Optimal Policy Rules in HANK

Alisdair McKay Christian Wolf
FRB Minneapolis MIT & NBER

March 2023

The views expressed here are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
Inequality & stabilization policy

Does \textit{inequality} change optimal \textit{stabilization policy}? If so, how?

- Recently: increased policy interest & fast-growing academic literature.
 E.g.: Bhandari et al. (2021), Acharya et al. (2022), LeGrand et al. (2022), Davila-Schaab (2023), …

 a) \textbf{Transmission}: how do instruments affect any given target? (e.g., output & inflation)

 b) \textbf{Objectives}: desire to dampen distributional effects of business cycle
Inequality & stabilization policy

Does inequality change optimal stabilization policy? If so, how?

- Recently: increased policy interest & fast-growing academic literature.
 E.g.: Bhandari et al. (2021), Acharya et al. (2022), LeGrand et al. (2022), Davila-Schaab (2023), ...

 a) Transmission: how do instruments affect any given target? (e.g., output & inflation)
 b) Objectives: desire to dampen distributional effects of business cycle

- This paper: linear-quadratic approximation to HANK model

 o Derive optimal policy rules as forecast target criteria, applicable for all shocks
 o Main benefits of our approach:
 1. Separate role of inequality through transmission vs. objectives
 2. Sufficient statistics for optimal rules
Main results

a) **Dual mandate** \[\mathcal{L} = E_0 \sum_{t=0}^{\infty} \beta^t \{ \lambda \pi \hat{\pi}^2_t + \lambda y \hat{y}_t^2 \} \]

- Find same rule as in RANK. Optimal \(\{y, \pi\} \) paths are unaffected by inequality.

b) **Ramsey policy** \[\mathcal{L} = E_0 \sum_{t=0}^{\infty} \beta^t \{ \lambda \pi \hat{\pi}^2_t + \lambda y \hat{y}_t^2 \} \]

- Find: implications of inequality for opt. policy depend on distributional incidence of policy
 - E.g.: MP is progressive in Bhandari et al. (2022) vs. distributionally neutral in Werning (2015).
- Our strategy: infer distributional incidence from rich quantitative model.
 - (i) Monetary policy is close to neutral w.r.t. distribution. \(\Rightarrow \) Optimal policy close to dual-mandate policy.
 - (ii) Stimulus checks have strong distributional effects. \(\Rightarrow \) Complementary to monetary policy.
Main results

a) **Dual mandate** \[\mathcal{L} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \{ \lambda_\pi \hat{\pi}_t^2 + \lambda_y \hat{y}_t^2 \} \]

- Find same rule as in RANK. Optimal \(\{y, \pi\} \) paths are unaffected by inequality.

b) **Ramsey policy** \[\mathcal{L} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \{ \lambda_\pi \hat{\pi}_t^2 + \lambda_y \hat{y}_t^2 + \text{inequality term} \} \]

- Find: implications of inequality for opt. policy depend on distributional incidence of policy

 E.g.: MP is progressive in Bhandari et al. (2022) vs. distributionally neutral in Werning (2015).
Main results

a) Dual mandate \[\mathcal{L} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \{ \lambda_\pi \hat{\pi}_t^2 + \lambda_y \hat{y}_t^2 \} \]

- Find same rule as in RANK. Optimal \{y, \pi\} paths are unaffected by inequality.

b) Ramsey policy \[\mathcal{L} = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \{ \lambda_\pi \hat{\pi}_t^2 + \lambda_y \hat{y}_t^2 + \text{inequality term} \} \]

- Find: implications of inequality for opt. policy depend on distributional incidence of policy
 E.g.: MP is progressive in Bhandari et al. (2022) vs. distributionally neutral in Werning (2015).

- Our strategy: infer distributional incidence from rich quantitative model.

 (i) Monetary policy is close to neutral w.r.t. distribution.
 \[\Rightarrow \text{Optimal policy close to dual-mandate policy.} \]

 (ii) Stimulus checks have strong distributional effects.
 \[\Rightarrow \text{Complementary to monetary policy.} \]
Model Environment

• We study perfect foresight transitions.

• Optimal stochastic linear-quadratic regulator features certainty equivalence.
Unit continuum of ex-ante identical households $i \in [0, 1]$

- **Consumption-savings problem**
 - Standard preferences:
 \[
 \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t [u(c_{it}) - \nu(l_{it})]
 \]
 - Idiosyncratic earnings—allows for unequal exposure to business cycle:
 \[e_{it} = \Phi(\zeta_{it}, m_t, e_t), \quad \int_0^1 e_{it} di = e_t\]
 where m_t is an “inequality shock” (= demand shock) & e_t is aggregate labor income
 - Budget constraint [a_{it} is value of portfolio]:
 \[c_{it} + \text{[cost of asset purchases]} = a_{it} + (1 - \tau_y + \tau_{e,t}) e_{it} + \tau_{x,t}, \quad a_{it} \geq a\]
Households

Unit continuum of ex-ante identical households $i \in [0, 1]$

- **Consumption-savings problem**
 - Standard preferences:
 \[
 \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[u(c_{it}) - \nu(l_{it}) \right]
 \]
 - Idiosyncratic earnings—allows for unequal exposure to business cycle:
 \[
 e_{it} = \Phi(\zeta_{it}, m_t, e_t), \quad \int_{0}^{1} e_{it} di = e_t
 \]
 where m_t is an “inequality shock” (= demand shock) & e_t is aggregate labor income
 - Budget constraint [a_{it} is value of portfolio]:
 \[
 c_{it} + \text{[cost of asset purchases]} = a_{it} + (1 - \tau_y + \tau_{e,t})e_{it} + \tau_{x,t}, \quad a_{it} \geq a
 \]

