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Abstract

Labor-saving technologies in agriculture can foster structural transformation by re-

leasing workers who find jobs in manufacturing. The traditional view is that factor

reallocation towards manufacturing generates innovation and productivity growth.

We document, instead, that regions more exposed to a large and exogenous in-

crease in agricultural productivity in Brazil industrialized but experienced lower

manufacturing productivity growth. Workers released from agriculture were mostly

unskilled and primarily moved to the least skill-intensive manufacturing industries.

This paper explores the various mechanisms that can account for the observed manu-

facturing productivity decline. Changes in worker composition and lower incentives

to innovate within manufacturing play prominent roles.
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1 Introduction

Early development economists argued that the reallocation of workers from agricul-

ture to manufacturing was fundamental to sustain long run growth (Lewis 1954, Kuznets

1973). This structural transformation process can lead to higher output because labor

productivity is lower in agriculture than in the rest of the economy (McMillan and Rodrik,

2011). In addition, industrialization can lead to higher long run growth if the manufactur-

ing sector is characterized by economies of scale and knowledge spillovers (Krugman 1987,

Lucas 1988, Matsuyama 1992a).1 However, manufacturing productivity growth depends

not only on the size of the industrial sector but also on its composition (Grossman and

Helpman 1991). Thus, if workers leaving the agricultural sector are mostly unskilled, the

structural transformation process can reinforce comparative advantage in non-innovating

industries, reducing long run growth.

We provide direct evidence on this mechanism in the context of a large increase in

agricultural productivity due to the adoption of genetically engineered (GE) soy in Brazil.

To identify the causal effects of this new technology on industrial development, we ex-

ploit its heterogeneous effects on potential yields across regions with different weather

and soil characteristics. We think of these regions as small open economies that were

differently exposed to the new technology, which permits to estimate the effects of local

agricultural technical change on local labor reallocation, industrial specialization and pro-

ductivity growth.2 To trace the effects of technical change in soy from the agricultural

to the manufacturing sector, we rely on detailed individual information from the Brazil-

ian Population Census and social security data (RAIS) which allows to follow workers

across sectors at fine levels of spatial aggregation. We use the RAIS data to develop a

new measure of innovation based on detailed descriptions of occupations. In turn, we use

firm-level data from the Brazilian Annual Industrial Survey (PIA) to measure productiv-

ity in the manufacturing sector, and the Technological Innovation Survey (PINTEC) to

sort industries by innovation intensity.

We start by showing that microregions facing faster agricultural technical change ex-

perienced a persistent slowdown in manufacturing productivity growth. This is despite

the fact that the manufacturing sector in these regions absorbed workers released from

agriculture (as documented in Bustos, Caprettini, and Ponticelli 2016) and attracted more

capital investments. This result contrasts to the standard theoretical argument that mov-

ing resources toward manufacturing should increase productivity. Our estimates imply

that microregions with a one standard deviation larger increase in potential soy yields ex-

1Recent empirical studies analyzing these mechanisms include McCaig and Pavcnik (2013), Atkin,
Costinot, and Fukui (2021), Goldberg and Reed (2020), Choi and Levchenko (2021).

2Our geographical units of observation are Brazilian microregions, which attempt to approximate local
labor markets. The Brazilian Institute of Geography and Statistics (IBGE) defines these microregions by
combining economically integrated municipalities with similar production and geographic characteristics.
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perienced a 7 percent increase in the size of the manufacturing sector and a corresponding

1.5 percent lower yearly growth rate of manufacturing productivity.

To better understand this result, we first investigate the nature of the labor reallo-

cation from agriculture toward manufacturing. For this, we trace the flow of workers

with different education levels across sectors using detailed individual information from

the decadal Brazilian Population Census and social security data from RAIS. We find

that the new agricultural technology led to a reallocation of mostly unskilled workers

away from agriculture towards manufacturing with little reallocation towards services.

Our estimates indicate that microregions with a one standard deviation higher increase

in potential soy yields experienced a 2.4 percentage points larger decrease in the share

of unskilled workers employed in agriculture, and a corresponding 2.1 percentage points

larger increase in the share of unskilled workers employed in manufacturing. We confirm

these findings using yearly information on formal workers from RAIS, which shows that

the timing of this labor reallocation process corresponds to the timing of adoption of GE

seeds.

From the point of view of the manufacturing sector, the reallocation of former agricul-

tural workers amounts to an increase in the relative supply of unskilled labor. According

to the classic Heckscher-Ohlin trade model, this increase in the relative supply of un-

skilled labor generates a comparative advantage in unskilled-labor intensive industries,

which should expand by absorbing the inflow of unskilled workers and also attract other

complementary factors such as capital (Rybczynski, 1955). Indeed, we find that this inflow

of unskilled workers was completely absorbed by an expansion of the least skill-intensive

manufacturing industries. As expected, the labor inflow was followed by an increase in

capital investment. Finally, we document that the expanding industries are the least

innovation-intensive as measured by expenditure in research and development (R&D) as

a share of sales.

Given these empirical results, we investigate various mechanisms that could explain

why an inflow of workers and capital towards manufacturing may slow down its produc-

tivity. We start by investigating whether this slowdown is simply due to a change in the

composition of industries. In particular, we split the manufacturing sector by the median

level of R&D as a share of sales, and label H industries the most innovation intensive

manufacturing sectors (e.g. production of equipment for industrial automation, medical

equipment or pharmaceutical products), and L industries the least innovation intensive

manufacturing sectors (e.g. meat processing or tobacco products). Then, we decompose

the manufacturing productivity slowdown into between- and within-industry components.

We obtain that the between effect, which reflects the impact of factor reallocation towards

low R&D industries, can explain at most 8 percent of the overall productivity decline.

