individual firm and then average across
firms. This approach does not work in our setting because the same firm is generally not hit in a sufficient
number of time periods to allow for a time series regression on an individual firm.
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Table C.4: Cash flow and discount rate decomposition

This table reports the decomposition of monthly capital gain return variation, V ar(Retx), into shares at-
tributable to discount rate and cash flows news for firm-month observations of hit and control samples. A
firm-month observation is assigned to the hit sample if the firm has at least 10% (25%) of its establishments
in the hurricane landfall region in that month. The differences in variance shares attributable to discount
rate and cash flow news between the hit and control samples are also shown. The discount rate and cash
flow news shares are estimated with a pooled panel regression that regresses discount rate and cash flow
return components given in equations (C.3) and (C.2), respectively, on capital gain returns. The variances
of the capital gain return and these two components are reported in the last three rows. The landfall region
is defined based on a 200-mile radius around the hurricane eye at landfall. The data span from 1996 to 2019.
For each estimate, lower and upper bounds of 95% confidence bands are shown. The standard errors are
clustered by firm and time.

Hit firms have landfall region estab. share of

≥ 0.1 ≥ 0.25

Hit Control Hit-Control Hit Control Hit-Control

Cash Flow 0.268 0.193 0.075 0.379 0.193 0.186
2.5% 0.113 0.131 -0.092 0.038 0.136 -0.160
97.5% 0.423 0.256 0.242 0.720 0.250 0.531

Discount Rate 0.732 0.807 -0.075 0.621 0.807 -0.186
2.5% 0.577 0.744 -0.242 0.280 0.750 -0.531
97.5% 0.887 0.869 0.092 0.962 0.864 0.160

Observations 5,894 13,245 1,886 17,265

V ar(Retx) (in %) 1.220 1.151 1.562 1.130
V ar(CF ) (in %) 6.351 4.744 8.272 4.908
V ar(DR) (in %) 6.916 5.450 8.651 5.603
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C.3 The returns to trading options at landfall

Our results in Section III.B of the paper show that investors underreact to a hurricane making

landfall, because the VRP—calculated as the difference between ex ante implied volatility

and ex post realized volatility—is significantly lower for hit firms than for control firms. This

result raises the question of whether this market inefficiency could be profitably exploited.

In other words, if an investor trades a portfolio of options on hurricane-hit firms at landfall,

would such a portfolio generate significant returns compared to a contemporaneous portfolio

of options on a set of control firms with no exposure to the hurricane event?

In principle, this is an event study with multiple observations (multiple hurricane land-

falls) similar in spirit to studies that examine post-earnings announcement stock returns.

However, our setting has several distinctive features and challenges we address through our

empirical design. Unlike stocks or even index options, most single-stock options do not

necessarily have daily quoted prices. Options that are closer to at-the-money and nearer

to maturity have greater open interest, are relatively more liquid, and therefore have more

reliable prices. We take this into account by trading the available options that are closest to

at-the-money and maturity and holding them until expiration (similar to Goyal and Saretto

(2009); Hu and Jacobs (2020)). This buy-and-hold strategy ensures that if, after trading,

an option becomes deeper in-the-money or out-of-the-money due to price changes in the

underlying stock, we are still able to measure the returns to such options in our portfo-

lios without having to drop such observations due to a lack of quoted prices. We address

the concern that option moneyness and time-to-maturity affect options returns (e.g., Coval

and Shumway (2001)) by comparing option returns within the same moneyness and time-

to-maturity ranges in our difference-in-differences analysis. We address concerns regarding

similar sources of potential noise or bias in option price and return data by estimating the

difference between the returns of a treated and a control set of options. As long as a particu-

lar feature of option returns does not differentially affect options in the treatment set versus

those that are in the control set, that is, as long as that data feature is not correlated with

treatment selection, that data feature should not drive our results. Finally, we minimize the

impact of noise by filtering the option data in line with the existing literature as described

in Section I.B of the paper.

We calculate the returns to trading portfolios of delta-neutral straddles in the nearest-

to-maturity expiry for each firm. The calendar days to expiry when an option is traded
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is greater than 7 and at most 45.8 A delta-neutral straddle is commonly used to obtain a

long position on the implied volatility of the underlying stock, while minimizing directional

exposure to underlying price movements.9 The straddles are formed by trading the call that

is nearest to at-the-money and the number of puts with the same maturity that make the

portfolio delta-neutral. As in Muravyev (2016), the number of puts in a straddle portfolio is

δcall/abs(δput). Trades are made at the prices available from OptionMetrics at the first market

close after hurricane landfall. Because the bid-ask spread can be significant for options, we

analyze the returns to a long straddle position if one were to trade at the best ask (best

offer). The straddle payoff at expiration (Payoff) is calculated using the closing price of the

underlying stock obtained from OptionMetrics. Options that expire out-of-the money have

a payoff of 0.10

We compute the returns to each straddle position as

StraddleReturn = (Payoff− BestOffer)/BestOffer. (C.6)

We estimate the difference between hit and control portfolio returns by estimating the re-

gression jointly over all hurricanes in the sample,

StraddleReturni,h = κIsHiti,h + πh + ψInd + ϵi,h, (C.7)

where IsHiti,h equals 1 if a firm has at least 10% or 25% of its establishments in the

hurricane landfall region, and 0 otherwise. IsHiti,h is specified as an indicator variable in

this regression rather than a continuous variable to simulate an investor deciding to buy the

option straddle on a firm based on an exposure threshold.11 A positive and significant κ

would indicate that investors could profitably exploit the underreaction of option prices to

a hurricane landfall that we document in Section III.B of the paper. As in the paper, πh

is a hurricane fixed effect that is equivalent to a time fixed effect as there is at most one

buy-and-hold return observation per firm per hurricane, and ψInd is an industry fixed effect.