- **Labor supply**: intermediated by labor unions
Production & wage-setting

• Supply side structure
 a) Production
 ◦ Intermediate goods are produced using capital and labor: $y_{jt} = Ak_{jt}^\alpha \ell_{jt}^{1-\alpha}$
 ◦ Subject to nominal rigidities. Pay labor & capital, and earn pure profits. A share $1 - \alpha$ of profits goes to labor. Hard-wiring constant labor share.
 ◦ Aggregate capital is fixed at \bar{k}
Production & wage-setting

- **Supply side structure**

 a) **Production**

 - Intermediate goods are produced using capital and labor: $y_{jt} = A k_{jt}^{\alpha} \ell_{jt}^{1-\alpha}$

 - Subject to nominal rigidities. Pay labor & capital, and earn pure profits. A share $1 - \alpha$ of profits goes to labor. **Hard-wiring constant labor share.**

 - Aggregate capital is fixed at \bar{k}

 b) **Wage-setting**

 - Unions use rep.-agent MRS for wage-setting [= MRS at average, not average MRS]

 - Assume uniform labor rationing—everyone works the same amount

 - Inequality does not affect labor supply
Production & wage-setting

- **Supply side structure**

 a) **Production**

 - Intermediate goods are produced using capital and labor: \(y_{jt} = A k_{jt}^{\alpha} \ell_{jt}^{1-\alpha} \)

 - Subject to nominal rigidities. Pay labor & capital, and earn pure profits. A share \(1 - \alpha \) of profits goes to labor. **Hard-wiring constant labor share.**

 - Aggregate capital is fixed at \(\bar{k} \)

 b) **Wage-setting**

 - Unions use rep.-agent MRS for wage-setting \([= MRS \text{ at average, not average MRS}]\)

 - Assume uniform labor rationing—everyone works the same amount

 - Inequality does not affect labor supply

- **Standard NKPC**: \(\hat{\pi}_t = \kappa \hat{y}_t + \beta \hat{\pi}_{t+1} + \psi \varepsilon_t \), where \(\varepsilon_t \) is a **cost-push shock.**
Households can trade **three assets:**

1. Capital
2. Short-term nominal bonds
3. Long-term nominal bonds [coupons decline geometrically]
Assets

- Households can trade **three assets**:
 1. Capital
 2. Short-term nominal bonds
 3. Long-term nominal bonds [coupons decline geometrically]

- Budget constraint:

 \[c_{it} + \frac{1}{1 + r_t} a_{it+1} = a_{it} + (1 - \tau_y + \tau_{e,t}) e_{it} + \tau_{x,t}, \quad a_{it} \geq a \]

- Don’t need to model **portfolio choice** (all assets pay same return for \(t = 1, 2, \cdots \))

- Only need **existing date-0 portfolios** when asset prices respond to news
 - We will impute these using data on portfolio composition across net worth levels
 Related to approach in Auclert-Rognlie (2020)
Government & eq’m characterization

- Policymaker sets two **policy instruments**
 1. Short-term nominal rate i_t
 2. Uniform lump-sum transfers $\tau_{x,t}$

 Background: taxes/transfers $\tau_{e,t}$ adjust to keep long-term budget balance.

- **Perfect-foresight eq’m** [notation: boldface = time paths]

Equilibrium

Given paths of shocks $\{m_t, \varepsilon_t\}_{t=0}^\infty$ and government policy instruments $\{i_t, \tau_{x,t}\}_{t=0}^\infty$, paths of aggregate output and inflation $\{y_t, \pi_t\}_{t=0}^\infty$ are part of a linearized equilibrium if and only if

$$
\begin{align*}
\hat{\pi} &= \kappa \hat{y} + \beta \hat{\pi}_{t+1} + \psi \hat{\varepsilon} \quad \text{(NKPC)} \\
\hat{y} &= \tilde{C}_y \hat{y} + \tilde{C}_\pi \hat{\pi} + \tilde{C}_i \hat{i} + \tilde{C}_\tau \hat{\tau}_x + C_m \hat{m} \quad \text{(IS*)}
\end{align*}
$$

McKay and Wolf
Dual Mandate
We first study optimal monetary policy for a dual mandate policymaker.

Why? Relevant in practice & allows us to disentangle role of loss function vs. transmission.
Dual mandate optimal policy problem

- We first study optimal monetary policy for a **dual mandate** policymaker
 Why? Relevant in practice & allows us to disentangle role of loss function vs. transmission.

 - **Loss function** [exogenously assumed]
 \[
 \mathcal{L}^{DM} \equiv \sum_{t=0}^{\infty} \beta^t \left[\lambda_{\pi} \hat{\pi}_t^2 + \lambda_y \hat{y}_t^2 \right] = \lambda_{\pi} \hat{\pi}' W \hat{\pi} + \lambda_y \hat{y}' W \hat{y} \tag{1}
 \]
 where \(W = \text{diag}(1, \beta, \beta^2, \ldots) \)
We first study optimal monetary policy for a dual mandate policymaker.

Why? Relevant in practice & allows us to disentangle role of loss function vs. transmission.

