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Regulatory Evaluation of Value-at-Risk Models

ABSTRACT:

Beginning in 1998, U.S. commercial banks may determine their regulatory capital
requirements for financial market risk exposure using value-at-risk (VaR) models. Currently,
regulators have available three hypothesis-testing methods for evaluating the accuracy of VaR
models: the binomial, interval forecast and distribution forecast methods. Given the low power
often exhibited by their corresponding hypothesis tests, these methods can often misclassify
forecasts from inaccurate models as acceptably accurate. An alternative evaluation method using
loss functions based on probability forecasts is proposed. Simulation results indicate that this
method is only as capable of differentiating between forecasts from accurate and inaccurate
models as the other methods. However, its ability to directly incorporate regulatory loss
functions into model evaluations make it a useful complement to the current regulatory
evaluation of VaR models.



1 For a thorough discussion of the 1988 Basle Capital Accord and the U.S. implementation of the 1996 market
risk amendment, see Wagster (1996) and Federal Register (1996), respectively. For a related discussion on the
regulatory capital requirements for securities firms, see Dimsom and Marsh (1995).
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My discussion of risk measurement issues suggests that disclosure of quantitative
measures of market risk, such as value-at-risk, is enlightening only when
accompanied by a thorough discussion of how the risk measures were calculated
and how they related to actual performance. (Greenspan, 1996a)

I. Introduction

The profits of financial institutions are directly or indirectly tied to the behavior of

financial time series, such interest rates, exchange rates and stock prices. This exposure is

commonly referred to as “market risk”. Over the past decade, financial institutions have

significantly increased their use of econometric models to manage their market risk exposure for

a number of reasons, such as their increased trading activities, their increased emphasis on risk-

adjusted returns on capital and advances in both the theoretical and empirical finance literature.

Given these developments, financial regulators have also begun to focus their attention on the use

of such models by regulated institutions.

The main example of such regulatory concern is the 1996 amendment to the Basle Capital

Accord, which requires that commercial banks with significant trading activities set aside capital

to cover the market risk exposure in their trading accounts. The U.S. bank regulatory agencies

adopted this amendment and began enforcing it in 1998.1 Under the amended capital rules,

banks’ market risk capital charges can be based on the “value-at-risk” (VaR) estimates generated

by their own VaR models. In general, such models forecast the time-varying distributions of

portfolio returns, and VaR estimates are forecasts of the maximum portfolio loss that could occur

over a given holding period with a specified confidence level; that is, a VaR estimate is a

specified lower quantile of a forecasted distribution of portfolio returns.

Given the importance of VaR estimates to banks and now to their regulators, evaluating

the accuracy of the models underlying them is a necessary exercise. Three evaluation methods

based on hypothesis tests have been proposed to date. In each of these tests, the null hypothesis

is that the VaR forecasts in question exhibit a specified property characteristic of accurate VaR
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forecasts. Specifically, the evaluation method based on the binomial distribution, currently the

quantitative standard embodied in the 1996 amendment and extensively discussed by Kupiec

(1995), examines whether VaR estimates, on average, provide correct coverage of the lowerα

percent tails of the forecasted distributions. The interval forecast method proposed by

Christoffersen (1998) examines whether VaR estimates exhibit correct coverage at each point in

time, and the distribution forecast method proposed by Crnkovic and Drachman (1996) examines

whether empirical quantiles derived from a VaR model’s distribution forecasts are independent

and uniformly distributed. In these tests, if the null hypothesis is rejected, the VaR forecasts do

not exhibit the specified property, and the underlying VaR model is said to be “inaccurate”. If

the null hypothesis is not rejected, then the model can be said to be “acceptably accurate”.

However, for these evaluation methods, as with any hypothesis test, a key issue is their

power; i.e., their ability to reject the null hypothesis when it is incorrect. If a hypothesis test

exhibits poor power properties, then the probability of misclassifying an inaccurate VaR model

as acceptably accurate will be high. This paper examines the power of these three tests within

the context of a simulation exercise using several data generating processes.

In addition, this paper proposes an evaluation method based on the probability forecasting

framework presented by Lopez (1997). In contrast to those listed above, this method uses

standard forecast evaluation techniques and gauges the accuracy of VaR models by how well

their probability forecasts minimize a loss function directly relevant to the user. By incorporating

regulatory loss functions directly into the evaluation of VaR models, this method provides

information on the performance of VaR models with respect to regulatory criteria, as opposed to

the statistical criteria implied in the other methods. In this paper, the probability forecasts of

interest are of specified regulatory events, and the loss function used is the quadratic probability

score (QPS), whose value ranges over the interval [0,2]. VaR models with lower QPS values can

be said to be more accurate than others.

A drawback of this evaluation method is that the properties of the QPS value for a

particular model and specified event cannot be easily determined a priori, as opposed to the

properties of the three aforementioned test statistics. Thus, this method cannot be used, as the

other methods, to statistically test whether a VaR model is “acceptably accurate” or “inaccurate”
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in an absolute sense. Instead, this method can be used to provide relative comparisons of model

accuracy over different time periods and in relation to other VaR models, which should be useful,

additional information for model users in general and regulators in particular. This method’s

ability to address the issues of VaR model misclassification and comparative accuracy under

different loss functions is also examined within the context of a simulation exercise.

The simulation results indicate that the hypothesis-testing methods can have relatively

low power and thus a relatively high chance of misclassifying an inaccurate VaR model as

“acceptably accurate”. With respect to the probability forecasting method, the simulation results

indicate that the QPS values for the accurate VaR models are less than those for the inaccurate

models a high percentage of the time. Further analysis, using hypothesis-testing techniques that

permit a power comparison across all four evaluation methods, indicates that this method’s

power is roughly in line with that of the other three methods. Thus, even though the proposed

method is only as capable of differentiating between VaR models as the other methods, its ability

to directly incorporate regulatory loss functions into model evaluations make it a useful

complement to the statistical methods currently used in the regulatory evaluation of VaR models.

The paper is organized as follows. Section II describes both the current regulatory

framework for evaluating VaR models and the four evaluation methods examined. Sections III

and IV outline the simulation exercise and present the results, respectively. Section V concludes.

II. Evaluating VaR Models

VaR models are characterized by their forecasted distributions of k-period-ahead portfolio

returns. To fix notation, let Yt represent portfolio value at time t in dollar terms, and

The k-period-ahead portfolio return is denoted Conditional onyt � ln Yt . …t�k � yt�k � yt.

the information available at time t,…t+k is a random variable with distribution ft+k ; that is,

Thus, VaR model m is characterized by , its forecast of ft+k.…t�k G Ωt ~ ft�k. f m
t�k

Currently, VaR estimates are the most common type of forecast generated from VaR

models. A VaR estimate is a forecast of the maximum portfolio loss that could occur over a

given holding period with a specified confidence level. The VaR estimate at time t derived from

model m for a k-period-ahead return withα percent confidence, denoted is theVaR m
t (k,α),



2 For a general discussion of the differences between financial institutions and their regulators on the issues of
risk measurement and capital allocation, see Estrella (1995).
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‹

VaR m
t (k,α)

�Q

f m
t�k(x)dx �

α

100
,

quantile of that corresponds to its lowerα percent tail. Thus, is the solution tof m
t�k VaR m

t (k,α)

or, equivalently, where is the forecasted cumulative distributionVaR m
t (k,α) � F m�1

t�k (α/100), Fm
t�k

function. Note that a VaR estimate is expressed in dollar terms as the difference between the

current portfolio value and the portfolio value corresponding to it; that is, isVaR m
t (k,α)

expressed in dollar terms as Yt 1 � e
VaR m

t (k,α)
.

Given their role in bank risk management and now in regulatory capital calculations, the

evaluation of VaR estimates and the models underlying them is of interest to both banks and their

regulators. Note, however, that the regulatory evaluation of such models differs from

institutional evaluations in three important ways.2 First, a regulatory evaluation has the goal of

assuring that sufficient capital is available to protect an institution from significant portfolio

losses, a goal that may not be shared by an institutional evaluation due to issues of moral hazard.

Second, regulators, although potentially privy to the details of an institution's VaR model,

generally cannot evaluate every component of the model and its implementation as well as the

originating institution can. Third, regulators have the responsibility of constructing evaluations

that are comparable across institutions. Thus, although individual banks and regulators may use

similar evaluation methods, the regulatory evaluation of VaR models has certain unique

characteristics that should be addressed.

