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Abstract

Climate-related natural disasters are increasing in frequency and severity. These

changes are not equal across countries, and therefore we should observe a response

of real exchange rates to such shocks. In this paper I evaluate whether the observed

response is consistent with a forward-looking model in which agents update their expec-

tations about future disasters, relying on Farhi-Gabaix (2015) framework. I simulate

the model for 47 countries for 1964-2019 using actual data for climate- and non-climate-

related disasters and explicitly modeling disaster arrival rate, disaster-related losses in

productivity and welfare, and related belief formation. The model predicts a real ap-

preciation of safe currencies and real depreciation of risky currencies as a result of

disasters. These effects are modest in magnitude. For all disaster types, the direction

of response in the data is consistent with the model. For non-climate disasters, we

observe an overreaction of real exchange rates relative to the model, while for climate

disasters, we observe an underreaction. In recent years, the response of real exchange

rates to big climate disasters relative to the model predictions is similar to that of

non-climate disasters. Based on this analysis I conclude that the potential for real

exchange rate misalignment due to growing physical climate risks is small.
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1 Introduction

It is well established by now that physical risks of climate change are becoming more ap-

parent, more severe, and more frequent (Stott, 2016). The magnitudes of damages from

such climate change-related events as fires, floods, severe storms, and extreme temperatures

have become large enough to have a substantial impact on the global economy (Burke et al.,

2015). From the economic stability point of view, an important question is whether markets

are fully accounting for the risks associated with the increasing frequency and severity of

climate-related disasters. If the answer to this question is negative, rapid changes in relative

prices and resulting shifts in economic activity are possible as economic agents increasingly

incorporate such risks into their behaviors. This paper investigates the response of real

exchange rates to climate-change-related disasters.1

Theoretically, natural disasters can have an ambiguous effect on real exchange rates. On

the one hand, disaster-related instantaneous drop in production of exports (Jones and Olken,

2010; Osberghaus, 2019) can lead to real appreciation through the terms-of-trade effect.2

On the other hand, any permanent reduction in export productivity, or an update of the

beliefs about the frequency of such disasters, reduces the present value of the future revenue

stream of the economy, thus depreciating real exchange rate.3 While the first effect is likely

temporary, the second can be permanent, and it is the second effect that I study in this

paper.4

Empirical analysis of the economic response to climate change risks is complicated by the

fact that the distribution of these risks is shifting, therefore rendering historical analysis

potentially inapplicable for forecasting. In addition, awareness of climate change risks in-

creased over the last three decades and continues increasing, further complicating inference

based on historical data. Not surprisingly, näıve regression analysis shows a very small,

short-lived, and not statistically significant reaction of real exchange rates to climate-related

and non-climate-related natural disasters.

I tackle these complexities by calibrating a theoretical model with observed climate-related

1In this paper I do not study the effects of transition risks that may arise from climate mitigation policies,
greening technologies, or greening consumer and investor preferences. For a study of transition risk effects
on commodity currencies, see Kapfhammer et al. (2020).

2Such effect is found, for example, in Strobl and Kablan (2017).
3Dell et al. (2012); Felbermayr and Gröschl (2014); Burke et al. (2015), among others, find negative

growth effects from temperature shocks and natural disasters, respectively. Heinen et al. (2022) show that
extreme weather disasters can have large negative welfare effects, while Burke et al. (2015) predict 23%
global income reduction by 2100 in a likely adaptation scenario.

4In the Farhi-Gabaix framework that I use the first effect is ruled out by a small open economy set-up
with a single traded good so that the economy is a price-taker on its exports market.
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disaster frequency, modeled as a Poisson process, and allowing the expected Poisson param-

eter to be updated based on disaster realizations, following Gamma distribution. We can

think of predictions from this model as markets fully incorporating physical climate change

risks by recognizing increasing disaster frequency and costs. I compare the response of real

exchange rates to disasters predicted by the model with the response observed in the data.

I use non-climate disasters as a comparison benchmark because the observed frequency of

these events is constant over time and therefore we should not expect a change in attention

to such risks or their underestimation by the markets (that is, we expect markets to fully

incorporate frequency of non-climate disasters in their behaviors). The results show that

markets overreact to non-climate disasters but underreact to climate disasters when com-

pared with the model predictions. In recent years, however, the effects of climate disasters,

especially big ones, are closer to that of non-climate disasters relative to the model predic-

tions. This suggests that economic agents might be “waking up” to physical climate risks,

but are not yet fully incorporating them into their behaviors. This means that there is poten-

tial for catch-up changes in real exchange rates going forward. However, given the relatively

small magnitudes of real exchange rate changes predicted by the model, the misalignment is

unlikely to be big.

As a first step, I document that the frequency of climate-related physical disasters in-

creased rapidly in the last decades. Using a subset of climate-related natural disasters from

a database of global natural disasters, country-specific estimates show that for most coun-

tries in the data set climate-related disaster arrival rate could be described by the Poisson

distribution. The Poisson parameter, which measures the expected number of disasters oc-

curring in a given country in a given year, increased on average from 0.4 in 1960-1990 to 1.5

in 1990-2021. In contrast, the frequency of non-climate disasters remained nearly unchanged.

I use country-specific disaster realization data to calibrate the model.