- **Loss function** [exogenously assumed]

\[
\mathcal{L}^{DM} \equiv \sum_{t=0}^{\infty} \beta^t \left[\lambda_\pi \hat{\pi}_t^2 + \lambda_y \hat{y}_t^2 \right] = \lambda_\pi \hat{\pi}' W \hat{\pi} + \lambda_y \hat{y}' W \hat{y}
\]

where \(W = \text{diag}(1, \beta, \beta^2, \ldots) \)

- **Constraint set** [follows from eq’m characterization]

\[
\hat{\pi} = \kappa \hat{y} + \beta \hat{\pi}_{t+1} + \psi \epsilon \quad \text{(NKPC)}
\]

\[
\hat{y} = \bar{C}_y \hat{y} + \bar{C}_\pi \hat{\pi} + \bar{C}_i i + \bar{C}_x \hat{\tau}_x + C_m \hat{m} \quad \text{(IS*)}
\]
Sequence-space representation of dual-mandate policy

- FOC for choice of i_t

$$\frac{\partial L^{DM}}{\partial \hat{\pi}} \frac{\partial \hat{\pi}}{\partial i_t} + \frac{\partial L^{DM}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial i_t} = 0$$
Sequence-space representation of dual-mandate policy

- FOC for choice of i_t

\[
(\lambda_\pi W\hat{\pi})' \frac{\partial \hat{\pi}}{\partial i_t} + (\lambda_y W\hat{y})' \frac{\partial \hat{y}}{\partial i_t} = 0
\]

Forecast targeting rule: adjust expected policy path so condition above holds.
Sequence-space representation of dual-mandate policy

- FOC for choice of i_t

\[(\lambda_\pi W\hat{\pi})' \frac{\partial \hat{\pi}}{\partial i_t} + (\lambda_y W\hat{y})' \frac{\partial \hat{y}}{\partial i_t} = 0\]

- Same holds at all dates. Transpose and stack equations for all t:

\[\Theta'_{\pi,i} \lambda_\pi W\hat{\pi} + \Theta'_{y,i} \lambda_y W\hat{y} = 0\]
Sequence-space representation of dual-mandate policy

• FOC for choice of i_t

$$
(\lambda_\pi \hat{W}_\pi)' \frac{\partial \hat{\pi}}{\partial i_t} + (\lambda_y \hat{W}_y)' \frac{\partial \hat{y}}{\partial i_t} = 0
$$

• Same holds at all dates. Transpose and stack equations for all t:

$$
\Theta'_{\pi, i} \lambda_\pi \hat{W}_\pi + \Theta'_{y i} \lambda_y \hat{W}_y = 0
$$

• Forecast targeting rule: adjust expected policy path so condition above holds.
Proposition

The optimal monetary policy rule for a dual mandate policymaker can be written as the forecast target criterion

\[\hat{\pi}_t + \frac{\lambda_y}{\lambda_{\pi} \kappa} (\hat{y}_t - \hat{y}_{t-1}) = 0, \quad \forall t = 0, 1, \ldots \]
Proposition

The optimal monetary policy rule for a dual mandate policymaker can be written as the **forecast target criterion**

\[\hat{\pi}_t + \frac{\lambda_y}{\lambda_{\pi} \kappa} (\hat{y}_t - \hat{y}_{t-1}) = 0, \quad \forall t = 0, 1, \ldots \]

(2)

- **Same target criterion as in RANK model**

 - Inequality does not affect *optimal* \(\{y, \pi\} \) paths in response to *any* non-policy shock

 - Demand block only matters *residually* for sequence of interest rates needed to achieve the optimal \(\{y, \pi\} \) paths?
Ramsey Problem
We consider a **social welfare function** with Pareto weights

\[
\mathcal{V}^{HA} = \sum_{t=0}^{\infty} \beta^t \int \varphi(\zeta) \left[u(\omega_t(\zeta) c_t) - \nu(l_t) \right] d\Gamma(\zeta)
\]

(3)

- \(\zeta\) is the idiosyncratic history of a household, \(\varphi(\zeta)\) is a Pareto weight on the utility of households with history \(\zeta\), and \(\omega_t(\zeta)\) is the time-\(t\) consumption share of such households.
We consider a social welfare function with Pareto weights

\[V^{HA} = \sum_{t=0}^{\infty} \beta^t \int \varphi(\zeta) \left[u(\omega_t(\zeta) c_t) - \nu(\ell_t) \right] d\Gamma(\zeta) \]

\(\zeta \) is the idiosyncratic history of a household, \(\varphi(\zeta) \) is a Pareto weight on the utility of households with history \(\zeta \), and \(\omega_t(\zeta) \) is the time-\(t \) consumption share of such households.

Objective: evaluate (3) to second-order using first-order approximation of eq’m
We consider a social welfare function with Pareto weights

\[
V^{HA} = \sum_{t=0}^{\infty} \beta^t \int \varphi(\zeta) \left[u(\omega_t(\zeta) c_t) - \nu(\ell_t) \right] d\Gamma(\zeta) \tag{3}
\]

- \(\zeta\) is the idiosyncratic history of a household, \(\varphi(\zeta)\) is a Pareto weight on the utility of households with history \(\zeta\), and \(\omega_t(\zeta)\) is the time-\(t\) consumption share of such households

Objective: evaluate (3) to second-order using first-order approximation of eq’m

Our approach: ensure efficient steady state [as in Woodford (2003)]

- Assumptions: production subsidy + back out weights \(\varphi(\zeta)\)
- Our SWF will capture cyclical insurance motive, not long-run redistribution
Full Ramsey problem

The problem then fits into **linear-quadratic form**:

- **Loss function**: to second order, social welfare function \mathcal{V}^{HA} is proportional to $-\mathcal{L}^{HA}$

 \[
 \mathcal{L}^{HA} = \sum_{t=0}^{\infty} \beta^t \left[\lambda_{\pi} \hat{\pi}_t^2 + \lambda_y \hat{y}_t^2 + \int \lambda_{\omega(\zeta)} \hat{\omega}_t(\zeta)^2 d\Gamma(\zeta) \right]
 \]

 inequality term

 \[
 = \lambda_{\pi} \hat{\pi}'W\hat{\pi} + \lambda_y \hat{y}'W\hat{y} + \int \lambda_{\omega(\zeta)} \hat{\omega}(\zeta)'W\hat{\omega}(\zeta) d\Gamma(\zeta)
 \]
The problem then fits into **linear-quadratic form**:

- **Loss function**: to second order, social welfare function V^{HA} is proportional to $-\mathcal{L}^{HA}$

\[
\mathcal{L}^{HA} = \sum_{t=0}^{\infty} \beta^t \left[\lambda_\pi \hat{\pi}_t^2 + \lambda_y \hat{y}_t^2 + \int \lambda_\omega(\zeta) \hat{\omega}_t(\zeta)^2 d\Gamma(\zeta) \right]
\]

\[
= \lambda_\pi \hat{\pi}'W\hat{\pi} + \lambda_y \hat{y}'W\hat{y} + \int \lambda_\omega(\zeta) \hat{\omega}(\zeta)'W\hat{\omega}(\zeta) d\Gamma(\zeta)
\]

- **Computation**: stabilizing consumption distribution = stabilizing prices

McKay and Wolf
Ramsey Problem

Optimal Monetary Policy
Proposition

The optimal monetary policy rule for a Ramsey planner with loss L^{HA} can be written as the forecast target criterion

$$
\Theta'_{\pi,i} \lambda_{\pi} W \hat{\pi} + \Theta'_{y,i} \lambda_{y} W \hat{y} \quad + \quad \int \Theta'_{\omega(\zeta),i} \lambda_{\omega(\zeta)} W \hat{\omega}(\zeta) d\Gamma(\zeta) = 0
$$

- **Dual-mandate criterion**
- **Effects of instrument on consumption shares**

So does inequality affect the optimal policy rule?
Optimal Ramsey monetary policy rule

Proposition

The optimal monetary policy rule for a Ramsey planner with loss L^{HA} can be written as the forecast target criterion

$$
\begin{align*}
\Theta'_{\pi,i} \lambda_{\pi} W\hat{\pi} + \Theta'_{y,i} \lambda_{y} W\hat{y} + \int \Theta'_{\omega(\zeta),i} \lambda_{\omega(\zeta)} W\hat{\omega}(\zeta) d\Gamma(\zeta) &= 0
\end{align*}
$$

- dual-mandate criterion
- effects of instrument on consumption shares

- So does **inequality** affect the optimal policy rule?
Optimal Ramsey monetary policy rule

Proposition

The optimal monetary policy rule for a Ramsey planner with loss \mathcal{L}^{HA} can be written as the forecast target criterion

$$\Theta'_{\pi,i}\lambda_\pi W\hat{\pi} + \Theta'_{y,i}\lambda_y W\hat{y} + \int \Theta'_{\omega(\zeta),i}\lambda_{\omega(\zeta)} W\hat{\omega}(\zeta) d\Gamma(\zeta) = 0$$

- dual-mandate criterion
- effects of instrument on consumption shares

- So does **inequality** affect the optimal policy rule?
 - No iff policy does not affect consumption shares ($\Theta_{\omega(\zeta),i} = 0$) [e.g. as in Werning (2015)]
 - Yes in prior work: large distributional effects that can offset effects of business-cycle shocks Bhandari et al. (2021): rate cut offsets distributional effects of cost-push shock.
Optimal Ramsey monetary policy rule

Proposition

The optimal monetary policy rule for a Ramsey planner with loss L^{HA} can be written as the forecast target criterion

$$
\Theta'_{\pi,i} \lambda_{\pi} W\hat{\pi} + \Theta'_{y,i} \lambda_{y} W\hat{y} + \int \Theta'_{\omega(\zeta),i} \lambda_{\omega(\zeta)} W\hat{\omega}(\zeta) d\Gamma(\zeta) = 0
$$

- **dual-mandate criterion**
- **effects of instrument on consumption shares**

So does inequality affect the optimal policy rule?

- What do we know about $\Theta_{\omega(\zeta),i}$?

⇒ **Our strategy**: use data on household balance sheets to discipline distributional effects.
Key calibration points

1. Income cyclicality: labor income more cyclical for low-income workers

\[e_{it} = \Phi(\zeta_{it}, m_t, e_t) \] calibrated as in Guvenen et al. (2022)
1. **Income cyclicality**: labor income more cyclical for low-income workers
\[e_{it} = \Phi(\zeta_{it}, m_t, e_t) \] calibrated as in Guvenen et al. (2022)

 - e.g. typical middle-class household is long capital (housing) and short bonds (mortgage)
Consumption effects of monetary policy

- **Model**
 - Simulate expansionary monetary shock,
 - plot initial cons. change by wealth
 - find rather small distr. effects
Consumption effects of monetary policy

Model
- Simulate expansionary monetary shock,
- plot initial cons. change by wealth
 ⇒ find rather small distr. effects

Empirical evidence
- Holm et al. ('21): U-shaped effect
- Coibion et al. ('17): progressive effect
- Chang & Schorfheide ('22): regressive effect
• **Dual mandate**: cut rates to perfectly stabilize aggregate demand and so \(\{y, \pi\} \)

• **Ramsey policy**: similar, since monetary policy is ill-suited to offset the distr. incidence

⇒ stabilizing consumption at the bottom would imply large overshooting of y and π
Application: distributional shock

- **Ramsey policy**: similar, since monetary policy is ill-suited to offset the distr. incidence
 \[\Rightarrow \text{stabilizing consumption at the bottom would imply large overshothing of } y \text{ and } \pi \]
Joint fiscal-monetary: stimulus checks provide agg. & cross-sectional stabilization