8Alternative days-to-expiry limits lead to qualitatively similar results.
9See, for example, Coval and Shumway (2001); Goyal and Saretto (2009); Muravyev (2016); Hu and

Jacobs (2020); Muravyev and Pearson (2020).
10As in Hu and Jacobs (2020), if the market is closed on the Friday of the expiration date, we use the

closing price of the most recent prior trading date.
11In this analysis, we only include hurricanes for which there are at least three hit firms.
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Table C.5 shows the κ estimate for regressions with different thresholds at which a firm

is considered “hit” and different radii around the eye of the hurricane on which the landfall

region is based. We find evidence that the trading strategy can profitably exploit the under-

reaction of option prices to hurricanes. The coefficient estimates are positive and significant

in the majority of the cases.

The economic magnitude of the coefficient estimates is substantial. The returns generated

with the option straddle are up to 31%. The statistical significance is weaker than when

analyzing the underreaction through the forward VRP in Section III.B of the paper, because

the number of observations drops due to firms not having a sufficient number of liquid options

to trade the straddle.
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Table C.5: Difference in option (straddle) returns between hit and control firms

This table reports the coefficients and test statistics when estimating the panel model in equation (C.7).
The dependent variable is the return (in %) on a long delta-neutral straddle traded at the best ask price,
formed the day of the landfall and computed for each firm in the sample as given in equation (C.6). The
independent variable is an indicator variable that equals 1 for hit firms and 0 for control firms. This variable
is used to estimate the difference between holding a straddle on a hit firm versus a control firm. In the results
shown, a firm is considered hit if it has at least 10% or 25% of its establishments in the landfall region of a
hurricane. Control firms have no establishments in the counties in the landfall region. To identify counties
in the landfall region, we apply a radius of 50 or 200 miles around the hurricane eye. The data span from
1996 to 2019. T-statistics are shown in parentheses. The standard errors are clustered by county based
on a firm’s largest establishment share. Industry and time fixed effects are included. The time fixed effect
can be interpreted as a hurricane fixed effect because each hurricane enters the regression as one separate
time period and there is at most one buy-and-hold return observation per firm per hurricane in a particular
regression. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and
*** for p < 0.01.

Dependent variable: Option return (in %), StraddleReturni,h

Hit firms have landfall region estab. share of

≥ 0.1 ≥ 0.25

Radius of landfall region 50 miles 200 miles 50 miles 200 miles

IsHiti,h 31.153** 28.469** 9.946*** 10.147*** 26.014 21.307 15.041*** 14.890**
(2.181) (2.012) (3.046) (2.895) (1.213) (0.989) (2.649) (2.499)

Adjusted R2 (%) 12.975 13.011 9.717 9.730 16.870 17.325 8.110 8.058
Observations 2,929 2,929 9,383 9,383 1,340 1,340 6,335 6,335
Obs. hit 209 209 3,283 3,283 61 61 1,007 1,007
Obs. control 2,720 2,720 6,100 6,100 1,279 1,279 5,328 5,328
Hurricanes 17 17 37 37 9 9 32 32

Industry FE No Yes No Yes No Yes No Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes Yes
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C.4 Tail effects

The higher volatility following hurricane landfall is likely to lead to a large cross-sectional

dispersion in cumulative abnormal stock returns of hit firms. However, it is unclear if hit

firms will only be negatively affected by the hurricane, or if some firms can profit from the

opportunity that a hurricane presents. Firms could, for example, benefit from rebuilding

activity and an increase in demand for their products. As discussed in Section III.C of the

paper, Refinitiv analyst call transcript data reveal multiple examples of discussions describing

how hurricanes drive up demand.

In this section, we analyze the cross-sectional dispersion of the cumulative abnormal

stock returns of hit firms compared to control firms. We estimate the Fama-French five-

factor model (Fama and French, 2015) for each stock with 120 trading days (roughly half a

calendar year) before the inception day of the hurricane. The hurricane season lasts half a

calendar year (from June to November), and thus, we avoid overlaps with the previous year’s

hurricane season. The coefficient estimates from this first-stage regression are then used to

compute abnormal returns for each firm and hurricane. We next aggregate the abnormal

returns to a cumulative abnormal return (CAR) from inception to 120 trading days after

landfall, CARi,Th
0 :Th

L+τ .