The model setup is identical to Farhi and Gabaix (2015) (FG) small open economy model

where the real exchange rate is determined by the present discounted value of the future

production of tradeable and non-tradeable goods.5 While FG impose the stochastic process

on a summary statistic (disaster resilience parameter) that incorporates both probability

and severity of disasters, I explicitly model disaster realization as drawn from a Poisson

distribution, the perceived probability of a disaster drawn from a Gamma distribution that

is updated depending on the realization of a disaster shock (from the data), and I separately

calibrate exogenous severity of disasters’ impact, both in terms of productivity loss and

5This setup is based on Gabaix (2008). Alternative models, such as Guo (2007) or Lewis and Liu (2017)
are, of course, possible. However, in addition to FG’s own analysis, Gupta et al. (2018) demonstrate the
empirical relevance of the FG model by studying responses of currency returns and volatility to political
disasters.
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in terms of wealth decline. Using these measures, I construct the FG disaster resilience

parameter, verify its mean-reverting properties, and estimate its dynamics to feed the mean-

reversion speed back into the model to produce a closed-form solution fully consistent with

the FG setup. The rest of the parameters are calibrated based on the available data for each

country.

I simulate the model for 47 countries for the sample period 1964-2019 using actual data

and for a training pre-sample period of 100 years using FG calibration (except for the Poisson

parameter and simulated disaster arrival rate). The model produces two main variables that

are used in the empirical analysis: the high-frequency component of the resilience parameter,

which determines whether the currency is risky or safe when it comes to the effects of disasters

on asset prices, and the simulated real exchange rate. FG model defines safe currencies as

those that are more likely to appreciate following disasters and risky currencies that are more

likely to depreciate. When I classify currencies into safe and risky based on their average

resilience, simulated exchange rates behave exactly in this manner.6 I further decompose

the total effect of disasters into the impact of the productivity decline and the forward-

looking effect due to changes in expectations of future losses. Both effects are quantitatively

important in the model.

To compare the behavior of simulated real exchange rates and observed real exchange

rates in response to disasters, I estimate a set of panel regressions that include country

and time fixed effects. I standardize, normalize, and winsorize simulated and observed real

exchange rates for easy comparison between the data and the model and to reduce the effect of

influential observations. I regress these measures on the indicators of safe and risky currencies

and their interactions with the lagged 0/1 indicator of a disaster.7 In a year following

observed climate disasters, the model predicts statistically significant real appreciation of safe

currencies and depreciation of risky currencies of about the same magnitude of 8-10 percent

of a standard deviation. In the data, we also observe real appreciation of safe currencies

and depreciation of risky currencies, but the effect is about half of the one predicted by the

model and the estimates are not precise. When I conduct the same analysis for big climate-

related disasters only, I find slightly smaller and less precisely estimated effects predicted

by the model, and an asymmetric effect in the data: depreciation of risky currencies is

similar in magnitude to model predictions, but appreciation is less than half of that in the

model. Finally, for non-climate disasters, both simulated and actual effects are not precisely

estimated, but the observed real exchange rates react stronger to disasters than the model

predicts.

6In my data, countries classified as risky tend to have a higher export share, experience larger post-disaster
productivity losses but lower welfare losses, and are less likely to have flexible exchange rate regimes.

7I lag the disaster indicator by one year to accommodate disasters that occur late in a calendar year.
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Repeating the analysis for more recent years, I find that the real depreciation of risky

currencies in response to climate disasters is still about half of that predicted by the model,

but the appreciation of the safe currencies is now substantially larger than predicted. For big

disasters, both risky and safe currencies now react stronger than the model predicts, which is

similar to the effects of non-climate disasters. These results suggest that markets’ attention

to climate disasters has increased in recent years. However, the markets might not yet fully

incorporate growing climate disaster risks, especially for smaller disasters. Going forward,

we might observe a larger response of real exchange rates to climate disasters, especially for

risky countries, than what we observed in the past. It is also important to note that based on

the historical disaster effects, the magnitudes of the real exchange rate movements predicted

by the model are not very large, even for big disasters.

This paper contributes to the rapidly growing literature on the pricing of climate-related

risks. To my knowledge, it is the first model-based study of the effects of physical climate

risks on real exchange rates.8 The proposed framework can be easily updated going forward

as attention to climate risks increases among economic agents.

The paper first presents a background empirical analysis of climate-related disaster fre-

quency. This analysis is novel but confirms other studies that find an increased frequency

of climate-related disasters. In addition, this background analysis provides parameters for

model calibration. Next, I briefly summarize the FG model setup and present the extension

of the model to incorporate explicit belief formation and the approach to model calibration.

Finally, I compare simulated real exchange rate behavior with that observed in the data and

then conclude.

2 Data and background empirical analysis

As a first step, I document that the frequency of climate-related physical disasters increased

rapidly in recent decades.

2.1 Disaster frequency

Climate-related natural disaster data are from The Emergency Events Database (EM-DAT)

housed at the Centre for Research on the Epidemiology of Disasters (CRED), University

of Louvain. It provides data on disaster events worldwide from 1900 to the present. To be

8Cheema-Fox et al. (2021) study the effects of physical climate risks on nominal short-run returns on
portfolios of currencies outside G-10.

5



included in the data, at least one of the following criteria must be fulfilled: 10 or more human

deaths; 100 or more people injured or left homeless; declaration by the country of a state of

emergency; an appeal for international assistance. This data set provides monthly counts of

events by disaster subgroups: geophysical, meteorological, hydrological, climatological, and

biological, of which I retain as climate-related disasters three types of events: climatological,

which includes wildfire and drought; meteorological, which includes extreme temperatures

and storms; hydrological, which includes floods. I refer to this set of events as “all climate

disasters or events.” I also separate big climate events defined as climate events that lead

to at least 10 recorded deaths, as reported by EM-DAT. In addition, I combine all other

disasters into non-climate disaster events, which I use for comparison.

I use the annual count of the sum of the number of events of each type to estimate the

Poisson regression for each country for each of the four 30-year periods: 1900-1930, 1930-

1960, 1960-1990, and 1990-2021. The results for all climate disasters are reported in Figure 1

as a distribution of Poisson parameters λit for each time period t across all countries i in

the sample.9 We can observe a steady increase in the incidence of climate-related disasters.