⇒ monetary policy at the Ramsey optimum barely responds
Stimulus check incidence

Consumption change on impact

% of steady state income vs. Wealth percentile
Conclusions
Conclusions

• How does inequality affect optimal stabilization policy?
Conclusions

• How does inequality affect optimal stabilization policy?

a) Dual mandate

 ◦ Same y & π outcomes
 ◦ Optimal rate paths unlikely to change much
Conclusions

• How does inequality affect optimal stabilization policy?

a) Dual mandate
 ○ Same y & π outcomes
 ○ Optimal rate paths unlikely to change much

b) Ramsey policy
 ○ Deviate from dual mandate policy iff monetary policy has substantial distributional effects
 ○ Our reading of evidence & model: exposure to MP is fairly uniform
 ○ Fiscal policy is much better-suited for cyclical insurance
Appendix
• Unit continuum of unions k, demand ℓ_{ikt} units from household i. Total union labor supply is $\ell_{kt} \equiv \int_0^1 e_{it} \ell_{ikt} \, dt$.

• Total output is

$$y_t = \left(\int_k \ell_{kt}^\frac{\varepsilon_t}{\varepsilon_t-1} \, dk \right)^{\frac{\varepsilon_t}{\varepsilon_t-1}}$$

• The price index of the labor aggregate is

$$w_t = \left(\int_k w_{kt}^{1-\varepsilon_t} \, dk \right)^{1/(1-\varepsilon_t)}$$

and demand for labor from union k is

$$\ell_{kt} = \left(\frac{W_{kt}}{w_t} \right)^{-\varepsilon_t} y_t.$$
• Union problem: choose the reset wage w^* and l_{kt} to maximize

$$\sum_{s \geq 0} \beta^s \theta^s \left[u_c(c_{t+s})(1-\tau_y) \frac{\bar{\epsilon} \Xi}{(\bar{\epsilon} - 1)(1-\tau_y)} \frac{w^* l_{kt} - \nu \ell (l_{t+s}) l_{kt}}{\rho_{t+s}} \right]$$

subject to labor demand constraint

Ξ is subsidy-related steady-state wedge, see loss function proof.

• This gives

$$\hat{\pi}_t = \kappa \hat{y}_t + \beta \hat{\pi}_{t+1} + \psi \hat{\epsilon}_t$$

where $\kappa \equiv (\phi + \gamma) \frac{(1-\theta)(1-\beta \theta)}{\theta}$, $\phi \equiv \frac{\nu \ell (l)}{\nu_t (l)}$ and $\psi \equiv -\frac{\kappa}{(\phi + \gamma)(\epsilon - 1)}$

• Aggregating production gives $y_t = \frac{\ell_t}{d_t}$ where $l_t \equiv \int_0^1 \int_0^1 e_{it} l_{ikt} d i d k$ and d_t captures efficiency losses
Equilibrium characterization

- NKPC is as in original optimality condition. Proof combines all other optimality and market-clearing conditions to get (IS*)

- Consumption-savings problem gives aggregate consumption function. Using output market-clearing, $e_{it} w_t l_{it} = e_{it} y_t$, we get

$$\hat{y} = C_y \hat{y} + C_r \hat{r} + C_x \hat{x} + C_e \hat{e} + C_m \hat{m}$$

- Write relationships between asset prices and rates of return as

$$\hat{r}_0 = r_0(\hat{\pi}_0, \hat{y}_0, \hat{q}_0), \quad \hat{r}_{+1} = r_{+1}(i, \hat{\pi}), \quad \hat{q} = q(\hat{\pi}_{+1}, \hat{y}_{+1}, \hat{r}_{+1})$$

- From the government budget constraint we get

$$\hat{\tau}_e = \tau_e(\hat{y}, \hat{\tau}_x, \hat{\pi}, \hat{q})$$
Equilibrium characterization

- Plugging the asset pricing and gov’t budget relations into the consumption function:

\[\hat{y} = C_y\hat{y} + C_r\hat{r}(\hat{y}, \hat{\pi}, \hat{i}) + C_x\hat{\tau}_x + C_e\hat{\tau}_e(\hat{y}, \hat{\pi}, \hat{i}, \hat{\tau}_x) + C_m m \]

and so

\[\hat{y} = \left[C_y + C_r R_y + C_e T_y \right] \hat{y} + \left[C_r R_\pi + C_e T_\pi \right] \hat{\pi} + \left[C_r R_i + C_e T_i \right] \hat{i} + \left[C_x + C_e T_x \right] \hat{\tau}_x + C_m m \]

- This has verified all eq’m relations, giving sufficiency of (NKPC) and (IS*)
Optimal dual mandate rule: proof

- FOCs of optimal policy problem are

\[\lambda_\pi W\hat{\pi} + \Pi_\pi W\phi_\pi - \tilde{\phi}'_\pi W\phi_y = 0 \]

\[\lambda_y W\hat{y} - \Pi_y W\phi_\pi + (I - \tilde{\phi}'_y)W\phi_y = 0 \]

\[-\tilde{\phi}'_i W\phi_y = 0. \]

- Guess that \(\phi_y = 0 \). Then we get

\[\lambda_\pi \hat{\pi} + \lambda_y W^{-1}\Pi'_\pi (\Pi'_y)^{-1}W\hat{y} = 0 \]

which can re-written to give the stated relation

- Remains to verify the guess that \(\phi_y = 0 \)
Optimal dual mandate rule: proof

- Consider some arbitrary \((m, \varepsilon)\), and let \((\hat{y}^*, \hat{\pi}^*)\) denote the solution of the system (NKPC) + dual mandate rule given \((m, \varepsilon)\).