The remainder is explained by a reduction of productivity growth within industries, which
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occurs in both H and L industries and it is larger in L industries.3 This evidence suggests

that the main driver of the productivity slowdown cannot be attributed mechanically to

a change in industrial composition.

Next, we investigate whether the decline in manufacturing productivity is driven by a

change in the composition of workers within manufacturing. In particular, former agricul-

tural workers may lack the skills needed to thrive in the manufacturing sector, and thus

be less productive than workers already employed in manufacturing, at least temporarily.

This, in turn, could lower the productivity of the sectors where they enter. We explore

this channel using individual-level data from RAIS. RAIS data shows that formal agri-

cultural workers entering L manufacturing industries earn on average around 27% lower

wages than workers already employed in the L industries – 12% lower wages when con-

trolling for observable individual characteristics such as age and education. Using wage

differences as a measure of differences in worker productivity we estimate that changes

in worker composition can explain at most between 25 and 42 percent of the observed

productivity slowdown in L industries, depending on the measure of productivity.4

While worker composition can explain part of the productivity decline in the L in-

dustries, it cannot explain why such decline occurs also in H industries, which do not

absorb former agricultural workers. To understand this result, we investigate whether an

increase in the relative size of the low-skill, low-innovation intensive manufacturing in-

dustries reduces the incentives to innovate within the high-skill, high-innovation intensive

industries, as predicted by models of directed technical change based on market size effects

à la Romer (1990), such as Acemoglu (2002). Testing this hypothesis requires a measure

of innovation at fine levels of spatial aggregation. Standard innovation surveys such as

PINTEC do not allow us to implement this strategy, because they are based on a sample

of firms which is not representative of small geographical units (microregions).5 Thus, we

propose a new measure of innovation that is representative at any level of geographical

aggregation because it can be constructed using social security data, which covers the

universe of formal firms. In particular, we measure the labor input in the production of

innovations using textual analysis of the task descriptions of more than 2,500 occupations

in RAIS. Tasks generating innovations include, for example, developing or adapting new

products and processes, creating prototypes, or optimizing methods of production.

3We use three different measures of manufacturing productivity: value added per worker, valued added
per wage bill, and a measure of TFP . The measure of TFP takes into account changes in the capital
stock and educational level of the workforce. In turn, the value added per wage bill measure takes into
account both observed and unobserved dimensions of human capital as reflected in wages.

4These results are in line with wage changes among informal workers in the L industry observed across
Censuses (31%), suggesting that lower wages paid to former agricultural workers are not limited to the
selected sample of formal workers observed in RAIS.

5Alternative measures of innovation such as patents might be geographically representative but are
not representative of the type of innovations which are most frequent in developing countries. According
to PINTEC, only 20% of firms which introduced innovations in the period 1997-2008 filed a patent
application.
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Using this measure, we document that in regions more exposed to agricultural tech-

nical change, the inflow of low-skill agricultural workers into L manufacturing industries

was followed by lower investment in innovation in H industries. In particular, microre-

gions with a one standard deviation larger increase in potential soy yields experienced

a 20 percent larger decline in innovation expenditures in H industries, measured as the

wage bill of workers in innovative occupations. We show that this decline is explained

by both lower retention and lower entry of workers in innovative occupations. Next, we

trace the employment path of innovation workers initially employed in H industries, and

find that a quarter of lower retention is explained by reallocation to L industries. Finally,

we show that a third of those former innovative workers end up in non-innovative occu-

pations within L industries. Indeed, we do not find a significant increase in innovation

expenditures within L industries. The decline in local innovation activity can rationalize

at least part of the decline in manufacturing productivity growth that accompanied the

industrialization process in regions subject to faster agricultural technical change.

Our findings suggest that different forces driving structural transformation can lead

to different types of industrial development. In most countries, the process of labor real-

location from agriculture to manufacturing can be ascribed to one of two forces: “push”

forces, such as new agricultural technologies that push workers out of agriculture, or “pull”

forces, such as industrial productivity growth, that pull workers into manufacturing. We

show that when labor reallocation from agriculture to manufacturing is driven by “push”

forces that affect disproportionately the least skilled workers, it can generate an expansion

of industries with the lowest potential contribution to aggregate productivity.

In this sense, our results are a cautionary tale on the effects of structural change on

productivity growth. The adoption of new technologies in agriculture may result in static

productivity gains in the agricultural sector but dynamic losses in manufacturing produc-

tivity. We think that the experience of Brazil documented in this paper is informative

for low- to middle-income countries where a large share of the labor force is employed in

agriculture, and who import new agricultural technologies from more developed countries.

Related Literature

Our paper is related to the classic literature arguing that labor reallocation from agri-

culture to manufacturing increases aggregate productivity. A first set of papers in this

literature argues that, because of the sizable productivity and wage gaps between agricul-

ture and manufacturing in developing countries, there are large static productivity gains

when countries industrialize (e.g., Caselli 2005, Restuccia, Yang, and Zhu 2008, Lagakos

and Waugh 2013, Gollin, Lagakos, and Waugh 2014).6 Second, there can also be dy-

6More recently, Herrendorf and Schoellman (2018) measure and compare agricultural wage gaps in
countries in different stages of the structural transformation process. They find that the implied barriers to
labor reallocation from agriculture are smaller than usually thought in the macro-development literature,
and argue that labor heterogeneity and selection are important drivers of such gaps.
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namic productivity gains when labor reallocates towards manufacturing if manufacturing

is subject to agglomeration externalities and knowledge spillovers (Krugman 1987, Lucas