In this section, the current regulatory framework for calculating market risk capital

charges is described, and four methods for the regulatory evaluation of VaR models are

discussed. The first three methods are based on testing the null hypothesis that the VaR forecasts

in question exhibit specified properties characteristic of accurate VaR forecasts. The proposed

fourth method is instead based on standard forecast evaluation techniques; that is, the relative

accuracy of a VaR model is gauged by how well a specified regulatory loss function is minimized

by the model’s probability forecasts.



3 The specific risk capital charge is used to cover possible adverse price changes due to unanticipated,
idiosyncratic events, such as an unexpected bond default. Although an important topic, specific risk is not
examined here.

4 Stahl (1997) provides a theoretical justification of the use of a regulatory multiplication factor. Using
Chebyshev’s inequality, he shows that a multiplication factor approximately equal to three can be used to account
for the possible misspecification of the distribution underlying VaR estimates forα=1. Thus, can be viewed asS m

t
a regulatory adjustment for model error.
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A. Current Regulatory Framework

The current risk-based capital rules for the market risk exposure of large, U.S.

commercial banks, effective as of 1998, are explicitly based on VaR estimates. The capital rules

cover all assets in a bank’s trading account (i.e., assets carried at their current market value) as

well as all foreign exchange and commodity positions wherever located. Any bank or bank

holding company whose trading activity accounts for more than ten percent of its total assets or is

more than $1 billion must hold regulatory capital against their market risk exposure.

These capital charges are based on the VaR estimates generated by banks’ own VaR

models using the standardizing parameters of a ten-day holding period (k = 10) and 99 percent

coverage (α = 1). In other words, a bank’s market risk capital charge is based on its forecast of

the potential portfolio loss that would not be exceeded over the subsequent two week period

with one percent probability. The market risk capital that bank m must hold for time t+1,

, is set as the larger of the dollar value of or a multiple of the average ofMRC m
t�1 VaR m

t (10,1)

the previous sixty estimates in dollar terms; that is,VaR m
t (10,1)

MRC m
t�1 � max Yt 1�e

VaR m
t (10,1)

; S m
t �

1
60ˆ

59

i�0
Yt�i 1�e

VaR m
t�i(10,1)

� SRm
t ,

where and are a multiplication factor and an additional capital charge for the portfolio'sS m
t SRm

t

idiosyncratic credit risk, respectively.3 Note that, under the current framework, A 3.S m
t

The multiplier is included in the calculation of for two reasons. First, asS m
t MRC m

t�1

described by Hendricks and Hirtle (1997), it adjusts the specified VaR estimates to what

regulators consider to be a minimum capital requirement that reflects their concerns regarding

both prudent capital standards and model accuracy.4 Second, is used to explicitly link theS m
t

accuracy of a bank’s VaR model to its capital charge. In the current regulatory framework, Sm
t



5 The 1996 market risk amendment contains a number of other qualitative criteria that banks’ risk management
systems must meet in order to be considered appropriate for determining market risk capital requirements.
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is set according to the accuracy of model m’s VaR estimates for a one-day holding period (k = 1)

and 99 percent coverage level (α = 1), denoted as .VaR m
t (1,1)

is a step function that depends on the number of exceptions -- defined as occasionsS m
t

when -- observed over the last 250 trading days. The possible number of…t�1 < VaR m
t (1,1)

exceptions is divided into three zones. Within the green zone of four or fewer exceptions, a VaR

model is deemed “acceptably accurate”, and Smt remains at its minimum value of three. Within

the yellow zone of five through nine exceptions, Smt increases incrementally with the number of

exceptions. Within the red zone of ten or more exceptions, the VaR model is deemed to be

“inaccurate”, and Smt increases to its maximum value of four. The institution must also explicitly

improve its risk management system.5

Since capital requirements were completely determined by regulatory mandate prior to

the 1996 market risk amendment, this “internal models” approach for setting market risk capital

requirements indicates an important change in how regulatory oversight is conducted. Having

established the formula for calculating the desired capital charges, bank regulators must now

evaluate the accuracy of the VaR models used to set them. In the following section, four

methods for evaluating VaR model accuracy are discussed.

B. Alternative Evaluation Methods

In accordance with the current regulatory framework and for the purposes of this paper,

the accuracy of VaR models is assessed with respect to their one-step-ahead forecasts; i.e., k=1.

Thus, given a set of one-step-ahead VaR forecasts, regulators must determine whether the

underlying model is “acceptably accurate”. Three hypothesis-testing methods using different

types of VaR forecasts are available; specifically, the binomial, interval forecast and distribution

forecast methods. Their common premise is to determine whether the VaR forecasts in question

exhibit a specified property characteristic of accurate VaR forecasts using hypothesis tests.

However, as noted by Diebold and Lopez (1996), it is unlikely that forecasts from an

economic model will be fully optimal and exhibit all the properties of accurate forecasts. Thus,



6 Note that these quantities are reported in dollar terms. Further note that VaR estimates do not capture the
financial risks introduced by banks’ intraday trading. Regulators are aware of such risks, but have generally chosen
to monitor them using qualitative methods, such as evaluating the reasonableness of intraday position limits.

7 Note that the size of the test, which in this paper is set at five percent, is different from theα percent coverage
level of the VaR estimates in question.
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the evaluation of a model’s forecasts based on the presence of a specific statistical property will

provide only limited information regarding model accuracy. In this paper, an evaluation method,

based on the probability forecasting framework presented by Lopez (1997), is proposed. With

this method, the relative accuracy of VaR models is evaluated by how well their probability

forecasts minimize a regulatory loss function. Thus, this evaluation method can provide

additional information on VaR model accuracy with respect to regulatory criteria, as opposed to

the statistical criteria implied in the hypothesis-testing methods.

B.1. Evaluation of VaR estimates based on the binomial distribution

Under the current regulatory framework, banks will report their one-day, 99 percent VaR

estimates (denoted or simply ) to their regulators, who also observeVaR m
t (1,1) VaRm

t (1)

whether actual portfolio losses exceed these estimates.6 Under the assumption that the VaR

estimates are accurate, such observations can be modeled as draws from an independent binomial

random variable with a probability of occurrence equal to one percent or, more generally, a

specifiedα percent. The binomial method that regulators have chosen is based on the number of

times that…t+1 is less than (denoted here as x) in a sample of size T. Accurate VaRVaR m
t (α )

estimates should exhibit the property that their unconditional coverage, measured byα* = x/T,

equals the desired coverage levelα. Thus, the relevant null hypothesis isα*=α, and the

appropriate likelihood ratio statistic based on the binomial distribution is

LRuc(α) � 2 log α�x 1 � α�
T�x

� log αx (1�α)T�x .

Note that the LRuc(α) test of this null hypothesis is uniformly most powerful for a given T and

that the statistic has an asymptoticχ2(1) distribution. So, if we decide to set the size of the test at

five percent, we would reject the null hypothesis if LRuc(α) > 3.84.7

However, the finite sample size and power characteristics of this test are of interest here.



8 See Chatfield (1993) for a general discussion of interval forecasts. Interval forecast evaluation techniques are
also discussed by Granger, White and Kamstra (1989).

8

I m
t�1(α) �

1 if …t�1 M V m
t (α)

0 if …t�1 V m
t (α)

.

With respect to size, the finite sample distribution for a specific (α,T) pair may be sufficiently

different from theχ2(1) distribution that the asymptotic critical values may be inappropriate. For

this paper, the finite-sample distributions for specific (α,T) pairs are determined via simulation

and compared to the asymptotic one in order to establish the actual sizes of the tests. As for

power, Kupiec (1995) describes how this test generally has a limited ability to distinguish among

alternative hypotheses and thus has low power, even in moderately large samples.

B.2. Evaluation of VaR interval forecasts

VaR estimates can clearly be viewed as interval forecasts of the lower left-hand tail of ft+1

at a specified coverage levelα.8 Interval forecasts can be evaluated conditionally or

unconditionally; that is, forecast performance can be examined over the sample period with or

without reference to the information available at each point in time. The LRuc(α) test is

obviously an unconditional test since it ignores this type of information. However, in the

presence of the higher-moment dynamics often found in financial time series, testing for

conditional accuracy is important since interval forecasts ignoring such dynamics may have

correct unconditional coverage, but may have incorrect conditional coverage at any given time.