One has to acknowledge, however, that there might be an increase in the reporting frequency

that contributes to this growth, especially because new countries are added to the sample.

For this reason, the analysis is based on country-specific estimates.

For illustrative purposes, I also estimate full-sample Poisson regressions, for all climate

disasters, big climate disasters, and non-climate disasters. The results are reported in Ta-

ble 1, where I report predicted λt for each time period t for the panel of countries.10 We can

see that in contrast with climate disasters, non-climate disasters, such as volcanic eruptions

and earthquakes, only show a mild increase in the frequency of their occurrence, indicat-

ing that reporting frequency is likely to have a limited effect on the recorded occurrence of

climate-related disasters. The increase in big climate disaster frequency is about the same

as for all climate disasters.

The dataset also includes the monthly number of deaths, the number of people affected,

and economic losses in USD. I use economic losses, deflated by the U.S. CPI as a share of

nominal GDP in USD to calibrate economic damages from the disaster. I aggregate these

data to the country-year level and use them to calibrate an exogenous parameter of the

disaster severity for each period and each country.

9Similar pictures for big climate disasters and non-climate disasters are available upon request.
10Estimating a negative binomial model that allows for overdispersion produces nearly identical results,

indicating that Poisson regression is a good fit.
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2.2 Other data sources

Real exchange rates (real effective exchange rate indexes) are from Global Financial Data.

For most countries, excluding the former Soviet block, these are available starting in 1964

and through 2014. GDP, TFP at constant national prices (2017=1), and export share are

from Penn World Table (PWT).

2.3 Näıve regression

With these data, we can run a panel local projections regression at an annual frequency

ŝit+τ = αi +DNit + εit+τ , τ ∈ {0, 4}, (1)

where ŝit+τ is the percentage appreciation in the real exchange rate, αi are country fixed

effects, DNit is the number of disasters that occurred in country i in year t, and ε is a

standard error.

The results are reported in Figure 2 for all climate disasters, big climate disasters, and

non-climate disasters, with shaded areas representing one standard deviation error band.

For climate disasters, we can see an initial appreciation followed by a depreciation two years

later, with effects negligible in magnitude and not statistically different from zero. For non-

climate disasters, we observe initial appreciation followed by depreciation four years later,

with magnitudes slightly larger, but also not significantly different from zero.

3 Theoretical framework

The real exchange rate can be viewed as an asset that is priced based on the expectation of a

future stream of production and endowments in each country, thus representing the relative

net present discounted values of the economies. Such is a set-up of Farhi and Gabaix (2015)

model (FG). Farhi and Gabaix, however, do not allow for time-varying disaster frequency or

for corresponding changes in beliefs. I, therefore, augment the FG model with a Bayesian

update of the expected probability of the disaster that is driven by disaster realizations.

We can think of this setting as markets fully incorporating physical climate change risks by

recognizing increasing disaster frequency and costs. If we find that data are consistent with

model predictions, we can conclude that disaster risks are fully incorporated in real exchange

rate dynamics. We expect to observe this for non-climate disasters, but not necessarily for

climate disasters, due to their increasing frequency and costs.
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This model predicts an ambiguous effect of a natural disaster realization, which reduces

the present value of future tradeable good production (which leads to real depreciation of the

currency), while increasing the present discounted value of the future cash flow by increasing

stochastic discount factor (SDF) (which leads to real appreciation of the currency).

I first give a brief description of the FG model set-up and then describe in detail my

modifications and additions to the model.

3.1 Macroeconomic environment

The world consists of n stochastic infinite horizon small open economies. Each economy

consumes 2 goods (tradeable good Y and non-tradeable good Z), good Y is common across

countries, and Z is country-specific. Consumers combine the two goods with the constant

elasticity of substitution (CES) utility with constant relative risk aversion (CRRA) coefficient

γ and substitution elasticity σ. Each country gets random endowments of Y and Z and can

use Z to produce more Y with productivity parameter ωit that grows exogenously at rate

ω̂it. Financial markets are complete.

Disasters affect productivity and welfare. The effect on welfare can be summarized by the

effect on pricing kernel

M∗
t+1

M∗
t

=

{
e−R, Dt+1 = 0

e−RB−γ
t+1, Dt+1 = 1,

(2)

where D is an indicator of a disaster occurrence (0 or 1).

Similarly, productivity is affected by disasters

ωit+1

ωit

=

{
egωi , Dt+1 = 0

egωiFit+1, Dt+1 = 1
(3)

FG show that a sufficient statistic for solving the model is the “resilience” H of a country

to disasters.

Hit = ptED
t

[
B−γ

t+1Fit+1 − 1
]
, (4)

where p is disaster probability. H can be decomposed into constant and time-varying com-

ponents Hit = Hi∗ + Ĥit where. Ĥit+1 has to satisfy

Ĥit+1 =
1 +Hi∗

1 +Hit

e−ϕiĤit + εit+1 (5)
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with mean-reversion parameter ϕ.

In addition to explicitly modeling the resilience parameter, I make a number of small

modifications to this FG set-up that facilitate the calibration process.

• Welfare loss B is country and time-varying, not just time-varying, Bit

• Productivity loss F is country-varying, but not time-varying, Fi

• Disaster probability p is country and time-varying, pit

• Time-invariant country-specific component Hi∗ of H is replaced with time-varying but

slow-moving component H it

• Mean-reversion parameter ϕ is country and time-varying ϕit

Thus, in the modified model the resilience of a country is

Hit = pitED
t

[
B−γ

it+1Fi − 1
]
, (6)

which is decomposed as Hit = H it + Ĥit where

Ĥit+1 =
1 +H it

1 +Hit

e−ϕitĤit + εit+1 (7)

FG derive a closed-form solution for the real exchange rate e for country i in year t.

eit =
ωit

rit

(
1 +

Ĥit

rit + ϕit

)
, (8)

where rit = R + δ − ω̂it − ln(1 +H∗
it), R is consumption growth rate, δ is depreciation rate,

ωit and ω̂it are productivity and productivity growth rate.