- Plugging into the consumption function:

\[
\hat{y}^* - \tilde{C}_y \hat{y}^* - \tilde{C}_\pi \hat{\pi}^* - C_m m = \tilde{C}_i \hat{i}
\]

\[\text{demand target}\]

- Remains to show that we can find \(\hat{i}^*\) such that this relation holds.
Optimal dual mandate rule: proof

- Supply term has NPV
 \[\sum_{t=0}^{\infty} \left(\frac{1}{1 + \bar{r}} \right)^t \bar{y} \hat{y}_t \]

- Aggregating household budget constraints we get that
 \[\sum_{t=0}^{\infty} \left(\frac{1}{1 + \bar{r}} \right)^t \bar{c} \hat{c}_t = \sum_{t=0}^{\infty} \left(\frac{1}{1 + \bar{r}} \right)^t \left\{ (1 + \bar{r}) \bar{a}_t \bar{r} + (1 - \tau_y) \bar{y} \hat{y}_t + \bar{x} \hat{x}_t + \bar{e} \hat{e}_t \right\} \]

 Doing the same for the gov’t budget constraint:
 \[\sum_{t=0}^{\infty} \left(\frac{1}{1 + \bar{r}} \right)^t \left\{ (1 + \bar{r}) \bar{a}_t + \bar{x} \hat{x}_t + \bar{e} \hat{e}_t \right\} = \sum_{t=0}^{\infty} \tau_y \bar{y} \hat{y}_t \]

- Thus the two have the same NPV. Then the stated condition is sufficient to ensure implementability.
Ramsey loss function

Proposition

To second order, the social welfare function (3) is proportional to $-\mathcal{L}^{HA}$, given as

$$
\mathcal{L}^{HA} \equiv \sum_{t=0}^{\infty} \beta^t \left[\hat{\pi}_t^2 + \frac{\kappa}{\bar{\varepsilon}} \hat{y}_t^2 + \frac{\kappa \gamma}{(\gamma + \phi)\bar{\varepsilon}} \int \frac{\hat{\omega}_t(\zeta)^2}{\bar{\omega}(\zeta)} d\Gamma(\zeta) \right]
$$

(4)

where $\hat{\omega}_t(\zeta) = \omega_t(\zeta) - \bar{\omega}(\zeta)$ and $\bar{\omega}(\zeta)$ is the steady-state consumption share of an individual with history ζ.
Ramsey planner loss function: proof

- Write planner per-period utility flow as

\[
U_t = \int \varphi(\zeta) \left(\bar{c}^e_{\hat{c}t} \omega_t(\zeta) \right)^{1-\gamma} \frac{1}{1 - \gamma} d\Gamma(\zeta) - \nu \left(\bar{t} \bar{c}^e_{\hat{c}t} \right)
\] \hspace{1cm} (5)

- Objective: find 2nd-order approximation to \(U_t \) that depends only on 2nd-order terms

- Preliminary definitions
 - Steady state needs to equalize marginal utility of consumption across histories:
 \[
 \varphi(\zeta) \bar{c}^{1-\gamma} \bar{\omega}(\zeta)^{-\gamma} = \bar{u}_c \bar{c} \quad \forall \zeta
 \]
 - Imposing that consumption shares integrate to 1 yields
 \[
 \int \varphi(\zeta)^{1/\gamma} d\Gamma(\zeta) = \bar{c} \bar{u}_c^{1/\gamma}
 \]
Ramsey planner loss function: proof

- Preliminary definitions
 - Can recover consumption shares as a function of planner weights:
 \[\bar{\omega}(\zeta) = \frac{\varphi(\zeta)^{1/\gamma}}{\int \varphi(\zeta)^{1/\gamma} d\Gamma(\zeta)} \quad \forall \zeta \]
 - For future reference define
 \[\Xi \equiv \left(\int \varphi(\zeta)^{1/\gamma} d\Gamma(\zeta) \right)^\gamma = \varphi(\zeta)\bar{\omega}(\zeta)^{-\gamma} \quad \forall \zeta \]
- Now can begin with first-order terms:
 - For \(c_t \) we get
 \[\frac{\partial U}{\partial c_t} = \int \varphi(\zeta)(\bar{c}\bar{\omega}(\zeta))^{1-\gamma} d\Gamma(\zeta) \]
 \[= \bar{c}^{1-\gamma}\Xi \]
Ramsey planner loss function: proof

- Now can begin with first-order terms:
 - For ℓ_t we have
 \[
 \frac{\partial U}{\partial \ell_t} = -\nu_\ell(\ell)\ell.
 \]
 Set union subsidy so that $\Xi \bar{c}^{-\gamma} = \nu_\ell$
 - For consumption shares $\omega_t(\zeta)$ we have
 \[
 \frac{\partial U}{\partial \omega_t(\zeta)} = \phi(\zeta)\bar{c}^{1-\gamma}\bar{\omega}(\zeta)^{-\gamma}d\Gamma(\zeta)
 \]
 \[
 = \bar{c}^{1-\gamma}\Xi d\Gamma(\zeta)
 \]
Ramsey planner loss function: proof