As shown in Figure 1, variance dynamics can lead to clustered exceptions that may permit

correct unconditional coverage but certainly not correct conditional coverage. Thus, since the

LRuc(α) test does not have power against the alternative hypothesis that the exceptions are

clustered in a time-dependent fashion, it is only of limited use in the evaluation of VaR estimates.

The LRcc(α) test proposed by Christoffersen (1998) is specifically a test of correct

conditional coverage. For a given coverage levelα, one-step-ahead interval forecasts are formed

using model m and are denoted From these forecasts and theV m
t (α) P �U, VaR m

t (α) .

observed portfolio returns, the indicator variable is constructed asI m
t�1(α)



9 Although not done in this paper, higher-order dependence could be specified. Christoffersen (1998) also
presents an alternative test of this null hypothesis based on the runs test of David (1947).

10 Note that the formulae relating theπij variables to the transition counts are maximum likelihood estimates.
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q m
t�1(…t�1) � ‹

…t�1

�Q

f m
t�1(x)dx.

Accurate VaR interval forecasts should exhibit the property of correct conditional coverage,

which implies that the series must exhibit both correct unconditional coverage and serialI m
t�1(α)

independence. The LRcc(α) test of this joint hypothesis is formed by combining tests of each

property. The relevant test statistic is which is distributedχ2(2).LRcc(α) � LRuc(α) � LRind(α),

Note that the LRind(α) statistic is a likelihood ratio statistic of the null hypothesis of serial

independence against the alternative of first-order Markov dependence.9 The likelihood function

under this alternative hypothesis is where the Tij notationLA � 1�π01
T00π

T01

01 1�π11
T10π

T11

11 ,

denotes the number of observations in state j after having been in state i the period before,

and 10 Under the null hypothesis of independence,π01 � T01 / T00�T01 π11 � T11 / T10�T11 .

and the relevant likelihood function is whereπ01 � π11 � π, L0 � (1�π )
T00�T10π

T01�T11,

Thus, the relevant test statistic is formed asπ � T01�T11 /T. LRind(α) � 2 logLA � logL0 ,

which is distributedχ2(1).

B.3. Evaluation of VaR distribution forecasts

Since VaR models are generally characterized by their forecast of ft+k, Crnkovic and

Drachman (1996) propose to evaluate such models based on their entire forecasted distributions.

The object of interest in this evaluation method is the observed quantile , which is theq m
t�1

quantile under in which the observed return…t+1 actually falls; that is,f m
t�1

This evaluation method tests whether the observed quantiles derived under a model’s distribution

forecasts exhibit the properties of observed quantiles from accurate distribution forecasts.

Specifically, since the quantiles of random draws from a distribution are uniformly distributed

over the unit interval, the observed quantiles should be independent and uniformly distributed.

Crnkovic and Drachman (1996) suggest that these two properties be examined separately



11 Note that other authors have recently proposed other tests based on models’ empirical quantiles. Diebold,
Gunther and Tay (1998) propose the use of CUSUM statistics, and Berkowitz (1998) proposes likelihood ratio
statistics based on a simple transformation of these quantiles.

12 Note that the emphasis in this paper on just the second property will understate the ability of the overall
evaluation method to gauge VaR model accuracy since model misclassification by the test for uniform distribution
might be correctly indicated by the test for independence.

13 Crnkovic and Drachman (1996) indicate that an advantage of the Kupier statistic is that it is equally sensitive
for all values of x, as opposed to the Kolmogorov-Smirnov statistic that is most sensitive around the median. See
Presset al. (1992) for further discussion.

14 The asymptotic distribution of the Kupier statistic is characterized asProb K>K m � G T�0.155�0.24/ T vm ,

where T is the sample size, and xM [0,1].G(λ) � 2ˆ
Q

j�1
4j 2λ2

� 1 e�2j 2
λ

2
, vm � max Dm(x) � x ,
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Km � max Dm(x) � x � max x � Dm(x) ,

and thus propose two separate hypothesis tests.11 As in the interval forecast method, the

independence of the observed quantiles indicates whether the VaR model captures the higher-

order dynamics in the return series. To test for this property, the authors suggest the use of the

BDS statistic (see Brocket al., 1991). However, in this paper, the focus is on their proposed test

of uniform distribution.12 The test of the uniform distribution of the series is based on theq m
t�1

Kupier statistic, which measures the deviation between two cumulative distribution functions.13

Denoting Dm(x) as the cumulative distribution function of the observed quantiles, the Kupier

statistic for the deviation of Dm(x) from the uniform distribution is

where xM [0,1]. Note that for this paper, the finite sample distribution of Km as generated in the

following simulation exercise is used.14 In general, this testing procedure is relatively data-

intensive, and the authors note that test results begin to seriously deteriorate with fewer than 500

observations.

B.4. Evaluation of VaR probability forecasts

The evaluation method proposed here is based on the probability forecasting framework

presented by Lopez (1997). In contrast to the hypothesis-testing methods discussed above, this

method is based on standard forecast evaluation tools and gauges the accuracy of VaR models by



15 Crnkovic and Drachman (1996) note that the Kupier statistic can be tailored to the interests of the forecast
evaluator by introducing a user-defined weighting function.

16 The relevance of such probability forecasts to regulators (as well as market participants) is well established.
For example, Greenspan (1996b) stated that “[i]f we can obtain reasonable estimates of portfolio loss distributions,
[financial] soundness can be defined, for example, as the probability of losses exceeding capital. In other words,
soundness can be defined in terms of a quantifiable insolvency probability.” For a more general discussion of
probability forecasting in a decision theoretic framework, see Granger and Pesaran (1996).
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P m
t � Pr …t�1 < CV α,F̂ � ‹

CV α,F̂

�Q

f m
t�1(x)dx,

how well their probability forecasts minimize a regulatory loss function. Thus, by directly

incorporating regulatory loss functions into the forecast evaluations, this method provides useful

information on the performance of VaR models with respect to regulatory criteria as opposed to

the purely statistical criteria implied by the hypothesis-testing methods.

The proposed evaluation method incorporates the interests of the regulators (or, more

generally, forecast evaluators) into the forecast evaluation in two ways.15 First, the event of

interest to the regulator must be specified.16 Thus, instead of focusing exclusively on a fixed

quantile of the forecasted distributions or on the entire distributions themselves, this method

allows the evaluation of VaR models based upon the regions of the distributions that are of most

interest. In this paper, three types of regulatory events are considered, although many are

possible.

The first type of event is whether an observed…t+1 lies in the lower tail of its unconditional

distribution based on past observations, denoted . Specifically, the lowerα percent quantile ofF̂

is determined, and probability forecasts of whether subsequent returns will be less than it areF̂

generated. In mathematical terms, the relevant probability forecasts, conditional on the

information available at time t, are

where is the unconditional quantile of interest.CV(α,F̂ ) � F̂�1(α/100)

The second type of event is a portfolio loss of a fixed magnitude; that is, regulators may

be interested in determining how well a VaR model can forecast a portfolio loss of p percent of yt

over a one-day period. The corresponding probability forecasts generated from model m,
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P m
t � Pr yt�1 < 1�

p
100

yt � Pr yt � …t�1 < 1�
p

100
yt

� Pr …t�1 < �p
100

yt � ‹

�p/100�yt

�Q

f m
t�1(x)dx.

P m
t � Pr yt�1 � y

τ
< �γ(C) � Pr yt � …t�1 � y

τ
< �γ(C)

� Pr …t�1 < �γ(C) � y
τ
� yt � ‹

�γ(C) � y
τ
� yt

�Q

f m
t�1(x)dx.

conditional on the information available at time t, are

The third type of regulatory event corresponds to whether a bank’s capital is sufficient to

cover portfolio losses (in dollar terms) over a certain time period. Suppose an amount of C

dollars is set aside to cover the expected maximum portfolio loss that might occur, relative to Y
τ
,

over the period [t+1, t+T] forτ D t. Capital C is sufficient to cover losses if Yi > Y
τ
�C

To translate this inequality into portfolio returns, the equivalent expression¾ i M [t�1, t�T].

is used, which implies that A regulator may be interested in aYi > Y
τ
e� γ(C) yi > y

τ
�γ(C).