1988, Matsuyama 1992a).7 Our paper contributes to this literature by empirically show-

ing how the impact of structural transformation on manufacturing productivity growth

depends on the nature of the structural transformation process and how this affects indus-

trial development. To make this point, we build on insights from the endogenous growth

literature. In particular, the seminal work of Grossman and Helpman (1991) who study

open economy endogenous growth models and show how growth may depend on industrial

specialization.8

Recent empirical studies exploring the theoretical mechanisms highlighted above in-

clude Franck and Galor (2019) who use historical variation in the diffusion of steam engines

to argue that early adoption of technologies that do not lead to human capital development

hinders long-run growth. In a similar vein, McMillan and Rodrik (2011) and McMillan,

Rodrik, and Sepulveda (2017) emphasize that structural change can be growth-enhancing

or growth-reducing depending on the correlation between changes in employment shares

and productivity levels, comparing industrialization experiences across a number of coun-

tries. Recent studies of the effects of structural transformation on productivity include

McCaig and Pavcnik (2013) who document how trade-induced labor reallocation from

informal to formal manufacturing increased productivity in Vietnam; and Imbert, Seror,

Zhang, and Zylberberg (2020) who exploit short-run agricultural shocks in China to doc-

ument how migration from rural to urban areas reduces labor costs for firms leading to an

expansion in labor usage and a reduction in capital-biased technology adoption. Relative

to this work, we provide evidence on how labor-saving agricultural productivity shocks

can affect the patterns of industrial specialization and manufacturing productivity growth,

and document the relative importance of potential mechanisms using social security data

which permits to track workers across sectors and occupations.

Our paper also builds on the empirical literature studying the effects of agricultural

technical change, particularly the papers that argue that technological advancements

in agriculture are skill-biased. For instance, Foster and Rosenzweig (1996) study the

effects of the introduction of high-yield varieties in India, and show that technological

7Recent evidence suggests that this channel may be operative in some circumstances. Peters (2019)
uses the displacement of Eastern Germans towards Western Germany to show that places experiencing
larger population growth specialized in manufacturing and saw GDP per capita grow over the long
run. This channel, however, may not be the norm. Herrendorf, Rogerson, and Valentinyi (2022) find
limited evidence in support of dynamic productivity gains from labor reallocation from agriculture into
manufacturing using cross-country data for the period 1990-2018. See also De Vries, Timmer, and De Vries
(2015) which proposes a decomposition of the effect of structural change on the productivity growth of
Sub-Saharan African countries between static and dynamic components.

8Some of our findings can be rationalized with a small open economy growth model with three sectors
– agriculture, low- and high-skill manufacturing, and two factors, where R&D investment depends on the
relative size of the high-skill industries. In this sense, our paper is also related to the classical literature
on endogenous growth, which was mainly theoretical, see Romer (1990); Aghion and Howitt (2008).
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innovations in agriculture increased the relative demand for skill in agriculture and, thus,

returns to primary schooling.9 We contribute to this literature by showing that the

recent introduction of GE soy was also skill-biased. More importantly, we focus on the

implications of skill-biased agricultural technical change for industrialization, which have

not previously been explored.

Finally, it is worth noting that this paper is part of a broader research agenda that

studies the effects of agricultural productivity on structural transformation in the context

of the adoption of GE crops in Brazil. A first study in this agenda, Bustos et al. (2016)

shows that, if agricultural technical change is labor-saving, increases in agricultural pro-

ductivity can lead to a reallocation of labor towards the manufacturing sector, even in

open economies.10 Relative to Bustos et al. (2016), our paper studies how the realloca-

tion of workers from agriculture to manufacturing can shape the growth prospects of the

industrial sector. A second study in this agenda analyzes the effects of the agricultural

boom in Brazil on capital markets. Bustos, Garber, and Ponticelli (2020) document that

regions with faster technical change in soy experienced an increase in local savings deposits

which were mostly not lent locally, leading to an increase in capital outflows. Banks redi-

rected agricultural savings to urban areas outside soy-producing regions where they were

invested in the manufacturing and service sectors. Those findings describe the effects of

agricultural technical change on structural transformation through a capital supply chan-

nel and are consistent with a high level of financial integration across regions. In contrast,

the current paper documents the effects of agricultural technical change through a labor

supply channel which operates in local labor markets with limited migration responses. In

section 4.4, we exploit this difference in the levels of labor and capital market integration

to separately identify the labor and capital supply channels. Taken together, these results

imply that while former agricultural workers reallocate towards local non-innovative in-

dustries, agricultural savings foster the expansion of innovative industries located in other

regions, accentuating regional productivity inequalities.

2 Empirical strategy and data

Our empirical strategy aims at identifying the effects of one particular “push” fac-

tor of structural transformation: the introduction of a new labor-saving technology in

agriculture. For this, we exploit the legalization of genetically engineered (GE) soy in

9In related work, Bragança (2014) shows that investments in soybean adaptation in Central Brazil in
the 1970s induced positive selection of labor in agriculture.

10As noted by Matsuyama (1992b), the mechanisms through which agricultural productivity can speed
up industrial growth proposed in the classical models of structural transformation are only operative in
closed economies, while in open economies high agricultural productivity induces a reallocation of labor
toward agriculture, the comparative advantage sector. Bustos et al. (2016) proposes a model where the
effect of agricultural productivity on industrial development in open economies depends on the factor-bias
of technical change.
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Brazil as a natural experiment. We start by providing background information on GE

soy in section 2.1. Notice that an increase in the reallocation of labor from agriculture to

manufacturing in areas that adopted GE soy could be driven by a shock to labor demand

in the local manufacturing sector. This would increase local wages, inducing agricultural

firms to switch to less labor-intensive crops, such as soy. Thus, to establish the direction

of causality, our identification strategy uses the potential increase in soy yields that can

be obtained with GE seeds in each region based on its weather and soil characteristics as a

plausibly exogenous measure of technical change in agriculture. We describe this strategy

in detail, along with the data used to implement it, in sections 2.2 and 2.3. Finally, in

section 2.4, we introduce a new measure of innovation at the microregion level that we

use to study the impact of agricultural productivity on innovative activities.