- Next consider second-order terms:
 - For level & split of consumption we have
 \[
 \frac{\partial^2 U_t}{\partial \tilde{c}_t^2} = (1 - \gamma)\bar{c}^{1-\gamma}
 \]
 \[
 \frac{\partial U_t}{\partial \omega_t(\zeta)^2} = -\gamma\bar{c}^{1-\gamma} \frac{\bar{\Xi}}{\bar{\omega}(\zeta)} d\Gamma(\zeta)
 \]
 \[
 \frac{\partial^2 U_t}{\partial \tilde{c}_t \partial \omega_t(\zeta)} = (1 - \gamma)\bar{c}^{1-\gamma} d\Gamma(\zeta)
 \]
 - For hours worked we have
 \[
 \frac{\partial^2 U}{\partial \tilde{\ell}_t^2} = -\nu_{\ell\ell}(\tilde{\ell})\tilde{\ell}^2 - \nu_{\ell}(\tilde{\ell})\tilde{\ell}
 \]
Ramsey planner loss function: proof

- We can now put everything together:

\[
U_t \approx \bar{U} + \bar{c}^{1-\gamma} \Xi \hat{c}_t - \nu_{l}(\ell) \bar{\ell} \ell_t \\
+ \frac{1}{2} (1 - \gamma) \Xi \bar{c}^{1-\gamma} \hat{c}_t^2 - \frac{1}{2} \left[\nu_{\ell l}(\ell) \bar{\ell}^2 + \nu_{\ell}(\ell) \bar{\ell} \right] \ell_t^2 - \frac{1}{2} \gamma \bar{c}^{1-\gamma} \Xi \int \frac{\hat{\omega}(\zeta)^2}{\hat{\omega}(\zeta)} d\Gamma(\zeta) \\
+ \bar{c}^{1-\gamma} \Xi \int \hat{\omega}_t(\zeta) d\Gamma(\zeta) + (1 - \gamma) \bar{c}^{1-\gamma} \Xi \hat{c}_t \int \hat{\omega}_t(\zeta) d\Gamma(\zeta)
\]

Terms in last row are zero.

- Can now write this as

\[
U_t \approx \bar{U} + \bar{c}^{1-\gamma} \Xi \hat{c}_t - \nu_{l}(\ell) \bar{\ell} \left(\hat{c}_t + \hat{d}_t \right) \\
+ \frac{1}{2} (1 - \gamma) \Xi \bar{c}^{1-\gamma} \hat{c}_t^2 - \frac{1}{2} (\phi + 1) \nu_{\ell}(\ell) \bar{\ell} (\hat{c}_t + \hat{d}_t)^2 - \frac{1}{2} \gamma \bar{c}^{1-\gamma} \Xi \int \frac{\hat{\omega}(\zeta)^2}{\hat{\omega}(\zeta)} d\Gamma(\zeta)
\]

McKay and Wolf
Ramsey planner loss function: proof

- Set union subsidy so that the \widehat{c}_t terms cancel. We thus have

$$U_t \approx \bar{U} - \nu(\bar{e})\bar{e}\delta_t - \frac{1}{2} \nu(\bar{e})\bar{e} (\gamma + \phi) \hat{y}_t^2 - \frac{1}{2} \gamma \nu(\bar{e})\bar{e} \int \frac{\hat{w}(\zeta)^2}{\bar{w}(\zeta)} d\Gamma(\zeta)$$

- Finally follow standard steps to express d_t in terms of the history of inflation. After standard steps we get

$$\sum_{t=0}^{\infty} \beta^t U_t \approx -\nu(\bar{e})\bar{e} \sum_{t=0}^{\infty} \beta^t \left[\frac{\theta \bar{e}}{2(1-\theta)(1-\beta\theta)} \hat{\pi}_t^2 + \frac{1}{2} (\gamma + \phi) \hat{y}_t^2 + \frac{\gamma}{2} \int \frac{\hat{w}(\zeta)^2}{\bar{w}(\zeta)} d\Gamma(\zeta) \right]$$

$$= -\frac{\nu(\bar{e})\bar{e} \theta \bar{e}}{2(1-\theta)(1-\beta\theta)} \sum_{t=0}^{\infty} \beta^t \left[\hat{\pi}_t^2 + \frac{\kappa}{\bar{e}} \hat{y}_t^2 + \frac{\kappa \gamma}{(\gamma + \phi) \bar{e}} \int \frac{\hat{w}(\zeta_t)^2}{\bar{w}(\zeta_t)} d\Gamma(\zeta_t) \right] ,$$
Getting the Ω’s: computational details

- **Idea:** can obtain fluctuations in consumption shares as a function of fluctuations in a small number of inputs to the consumption-savings problem.

- **Formally,** let $\mathbf{x} \equiv (\mathbf{r}', \mathbf{y}', \mathbf{\tau}'_x, \mathbf{\tau}'_e, \mathbf{m}')'$ be the stacked sequences of inputs to the household problem. Then can show that there is symmetric matrix Q such that

$$
\sum_{t=0}^{\infty} \beta^t \int \frac{\hat{\omega}_t(\zeta, \mathbf{x})^2}{\bar{\omega}(\zeta)} d\Gamma(\zeta) = \mathbf{x}'Q\mathbf{x} + \mathcal{O}(||\mathbf{x}||^3)
$$

- **Key step** is to show that $\hat{\omega}_t(\zeta, \mathbf{x}) \approx \Omega_t(\zeta)\hat{\mathbf{x}}$ which yields

$$
\frac{\hat{\omega}_t(\zeta^t, \mathbf{x})^2}{\bar{\omega}(\zeta^t)} = \mathbf{x}' \frac{\Omega_t(\zeta^t)\Omega_t(\zeta^t)}{\bar{\omega}(\zeta^t)} \hat{\mathbf{x}} + \mathcal{O}(||\hat{\mathbf{x}}||^3)
$$

and so

$$
\sum_{t=0}^{\infty} \beta^t \int \frac{\hat{\omega}_t(\zeta^t, \mathbf{x})^2}{\bar{\omega}(\zeta^t)} d\Gamma(\zeta^t) = \mathbf{x}' \left(\sum_{t=0}^{\infty} \beta^t \int Q_t(\zeta^t) d\Gamma(\zeta^t) \right) \hat{\mathbf{x}} + \mathcal{O}(||\hat{\mathbf{x}}||^3)
$$

\[\equiv Q\]
Getting the Ω’s: computational details

- We obtain $\Omega_t(\zeta)$ using sequence-space methods + simulation [see paper for details]