VaR model’s ability to forecast, conditional on the information at time t, whether this capital

level was not sufficient to cover portfolio losses. The corresponding probability forecast

generated from model m is then

Note that this type of event does not depend on how the capital level C is determined; for

example, C may be mandated by the regulators or completely determined by the bank. An

interesting example of the latter case is the “precommitment” approach in which a bank reports C

to the regulator and is penalized if the dollar value of portfolio losses over the following quarter

at any time exceeds C; see Kupiec and O’Brien (1995) for further discussion.

The second way of incorporating regulatory interests into this evaluation method is the

selection of the loss function used to evaluate the probability forecasts. Regulators should select

a loss function that most directly represents their concerns. For example, the quadratic

probability score (QPS), developed by Brier (1950), specifically measures the accuracy of

probability forecasts over time. The QPS is the analog of mean squared error for probability



17 Other scoring rules with different implied loss functions are available; see Murphy and Daan (1985).

18 The scoring rule S is proper if Such scoring rules do notE S P m
t , j G m @ E S pt, j G m º pt£ P m

t .
encourage the “hedging” of reported probability forecasts, but they also do not guard against it completely.
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QPSm �
1
T ˆ

T

t�1
2 P m

t � Rt�1

2
,

E S pt, j G m � P m
t S pt,1 � 1 � P m

t S pt,0 .

forecasts and thus implies a quadratic loss function.17 The QPS for model m over a sample of

size T is

where Rt+1 is an indicator variable that equals one if the specified event occurs and zero

otherwise. Note that QPSm M [0,2] and has a negative orientation such that smaller values

indicate more accurate forecasts. Thus, since accurate VaR models are expected to generate

lower QPS values than inaccurate models, QPSm values closer to zero should indicate the relative

accuracy of the VaR model. The QPS measure is used in this paper because it reflects the

regulator's stated goal of evaluating a bank’s VaR model based on the accuracy of its VaR

estimates.

A key property of the QPS is that it is a strictly proper scoring rule; that is, forecasters

must report their actual probability forecasts to minimize their expected QPS score. To see the

importance of this property for the purpose of regulatory oversight, consider the following

definition. Let be the actual probability forecast generated by a bank’s VaR model, and letP m
t

S(pt, j) denote a scoring rule that assigns a numerical score to a probability forecast pt based on

whether the event occurs (j=1) or not (j=0). The reporting bank’s expected score conditional on

its model is

The scoring rule S is strictly proper if Thus,E S P m
t , j G m < E S pt, j G m ¾ pt§ P m

t .

truthful reporting is explicitly encouraged since the bank receives no benefit from modifying its

actual forecasts.18 This property is obviously important in the case of a regulator evaluating VaR

models that it may not directly observe.

An important drawback of the probability forecast evaluation method is that the

properties of the QPS value for a particular model and specified event cannot be easily
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determined a priori, as opposed to the three aforementioned test statistics whose distributions are

known. Thus, this evaluation method cannot be used, as the other methods, to statistically

classify a VaR model as “acceptably accurate” or “inaccurate” in an absolute sense. Instead, it

can be used to monitor the relative accuracy of a VaR model over time and in relation to other

VaR models, which should be useful information for both model users and regulators. Although

there are challenges to making this method operational, regulators may use this information on

the relative accuracy of VaR models to complement that of the hypothesis-testing methods.

III. Simulation Exercise

The following simulation exercise gauges the ability of the four VaR evaluation methods

to avoid model misclassification. For the three hypothesis-testing methods, this is a direct

analysis of the power of these tests; i.e., determining the probability with which the tests reject

the specified null hypothesis when in fact it is incorrect. If the power of a test is low, then it is

very likely that the corresponding evaluation method will misclassify an inaccurate VaR model

as “acceptably accurate”. With respect to the probability forecast method, its ability to correctly

classify VaR models is gauged by how frequently the QPS value for the true data generating

process is smaller than that of the alternative models. Further analysis of the QPS values using

hypothesis-testing techniques proposed by Diebold and Mariano (1995) permit a power

comparison across the four evaluation methods.

The first step in this simulation exercise is determining what type of portfolio to analyze.

VaR models are designed to be used with typically complicated portfolios that contain a variety

of financial assets, possibly even derivatives. However, for the purposes of this exercise, the

portfolio value in question is simplified to be where Thisyt�1 � yt � …t�1, …t�1 |Ωt ~ ft�1.

specification of yt+1 is representative of linear, deterministic conditional mean specifications. It is

only for portfolios with nonlinear components, such as derivative instruments, that this choice

presents inference problems; further research along these lines, as by Pritsker (1997) and

Berkowitz (1998), is needed.

The simulation exercise is conducted in four distinct, yet interrelated, sections. In the

first two sections, the emphasis is on the shape of the ft+1 distribution. To examine performance



19 Note that this model is often implemented with a finite lag-order. For example, the infinite sum is frequently
truncated at 250 observations, which roughly accounts for 90 percent of the sum of the weights. See Hendricks
(1996) for further discussion on the choice ofλ and the truncation lag. In this paper, no such truncation is imposed,
but of course, one is implied by the overall sample size of the simulated time series.
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h m
t�1(λ) � (1 � λ )ˆ

Q

i�0
λi
…

2
t�i � λh m

t � (1 � λ )…2
t .

under different distributional assumptions, the simulations are conducted by setting ft+1 to the

standard normal distribution and a t-distribution with six degrees of freedom, which has fatter

tails than the standard normal. The next two sections examine the performance of the evaluation

methods in the presence of variance dynamics. Specifically, innovations from a GARCH(1,1)-

normal process and a GARCH(1,1)-t(6) process are used.

In each section, the true data generating process (DGP) is one of the seven VaR models

evaluated and is designated as the true model. Traditional power analysis of a hypothesis test is

conducted by varying a particular parameter and determining whether the corresponding incorrect

null hypothesis is rejected; such changes in parameters generate what are usually known as local

alternatives. However, in this analysis, we examine alternative VaR models that are not all

nested, but are commonly used in practice. Such models are here considered to be reasonable

“local” alternatives, although no definitive metric is used to support this claim. For example, a

popular type of VaR model specifies the variance of , denoted , as an exponentiallyf m
t�1 h m

t�1

weighted, moving average of squared innovations; that is,

This VaR model, a version of which is used in the well-known Riskmetrics calculations (see J.P.

Morgan, 1995), is calibrated here by settingλ equal to 0.97 or 0.99, which imply a high-degree of

persistence in variance.19 A description of the alternative models used in each section of the

simulation exercise follows.

For the first section, the true DGP is the standard normal; i.e., The…t�1 |Ωt ~ N(0,1).

six alternative models examined are normal distributions with variances of 0.5, 0.75, 1.25 and

1.5 as well as the two calibrated VaR models with normal distributions. For the second section,

the true DGP is a t(6) distribution; i.e., The six alternative models are two…t�1 |Ωt ~ t (6).

normal distributions with variances of 1 and 1.5 (the same variance as the true DGP) and the two

calibrated models with normal distributions as well as with t(6) distributions.



20 Note that, in dollar terms, the event of interest is thus whether Yt+1 < Yt
0.99.
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P m
t � Pr yt�1 < 0.99yt � Pr yt�…t�1 < 0.99yt � Pr …t�1 < �0.01yt .

For the latter two sections, variance dynamics are introduced by using conditional

heteroskedasticity of the GARCH form; i.e., which has anht�1 � 0.075 � 0.10…2
t � 0.85ht,

unconditional variance of 1.5. The only difference between the DGP’s in these two sections is

the chosen distributional form. For the third section, and for the fourth…t�1 |Ωt ~ N 0,ht�1 ,

section, The six alternative models examined in these two sections are the…t�1 |Ωt ~ t ht�1,6 .

homoskedastic models of the N(0,1), N(0,1.5) and t(6) distributions and the heteroskedastic

models of the two calibrated models with normal innovations and the GARCH model with the

other distributional form.

In all of the sections, the simulation runs are structured identically. The results are based

on 1000 simulation runs. For each run, the simulated yt+1 series is generated using the chosen

DGP. After 1000 initial observations and 2500 in-sample observations, the seven chosen VaR

models are used to generate the specified one-step-ahead VaR forecasts for the next 500 out-of-

sample observations. In the current regulatory framework, the evaluation period is set at 250

observations, but 500 observations are used here since the distribution forecast and probability

forecast evaluation methods are data-intensive.