To account for cross-sectional shocks that coincide with but are independent of a given

hurricane, we take the CAR for a given firm i and hurricane h and subtract the mean CAR

across all stocks for the concurrent period of the hurricane. We split the firm-hurricane

observations into two groups. One group contains the CARs of the hit firms, that is, the

firms with at least 25% of their establishments in the hurricane landfall region. The other

group contains the CARs of the control firms, that is, firms with less than 25% establishment

exposure. Then, we compute the differences in percentiles between the CAR distributions

of the hit and control firms across all the hurricanes.

In Table C.6, we show the results. There are significant return differences between hit

and control firms. Hit firms have a substantially larger dispersion of abnormal returns.

The second set of columns shows that results are even stronger when using excess returns

instead of abnormal returns. This increased dispersion is driven by both the left tail and the

right tail of the distribution. High performing hit firms have higher abnormal returns than

high performing control firms. The differences between the hit and control firms’ return

distributions are -6.4 and -5.9 percentage points and strongly significant for the 5th and
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10th percentile, respectively. However, the 90th and 95th percentiles also exhibit statistically

significant differences of 4.4 and 8.1 percentage points, respectively.
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Table C.6: Tail effects of cumulative abnormal and excess stock returns

This table reports differences in percentage points between percentiles of the hit and control firms’ return
distributions, as described in Section C.4. Cumulative abnormal stock returns (columns 2 and 3) and excess
return (columns 4 and 5) are used. For a firm to be characterized as hit for a specific hurricane, at least 25%
of its establishments have to be in the 200-mile radius hurricane landfall region. The cumulative returns
cover the period from hurricane inception to 120 trading days (6 months) after hurricane landfall. The
abnormal returns are estimated based on the Fama-French five-factor model. The data span from 1996 to
2019. T-statistics are shown in parentheses. The standard errors are bootstrapped and clustered by county
based on a firm’s largest establishment share. The significance of the difference in returns is indicated by *
for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Abnormal returns Excess returns

Percentiles Cumulative r diff. T-stat Cumulative r diff. T-stat

5% -6.443∗∗∗ (-6.361) -9.306∗∗∗ (-6.658)
10% -5.887∗∗∗ (-5.915) -6.832∗∗∗ (-7.242)
20% -4.866∗∗∗ (-6.578) -4.718∗∗∗ (-7.076)
30% -2.041∗∗∗ (-3.083) -2.403∗∗∗ (-4.848)
40% -1.531∗∗ (-2.218) -1.209∗∗∗ (-2.767)
50% -0.369 (-0.599) -1.208∗∗∗ (-2.642)
60% -0.848 (-1.296) -0.688 (-1.442)
70% 0.527 (0.732) 0.065 (0.113)
80% 1.419 (1.391) 0.021 (0.035)
90% 4.398∗∗ (2.498) 2.581∗ (1.688)
95% 8.109∗∗ (2.138) 11.082∗∗∗ (3.091)

Obs. hit firms (exposure ≥ 25%) 3,510 3,510
Obs. control firms (exposure < 25%) 39,693 39,693
Hurricanes 37 37
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C.5 Insurance firms

In the paper, we focus on the universe of firms excluding financial firms, as is common in

the asset pricing literature. One contribution of this paper is to show that the uncertainty

around extreme weather events affects a wide range of firms and not only insurance firms,

which are often thought of in the context of extreme weather events. In this section, we

investigate if extreme weather uncertainty is also reflected in the option prices of insurance

firms.

We use statutory financial statements data from S&P Global Market Intelligence, which

provides us with the share of total premiums in each state written by property and casualty

insurance firms in the U.S. We estimate the regression in equation (7) in the paper for these

property and casualty insurance firms, with LandfallRegionExposurei,R,h measured as the

share of total premiums, lagged by one year, written in states that experienced landfall by a

hurricane. The results are reported in Table C.7. A state is considered to have experienced

a hurricane landfall if at least 25% of the state’s counties were within a given radius of that

hurricane’s eye. For the 50-mile radius, fewer hurricanes are included in the sample, because

certain hurricanes do not reach the required threshold of hit counties (25%) in any state.

In contrast to our baseline analysis in the paper, the number of publicly traded insurance

firms with liquid options is relatively limited and the data on the hurricane exposure of an

insurance firm are available by state and not by county.12

The coefficient estimates are positive and statistically significant for all specifications,

implying that there is impact uncertainty for property and casualty insurance firms in the

aftermath of a hurricane. The magnitudes of the coefficient estimates are economically

significant, with the implied volatility being up to 70% higher for insurance firms with a

100% exposure to the landfall region of the hurricane. The coefficient magnitudes are lower

for the 200-mile radius around the eye of the hurricane than for the 50-mile radius but remain

significant up to three months after landfall.