3.2 Belief update

In FG model, expectations of disaster probability and related loss are modeled as global

and exogenous, while productivity loss is country-specific and also exogenous. Instead of

calibrating these parameters separately, the authors combine them into a sufficient summary

statistic, disaster resilience parameter H, for which they assert a linearity-generating process

as described in the previous section. I use the following approach to unpack the process for

H and to model its components explicitly so that I can calibrate them to each country in

the data.
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Disaster Probability p. Based on the results of the disaster data analysis, disasters are

assumed to be drawn from a Poisson distribution with parameter λit. DNit is an observed

number of disasters in i in year t and is used by economic agents to update their beliefs

about disaster probability pit. A prior about the disaster arrival rate, with a full history that

is updated each period, is θit−1. Posterior belief about λit is a realization θit of a Gamma

distribution with scale 1/t and shape αit = DNit +
∑t−1

s=0 αst. Thus, the probability of at

least one disaster occurring in year t+ 1 after observing DNit is

pit = 1− e−θit . (9)

In an environment of increasing disaster frequency, the model will produce a disaster

probability belief that is increasing over time. This is because the agents will be more

frequently surprised by a larger number of disasters than expected rather than by fewer

disasters. Thus, the Bayesian update will be predominantly positive. We can see that this

is the case in Figure 3, where I report average p across countries for each year of model

simulation.

Welfare loss B. Parameter 0 < Bit < 1 affects the pricing kernel and is measuring

the expected impact of a future disaster on the consumption basket, which includes both

tradeable and non-tradeable consumption. I assume static expectations of this parameter by

calibrating it to the most recent, as of period-t, disaster impact measure: Et(Bit+1) = Bit,

where Bit is the latest observed realized disaster loss experienced when the last disaster prior

to t occurred. If there were no prior disasters, B = 1, i.e. there is no expected loss.

Productivity loss F . I assume that the expected disaster-related productivity loss is

country-specific, but not time-varying, that is Fit = Fi ∀ t. However, each disaster leads to

a permanent reduction of productivity by a factor Fi: ωD
it = ωND

it Fi.
11 This parameter is

calibrated from regression of ∆TFP on the 0/1 indicator of disaster D in a previous year

TFPit = ai + βi,TFPDit−1 + εit, Fi = 1−max{0, βi,TFP}. (10)

11Ibarrarán et al. (2007) argue that there are important cumulative macroeconomic effects of natural
disasters, while Kalkuhl and Wenz (2020) estimate the substantial decline in productivity resulting from
climate change even in the absence of extreme weather events. Felbermayr and Gröschl (2014) find significant
negative effects of natural disasters on economic growth.
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Mean-reversion parameter ϕ and slow-moving component of H. The above pa-

rameters allow calculating H as

Hit = pit[B
−γ
it Fi − 1]. (11)

I compute the slow-moving component of H as a moving average of the past history of

resilience parameter H it = 1/t ∗
∑t

s=0His. Then Ĥit = Hit −H it.

Next, I estimate ϕit from country-by country AR(1) looking backward in each period t

Ĥis = ait + bitĤis−1 + εis, s ∈ [0, t] (12)

ϕit = − ln

(
bit

1 +Hit

1 +H it

)
. (13)

Thus, the model structure remains unchanged, but I can now calibrate pit, Bit, Fi, and ϕit

explicitly to compute resilience parameters for each country in the calibration.

3.3 Calibration

I simulate the model for each country for which the data are available. In order to have

sufficient observations for computing moving averages and the autoregression necessary to

recover ϕit, I first run 100 periods differently than the last 55 periods which correspond to

the 1964-2019 sample for which actual data are available. For this pre-sample, calibration is

taken directly from FG, with the exception of disaster probability and occurrence: disaster

realization is drawn from the Poisson distribution with λi that corresponds to estimates for

that country in 1930-1960,12 disaster probability is computed based on the same update

as described above. Table 2 summarizes all parameter sources and values or value ranges.

I conduct separate sets of calibrations for all climate disasters, big climate disasters, and

non-climate disasters. Because F and B are very rough estimates while disaster realizations

come from the data, I only vary DN and λ across disaster types, to facilitate comparisons.

For country-specific variables calibration is as follows.

• Non-traded goods sector is assumed to grow at 2.5 percent per year following FG.

• Traded good sector productivity and its growth rate is calibrated as the TFP growth

12For countries where no disasters are observed or reported prior to 1960 this value is set to zero.
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rate from Penn World Table to construct ωit = (1+ ω̂it)ωit−1 in the absence of natural

disasters. For each disaster observed, ωit is permanently reduced by a country-specific

factor Fi, which represents productivity loss that is due to disasters. ω̂i0 in the pre-

sample is set to 1 ∀ i as in FG.

• To obtain Fi I regress, for each country, change in the TFP on the 0/1 indicator

of whether a climate-related disaster occurred in a previous year. I use estimated

coefficients βi,TFP as a measure of productivity loss due to a disaster. If the estimated

coefficient is positive, productivity loss is set to zero. Thus, for the sample period

Fi = 1 −max{0, βi,TFP}. Distribution of βi,TFP is reported in Appendix Figure A.2.

For pre-sample, Fi = 1∀ i as in FG.

• Number of disaster realizations Dit is taken directly from the data in the sample for

all climate events, big climate events, and non-climate events. In the pre-sample, the

number of disasters is drawn from the Poisson distribution with country-specific λi

estimated for 1930-1960 for each country for a relevant set of disasters.