2.1 Background Information on GE Soy

The purpose of GE soy seeds is to resist a specific herbicide (glyphosate). The use

of these seeds allows farmers to spray their fields with glyphosate without harming soy

plants, reducing labor requirements for weed control.11 For example, the planting of

traditional seeds is preceded by soil preparation in the form of tillage, the operation of

removing the weeds in the seedbed that would otherwise crowd out the crop or compete

with it for water and nutrients. In contrast, planting GE soy seeds requires no tillage,

as the application of herbicide selectively eliminates all unwanted weeds without harming

the crop. Because activities related to weed control are mostly performed by unskilled

workers, the introduction of GE soy seeds tends to displace unskilled labor relatively more

than skilled labor.

The first generation of GE soy seeds (Monsanto’s Roundup Ready) was commercially

released in the U.S. in 1996 and legalized in Brazil in 2003.12 Prior to 2003, smuggling of

GE soy seeds from Argentina was only detected in 2001 and 2002 according to the Foreign

Agricultural Service of the United States Department of Agriculture (USDA, 2001). The

2006 Brazilian Agricultural Census reports that, only three years after their legalization,

46.4% of Brazilian farmers producing soy were using GE seeds with the “objective of

reducing production costs” (IBGE 2006, p.144). According to the Foreign Agricultural

Service of the USDA, by the 2011-2012 harvesting season, GE soy seeds covered 85% of

the area planted with soy in Brazil (USDA 2012).13

11Other advantages of GE soy seeds are that they require fewer herbicide applications (Duffy and Smith
2001; Fernandez-Cornejo, Klotz-Ingram, and Jans 2002), allow a higher density of the crop on the field
(Huggins and Reganold 2008) and reduce the time between cultivation and harvest.

12See Law 10.688 of 2003 and Law 11.105 – the New Bio-Safety Law – of 2005 (art. 35).
13Note as well that although the initial patent of GE soy seeds was filed in the US by the multina-

tional corporation Monsanto, the final product available in the Brazilian market was the outcome of an
adaptation process that involved a Brazilian firm. The year after patenting the Roundup ReadyTM (RR)
soy seeds in the US in 1996, Monsanto started a collaboration with Embrapa – the Brazilian Research
Institute for new agricultural technologies – to develop a version of the GE soy seeds adapted to the agro-
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Panel (a) of Figure 1 documents that the legalization of GE soy seeds was followed by a

fast expansion of the area planted with soy, which increased from 11 to 19 million hectares

between 2000 and 2010.14 This graph suggests that the area planted with soy started to

increase very rapidly already in 2002. Panel (b) of Figure 1 documents that, in the same

period, the number of workers employed in the soy sector decreased substantially. This

finding is consistent with the adoption of GE seeds reducing the number of agricultural

workers per hectare required to cultivate soy. Bustos et al. (2016) document that labor

intensity in soy production fell from 28.6 workers per 1000 hectares in 1996 to 17.1 workers

per 1000 hectares in 2006. In addition, the production of soy is less labor-intensive than

all other major agricultural activities. According to the Agricultural Census, the average

labor intensity of cereals in 2006 was 94.9 workers per 1,000 hectares, 129.8 for other

seasonal crops, and 126.7 for permanent crops.15 Thus, whenever soy displaced other

agricultural activities, labor intensity in agriculture decreased.

Figure 1 goes around here

In Panel (c) of Figure 1, we decompose the decrease in employment in the soy sector

between skilled and unskilled workers, where workers are considered skilled if they have

completed at least the 8th grade. As shown, the decrease in employment in the soy sector

is entirely driven by low-skilled workers, while the skilled ones were retained. This finding

is consistent with GE soy seeds being an unskilled labor saving technology. Notice that in

addition to being less labor intensive, soy production is also more skill intensive than most

other agricultural activities. As shown in Panel (d) of Figure 1, the share of skilled workers

(those completed at least the 8th grade) employed in soy is above 20 percent, while in most

other agricultural activities this share ranges between 5 and 15 percent. Thus, whenever

soy displaced other agricultural activities, the skill intensity of agriculture increased along

with the decrease in labor intensity.

2.2 Identification strategy

Our identification strategy builds on Bustos et al. (2016): we exploit the legalization

of GE soy seeds in Brazil as a source of time variation and differences in the potential

increase in soy yields from the introduction of the new technology across regions as a

ecological conditions of Brazil. Under this agreement, Embrapa started conducting crossings between
the herbicide tolerant variety developed by Monsanto for the US market and seeds previously developed
by Embrapa itself for the Brazilian climate. Hence, it necessarily took a few years before GE soy seeds
adapted to the Brazilian climate were available.

14According to the two most recent agricultural censuses, the area planted with soy increased from 9.2
to 15.6 million hectares between 1996 and 2006 (IBGE 2006, p.144).

15According to the 2006 Agricultural Census, even cattle ranching uses more workers per unit of land
than soy production (30.6 per 1000 hectares).
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source of cross-sectional variation. This approach allows us to identify how changes in

agricultural technology lead to structural transformation and to study its consequences

on local economies.

The potential increase in soy yields due to GE soy seeds is constructed using data

on potential soy yields sourced from the FAO-GAEZ database. This dataset reports the

maximum attainable yield for a specific crop in a given geographical area. In addition,

it reports the maximum attainable yields of each crop under different technologies or

input combinations. Yields under the low technology are described as those obtained

from planting traditional seeds, with no use of chemicals or mechanization. Yields under

the high technology are obtained using improved high-yielding varieties, with optimum

application of fertilizers, herbicides, and mechanization.