12For insurance firms, the establishment-level data from NETS is likely not a precise measure of exposure
to a certain region because insurance firm establishments and the physical location of properties they cover
need not be located close together. For example, an insurance firm that insures a homeowner in Harris
County (Houston), Texas, does not need to have a physical branch in that (or nearby) county.
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Table C.7: Hurricane effects on implied volatility of insurance firms

This table reports the coefficients and test statistics when estimating the panel model in equation (7) in the
paper for insurance firms. The dependent variable is the change (in %) in implied volatility of firm i from
the trading day before hurricane inception (Th

0 − 1) to 1 week (5 trading days), 1 month (20 trading days),
and 3 months (60 trading days) after landfall (Th

L +5, Th
L +20, and Th

L +60, respectively). The independent
variable measures the share of total premiums (from 0 to 1) written by an insurance firm in states that were
hit by a hurricane. A state is considered to be hit by a hurricane if at least 25% of the state’s counties
lie within a radius of 50 miles (columns 1 to 3) or 200 miles (columns 4 to 6) around the hurricane eye at
landfall. Hurricanes that do not reach this threshold for any state are excluded. The data span from 1996
to 2017. T-statistics are shown in parentheses. The standard errors are clustered by the state in which
the insurance firm has the largest premium share. The time fixed effect can be interpreted as a hurricane
fixed effect because each hurricane enters the regression as one separate time period. The significance of the
coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: Change in IV (in %), log(IVi,Th
L+τ/IVi,Th

0 −1)

50-mile radius landfall region 200-mile radius landfall region

Time post landfall 1 week 1 month 3 months 1 week 1 month 3 months

LandfallRegionExposurei,R,h 77.655∗∗∗ 51.534∗∗∗ 40.528∗∗∗ 19.363∗∗ 19.584∗∗ 17.318∗∗∗

(5.732) (2.899) (4.281) (2.592) (2.202) (2.714)

Adjusted R2 (%) 18.344 32.155 49.802 23.040 45.931 45.097
Observations 299 301 305 692 693.000 699
Obs. landfall exposure > 0 290 294 297 668 670 676
Obs. landfall exposure ≥ 0.25 6 7 7 73 76 72
Hurricanes 14 14 14 31 31 31

Time FE Yes Yes Yes Yes Yes Yes
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C.6 Additional tables and figure

Table C.8 reports results when using county-level sales instead of number of establishments

to measure firms’ exposures to hurricanes. Table C.9 shows the baseline estimates when

excluding one hurricane at a time. In Table C.10, NOAA estimates of hurricane-specific

radii based on reanalyses that are used for hurricanes starting in 2004. The reanalyses are

generally released several months after hurricane landfall and are therefore not available in

real time. Tables C.11 and C.12 show estimates using changes to model-free implied volatility

rather than OptionMetrics implied volatility.13

Table C.13 shows results when using two climate change concern indices to examine

the potential role of climate change salience in explaining the VRP reversal effects after

Hurricane Sandy. We interact the landfall region exposure variable with the climate change

concern index of Ardia, Bluteau, Boudt, and Inghelbrecht (2022) and the Google Trends

index for searches on the topic of climate change in the U.S. The two climate change indices

are both monthly and plotted in Figure C.1. Table C.14 presents the results when interacting

the firm exposure to a hurricane landfall region with a set of year indicators for hurricanes

after Hurricane Sandy (as opposed to one indicator for all hurricanes after Sandy). In Table

C.15, we present estimates when examining VRP responses to hurricane forecasts rather

than landfall.

Table C.16 examines abnormal and excess returns for the subsample of hurricanes that

occurred after Hurricane Sandy. Table C.17 is equivalent to Table VII Panel B in the paper,

but excess returns instead of abnormal returns act as the dependent variable. Table C.18

is another variation of Table VII Panel B in which the sample excludes the bottom 20% of

NYSE stocks in terms of market capitalization.

Table C.19 reports statistics on firm establishment locations and relocations.

13The model-free implied volatility generation uses the “standardized” options surface data for single
stocks from OptionMetrics at a 30-day time-to-expiry horizon and code generously provided by Greg Vilkov
at https://doi.org/10.17605/OSF.IO/Z2486 (Vilkov, 2021). Given that the single-stock option surface data
does not filter out prices from untraded options, to reduce the impact of stale prices in the earlier part of
the sample, in Tables C.11 and C.12, we analyze the implied volatility surface data for the period from
2000 onwards. However, results using the implied volatility surface data from 1996 onwards are qualitatively
similar. The lack of traded options at multiple strikes is particularly an issue for single-stock options of
smaller firms and of those outside the S&P 500 index. Kadan and Tang (2020) find that the number of firms
with multiple traded, liquid options is low before 2000 even within the S&P 500 Index.
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Table C.8: Hurricane effects on implied volatility with geographic sales footprint

This table reports coefficients and test statistics from estimating the panel model in equation (7) in the
paper. The dependent variable is the change (in %) in implied volatility of firm i from the trading day
before hurricane inception (Th

0 − 1) to 1 week (5 trading days) and 1 month (20 trading days) after landfall
(Th

L +5 and Th
L +20, respectively). The independent variable is the share (from 0 to 1) of a firm’s sales that

are within a radius of 200 miles (Panel A), 100 miles (Panel B), or 50 miles (Panel C) around the hurricane
eye at landfall. The data span from 1996 to 2019. T-statistics are shown in parentheses. The standard errors
are clustered by county based on a firm’s largest establishment share. The specifications include industry,
time, and industry-time fixed effects as indicated. The time fixed effect can be interpreted as a hurricane
fixed effect because each hurricane enters the regression as one separate time period. The significance of
each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: 200-mile radius landfall region