The VaR forecasts from the various models are then evaluated using the appropriate

evaluation methods. For the binomial and interval forecast methods, VaR estimates for coverage

levelsα = [1, 5, 10] are examined. For the distribution forecast method, the entire forecasted

distribution is examined, and for the probability forecast method, the three types of regulatory

events previously discussed are examined. Specifically, for the first event, the empirical

distribution function is based on the 2500 in-sample observations, and the desiredα percentF̂

critical values are determined. The probability forecasts of whether the observedCV(α,F̂)

returns in the out-of-sample period will be less than are generated forα =[1, 5, 10], andCV(α,F̂)

in the tables, these simulation results are labeled QPSe1(α). For the second event, a fixed one

percent loss of log portfolio value is set as the one-day decline of interest,20 and probability

forecasts of whether the observed returns exceed that percentage loss are generated as



21 Note that this choice ofγ(C) implies thatC � Y0 1 � Y �0.1
0 .
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P m
t � Pr yt�1�y0 < �γ(C) � Pr yt�…t�1�y0< �0.1y0 � Pr …t�1 < 0.9y0�yt .

S �

dm

σ̂
2
m / T

~ N(0,1),

In the tables, these simulation results are labeled QPSe2.

For the third event,γ(C) is ten percent of the last in-sample log portfolio value denoted

y0; i.e.,γ(C) = 0.1*y0.
21 The choice of ten percent is related to certain regulatory reserve

requirements. Thus, the probability forecast of interest is

In the tables, these simulation results are labeled QPSe3. Note that given the nature of this event

(i.e., whether a stochastic process ever dips below a specified barrier), it is likely the event may

never occur in certain simulations. In such cases, the probability forecasts for all the models are

extremely small and, to insure efficient computer simulation, are rounded down to zero whenever

< 0.0001. However, this adjustment can lead to QPS values exactly equal to zero, whichP m
t

must be accounted for in the analysis of the results. To do so, such zero-value simulation results

are removed from the analysis, and the QPS analysis is based on the smaller number of

simulations. The rationale behind examining these adjusted results is that model accuracy cannot

be examined well if the event in question does not occur. Overall, the inference drawn from this

type of regulatory event will generally be less useful due to the lower frequency of occurrence.

The main object of interest from these simulation results for the probability forecasting

method is the frequency with which the QPS value for the true model is less than that for the

alternative model. If this frequency is high (say, greater than 75%), then this evaluation method

is generally capable of gauging model accuracy and can then be used to monitor the relative

performance of VaR models over time and across models. However, since in current practice

regulators have only one set of forecasts to work with, it is worthwhile to conduct a power

analysis of this method to make it comparable to the other methods. To do so, the differences in

QPS values, denoted are examined using techniquesdm �
2
Tˆ

T

t�1
Ptrue

t �Rt�1

2
� Pm

t �Rt�1

2
,

proposed by Diebold and Mariano (1995). Specifically, the null hypothesis that is testeddm A 0

using the statistic
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where is an estimate of the sample variance that is robust to possible time-dependentσ̂
2
m

heteroskedasticity. (Note that to test this hypothesis, the differences in QPS values must be

covariance stationary, a condition determined empirically for this exercise.)

IV. Simulation Results

The simulation results are organized below with respect to the four sections of the

exercise. Three general points can be made regarding the results. First, the power of the

hypothesis-testing methods against the incorrect null hypotheses implied by the alternative VaR

models varies considerably. In some cases, the power of the tests is high (greater than 75%), but

in the majority of the cases examined, the power is poor (less than 50%) to moderate (between

50% and 75%). The results indicate that these evaluation methods are thus quite likely to

misclassify inaccurate models as “acceptably accurate”.

Second, the probability forecast method seems capable of gauging the accuracy of

alternative VaR models relative to the true DGP. In pairwise comparisons between the true

model and an alternative model, the QPS value for the true model is lower than that for the

alternative model in the majority of the cases examined. However, further analysis of this

method’s power indicates that this performance is not superior to that of the three hypothesis-

testing methods in all cases. Even though the proposed method is only as capable of

differentiating between VaR models as the other methods, its ability to directly incorporate

regulatory loss functions into model evaluations make it a useful complement to the statistical

methods currently used in the regulatory evaluation of VaR models.

Third, for the cases in which variance dynamics are introduced, all four evaluation

methods generally seem more sensitive to misspecifications of the distributional form than to

misspecifications of the variance dynamics. That is, the four methods seem more capable of

correctly classifying as inaccurate VaR models with correct variance dynamics and incorrect

distributional shape than models with incorrect variance dynamics and correct distributional

shape. Thus, these evaluation methods are likely to allow regulators to more readily detect when

banks are using inappropriate distributional assumptions in their VaR models. Further
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simulation work must be conducted to determine the robustness of this result.

As previously mentioned, an important issue in examining the simulation results for the

statistical evaluation methods is the finite-sample size of the underlying hypothesis tests. Table 1

presents the finite-sample critical values for the three statistics examined in this paper. For the

two LR tests, the quantiles corresponding to the asymptotic critical values under the finite-

sample distribution are also presented. The finite-sample critical values are based on 10,000

simulations of sample size T = 500 and the correspondingα. Although discrepancies are clearly

present, the differences are small. The finite-sample critical values in Table 1 are used in the

power analysis that follows. The critical values for the Kupier statistic are based on 1000

simulations of sample size T = 500. Note that the critical values used with respect to the

Diebold-Mariano statistics are the asymptotic normal ones since the finite-sample power

properties of the normal distribution for T = 500 should be very close to the asymptotic ones.

A. Simulation results for the homoskedastic standard normal data generating process

Table 2, Panel A presents the power analysis of the three hypothesis-testing methods for a

fixed test size of 5%. For the homoskedastic alternative models in the first four columns, the

power results vary considerably. The power of the tests is highest for the N(0,0.5) and N(0,1.5)

models that are the furthest away in variance from the true N(0,1) model. However, as this

difference is diminished for the N(0,0.75) and N(0,1.25) models, the power results drop

considerably, although the K test retains moderately high power. For all three tests, asymmetry

arises across these alternatives; that is, the tests have relatively more power against the

alternatives with lower variances than against those with higher variances. The reason for this

seems to be that draws from the true DGP exceed the VaR estimates of the lower variance

models more frequently and thus lead to a higher rejection rate of the false null hypothesis. With

respect to the calibrated heteroskedastic models in the last two columns, the three tests have no

power, due to the fact that, even though heteroskedasticity is introduced, these models and their

associated empirical quantiles are quite similar to the true DGP.

Table 2, Panel B contains the five sets of comparative accuracy results for the probability

forecast method. Each row presents, for each defined regulatory event, the percentage of
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simulations for which the true model's QPS value is lower than that of the alternative model. In

most cases, these results indicate that the QPS value for the true model is lower a high percentage

of the time. Specifically, the homoskedastic alternatives are clearly found to be inaccurate with

respect to the true model, and the heteroskedastic alternatives only slightly less so. Note that, as

expected, the adjusted results for the third event are less sharp than for the other events, mainly

due to its lower frequency of occurrence. To conduct a comparable power analysis, Panel C

presents the percentage of simulations for which the null hypothesis that is correctlydm A 0

rejected at the five percent level. Using this stricter criteria, this method’s power is comparable

to that of the other three methods. Overall, however, this method does seem to provide

information on the relative accuracy of VaR models for this simple DGP.

B. Simulation results for the homoskedastic t(6) data generating process

Table 3, Panel A presents the power analysis of the hypothesis-testing methods. Overall,

the power results are poor for the two sets of LR tests. In the majority of cases, the alternative

models are incorrectly classified as “acceptably accurate” a large percentage of the time. With

respect to the homoskedastic models, both LR tests generally exhibit moderate to high power

against the N(0,1) model at low values ofα, but poor results for the N(0,1.5) model, which has

the same variance as the true DGP. The results for the K test are basically indistinguishable and

moderate across these two models. With respect to the heteroskedastic models in the last four

columns, the power of the LR tests against these alternatives is generally low with differences

between the sets of normal and t(6) alternatives occurring at high values ofα. However, the K

test clearly has more power over the models based on the t(6) distribution mainly because the

incorrect variance dynamics create conditional t(6) distributions much more different from the

true DGP than the conditional normal distributions.