- Given Q, we have a finite-dimensional but non-diagonal LQ problem
 - The objective function can be written as
 \[L = \frac{1}{2} x' P x, \]
 - We then get the FOC
 \[\Theta'_{xz} P x = 0 \]
 - and the corresponding optimal instrument path
 \[z^* = -(\Theta'_{x,z} P \Theta_{x,z})^{-1} \times (\Theta'_{x,z} P \Theta_{x,e} \cdot \varepsilon) \]
More on model calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>CRRA</td>
<td>1.2</td>
</tr>
<tr>
<td>ϕ</td>
<td>Frisch elasticity</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.984</td>
</tr>
<tr>
<td>κ</td>
<td>Phillips curve slope</td>
<td>0.022</td>
</tr>
<tr>
<td>α</td>
<td>Capital share</td>
<td>36%</td>
</tr>
<tr>
<td>δ</td>
<td>Depreciation rate</td>
<td>1%</td>
</tr>
<tr>
<td>a/\bar{y}</td>
<td>Borrowing limit</td>
<td>-0.27</td>
</tr>
<tr>
<td>δ</td>
<td>Bond duration</td>
<td>0.025</td>
</tr>
<tr>
<td>$\bar{\tau}_x$</td>
<td>Steady state transfer</td>
<td>$0.17 \times GDP$</td>
</tr>
</tbody>
</table>
Income and wealth distribution

<table>
<thead>
<tr>
<th></th>
<th>Wealth</th>
<th></th>
<th>Income</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>Top 1%</td>
<td>37</td>
<td>27</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Top 5%</td>
<td>65</td>
<td>66</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Top 10%</td>
<td>76</td>
<td>82</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>Top 25%</td>
<td>91</td>
<td>96</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>Top 50%</td>
<td>99</td>
<td>101</td>
<td>84</td>
<td>77</td>
</tr>
</tbody>
</table>

Table: Shares (%) of wealth and income concentrated in the top x% of the distribution. Data are from the 2019 Survey of Consumer Finance.
Factor structure of Volcker recession

McKay and Wolf
Factor structure of Volcker recession
Household portfolios

<table>
<thead>
<tr>
<th>Category</th>
<th>Total</th>
<th>Top 1%</th>
<th>Next 9%</th>
<th>Next 40%</th>
<th>Bottom 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real estate and durables</td>
<td>167</td>
<td>24</td>
<td>48</td>
<td>72</td>
<td>23</td>
</tr>
<tr>
<td>Equity and mutual funds</td>
<td>191</td>
<td>101</td>
<td>66</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>Currency, deposits, and similar</td>
<td>60</td>
<td>16</td>
<td>23</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Govt. and corp. bonds and similar</td>
<td>29</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Pension assets</td>
<td>131</td>
<td>6</td>
<td>63</td>
<td>58</td>
<td>4</td>
</tr>
<tr>
<td>Mortgage liabilities</td>
<td>49</td>
<td>2</td>
<td>12</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Consumer credit and loans</td>
<td>24</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Net worth excluding pension assets</td>
<td>374</td>
<td>147</td>
<td>135</td>
<td>89</td>
<td>4</td>
</tr>
<tr>
<td>Capital</td>
<td>419</td>
<td>157</td>
<td>135</td>
<td>101</td>
<td>25</td>
</tr>
<tr>
<td>Short-term bonds</td>
<td>-12</td>
<td>1</td>
<td>7</td>
<td>-3</td>
<td>-16</td>
</tr>
<tr>
<td>Long-term bonds</td>
<td>-33</td>
<td>-11</td>
<td>-8</td>
<td>-9</td>
<td>-5</td>
</tr>
<tr>
<td>Total</td>
<td>374</td>
<td>147</td>
<td>135</td>
<td>89</td>
<td>4</td>
</tr>
</tbody>
</table>
Calibration of household portfolios

- **Household portfolios**
 - We classify SCF assets and liabilities into bundles of capital, short-term bonds, and long-term bonds
 - $1 equity = $1.32 capital - $0.20 long-term bonds - $0.12 short-term bonds
 - $1 mortgage balance = -$0.50 long-term bonds - $0.50 short-term bonds
 - $1 consumer credit = -$1 short-term bonds
 - $1 currency or deposits = $1 short-term bonds
 - We then impute portfolio for households in our model as a function of their net worth
 - These portfolio positions will matter at date 0, through revaluation effects

- **Pension assets**
 - We treat pensions as part of the government
 - Returns earned on these assets are then paid out slowly through taxes
Application: distributional shock

Consumption change on impact

Percent change relative to steady state

Quantile of wealth distribution

p20 p40 p60 p80
Quantitative illustration: supply shock

• \(\{y, \pi\} \) paths agree exactly. What about interest rates?
Quantitative illustration: supply shock

- \(\{y, \pi\} \) paths agree exactly. What about interest rates?
 - Could in principle disagree substantially. But we have emp. evidence on \(i \rightarrow \{y, \pi\} \)
 - Limiting th’m [McKay-Wolf]: optimal \(i \) path can in principle be fully characterized using empirical evidence on the propagation of monetary policy shocks