Dependent variable: Change in IV (in %), log
(
IVi,Th

L+τ/IVi,Th
0 −1

)
1 week post landfall 1 month post landfall

LandfallRegionExposurei,R,h 2.853∗∗∗ 2.935∗∗∗ 2.075∗∗ 6.224∗∗∗ 6.201∗∗∗ 4.943∗∗∗

(2.884) (2.959) (2.301) (3.645) (3.667) (3.360)

Adjusted R2 (%) 12.472 12.476 12.979 24.525 24.549 25.058
Observations 39,038 39,038 39,038 39,061 39,061 39,061
Hurricanes 37 37 37 37 37 37

Industry FE No Yes No No Yes No
Time (Hurricane) FE Yes Yes No Yes Yes No
Industry × Time (Hurricane) FE No No Yes No No Yes

Panel B: 100-mile radius landfall region

LandfallRegionExposurei,R,h 5.565∗∗∗ 5.655∗∗∗ 4.666∗∗∗ 9.018∗∗∗ 8.983∗∗∗ 7.269∗∗∗

(3.827) (3.898) (3.235) (3.943) (3.955) (3.673)

Adjusted R2 (%) 12.681 12.680 13.201 25.410 25.423 25.994
Observations 33,189 33,189 33,189 33,199 33,199 33,199
Hurricanes 37 37 37 37 37 37

Industry FE No Yes No No Yes No
Time (Hurricane) FE Yes Yes No Yes Yes No
Industry × Time (Hurricane) FE No No Yes No No Yes

Panel C: 50-mile radius landfall region

LandfallRegionExposurei,R,h 9.573∗∗∗ 9.669∗∗∗ 6.893∗∗∗ 16.435∗∗ 16.346∗∗ 10.097∗

(3.707) (3.756) (2.766) (2.324) (2.303) (1.847)

Adjusted R2 (%) 12.145 12.148 12.711 25.106 25.117 25.744
Observations 27,912 27,912 27,912 27,909 27,909 27,909
Hurricanes 37 37 37 37 37 37

Industry FE No Yes No No Yes No
Time (Hurricane) FE Yes Yes No Yes Yes No
Industry × Time (Hurricane) FE No No Yes No No Yes
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Table C.9: Hurricane effects on implied volatility (excl. hurricanes)
This table reports the coefficients and t-statistics from repeatedly estimating the panel model in equation
(7) in the paper while excluding individual hurricanes from the regression. The dependent variable is the
change (in %) in the implied volatility of firm i from the trading day before hurricane inception (Th

0 − 1),
until 1 week (5 trading days) after landfall (Th

L + 5). The independent variable is the share (from 0 to 1)
of a firm’s establishments that are within a 200-mile radius around the hurricane eye at landfall. The data
span from 1996 to 2019. T-statistics are shown in parentheses. The standard errors are clustered by county
based on a firm’s largest establishment share. Industry and time fixed effects are included. The time fixed
effect can be interpreted as a hurricane fixed effect, as we include a separate time period in the panel for
each hurricane. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05,
and *** for p < 0.01.

Dependent variable: Change in IV (in %), log
(
IVi,Th

L+5/IVi,Th
0 −1

)
Excl. hurricane Year Coeff. estimate T-stat Adjusted R2 (%) Observations Hurricanes

Bertha 1996 3.999∗∗∗ 2.883 12.401 38,366 36
Fran 1996 3.950∗∗∗ 2.866 12.570 38,365 36
Danny 1997 3.766∗∗∗ 2.741 12.445 38,211 36
Bonnie 1998 3.861∗∗∗ 2.818 11.576 38,097 36
Earl 1998 4.088∗∗∗ 3.036 12.325 38,087 36
Georges 1998 3.848∗∗∗ 2.841 12.536 38,087 36
Bret 1999 3.789∗∗∗ 2.780 12.401 38,172 36
Floyd 1999 4.358∗∗∗ 3.021 12.639 38,022 36
Irene 1999 3.855∗∗∗ 2.816 12.450 38,171 36
Lili 2002 3.867∗∗∗ 2.715 12.415 38,028 36
Claudette 2003 4.015∗∗∗ 2.864 12.622 38,069 36
Isabel 2003 3.988∗∗∗ 2.963 12.627 38,042 36
Charley 2004 3.902∗∗∗ 2.830 12.556 37,954 36
Frances 2004 3.901∗∗∗ 2.900 12.268 37,955 36
Ivan 2004 3.824∗∗∗ 2.804 12.356 37,952 36
Jeanne 2004 3.843∗∗∗ 2.859 12.505 37,953 36
Dennis 2005 3.654∗∗∗ 2.646 12.705 37,911 36
Katrina 2005 3.776∗∗∗ 2.711 12.686 37,920 36
Rita 2005 3.761∗∗∗ 2.850 12.597 37,920 36
Wilma 2005 3.848∗∗∗ 2.814 12.694 37,926 36
Humberto 2007 4.193∗∗∗ 2.760 12.184 37,744 36
Dolly 2008 3.893∗∗∗ 2.867 12.434 37,779 36
Gustav 2008 3.132∗∗∗ 2.631 12.210 37,769 36
Ike 2008 2.635∗∗ 2.174 9.756 37,747 36
Irene 2011 3.702∗∗∗ 2.588 12.669 37,728 36
Isaac 2012 3.895∗∗∗ 2.864 12.637 37,780 36
Sandy 2012 3.648∗∗ 2.483 12.685 37,748 36
Arthur 2014 4.052∗∗∗ 2.848 12.833 37,623 36
Hermine 2016 4.149∗∗∗ 3.082 12.927 37,425 36
Matthew 2016 3.569∗∗∗ 2.582 13.054 37,418 36
Harvey 2017 3.707∗∗∗ 2.813 12.857 37,458 36
Irma 2017 3.449∗∗ 2.419 12.830 37,482 36
Nate 2017 3.939∗∗∗ 2.766 12.771 37,458 36
Florence 2018 3.736∗∗∗ 2.808 13.008 37,363 36
Michael 2018 3.914∗∗∗ 2.960 11.436 37,359 36
Barry 2019 3.673∗∗∗ 2.697 12.941 37,379 36
Dorian 2019 4.009∗∗∗ 3.035 12.003 37,428 36
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Table C.10: Hurricane effects on implied volatility using alternative radii