Table 3, Panel B contains the comparative accuracy results for the probability forecast

method. Overall, the results indicate that a moderate to high percentage of the simulations have

QPS values for the alternative models that are greater than those of the true model. With respect

to the homoskedastic models, the QPS values for the N(0,1) model are more frequently higher

than the true model than for the N(0,1.5) model, which has the same unconditional variance as
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the true model. With respect to the heteroskedastic models, the two models based on the t(6)

distribution are more clearly classified as inaccurate than the two normal models, as in Panel A.

Note that, as expected, the adjusted results for the third event are less sharp than for the other

events due to its lower frequency of occurrence, except for calibrated models with the t-

distribution. The power results presented in Panel C mirror these results and are generally low to

moderate, as are those in Panel A.

C. Simulation results for the GARCH(1,1)-normal data generating process

As presented in Table 4, Panel A, the power results of the hypothesis-testing methods

seem to be closely linked to the differences between distributional assumptions. With respect to

the heteroskedastic models, these tests have low power against the calibrated VaR models based

on the normal distribution, since these smoothed variances are similar to the GARCH variances

of the true DGP. However, the results for the GARCH-t(6) model vary greatly according toα.

Both LR statistics have high power at lowα, while at higherα and for the K statistical tests, the

tests have low to moderate power. These results indicate that these tests have little power against

alternative models characterized by close approximations of the true variance dynamics but have

better power with respect to models with incorrect distributional assumptions, especially further

into the tails. With respect to the homoskedastic VaR models, these methods are generally able

to differentiate between the N(0,1) and t(6) models. However, the tests have little power against

the N(0,1.5) model, which matches the true model’s unconditional variance.

Overall, the results in Table 4, Panel B indicate that the probability forecast method is

generally capable of differentiating between the true and the alternative VaR models. With

respect to the homoskedastic models, the loss functions are minimized for the true model a high

percentage of the time in all, but the third, regulatory events. For the heteroskedastic models, this

method most clearly classifies the GARCH-t(6) model as inaccurate, even though it has the

exactly correct variance dynamics. The two calibrated normal models are only moderately

classified as inaccurate. Note, again, that the adjusted results for the third event are not as clear

due to its less frequent occurrence. As before, the power results presented in Panel C are poor to

moderate and generally in line with the other three methods, although the differences across
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models are not as marked as in Panel A. These results further indicate that deviations from the

true distributional form have a greater impact than misspecification of the variance dynamics.

D. Simulation results for the GARCH(1,1)-t(6) data-generating process

Table 5, Panel A presents the power analysis of the hypothesis-testing methods. The

power results are again linked to the distributional assumptions used, as shown in the columns

for the calibrated models. Unlike in Table 4, Panel A where their distributional assumption was

correct and low power was exhibited, here the distributional assumption is incorrect and much

improved power is exhibited. Thus, the misspecification of the distributional form has a

significant impact on the power of these tests. However, the overall power results are still

relatively poor for the three heteroskedastic models, with high power only for LRuc(1), where the

differences in distributional form are most pronounced. The K test also has low power against

these alternative models. With respect to the homoskedastic models in the first three columns,

all three tests have high power; i.e., misclassification is not likely.

Table 5, Panel B again indicates that the probability forecast method is capable of

differentiating between the true and the alternative models. The comparative results for the first

regulatory event withα=1 are poor, due to the fact that the empirical values wereCV(α,F̂ )

generally so negative as to cause very few observations of the event. The results for the other

events are much better. With respect to the homoskedastic alternatives in the first three columns,

this method is able to correctly classify the alternative models a very high percentage of the time,

indicating that incorrect variance dynamics can also be detected using this evaluation method.

With respect to the three heteroskedastic alternatives, the calibrated normal models are found to

generate higher QPS values a large percentage of the time, certainly higher than the GARCH-

normal model that captures the dynamics correctly. Again, Panel C indicates that the power of

this method against these alternative models is roughly comparable to that of the other three

methods. Overall, these results indicate that although approximating or exactly capturing the

variance dynamics can lead to a reduction in misclassification, distributional assumptions seem

to be the dominant factor in differentiating between VaR models.
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V. Conclusion

Given the increasing importance of VaR models for bank risk management and especially

for regulatory capital requirements, evaluating their forecast accuracy has become a necessity.

This paper examines four methods for conducting such evaluations. The evaluation methods

proposed to date are based on hypothesis tests; that is, they test the null hypothesis that the VaR

forecasts from a model exhibit properties characteristic of accurate VaR forecasts. If these

properties are not present, then the null hypothesis of model accuracy can be rejected at the

specified significance level. Although such a framework provides insight, it hinges on the tests’

statistical power. As discussed by Kupiec (1995) and as shown in the simulation results above,

these tests can have low power against many reasonable alternative models and thus can lead to a

high degree of model misclassification. Furthermore, for the linear portfolios examined, it seems

that these evaluation methods are more sensitive to misspecifications of the distributional shape

than of the variance dynamics. Further research on nonlinear portfolio returns is needed.

An alternative and complementary evaluation method, based on probability forecasts, is

proposed and examined here. By relying on standard forecast evaluation techniques, this

evaluation method gauges the relative accuracy of VaR models by how well they minimize a loss

function tailored to the user’s interests; in this case, the interests of bank regulators. The

simulation results indicate that this method can generally distinguish between VaR models; that

is, the specified QPS score for the true model is found to be lower than that of the alternative

models a high percentage of the time. However, further analysis using hypothesis-testing

techniques that permit a power comparison across all four methods indicates that its power can

be quite low and generally in line with that of the other three methods. Thus, even though the

proposed method is only as capable of differentiating between VaR models as the other methods,

its ability to directly incorporate regulatory loss functions into model evaluations make it a useful

complement to the statistical methods currently used in the regulatory evaluation of VaR models.
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Figure 1
GARCH(1,1)-Normal Process with One-Step-Ahead

Lower 5% Conditional and Unconditional Interval Forecasts

This figure graphs a realization of 500 portfolio returns from a GARCH(1,1)-normal data-
generating process along with two sets of lower five percent interval forecasts. The variance
dynamics are characterized as which imply an unconditionalht�1 � 0.075 � 0.10…2

t � 0.85ht,
variance of 1.5. The straight line is the unconditional interval forecasts based on the
unconditional N(0,1½) distribution, and the jagged line is the conditional interval forecasts based
on the true data-generating process. Although both exhibit correct unconditional coverage with
25 exceptions (that is,α* = α = 5%), only the conditional confidence intervals exhibit correct
conditional coverage or, in other words, provide 5% coverage at each point in time.



28

Table 1. Finite-Sample Critical Values for LRuc(α), LRcc(α) and K Test Statistics

1% 5% 10%

Asymptoticχ2(1) 6.635 3.842 2.706

LRuc(1) 7.111 4.813 2.613
(1.2%) (7.5%) (7.5%)

LRuc(5) 7.299 3.888 3.022
(1.2%) (6.3%) (11.5%)

LRuc(10) 7.210 4.090 2.887
(1.3%) (6.2%) (11.4%)

Asymptoticχ2(2) 9.210 5.992 4.605

LRcc(1) 9.701 4.801 4.117
(1.1%) (1.8%) (7.0%)

LRcc(5) 9.093 5.773 4.431
(1.0%) (4.7%) (9.9%)

LRcc(10) 9.983 6.237 4.725
(1.9%) (5.5%) (11.3%)

K 0.0800 0.0700 0.0640

The finite-sample critical values for the LRuc(α) and LRcc(α) test statistics are based on 10,000 simulations
of sample size T = 500. The percentages in parentheses are the quantiles that correspond to the listed asymptotic
critical values under the finite-sample distributions. The finite-sample critical values for the K test statistic are
based on 1,000 simulations of sample size T = 500.
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Table 2.
Simulation Results for the Homoskedastic Standard Normal DGP (Units: percent)

Model
N(0,½) N(0,¾) N(0,1¼) N(0,1½) Nλ(97) Nλ(99)

Panel A. Power of the LRuc(α), LRcc(α) and K Tests Against Alternative VaR Modelsa