Following Bustos et al. (2016), we define technical change in soy production as the

difference in potential yields between high and low technology. This measure aims at

capturing the theoretical change in soy yields obtained by switching from traditional

soy production to the use of improved seeds and optimum weed control, among other

characteristics. Technical change in soy production in microregion k is therefore defined

as:

∆Asoyk = Asoy,Highk − Asoy,Lowk

where Asoy,Lowk is equal to the potential soy yield under the low technology and Asoy,Highk

is equal to the potential soy yield under the high technology.16 ∆Asoyk is our exogenous

measure of agricultural technical change in agriculture.

Figure A.1 in the Appendix, shows the geographical variation in this measure of techni-

cal change across microregions. The map suggests large variation in agricultural technical

change across Brazilian microregions. Some regions, most notably the regions around the

Amazon river, and near the South-East coast, experienced little changes in soy produc-

tivity. Instead, the regions of the Center-West and South gained substantially from the

introduction of the new seed.

With decennial data, we use the following specification to estimate the effect of soy

technical change on (long-run) changes in outcomes of interest:

∆Yk(r) = α + β∆Asoyk(r) + ϕXk(r) + δr + εk (1)

where ∆Yk(r) is the change in the outcome of interest in microregion k (located in macrore-

gion r) between 2000 and 2010 – the years of the last two Population Censuses –, and Xk(r)

16Although soy farming in certain areas of Brazil was already using relatively advanced techniques
before the introduction of GE soybeans, our conversations with researchers in charge of the FAO-GAEZ
dataset show that GE soy seeds are, in fact, the improved seed varieties used to compute predicted soy
yields for Brazil under high inputs. The predictive power of the instrument on GE soy seeds adoption
documented in what follows supports this.
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is a vector of controls of microregion k. δr indicates macroregion fixed effects that ac-

count flexibly for trends across the five major geographical regions of the country: North,

Northeast, South, Southeast and Central-West. Our identification strategy relies on the

fact that the new GE soybeans seeds were introduced around 2001 or 2002 and legalized in

Brazil in 2003, and that this new technology disproportionately favored microregions with

certain soil and weather characteristics (as captured by ∆Asoyk(r)), something that was not

anticipated as of 2000. In all our specifications we include the share of rural population,

the initial level of income per capita, the alphabetization rate, and population density at

the microregion level, all observed in 1991 and sourced from the Population Census, and

the measure of maize technical change (discussed further below and presented in Table

A.1 of the Appendix). These controls are meant to flexibly capture differential trends

across microregions with different initial levels of income and human capital.

When we analyze the manufacturing sector in detail, we use annual data from RAIS

and PIA. This allows us to trace the timing of the effect more precisely by estimating

two types of equations. First, to provide visual support to our evidence, we estimate the

following dynamic difference-in-differences specification:

ln yk(r),t = δt + δk + δrt +
2009∑
j=1998
j 6=2000

βj1[j = t]∆Asoyk(r) + γXk(r),t + t×X ′k(r),1991ω + εk(r),t (2)

where ∆Asoyk(r) is the long-run change in our exogenous measure of technical change in soy

in microregion k, and ln yk(r),t is an outcome of interest in microregion k at time t. βj

estimates the effect of the change in the productivity of soy in each year between 1998 and

2009 (using 2000 as our reference year). Thus, we flexibly allow βj to capture the effect of

soy technical change on the outcomes of interest in each year. This type of specification

is informative of the timing and persistence of the effects. δk and δt are microregion and

year fixed effects, respectively. δrt are macro-region times year fixed effects. Xk(r),t are

time-varying controls and Xk(r),1991 are the baseline controls discussed above, interacted

with a time trend.

With annual data, we estimate the effect of agricultural technical change on manufac-

turing outcomes using the following specification:

ln yk(r),t = δt + δk + δrt + βAsoyk(r),t + γXk(r),t + t×X ′k(r),1991ω + εk(r),t (3)

where Asoyk(r),t is defined as potential soy yield under high inputs for the years between 2003

and 2009, and the potential soy yield under low inputs for the years between 1999 and

2002 in microregion k. δk and δt are microregion and year fixed effects, respectively, δrt

are macro-region flexible trends, and Xk(r),t are time-varying controls and Xk(r),1991 are

baseline controls interacted with a time trend. Hence, β is the (continuous) difference-in-
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differences estimate obtained from comparing microregions before and after 2003.17

Table A.1 in the Appendix reports a set of results aimed at validating our measure

of soy technical change using data from the 1996 and 2006 Agricultural Censuses. First,

in Panel A, we show that our measure of soy technical change strongly predicts variation

in the actual adoption of GE seeds by Brazilian farmers across microregions (columns 1

and 2). Importantly, it does not predict the expansion of area farmed with traditional soy

(columns 3 and 4). This indicates that this measure of the effect of technical change on

potential soy yields is a good proxy of the actual benefits of GE soy adoption given soil and

weather characteristics of different areas. Second, in Panel B, we show that our measure of

soy technical change predicts the expansion of agricultural area farmed with soy, but not

the one farmed with maize, the other main temporary crop which experienced significant

technological innovation in this period (columns 1 and 2).18 If we build a measure of

maize technical change using the same methodology, we find that such measure predicts

the expansion in maize area between 1996 and 2006, but not the expansion of soy area

(columns 3 and 4). This indicates that our measure of technical change is a good proxy

of technological innovation at the crop level. Note that the results reported in Table

A.1 effectively replicate the results presented in Bustos et al. (2016) at a larger level of

aggregation (microregion instead of municipality).

2.3 Data sources

In this section, we describe the main datasets used in the empirical analysis. We obtain

information on employment from two different sources: the Population Census and RAIS,

the social security records dataset of the Ministry of Labor. The Population Census has

the advantage of covering both formal and informal workers, and it is available at 10-

year intervals. RAIS covers only formal employees, but it has the advantage of being

available at the yearly frequency. We also use data from two different manufacturing

surveys: PIA and PINTEC. We use data from PIA – the Brazilian manufacturing survey

– to construct measures of manufacturing productivity and capital. We use data from

PINTEC – the Brazilian Innovation survey – to classify industries by innovation intensity.