• Bit as 1 - observed total disaster losses as a share of GDP. This parameter is set to be

equal to the most recently observed climate-related disaster loss. For the pre-sample

Bit = 0.66∀ i ∀ t as in FG.

Figure 3 presents the average disaster probability across countries for each year generated

by the model. We see that on average p increases over time, very rapidly, for climate-related

disasters, only tapering in recent years. Non-climate disaster probability also increases, but

much slower and at a constant rate.

The effect of disasters on model-simulated real exchange rate ê can be decomposed into

two channels: the immediate impact on productivity and the effect on resilience through

expectations update, which includes future productivity reduction. In the model simulation,

I decompose these two channels by first shutting down completely the expectation channel

by setting Ĥit = 0 ∀i ∀t. The only effect on the real exchange rate is from productivity loss

in disaster years since in this case êĤ=0,it = ωit/rit.
13 The second channel êF=1,it can be

isolated by shutting down immediate productivity loss: Fi = 1∀i in the disaster year. The

only effect is from changes in Ĥit, to which calibrated Fi still enters.

13Interest rate rit is affected by H but it is slow-moving and has little effect on ê.
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4 Comparing model predictions with the data

For each disaster type, all climate, big climate, and non-climate. The model is estimated

100 times and for each variable, simple averages across repetitions are computed and used

for comparison. Two main parameters are taken from model simulation — the time-varying

component of the resilience parameter Ĥit and simulated real exchange rate eit. Table 3

reports summary statistics for these parameters as well as disaster probability pit, resilience

parameter Hit, its permanent (or slow-moving) component H it, its mean-reversion parameter

ϕit, and interest rate rit = R+ δ− ω̂it− ln(1+H∗
it). The simulated parameters are produced

for the full balanced panel of countries in the sample and are compared to the FG calibration.

Because real exchange rate data are not available for the full balanced panel, I also provide

summary statistics for these parameters for only the observations with non-missing real

exchange rates. We can see that the distribution in the unbalanced panel is not very different

from that for the balanced panel.

Together with calibrated parameters reported in Table 2, these are all the inputs needed

for the calculation of the simulated real exchange rate. I compare the response of simulated

real exchange rates to climate-related disasters with those observed in the data. To do so, I

first compute annual percentage appreciation ê of simulated real exchange rate e and annual

percentage appreciation ŝ of observed real exchange rate s for each country in the sample for

years 1964-2014. I then normalize and standardize resulting ê and ŝ in the full distribution,

to make magnitudes of appreciation in the model and in the data readily comparable, and

winsorize the results at 1st and 99th percentiles to avoid influential observations.

FG model predicts differential effects of disasters for countries that are risky (have a low

time-varying portion of disaster resilience Ĥ) and those that are safe. Risky currencies

are expected to depreciate in response to disasters while safe currencies are expected to

appreciate. I split all countries into risky (average Ĥ across all years in the sample is below

the median) and safe.14 Classification of all countries into safe and risky for all disaster types

is listed in Appendix Figure A.1. Table 4 reports the differences in relevant characteristics

of countries classified as safe or risky. Risky countries tend to have a higher average export

share, experience larger post-disaster productivity losses but lower welfare losses, are less

likely to have flexible exchange rate regimes, and are more likely to be in the advanced

economies group.

I conduct a comparison of real appreciation means for safe and risky currencies in years

with and without disasters for the simulated exchange rate responses ê, their components

14Median Ĥ for all climate disasters is 0.00021, for big climate disasters 0.00008, and for non-climate
disasters 0.000014.
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that are due to the immediate impact of productivity loss êĤ=0 and the change in resilience

parameter, êF=1, as well as for observed real exchange rate responses ŝ. I compute conditional

means by estimating panel regressions with country and year fixed effects

yit = αi + αt + β1Dit−1 + β2Dit−1 ×Riskyi + εit, (14)

where y is either ê, êĤ=0, êF=1, or ŝ; αi and αt are country and time fixed effects; D

is a 0/1 disaster indicator, Risky is a 0/1 indicator of a risky currency; εit is an error

term. I lag disaster indicator by one year to accommodate responses to the disasters that

occur late in the calendar year. In addition, lagging disaster indicator for the observed real

appreciation allows to side-step any possible immediate and temporary terms-of-trade effects

due to production disruptions, as observed, for example, following the Fukushima nuclear

disaster. The main effect of Risky is absorbed by country fixed effects. Since the only

independent variables in this regression are 0/1 indicators, one should think of the results

as a comparison of conditional means.

In addition, because the model assumes all countries are equally open to trade, but in

practice, this might not be the case, and because export share is not the same on average

for safe and risky countries, I add in the regression for ŝ a control variable, Exports/GDP.15

Finally, I estimate this regression for the full sample of 1964-2014 as well as for the recent

sample of 1990-2014. The recent sample coincides follows the publication of the first report

of the Intergovernmental Panel on Climate Change (IPCC) in 1988, which is an important

point in global climate change awareness.

The results are reported in Table 5 and illustrated in Figure 4. We can see that both

simulated and observed exchange rates behave as expected — they appreciate in response

to disasters in safe countries and depreciate in risky countries. The differences between the

model and the data are, therefore, in magnitudes.

For climate-related disasters, we observe a smaller response in the full sample for both

safe and risky currencies. In the recent sample, we observe an overreaction of safe currencies

compared to the model predictions and an underreaction of risky currencies. For big climate

disasters, we also observe an underreaction of safe currencies in the full sample, but the

reaction of risky currencies is exactly as predicted by the model. In a recent sample, we

observe an overreaction of observed real exchange rates compared to model predictions in

both safe and risky countries. Finally, for non-climate disasters, we observe an overreaction

for all countries in both full and recent samples. Across all disaster types, the effects are

more dispersed (less precisely estimated) for realized compared to simulated responses, de-

15Adding the same control variable to the regressions of simulated real appreciation does not affect the
results.
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spite normalization and standardization of the variables. In terms of the decomposition of

simulated real appreciation, we can see that the model predicts that both components are

equally important in that their responses are equal to the full response.