LRuc(1) 99.9 54.6 32.3 70.0 3.3 6.5

LRuc(5) 99.9 68.3 51.5 94.2 2.7 9.2

LRuc(10) 99.9 61.5 47.4 93.1 2.3 7.3

LRcc(1) 99.9 56.6 33.2 70.4 4.2 8.0

LRcc(5) 99.9 64.3 40.3 89.3 3.2 9.4

LRcc(10) 99.8 53.0 36.5 86.5 3.2 6.8

K 100 87.7 60.6 99.3 1.6 2.3

Panel B. Accuracy of VaR Models Using the Probability Forecast Methodb

QPSe1(1) 86.4 76.5 83.1 97.2 78.3 66.1

QPSe1(5) 98.9 84.4 82.5 97.9 80.5 74.3

QPSe1(10) 99.6 89.5 82.9 95.3 81.2 76.6

QPSe2 94.0 78.0 64.1 72.7 67.5 68.6

QPSe3c 57.6 48.5 66.4 73.6 60.1 60.2

Panel C. Power of the Probability Forecast Method Using the Diebold-Mariano Testa

QPSe1(1) 42.8 30.3 52.3 75.0 50.6 39.7

QPSe1(5) 84.2 48.3 51.2 71.1 37.5 34.8

QPSe1(10) 89.1 55.7 34.6 64.6 45.8 35.3

QPSe2 64.6 47.3 38.6 43.9 37.1 31.3

QPSe3c 26.1 13.9 44.4 47.5 25.0 23.8
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Notes for Table 2

Table 2 contains the simulation results for the homoskedastic standard normal DGP; that is,
The alternative models are normal distributions with variances of 0.5, 0.75, 1.25 and 1.5…t�1 |Ωt ~ N(0,1).

(denoted N(0,½), N(0,¾), N(0,1¼) and N(0,1½), respectively) and normal distributions whose variances are
exponentially weighted averages of the squared innovations calibrated usingλ = 0.97 andλ = 0.99 (denoted Nλ(97)
and Nλ(99), respectively). The results are based on 1000 simulations.

Panel A presents the percentage of simulations for which the null hypothesis corresponding to each row is
rejected with the test size set at the five percent level. If a test exhibits power against an alternative model, then this
percentage should be high. The LRuc(α) rows correspond to the binomial method and examine the null hypothesis
that the VaR estimates have correct unconditional coverage at theα percent level. The LRcc(α) rows correspond to
the interval forecast method and examine the null hypothesis that the VaR estimates have correct conditional
coverage at theα percent level. The K row corresponds to the distribution forecast method and examines the null
hypothesis that the observed quantiles are uniformly distributed.

Panel B presents the percentage of simulations for which the QPS value for the true DGP is less than that
of the alternative VaR model. If this method is capable of distinguishing between the true DGP and an alternative
model, then this percentage should be high. The QPSe1(α) rows correspond to the QPS values for the probability
forecasts where is theα percent quantile of the empirical cumulativeP m

t � Pr …t�1 < CV α,F̂ , CV α,F̂
distribution function The QPSe2 row corresponds to the QPS values for the probability forecastsF̂.

The QPSe3 row corresponds to the QPS values for the probabilityP m
t � Pr yt�1 < 0.99yt .

forecasts where -γ(C) is the rate of return that would reduce Y0 to the selected capitalP m
t � Pr yt�1�y0 < �γ(C) ,

level C.
Panel C presents the percentage of simulations for which the null hypothesis that the QPS value for the true

DGP is greater than or equal to that of the alternative model is rejected at the five percent level. If a test exhibits
power against an alternative model, then this percentage should be high.

a The size of the tests is set at five percent.
b Each row represents the percentage of simulations for which the alternative model had a higher QPS value than

the true DGP.
c The QPSe3 row has removed from it the simulations for which the QPS value of the true DGP for the third event

is rounded down to zero; i.e., 23.1% of the simulations.



31

Table 3.
Simulation Results for the Homoskedastic t(6) DGP (Units: percent)

Model
N(0,½) N(0,1) Nλ(97) Nλ(99) tλ(97) tλ(99)

Panel A. Power of the LRuc(α), LRcc(α) and K Tests Against Alternative VaR Modelsa

LRuc(1) 13.0 86.9 19.6 25.3 21.2 18.1

LRuc(5) 11.5 62.1 3.8 3.1 68.1 52.7

LRuc(10) 25.7 35.5 13.9 8.0 73.9 60.0

LRcc(1) 14.8 89.4 20.7 15.8 26.0 33.1

LRcc(5) 6.1 58.2 2.3 3.7 51.0 62.9

LRcc(10) 17.3 29.9 8.7 14.0 61.2 70.9

K 69.5 49.8 57.0 64.4 97.6 98.7

Panel B. Accuracy of VaR Models Using the Probability Forecast Methodb

QPSe1(1) 68.1 84.9 79.1 76.6 96.3 91.0

QPSe1(5) 64.5 88.4 90.5 79.0 98.2 95.2

QPSe1(10) 76.6 79.2 90.0 80.9 97.2 94.2

QPSe2 71.7 76.2 79.7 80.4 84.0 84.1

QPSe3c 52.3 48.5 55.1 55.9 74.3 73.1

Panel C. Power of the Probability Forecast Method Using the Diebold-Mariano Testa

QPSe1(1) 26.0 40.6 37.9 30.9 73.2 67.1

QPSe1(5) 19.6 51.4 50.0 39.0 76.1 67.6

QPSe1(10) 41.4 43.1 63.3 42.2 65.3 69.0

QPSe2 30.6 18.0 44.2 39.6 47.1 47.3

QPSe3c 32.4 18.2 31.6 25.7 40.4 42.6
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Notes for Table 3

Table 3 contains the simulation results for the homoskedastic t(6) DGP; that is, The…t�1 |Ωt ~ t(6).
alternative models are normal distributions with variances of 0.5 and 1 (denoted N(0,½) and N(0,1), respectively);
normal distributions whose variances are exponentially weighted averages of the squared innovations calibrated
usingλ = 0.97 andλ = 0.99 (denoted Nλ(97) and Nλ(99), respectively); and t(6) distributions with the same
calibrated variances (denoted tλ(97) and tλ(99), respectively). The results are based on 1000 simulations.

Panel A presents the percentage of simulations for which the null hypothesis corresponding to each row is
rejected with the test size set at the five percent level. If a test exhibits power against an alternative model, then this
percentage should be high. The LRuc(α) rows correspond to the binomial method and examine the null hypothesis
that the VaR estimates have correct unconditional coverage at theα percent level. The LRcc(α) rows correspond to
the interval forecast method and examine the null hypothesis that the VaR estimates have correct conditional
coverage at theα percent level. The K row corresponds to the distribution forecast method and examines the null
hypothesis that the observed quantiles are uniformly distributed.

Panel B presents the percentage of simulations for which the QPS value for the true DGP is less than that
of the alternative VaR model. If this method is capable of distinguishing between the true DGP and an alternative
model, then this percentage should be high. The QPSe1(α) rows correspond to the QPS values for the probability
forecasts where is theα percent quantile of the empirical cumulativeP m

t � Pr …t�1 < CV α,F̂ , CV α,F̂
distribution function The QPSe2 row corresponds to the QPS values for the probability forecastsF̂.