In what follows, we describe these four data sources in more detail.

We use the Censuses of 2000 and 2010 to obtain detailed information on employment

and wages in all sectors. We focus on individuals with strong labor force attachment.

In particular, we include individuals aged between 25 and 55 that work more than 35

hours a week.19 Differently from social security data, the Population Census covers both

17In these specifications, we use a balanced panel of microregions that includes all the microregions for
which we have observations in each year of the decade.

18See Bustos et al. (2016) for a detailed discussion of second-season maize.
19In order to deal with extreme observations, we focus on individuals whose absolute and hourly wages

are between the 1st and the 99th percentile for the distribution of wages in their respective year, and
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formal and informal workers, which makes it well suited to study movements of workers

in the agricultural sector – whose labor force is largely informal – as well as any effect

on informal employment in manufacturing. For each individual, we define the sector of

occupation as the sector of their main job during the reference week of the census. The

Population Census also provides information on the number of hours worked during the

reference week and the monthly wage.20 We use information on education to categorize

individuals as unskilled or skilled. We define workers as skilled if they have completed

at least the 8th grade, although our results are robust to alternative definitions of this

threshold. This level should be attained when an individual is 14 or 15 years old, and

is equivalent to graduating from middle school in the US. We also use data from the

Population Census to compute “composition-adjusted” wages (i.e., wages net of observable

workers’ characteristics). To this end, we estimate a Mincerian regression of log hourly

wages on observable characteristics for the two census years of 2000 and 2010, as explained

in Appendix B.

The Annual Social Information System (RAIS) is an employer-employee dataset that

provides individual information on the universe of formal workers in Brazil.21 We use

RAIS to study movements of workers across industries within manufacturing at yearly

level from 1998 to 2009. As in the Population Census, we focus on individuals aged

between 25 and 55 that work more than 35 hours a week.22 RAIS contains detailed

information on workers’ occupations, which we use to construct the new spatial measure

of the labor input in innovation activities described below.

We use data on number of workers, capital, value added, and wage bill from the Annual

Industrial Survey (PIA). The PIA survey is constructed using two strata: the first includes

a sample of firms with 5 to 29 employees (estrato amostrado), and it is representative at

the sector and state level. The second includes all firms with 30 or more employees

(estrato certo). We restrict the analysis to firms with 30 or more employees so that our

outcomes are representative at the microregion and industry level for those larger firms.

We define employment as the end-of-year number of workers, and value added as the

difference between value of production and expenditure in intermediate inputs. The PIA

survey does not report information on the capital stock. Thus, we use data on investment,

who work less than the 99th percentile of hours. Moreover, we only consider individuals not enrolled in
the education system at the time of the survey.

20We compute hourly wages as the monthly wage divided by 4.33 times the hours worked reference
week.

21Employers are required by law to provide detailed worker information to the Ministry of Labor. See
Decree n. 76.900, December 23rd 1975. Failure to report can result in fines. RAIS is used by the Brazilian
Ministry of Labor to identify workers entitled to unemployment benefits (Seguro Desemprego) and federal
wage supplement program (Abono Salarial).

22Following Helpman, Itskhoki, Muendler, and Redding (2017), our data cleaning procedure includes:
(i) restricting to workers employed as of December 31st in each year; (ii) restricting to the highest-paying
job for each worker that appears more than once in the data during one year (randomly dropping ties).
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depreciation, and the book value of assets in the first year a firm appears on the sample to

construct a firm-level measure of capital stock using the perpetual inventory method. For

multiplant firms, we allocate capital stock to each of their plants using employment shares.

We focus on firms operating in manufacturing as defined by the CNAE 1.0 classification

(codes between 15 and 37) and on the period between 2000 and 2009.

Finally, we use data from the Survey of Innovation PINTEC to classify manufacturing

industries into H and L industries. We think of H industries as industries that use rel-

atively more skilled labor and dedicate more resources to innovations that can generate

knowledge spillovers for other sectors. On the other hand, we think of L industries as

traditional, unskilled-labor intensive industries in which the scope for process innovation

is lower and that are less likely to generate knowledge spillovers toward other sectors.

This split is useful for investigating how the soy shock affected innovation incentives, as

we discuss below. The PINTEC survey is designed to capture innovation activities of

Brazilian firms and it is available every 3 years starting in 2000. Using this data, we

construct a measure of R&D intensity at the industry level, computed as the monetary

value of R&D expenditures divided by total sales in the baseline year 2000. The mea-

sure of R&D expenditure encompasses expenditure in both internal R&D and external

R&D, as well as expenditure in external know-how, machinery and equipment, training,

and expenditures related to introducing innovation in the market. Because this measure

subsumes expenditure in components of innovation that might be cataloged as interme-

diate inputs, we normalize it by total value of output in the industry (sales) rather than

value added.23 We define H industries as those above the median level of R&D inten-

sity, weighting industries by their employment at baseline. Table A.2 reports the full list

of manufacturing industries by R&D intensity and skill intensity.24 R&D intensity and

skill intensity at the industry level are highly correlated, as can be seen in Figure A.2 in

the Appendix.25 Indeed, the production function estimates presented in Table B.10 that

we use to compute Total Factor Productivity (TFP) imply that H industries are more

skill-intensive

23Other papers in the innovation literature that define R&D Intensity as R&D expenditures over sales
include, but are not limited to, the seminal papers on the exploration and characterization of industry
and firm R&D Intensity of Pakes and Schankerman (1984), Cohen, Levin, and Mowery (1987), Jaffe
(1988) and Cohen and Klepper (1992), and more recent works such as Acemoglu, Akcigit, Alp, Bloom,
and Kerr (2018) and Autor, Dorn, Hanson, Pisano, and Shu (2020).