I propose the following interpretation of the results. Given the stylized nature of the

model, we can think of the overreaction of real exchange rates to non-climate disasters

relative to model predictions as what we should expect from the markets. This is because

there is no innovation in non-climate disasters and to a first approximation their frequency

and magnitudes are constant over time. In this context, we can interpret the response to

climate-related disasters as incomplete, reflecting still limited attention of the markets to

climate risks. Note that the model allows for and produces learning from observing disaster

realizations. That is, even in the model the agents are “catching up” with the shifting

probability of climate disasters. Nevertheless, in the data, the response of real exchange

rates is smaller than the model predicts. Given that the response is more in line with non-

climate events (relative to the model predictions) for big climate disasters and especially so

in recent years suggests that markets are increasingly incorporating climate risks into their

behaviors. This implies that going forward there is room for further increase in the reaction

to climate-related shocks.

How important is growing awareness of physical climate risks for real exchange rate move-

ments? According to the model simulation, the magnitudes of the real exchange rate re-

actions are not expected to be large. Moreover, since at least a portion of predicted real

exchange response to climate disasters is already observed in the data, even the cumulative

misalignment is likely to be relatively small. Finally, if big climate disasters are a guide,

incorporation of climate risks into behaviors has so far been gradual, and we can therefore

expect the “catching up” of the markets to climate risks to be gradual as well.

5 Conclusion

The frequency and severity of climate-related disasters increased in recent decades. In a

forward-looking model with rare disasters, I allow agents to update their beliefs about such

disasters accordingly. The model predicts a real depreciation for risky countries and a real

appreciation for safe countries following such disasters. This effect is due to both an im-

mediate productivity loss and expectation of future losses and future disaster probability.

In terms of the direction of effects, the data are fully consistent with model predictions for

climate-related as well as non-climate disasters. The differences are observed in the magni-

tudes of the responses.
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In the data, we observe that real exchange rates react with a larger magnitude than

predicted by the model when non-climate events occur. In response to climate-related events,

however, the observed reaction of real exchange rates is smaller than the model predicts. This

suggests that markets might not fully incorporate the increasing frequency and severity of

climate disasters in their behaviors.

Will there be a “wake-up call” for the markets? It is possible that as changes in climate

disaster distribution become more obvious, markets will start incorporating these changes

through the update of their beliefs about the frequency and severity of disasters. Given that

the model predicts the magnitudes of real exchange rate responses to disasters to be quite

modest and the fact that some of the effects are already priced in, it is possible that the

real exchange rate will not be the main mechanism for these physical risks’ effect on the

economies.

There are two ways in which these results should not be generalized. First, I explicitly

did not model export price changes as a result of productivity loss, so the results only apply

to countries that are price-takers in their export markets or to the longer-term effects for

countries that may cause temporary changes in the price of their export goods. Second, I

do not evaluate the effect of transition risks that might have large term-of-trade effects and,

if not accounted for, may lead to real exchange rate misalignments. I leave it for future

analysis, as FG framework is not appropriate for quantifying the effects of transition risks

such as changes in policies, preferences, or technologies. Third, the results in this paper

should not be viewed as a final answer to the question of exchange rate response to physical

climate risks: other methodologies and other data sources may produce different results. My

goal with this paper is to start this conversation.
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Felbermayr, Gabriel and Jasmin Gröschl, “Naturally negative: The growth effects of nat-

ural disasters,” Journal of Development Economics, 2014, 111, 92–106. Special Issue:

Imbalances in Economic Development.

Gabaix, Xavier, “Variable Rare Disasters: A Tractable Theory of Ten Puzzles in Macro-

finance,” American Economic Review, May 2008, 98 (2), 64–67.

Guo, Kai, “Exchange Rates and Asset Prices in An Open Economy with Rare Disasters,”

2007. Federal Reserve Bank of Dallas Working Paper.

Gupta, Rangan, Tahir Suleman, and Mark E. Wohar, “Exchange rate returns and volatility:

the role of time-varying rare disaster risks,” The European Journal of Finance, oct 15

2018, 25 (2), 190–203.

Heinen, Andréas, Jeetendra Khadan, and Eric Strobl, “The Price Impact of ExtremeWeather

in Developing Countries,” The Economic Journal, 2022, n/a (n/a).

Ibarrarán, Maŕıa Eugenia, Matthias Ruth, Sanjana Ahmad, and Marisa London, “Climate

change and natural disasters: macroeconomic performance and distributional impacts,”

Environment, Development and Sustainability, dec 11 2007, 11 (3), 549–569.

Jones, Benjamin F. and Benjamin A. Olken, “Climate Shocks and Exports,” American

Economic Review, May 2010, 100 (2), 454–59.

Kalkuhl, Matthias and Leonie Wenz, “The impact of climate conditions on economic pro-

duction. Evidence from a global panel of regions,” Journal of Environmental Economics

and Management, 2020, 103, 102360.

17



Kapfhammer, Felix, Vegard H. Larsen, and Leif Anders Thorsrud, “Climate risk and com-

modity currencies,” 2020. Norges Bank Working Paper 18/2020.

Lewis, Karen K. and Edith X. Liu, “Disaster risk and asset returns: An international per-

spective,” Journal of International Economics, 2017, 108, S42–S58. 39th Annual NBER

International Seminar on Macroeconomics.