This table reports coefficients and test statistics from estimating the panel model in equation (7) in the
paper. The dependent variable is the change (in %) in implied volatility of firm i from the trading day
before hurricane inception (Th

0 − 1) to 1 week (5 trading days), 1 month (20 trading days), and 3 month (60
trading days) after landfall (Th

L+5, Th
L+20, and Th

L+60, respectively). The independent variable is the share
(from 0 to 1) of a firm’s establishments that are within the hurricane-specific estimated 34 KT (Panel A) or
64 KT (Panel B) wind speed radius of the hurricane eye at landfall, based on reanalysis data made available
via NOAA after hurricane landfall starting in 2004. The data span from 2004 to 2019. T-statistics are shown
in parentheses. The standard errors are clustered by county based on a firm’s largest establishment share.
The specifications include industry, time, and industry-time fixed effects as indicated. The time fixed effect
can be interpreted as a hurricane fixed effect because each hurricane enters the regression as one separate
time period. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and
*** for p < 0.01.

Panel A: Radius based on 34 KT wind speed

Dependent Variable: Change in IV (in %), log(IVi,Th
L+τ/IVi,Th

0 −1)

Time post landfall 1 week 1 month 3 months

LandfallRegionExposurei,h 7.173∗∗∗ 5.889∗∗∗ 12.162∗∗∗ 9.958∗∗∗ 10.304∗∗∗ 8.043∗∗

(3.943) (3.630) (3.711) (3.403) (3.460) (2.534)

Industry FE Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No
Industry × Time (Hurricane) FE No Yes No Yes No Yes

Adjusted R2 (%) 11.842 12.353 27.220 27.760 32.882 33.340
Observations 29,584 29,584 29,563 29,563 29,551 29,551
Obs. LandfallExposure > 0 15,444 15,444 15,440 15,440 15,405 15,405
Obs. LandfallExposure ≥ 0.25 2,304 2,304 2,309 2,309 2,322 2,322
Hurricanes 25 25 25 25 25 25

Panel B: Radius based on 64 KT wind speed

Dependent Variable: Change in IV (in %), log(IVi,Th
L+τ/IVi,Th

0 −1)

Time post landfall 1 week 1 month 3 months

LandfallRegionExposurei,h 14.139∗∗∗ 13.046∗∗∗ 22.988∗∗∗ 19.510∗∗∗ 16.558∗∗∗ 11.516∗∗

(4.189) (4.116) (4.121) (3.815) (2.712) (1.985)

Industry FE Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No
Industry × Time (Hurricane) FE No Yes No Yes No Yes

Adjusted R2 (%) 12.092 12.680 28.852 29.466 33.442 34.012
Observations 23,166 23,166 23,146 23,146 23,158 23,158
Obs. LandfallExposure > 0 8,819 8,819 8,813 8,813 8,801 8,801
Obs. LandfallExposure ≥ 0.25 450 450 448 448 453 453
Hurricanes 25 25 25 25 25 25
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Table C.12: Hurricane effects on model-free volatility risk premium post Hurri-
cane Sandy

This table reports the coefficients and test statistics when estimating the panel model in equation (8) in
the paper with a post-Sandy (post-2012) interaction term added. The dependent variable is the model-free
VRP (in %) averaged over 1 week, 1 month, and 2 months (5, 20, and 40 trading days, respectively) after
landfall. The model-free VRP is computed as the difference between the ex ante model-free implied and
ex post realized volatility, as specified in equation (2) in the paper. The independent variable is the share
(from 0 to 1) of a firm’s establishments that are within a radius of 200 miles around the hurricane eye at
landfall. In addition, this landfall region exposure variable is interacted with an indicator variable that
equals 1 for all hurricanes after Sandy (after 2012). The data span from 2000 to 2019. T-statistics are shown
in parentheses. The standard errors are clustered by county based on a firm’s largest establishment share.
The specifications include firm, time, and industry-time fixed effects as indicated. The time fixed effect can
be interpreted as a hurricane fixed effect because each hurricane enters the regression as one separate time
period. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and ***
for p < 0.01.