24The 60 manufacturing industries reported in Table A.2 correspond to the industry classification
CNAE-Domiciliar used in the Population Census. Our original measure of R&D intensity at industry level
constructed using PINTEC data is based on the 4-digit CNAE 1.0 industry classification, which defines
267 different manufacturing industries (PIA and RAIS datasets use the same industry classification).
To map the 267 industries in PINTEC with the 60 industries reported in Table A.2 we use the official
conversion tables provided by the IBGE (https://concla.ibge.gov.br/).

25Notice that data on R&D expenditure from the PINTEC survey is not representative at the microre-
gion level. Thus, to construct a measure of innovation that is representative at any geographical level,
we use the description of occupations reported in the social security records, as described in section 2.4.
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Table 1 reports summary statistics of individual level characteristics observed in the

Population Census for workers operating in agriculture, L manufacturing, H manufac-

turing and services.26 As shown, there is large heterogeneity in skill intensity of workers

across these broad sectors. Almost 90 percent of workers in agriculture had not com-

pleted the 8th grade in 2000, while this number is around 50 percent for manufacturing

and services. Large differences are also present within manufacturing, where the share of

high-skill workers tends to be higher in H industries, particularly in 2010.

Table 1 goes around here

Table 2 provides summary statistics for the main variables used in the empirical anal-

ysis at the microregion level. Microregions are statistical units defined by the IBGE and

consist of a group of municipalities. Brazil has 557 microregions, with an average popula-

tion of around 300,000 inhabitants. We use microregions as an approximation of the local

labor market of a Brazilian worker. They can be thought of as small, open economies

that trade in agricultural and manufacturing goods but where production factors are im-

mobile.27 For outcomes sourced from the Population Census, which are observed in 2000

and 2010, we report the mean and standard deviation of their level in the baseline year

(2000) and of their change between 2000 and 2010.

Table 2 goes around here

2.4 A new measure of innovation across space

One of the mechanisms that we explore when trying to understand the decline in

manufacturing productivity is whether the inflow of low-skill workers into manufacturing

changed the incentives to innovate. This requires to observe innovation at the microre-

gion level, our unit of observation of the empirical analysis. For this purpose, we develop

a new measure of innovation which is representative at any level of geographical disag-

gregation, using the description of occupations in RAIS. More specifically, we propose a

new measure of the labor input in innovation activities based on textual analysis of the

task descriptions of more than 2,500 occupations. Tasks generating innovations include,

for example, developing new products and processes, creating prototypes, or optimizing

26We define agriculture, manufacturing and services by following the classification of the CNAE Domi-
ciliar of the 2000 census. Agriculture includes Sections A and B (agriculture, cattle, forestry, and fishing).
Manufacturing includes Section D, which corresponds to the transformation industries. Services include:
construction, commerce, lodging and restaurants, transportation, finance, housing services, domestic
workers, and other personal services. We exclude the following sectors because they are mostly under
government control: public administration, education, health, international organizations, extraction,
and public utilities.

27In Table A.5 of the Appendix we show that internal migration did not respond to the shock. This is
in line with evidence from Brazil’s lack of internal migration responses documented also in Dix-Carneiro
and Kovak (2019) and Costa, Garred, and Pessoa (2016). Migration in Brazil seems to have been more
central in the 1950s, as documented in Pellegrina and Sotelo (2022).
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methods of production. An important advantage of this measure is that it allows us to

track innovation workers across sectors and regions. This is because the social security

data covers the universe of formal firms. In contrast, standard manufacturing innovation

surveys, such as PINTEC, are based on a sample of firms that is not representative at

low levels of geographical disaggregation, and do not allow to trace workers’ movements

across firms.

In what follows, we describe our methodology to identify workers in innovative occu-

pations. As a first step, we digitized the text containing the official description of the

tasks associated with each occupation as provided in the “Brazilian Classification of Oc-

cupations” published by the Ministry of Labor. In the second step, we defined a set of

39 keywords or combination of keywords capturing tasks related to innovative activities.

To generate this list, we identified a set of words that are used to define activities related

to innovation either in the task description of occupations provided by the Ministry of

Labor, or in the technical documentation of PINTEC, the Survey of Innovation of Brazil-

ian firms. The list of keywords used is reported in Appendix Table A.3. As shown, most

entries are a combination of a verb and a noun describing a task associated with inno-

vation. These combinations can be grouped in those capturing innovation of products

(e.g. “develop/improve product/s”), innovation of processes (e.g. “develop/improve/test

process/es”), innovation of machinery and equipment (e.g. “develop device/s”, “develop

equipment”). We also include single nouns, combinations of nouns, or combinations of

nouns and adjectives that are often found in the description of innovation intensive tasks

(e.g. “innovation”, “prototypes”, “research and development”, “new technologies”). Fi-

nally, in the last step, we run a text analysis that identifies all occupations whose descrip-

tion contains at least one of the keywords listed in Appendix Table A.3. This methodology

identifies 251 occupations, which we define as innovation-intensive.28

Figure A.3 shows the total number and the share of manufacturing workers in innovation-

intensive occupations in Brazil. According to our measure, the number of workers in

innovation-intensive occupations increased from approximately one hundred thousand in

2000 to three hundred thousands in 2014, and started falling afterward when Brazil en-

tered into a severe recession. Workers in innovation intensive occupations constitute

between 3 and 4 percent of total manufacturing formal employment. This share has been

increasing during the period under study from 2.5 percent in the early 2000s to slightly

above 4 percent in most recent years.29 Figure A.4 reports the share of local manufactur-

28See Lagaras (2017) for an application of this methodology at the firm-level in order to explore the
impact of corporate acquisitions on labor reorganization and firm-level innovation.