Osberghaus, Daniel, “The Effects of Natural Disasters and Weather Variations on Interna-

tional Trade and Financial Flows: a Review of the Empirical Literature,” Economics of

Disasters and Climate Change, jun 11 2019, 3 (3), 305–325.

Stott, Peter, “How climate change affects extreme weather events,” Science, 2016, 352 (6293),

1517–1518.

Strobl, Eric and Sandrine Kablan, “How do natural disasters impact the exchange rate: an

investigation through small island developing states (SIDS)?,” Economics Bulletin, 2017,

37 (3), 2274–2281.

18



Figure 1: Distribution of the Poisson parameter: All climate disasters
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Notes: Reported is the distribution of the estimates of the Poisson regression parameter for each country
and each sub-period. Input data are annual frequency. No control variables are included in the regression.
In the first period only 25 countries reported any disasters, in the second period, 67 countries, in the third
period, 150 countries, and in the final period 193 countries. Distributions for big climate disasters and
non-climate disasters are available upon request.
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Figure 2: Real appreciation in response to disasters
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Local projection regressions, controlling for the share of exports in GDP and lagged real
appreciation. 1 s.d. error bands. The sample includes 1963-2015. All is all climate disasters,
Big is big climate disasters, NC is non-climate disasters.
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Figure 3: Model disaster probability
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Model-generated posterior belief about the probability of at least one disaster occurring (p).
All is all climate disasters, Big is big climate disasters, NC is non-climate disasters.
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Figure 4: Comparison of model predictions and data for risky countries
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Comparison of the real appreciation (share of standard deviation) in response to different
disaster types for risky countries. Reported are conditional means obtained by estimating
regressions in equation (14). The full sample is 1964-2015, the recent period is 1990-2015.
Full regression results are reported in Table 5. Classification of countries into safe and risky
is in Appendix Figure A.1.
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Table 1: Distribution of disasters in the full sample

Time period λ Std. Err.λ z P > |z| 95 % Conf. Interval

All climate disasters

1900-1930 0.0142 0 .0017 8.54 0.000 0 .011 0.017

1930-1960 0.0572 0.0031 18.44 0.000 0.051 0.063

1960-1990 0.397 0.0082 48.54 0.000 0.381 0.413

1990-2021 1.474 0.015 96.63 0.000 1.444 1.504

Big climate disasters

1900-1930 0.0107 0.0014 7.42 0.000 0.0079 0.0135

1930-1960 0.0517 0.0029 17.52 0.000 0.0459 0.057

1960-1990 0.2902 0.0070 41.52 0.000 0.2765 0.3039

1990-2021 1.098 0.0132 83.41 0.000 1.0722 1.1238

Non-climate disasters

1900-1930 1.14 0.095 12.04 0.000 0.96 1.33

1930-1960 1.29 0.084 15.23 0.000 1.12 1.45

1960-1990 1.39 0.054 25.63 0.000 1.28 1.50

1990-2021 1.68 0.035 48.11 0.000 1.61 1.75

Notes: Poisson regression results for the panel of all countries and full sample, with Poisson parameter λ
predicted for each time period using Delta-method.
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Table 2: Calibrated parameter values and sources

Parameter Value or range Source

Constants

CRRA (γ) 4 FG

Rate of time preference (ρ) 0.059 FG

Depreciation rate (δ) 0.055 FG

Growth rate of global consumption (R) ρ+ γ ∗ 0.025 = 0.159 FG

Country-varying

1 - Productivity loss from a disaster (F ) [0.985; 1] Regression analysis: Figure A.2

Country-time-varying

Productivity (ω) [0.086; 6.13] TFP from PWT

Productivity growth (ω̂) [-0.32 ; 0.31] % change of TFP from PWT

Disaster realization: climate (D) {0 ; 35} EM-DAT

Disaster realization: non-climate (DNC) {0 ; 12} EM-DAT

1 - Disaster loss (B) [0.891; 1] Disaster damages (EM-DAT) / GDP (PWT)

Notes: Ranges for variables are reported for the estimation sample 1964-2019. Countries included are Ar-
gentina, Australia, Austria, Belgium, Bulgaria, Brazil, Canada, Switzerland, Chile, China, Cyprus, Czech
Republic, Germany, Denmark, Spain, Finland, France, UK, Greece, Hong Kong, Hungary, Indonesia, India,
Ireland, Iceland, Israel, Italy, Japan, Korea, Mexico, Malaysia, Netherlands, Norway, New Zealand, Peru,
Philippines, Poland, Portugal, Romania, Saudi Arabia, Sweden, Thailand, Turkey, Taiwan, USA, Venezuela,
South Africa. FG is Farhi and Gabaix (2015), PWT is Penn World Tables, and EM-DAT is The Emergency
Events Database.
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Table 3: Distribution of main simulated parameters

Mean Std.Dev. Min Max FG

Balanced panel

e 4.300 2.410 -5.604 28.633 (.)

pAll 0.128 0.189 0.000 0.990 = 0.036

pBig 0.098 0.173 0.000 0.990 = 0.036

pNC 0.049 0.094 0.000 0.671 = 0.036

Ĥ 0.001 0.006 -0.006 0.213 (.)