Dependent variable: Model-free VRP (in %) avg. over τ trading days post landfall, V RP i,Th
L+τ

1 week post landfall 1 month post landfall 2 months post landfall

LandfallRegionExposurei,R,h -12.263∗∗∗ -8.584∗∗∗ -5.712∗∗∗ -8.713∗∗∗ -4.385∗ -2.648 -4.954∗∗∗ -0.632 -0.611
(-4.295) (-3.232) (-3.443) (-3.270) (-1.781) (-1.591) (-3.238) (-0.454) (-0.441)

LandfallRegionExposurei,R,h 10.984∗∗ 12.414∗∗∗ 9.123∗∗∗ 9.449∗∗ 11.078∗∗∗ 8.902∗∗∗ 2.656 6.107∗∗ 5.574∗∗

×PostSandyh (2.171) (3.199) (3.522) (1.997) (3.448) (3.653) (0.590) (2.475) (2.424)

Adjusted R2 (%) 11.958 35.769 36.241 14.615 42.271 42.774 11.884 47.595 47.924
Observations 29,538 29,538 29,538 29,637 29,637 29,637 29,580 29,580 29,580
Hurricanes 28 28 28 28 28 28 28 28 28

Firm FE No Yes Yes No Yes Yes No Yes Yes
Time (Hurricane) FE Yes Yes No Yes Yes No Yes Yes No
Industry × Time (Hurricane) FE No No Yes No No Yes No No Yes
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Figure C.1: Climate change indices
This figure shows the two climate change indices used for the analyses in Table C.13. The two indices are
the climate change concerns index from Ardia, Bluteau, Boudt, and Inghelbrecht (2022) and the Google
Trends index for searches on the topic of climate change in the U.S. The data are monthly and span from
2003 (2004 for the Google Trends index) to 2019.
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Table C.14: Hurricane effects on volatility risk premium by year post Hurricane
Sandy

This table reports the coefficients and test statistics when estimating the panel model in equation (8) in the
paper with a set of year-specific post-Sandy (post-2012) interactions term added. The dependent variable is
the VRP (in %) averaged over 1 week, 1 month, and 2 months (5, 20, and 40 trading days, respectively) after
landfall. The VRP is computed as the difference between the ex ante implied and ex post realized volatility,
as specified in equation (2) in the paper. The independent variable is the share (from 0 to 1) of a firm’s
establishments that are within a radius of 200 miles around the hurricane eye at landfall. In addition, the
landfall region exposure variable is interacted with a set of indicator variables that equal 1 for hurricanes in
a designated year after 2012. There are no indicators for years in which no hurricanes made landfall. The
data span from 1996 to 2019. T-statistics are shown in parentheses. The standard errors are clustered by
county based on a firm’s largest establishment share. The specifications include firm and time fixed effects as
indicated. The time fixed effect can be interpreted as a hurricane fixed effect because each hurricane enters
the regression as one separate time period. The significance of each coefficient estimate is indicated by * for
p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: Model-free VRP (in %) avg. over τ trading days post landfall, V RP i,Th
L+τ

1 week post landfall 1 month post landfall 2 months post landfall

LandfallRegionExposurei,R,h -7.579∗∗∗ -5.801∗∗∗ -7.843∗∗∗ -5.833∗∗∗ -4.838∗∗∗ -2.785∗∗

(-3.701) (-3.301) (-3.271) (-2.914) (-2.914) (-2.287)

LandfallRegionExposurei,R,h × Iy=2014 12.115∗∗∗ 4.010 16.838∗∗∗ 8.484∗∗ 13.559∗∗∗ 6.737∗∗∗

(3.532) (1.177) (4.329) (2.568) (4.604) (3.135)

LandfallRegionExposurei,R,h × Iy=2016 -3.775 -2.596 4.669 5.198 1.122 2.758
(-0.931) (-0.804) (0.895) (1.281) (0.256) (0.899)

LandfallRegionExposurei,R,h × Iy=2017 3.942 5.526∗∗ 3.819 5.293∗∗ 1.607 3.563∗∗

(1.128) (2.122) (1.083) (2.274) (0.558) (2.153)

LandfallRegionExposurei,R,h × Iy=2018 1.270 3.379 3.714 6.079 -0.733 3.240
(0.242) (0.613) (0.621) (1.113) (-0.151) (0.773)

LandfallRegionExposurei,R,h × Iy=2019 6.410∗∗ 6.185∗∗ 6.100∗ 8.148∗∗∗ 0.246 3.985∗∗

(2.174) (2.244) (1.778) (2.827) (0.078) (1.963)

Adjusted R2 (%) 17.200 26.900 22.500 34.200 22.700 38.600
Observations 36,539 36,539 36,675 36,675 36,674 36,674
Hurricanes 37 37 37 37 37 37

Firm FE No Yes No Yes No Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes
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Table C.15: Effects of hurricane path forecasts on volatility risk premium post
Sandy