The QPSe3 row corresponds to the QPS values for the probabilityP m
t � Pr yt�1 < 0.99yt .

forecasts where -γ(C) is the rate of return that would reduce Y0 to the selected capitalP m
t � Pr yt�1�y0 < �γ(C) ,

level C.
Panel C presents the percentage of simulations for which the null hypothesis that the QPS value for the true

DGP is greater than or equal to that of the alternative model is rejected at the five percent level. If a test exhibits
power against an alternative model, then this percentage should be high.

a The size of the tests is set at five percent.
b Each row represents the percentage of simulations for which the alternative model had a higher QPS value than

the true DGP.
c The QPSe3 row has removed from it the simulations for which the QPS value of the true DGP for the third event

is rounded down to zero; i.e., 11.8% of the simulations.
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Table 4.
Simulation Results for the GARCH(1,1)-Normal DGP (Units: percent)

Model
N(0,1½) N(0,1) t(6) Nλ(97) Nλ(99) GARCH-t

Panel A. Power of the LRuc(α), LRcc(α) and K Tests Against Alternative VaR Modelsa

LRuc(1) 22.7 73.9 71.3 4.3 4.8 91.6

LRuc(5) 30.7 73.9 72.0 5.4 6.0 81.7

LRuc(10) 29.0 65.7 60.3 5.2 5.7 50.0

LRcc(1) 29.3 77.2 72.8 6.1 10.9 91.6

LRcc(5) 33.5 73.5 71.1 7.2 12.4 72.9

LRcc(10) 29.8 63.6 60.6 6.6 11.2 39.0

K 38.6 80.6 67.6 5.5 5.4 50.5

Panel B. Accuracy of VaR Models Using the Probability Forecast Methodb

QPSe1(1) 60.7 66.8 79.2 50.1 51.0 93.0

QPSe1(5) 89.0 92.1 86.4 64.0 66.5 88.8

QPSe1(10) 88.9 93.3 89.9 61.6 66.1 77.1

QPSe2 82.7 85.2 85.1 60.4 63.7 64.1

QPSe3c 57.3 49.7 60.1 53.1 52.8 73.1

Panel C. Power of the Probability Forecast Method Using the Diebold-Mariano Testa

QPSe1(1) 32.9 38.4 50.6 33.8 37.1 56.5

QPSe1(5) 60.0 64.5 56.5 46.4 52.7 60.8

QPSe1(10) 65.3 66.0 63.0 53.2 61.5 53.9

QPSe2 50.6 65.9 54.4 35.1 47.4 35.0

QPSe3c 24.1 22.7 28.6 23.9 27.3 55.1
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Notes for Table 4

Table 4 contains the simulation results for the heteroskedastic GARCH(1,1)-normal DGP; that is,
where The alternative models are normal distributions…t�1 |Ωt ~ N 0,ht�1 , ht�1 � 0.075� 0.10…2

t � 0.85ht.

with variances of 1.5 and 1 (denoted N(0,1½) and N(0,1), respectively); a t-distribution with 6 degrees of freedom
(denoted t(6)); normal distributions whose variances are exponentially weighted averages of the squared innovations
calibrated usingλ = 0.97 andλ = 0.99 (denoted Nλ(97) and Nλ(99), respectively); and a GARCH(1,1) process with
the same variance dynamics as the DGP and a t(6) distribution (denoted GARCH-t). The results are based on 1000
simulations.

Panel A presents the percentage of simulations for which the null hypothesis corresponding to each row is
rejected with the test size set at the five percent level. If a test exhibits power against an alternative model, then this
percentage should be high. The LRuc(α) rows correspond to the binomial method and examine the null hypothesis
that the VaR estimates have correct unconditional coverage at theα percent level. The LRcc(α) rows correspond to
the interval forecast method and examine the null hypothesis that the VaR estimates have correct conditional
coverage at theα percent level. The K row corresponds to the distribution forecast method and examines the null
hypothesis that the observed quantiles are uniformly distributed.

Panel B presents the percentage of simulations for which the QPS value for the true DGP is less than that
of the alternative VaR model. If this method is capable of distinguishing between the true DGP and an alternative
model, then this percentage should be high. The QPSe1(α) rows correspond to the QPS values for the probability
forecasts where is theα percent quantile of the empirical cumulativeP m

t � Pr …t�1 < CV α,F̂ , CV α,F̂
distribution function The QPSe2 row corresponds to the QPS values for the probability forecastsF̂.

The QPSe3 row corresponds to the QPS values for the probabilityP m
t � Pr yt�1 < 0.99yt .

forecasts where -γ(C) is the rate of return that would reduce Y0 to the selected capitalP m
t � Pr yt�1�y0 < �γ(C) ,

level C.
Panel C presents the percentage of simulations for which the null hypothesis that the QPS value for the true

DGP is greater than or equal to that of the alternative model is rejected at the five percent level. If a test exhibits
power against an alternative model, then this percentage should be high.

a The size of the tests is set at five percent.
b Each row represents the percentage of simulations for which the alternative model had a higher QPS value than

the true DGP.
c The QPSe3 row has removed from it the simulations for which the QPS value of the true DGP for the third event

is rounded down to zero; i.e., 19% of the simulations.
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Table 5.
Simulation Results for the GARCH(1,1)-t(6) DGP (Units: percent)

Model
N(0,1½) N(0,1) t(6) Nλ(97) Nλ(99) GARCH-N

Panel A. Power of the LRuc(α), LRcc(α) and K Tests Against Alternative VaR Modelsa

LRuc(1) 60.8 100.0 96.4 85.8 87.1 86.5

LRuc(5) 75.5 100.0 96.9 60.3 63.2 62.1

LRuc(10) 80.4 100.0 96.0 36.8 38.5 39.3

LRcc(1) 87.5 99.8 96.8 35.1 46.1 87.6

LRcc(5) 99.5 100.0 96.9 12.8 36.7 58.4

LRcc(10) 98.9 100.0 95.9 27.4 56.0 27.4

K 98.7 100.0 98.2 45.4 49.6 50.6

Panel B. Accuracy of VaR Models Using the Probability Forecast Methodb

QPSe1(1) 60.7 49.3 49.3 46.3 46.7 41.7

QPSe1(5) 99.6 91.8 90.8 84.2 84.0 69.9

QPSe1(10) 100.0 98.6 98.2 90.4 90.6 76.4

QPSe2 93.2 96.2 95.6 82.8 83.0 69.9

QPSe3c 63.0 66.5 64.1 55.6 55.5 45.7

Panel C. Power of the Probability Forecast Method Using the Diebold-Mariano Testa

QPSe1(1) 34.9 34.9 33.9 37.5 34.9 62.7

QPSe1(5) 81.1 81.1 52.8 76.6 80.0 26.7

QPSe1(10) 95.0 95.0 62.5 85.7 94.1 5.3

QPSe2 88.8 91.9 47.3 81.7 90.7 9.7

QPSe3c 47.5 43.1 50.0 59.3 48.5 42.6
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Notes for Table 5

Table 5 contains the simulation results for the heteroskedastic GARCH(1,1)-t(6) DGP; that is,
where The alternative models are normal distributions with…t�1 |Ωt ~ t ht�1,6 , ht�1 � 0.075� 0.10…2

t � 0.85ht.

variances of 1.5 and 1 (denoted N(0,1½) and N(0,1), respectively); a t-distribution with 6 degrees of freedom
(denoted t(6)); normal distributions whose variances are exponentially weighted averages of the squared innovations
calibrated usingλ = 0.97 andλ = 0.99 (denoted Nλ(97) and Nλ(99), respectively); and a GARCH(1,1) process with
the same variance dynamics as the DGP and a normal distribution (denoted GARCH-N). The results are based on
1000 simulations.

Panel A presents the percentage of simulations for which the null hypothesis corresponding to each row is
rejected with the test size set at the five percent level. If a test exhibits power against an alternative model, then this
percentage should be high. The LRuc(α) rows correspond to the binomial method and examine the null hypothesis
that the VaR estimates have correct unconditional coverage at theα percent level. The LRcc(α) rows correspond to
the interval forecast method and examine the null hypothesis that the VaR estimates have correct conditional
coverage at theα percent level. The K row corresponds to the distribution forecast method and examines the null
hypothesis that the observed quantiles are uniformly distributed.

Panel B presents the percentage of simulations for which the QPS value for the true DGP is less than that
of the alternative VaR model. If this method is capable of distinguishing between the true DGP and an alternative
model, then this percentage should be high. The QPSe1(α) rows correspond to the QPS values for the probability
forecasts where is theα percent quantile of the empirical cumulativeP m

t � Pr …t�1 < CV α,F̂ , CV α,F̂
distribution function The QPSe2 row corresponds to the QPS values for the probability forecastsF̂.

The QPSe3 row corresponds to the QPS values for the probabilityP m
t � Pr yt�1 < 0.99yt .

forecasts where -γ(C) is the rate of return that would reduce Y0 to the selected capitalP m
t � Pr yt�1�y0 < �γ(C) ,

level C.
Panel C presents the percentage of simulations for which the null hypothesis that the QPS value for the true

DGP is greater than or equal to that of the alternative model is rejected at the five percent level. If a test exhibits
power against an alternative model, then this percentage should be high.

a The size of the tests is set at five percent.
b Each row represents the percentage of simulations for which the alternative model had a higher QPS value than

the true DGP.
c The QPSe3 row has removed from it the simulations for which the QPS value of the true DGP for the third event

is rounded down to zero; i.e., 6% of the simulations.