H 0.001 0.006 -0.007 0.213 s.d. = 0.0187

H∗ = H 0.000 0.000 -0.001 0.002 = 0.154

ϕ 0.111 0.223 0.026 5.548 = 0.18

r 0.208 0.032 -0.097 0.473 = 0.06

Unbalanced panel

e 3.918 1.276 0.411 18.54

pAll 0.177 0.201 0.000 0.990

pBig 0.135 0.191 0.000 0.990

pNC 0.053 0.102 0.000 0.671

Ĥ 0.001 0.007 -0.006 0.213

H 0.001 0.007 -0.007 0.213

H∗ = H 0.000 0.000 -0.001 0.002

ϕ 0.144 0.255 0.026 5.548

r 0.206 0.025 0.077 0.382

Notes: Parameters from the model simulation for all climate disasters. 47 countries as listed in Table 2, 1964-
2014. The top portion reports the results for the balanced panel: 2397 observations for each variable. The
bottom portion limits the sample to that for which the real exchange rate index is available in the data, an
unbalanced panel with 1735 observations. Distributions of parameters for big climate disasters and non-climate
disasters are similar, with the exception of p (as indicated), and are available upon request.
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Table 4: Risky and safe countries

Safe countries Risky countries Difference

ExpShare 0.255 0.283 -0.028***

(0.007)

TFP growth 0.005 0.006 -0.001

(0.665)

Share of Fuel Exports 10.762 10.421 0.341

(0.661)

F = max(1, 1− βi,TFP ) 0.998 0.993 0.005***

(0.000)

Average B 0.997 0.998 -0.001***

(0.000)

Flexible ER regime 2.813 2.602 0.211***

(0.000)

Emerging economy 0.725 0.499 0.227***

(0.000)

Observations 1224 1173

Notes: T-tests for the panel of all countries between 1964 and 2014, P-values are in parentheses. * significant
at 10%, ** 5%, *** 1%. Results are qualitatively similar for big climate disasters and non-climate disasters,
available upon request.
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Table 5: Comparing model predictions and data for real appreciation

ê êĤ=0 êF=1 ŝ ŝ

Full sample

Climate disaster effect on:

Safe 0.077** 0.078** 0.074** 0.051 0.058

(0.03) (0.03) (0.03) (0.09) (0.09)

Risky -0.095** -0.096** -0.082* -0.052 -0.058

(0.04) (0.04) (0.04) (0.11) (0.11)

Big climate disaster effect on:

Safe 0.066** 0.066** 0.067** 0.025 0.031

(0.03) (0.03) (0.03) (0.09) (0.09)

Risky -0.078 -0.077 -0.068 -0.077 -0.083

(0.05) (0.05) (0.05) (0.12) (0.12)

Non-climate disaster effect on:

Safe 0.038 0.038 0.039 0.049 0.049

(0.03) (0.03) (0.03) (0.09) (0.09)

Risky -0.061 -0.061 -0.061 -0.106 -0.105

(0.06) (0.06) (0.06) (0.14) (0.14)

Post-1990

Climate disaster effect on:

Safe 0.031 0.033 0.029 0.065 0.062

(0.04) (0.04) (0.04) (0.12) (0.12)

Risky -0.068 -0.071 -0.066 -0.029 -0.028

(0.06) (0.06) (0.06) (0.17) (0.17)

Big climate disaster effect on:

Safe 0.019 0.018 0.018 0.035 0.033

(0.04) (0.04) (0.04) (0.11) (0.11)

Risky -0.035 -0.032 -0.032 -0.064 -0.062

(0.06) (0.06) (0.06) (0.16) (0.16)

Non-climate disaster effect on:

Safe 0.024 0.025 0.026 0.051 0.049

(0.04) (0.04) (0.04) (0.11) (0.11)

Risky -0.079 -0.078 -0.082 -0.134 -0.132

(0.07) (0.07) (0.07) (0.17) (0.17)

Notes: Reported are the results from the regression in equation (14) where dependent variables are as indicated,
normalized, standardized, and winsorized, disaster indicator 0/1 is lagged one period, and country and year
fixed effects are included in all regressions. The last column includes a share of Exports in GDP as a control
variable. Standard errors are in parentheses. * significant at 10%, ** 5%, *** 1%. Safe and risky countries are
listed in Figure A.1.
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A Appendix

Figure A.1: Classification of countries into safe and risky

All climate Big climate Non-climate All climate Big climate Non-climate
ARG 0 0 0 ISL 1 1 0
AUS 0 0 0 ISR 1 1 1
AUT 1 1 1 ITA 1 1 1
BEL 1 1 1 JPN 1 1 1
BGR 0 0 1 KOR 0 0 0
BRA 1 1 0 MEX 0 0 0
CAN 1 1 1 MYS 0 0 0
CHE 1 1 1 NLD 1 1 1
CHL 1 1 1 NOR 1 1 1
CHN 0 0 0 NZL 0 1 0
CYP 1 1 0 PER 1 1 0
CZE 0 0 1 PHL 0 0 0
DEU 1 1 1 POL 0 0 0
DNK 0 1 1 PRT 0 0 1
ESP 1 1 1 ROU 0 0 0
FIN 1 1 1 SAU 1 1 1
FRA 1 1 1 SWE 0 0 0
GBR 0 0 0 THA 0 0 0
GRC 1 1 1 TUR 1 0 0
HKG 0 0 1 TWN 1 1 1
HUN 0 0 1 USA 0 0 0
IDN 0 0 0 VEN 0 0 0
IND 0 0 0 ZAF 1 0 0
IRL 0 0 0

Countries classified as safe and risky in each of the model simulations. Risky countries are
those with an average Ĥ in 1964-2015 below the median: 0.00021 for all climate disasters,
0.00008 for big climate disasters, 0.000014 for non-climate disasters.

Effect of disaster on productivity

To proxy for the productivity effects of disasters Fi I estimate, for each country, a simple

regression of a TFP change on an indicator of a disaster in the previous year.

ω̂it = αi + βi,TFP I(Dit−1 > 0) + εit,TFP (15)

The estimates βi,TFP are reported in Figure A.2. For countries where the estimates are

positive, Fi is set to be equal to 1. For those with negative estimates, Fi = 1− βi,TFP .
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Figure A.2: Estimates of βi,TFP
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