This table reports the coefficients and test statistics when estimating the panel model in equation (11) in
the paper with a post-Sandy (post-2012) interaction term added and VRP (in %) as the dependent variable.
The VRP is computed as the difference between the ex ante implied and ex post realized volatility, as
specified in equation (2) in the paper. The VRP of a firm is measured at Γ days before hurricane landfall or
dissipation (Th

L − Γ). The model is estimated for the set of probability thresholds and days before landfall
or dissipation for which we have at least 5 hurricanes in the pre- and post-Sandy periods. The independent
variable is the share (from 0 to 1) of a firm’s establishments that are in counties located in the forecast path
of a hurricane. The forecast paths are defined based on the specified probability thresholds, which reflect
minimum probabilities of hurricane force winds. A 20% threshold indicates that counties in the forecast
path are estimated to have at least a 20% probability of experiencing hurricane force winds as of the last
forecast available before market close on day Th

L − Γ. For each regression, the numbers of firm observations
with establishment shares in the forecast path greater than 0 and at least 0.25 are reported. The data span
from 2007 to 2019. T-statistics are shown in parentheses. The standard errors are clustered by county based
on a firm’s largest establishment share. Firm and time fixed effects are included. The time fixed effect can
be interpreted as a hurricane fixed effect because each hurricane enters the regression as one separate time
period. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and ***
for p < 0.01.

Panel A: Without Post-Sandy interaction

Dependent variable: VRP at Γ days before landfall/dissipation (in %), V RPi,Th
L−Γ

Γ 1 Day 2 Days 3 Days 4 Days

Prob. of hurricane hit ≥ 1% 10% 20% 1% 10% 20% 1% 10% 1%

ForecExposurei,P,Th
L−Γ -2.797 -8.857∗∗∗ -20.187∗∗∗ 0.468 -6.767∗∗ -9.370∗∗∗ 1.001 -13.706∗∗∗ -5.050∗∗

(-1.489) (-2.644) (-3.214) (0.352) (-2.040) (-3.536) (0.837) (-3.314) (-2.102)

Adjusted R2 (%) 32.260 34.845 33.882 30.803 29.418 33.957 45.245 43.806 40.688
Observations 47,300 12,531 11,015 38,734 15,296 11,084 27,255 8,982 18,734
Obs. ForecExpo. > 0 14,312 4,080 3,304 17,405 5,878 4,166 14,269 3,993 9,647
Obs. ForecExpo. ≥ 0.25 766 142 85 2,134 248 167 2,225 164 1,997
Hurricanes 40 12 11 33 16 12 23 11 16

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time (Hurricane) FE Yes Yes No Yes Yes Yes Yes Yes Yes

Panel B: With Post-Sandy interaction

ForecExposurei,P,Th
L−Γ -5.919∗∗ -23.135∗∗∗ -28.820∗∗∗ -1.352 -19.640∗∗∗ -30.387∗∗∗ -1.069 -20.861∗∗∗ -5.944∗∗

(-1.987) (-3.714) (-5.340) (-0.612) (-3.403) (-5.323) (-0.545) (-4.091) (-2.083)

ForecExposurei,P,Th
L−Γ 6.433∗∗ 24.915∗∗∗ 26.597∗∗ 3.615 18.948∗∗∗ 29.840∗∗∗ 4.803∗ 17.261∗∗ 2.698

×PostSandyh (2.075) (3.631) (2.157) (1.268) (3.055) (3.807) (1.682) (2.094) (0.926)

Adjusted R2 (%) 32.268 34.943 33.938 30.809 29.497 34.131 45.260 43.845 40.690

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Table C.19: Summary statistics of firm locations and relocations

This table reports summary statistics on firm locations and relocations. Statistics on firm establishments
located in Atlantic/Gulf coast counties and the population centers of these counties (measured as the top
decile of counties based on population) are shown. Relocations are measured as the lesser of the number of
counties which a firm entered in a given year and the number of counties the firm exited. In the last set of
rows, this measure is shown normalized by the total number of counties in which the firm had establishments
in the previous year. The data span from 1996 to 2019.

Avg. Std. dev. 10th perc. 25th perc. 50th perc. 75th perc. 90th perc.

Firm establishment share in
Atlantic/Gulf coast counties (in %) 35.260 37.693 0.000 0.000 24.175 62.500 100.000
Atlantic/Gulf coast population centers (in %) 32.374 36.847 0.000 0.000 19.680 51.010 100.000

Firm relocations (# counties)

All firms 0.564 2.220 0.000 0.000 0.000 0.000 1.000
Atlantic/Gulf coast firms 0.728 2.566 0.000 0.000 0.000 0.000 2.000
Atlantic/Gulf coast pop. center firms 0.595 2.131 0.000 0.000 0.000 0.000 2.000

Firm relocations (% of firm’s total counties)

All firms 1.864 8.647 0.000 0.000 0.000 0.000 3.876
Atlantic/Gulf coast firms 2.156 8.842 0.000 0.000 0.000 0.000 5.000
Atlantic/Gulf coast pop. center firms 2.158 9.064 0.000 0.000 0.000 0.000 5.000
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