29The Brazilian Ministry of Labor has updated its classification of occupations in 2002. RAIS uses the
new classification (CBO2002) starting from 2003. We identify innovation intensive occupations using the
the description of tasks provided for the CBO2002 classification. To extend our analysis to the pre-2003
years we match the old classification (CBO 1994) and new classification (CBO 2002) using the official
correspondences provided by the Ministry of Labor. Whenever one occupation in the old classification is
matched with multiple occupations in the new one, we weight the number of workers in that occupation

15



ing employment engaged in innovation intensive activities in each microregion of Brazil

in the baseline year 2000. As shown, the share of innovation workers ranges from 0 to

almost 20 percent of formal manufacturing employment, with higher shares observed in

the coastal regions of the South and South-east of Brazil, but also in several microregions

encompassing large cities in the North and Center-West regions of the country.

We perform a set of consistency tests on our measure of innovation. Figure A.5 shows

the correlation between employment share in innovation-intensive occupations and other

measures of innovation that are available at the industry level from the PINTEC survey.

We include measures that capture the amount of inputs devoted to the innovation process

– such as R&D expenditure per worker – as well as measures capturing the output of the

innovation process – such as the share of firms in a given sector that have filed patents and

the share of firms that have introduced new processes or products. As shown, the share of

innovation-intensive workers is highly correlated with all these alternative measures, with

the additional advantage of being available not only at the sector level but also at fine levels

of geographical aggregation. Table A.4 reports the magnitude of the correlations between

the share of innovation-intensive workers in each industry and the alternative measures

reported in Figure A.5. The estimates indicate that a 1 percentage point increase in the

share of innovation-intensive workers in a given industry is associated with a 6 percent

increase in R&D expenditure over sales, a 1.6 percentage point increase in the share

of firms filing for patents, and a 1.6 percentage points increase in the share of firms

introducing either a new product or a new process.

It is perhaps also useful to discuss in some detail the differences between the measure

of innovation based on workers’ task description proposed in this paper and the main

alternative measure of innovation used in the literature: patenting. One advantage of

patent data is that it captures the output of the innovation process, and – by using patent

citations – it allows researchers to make statements about the quality of the innovation

produced (Carlino and Kerr 2015). However, an important disadvantage of patent data

is that, in many instances, firms introduce new products or processes without patenting

them. Data from PINTEC, shows that, in the decade 1997 to 2008, 34 percent of surveyed

firms introduced new processes or products. However, only 7 percent of those firms have

filed a patent application or have an approved patent for such innovation.30 This fact

is visible also in panel (f) of Figure A.5, which shows how in many sectors with a high

share of firms introducing new processes and products, no firms report patenting activity.

The fact that many firms decide not to patent their innovations has been documented

also in other countries. For example, Cohen, Nelson, and Walsh (2000) analyze survey

data from approximately 1,500 R&D labs of manufacturing firms in the US, and show

by the share of innovation workers observed in the first year in which the new classification is used (2003).
30These statistics are based on Table 6497 of the PINTEC surveys run in 2000, 2003, 2005 and 2008.

Each PINTEC survey captures the innovative activities in the previous three years, so they effectively
cover the decade 1997 to 2008. The statistics reported are averages across the four waves.
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that patenting is used less frequently than other approaches to protect the return from

invention, as patent applications require firms to disclose to competitors a large amount

of information. According to the same survey, smaller firms tend not to apply for patents

due to their legal costs, and are also more likely to consider patents ineffective.

Finally, it may also be useful to clarify that what our measure of innovation intends

to capture not just investment in R&D that pushes the world technology frontier, but

also investment in adapting innovations developed elsewhere to the Brazilian market or

to firm-specific production processes. Indeed, aggregate data from the PINTEC suvey

indicate that most innovations introduced by Brazilian firms happen through adaptation

of technologies that are new to the firm but already in use elsewhere. In particular, about

84% of new products and 94% of new processes introduced by Brazilian firms surveyed

in PINTEC are an innovation for the firm but already exist in some form either in Brazil

or in the rest of the World.31 In this sense, we think of investments aimed at “adapting”

a new technology developed elsewhere to the Brazilian market, and making it usable for

local firms, as an investment in innovation.

3 The industrialization process

3.1 Industrialization without productivity growth

We start by studying the effect of soy technical change on the reallocation of workers

and capital towards manufacturing and its impact on manufacturing productivity growth.

To this end, we use data on employment from the Population Census and social security

records (RAIS), and data on capital from the annual manufacturing survey (PIA).

The results are reported in Table 3. In Panel A, we study the effect of soy tech-

nical change on labor reallocation across sectors using Census data and the ten year

first-difference specification explained in section 2.2, equation (1). We find that microre-

gions with higher exposure to soy technical change experienced a decrease in the share

of workers employed in agriculture and an increase in the share of workers employed in

manufacturing and services.32 The magnitude of the estimates indicates that agricultural

workers displaced by the new technology relocated mostly into manufacturing: microre-

31The case of GE soy is illustrative in this respect. While the initial patent of GE soy seeds was deposited
in the US by the multinational corporation Monsanto, the final product available in the Brazilian market
was the outcome of an adaptation process that involved Embrapa – the Brazilian Research Institute
for new agricultural technologies. In particular, Embrapa conducted a series of crossings between the
herbicide tolerant variety developed by Monsanto for the US market and seeds previously developed by
Embrapa itself to develop a version of the GE soy seeds adapted to the agro-ecological conditions of
Brazil.

32Soy technical change had only small and not significant effects on total employment. Thus, the
employment changes that we document in what follows are not driven by migration between microregions
or by changes in the total number of workers employed, but by movement of workers across sectors within
microregions. Table A.5 provides evidence on the effect of soy technical change on total employment and
migration.
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gions with a one standard deviation larger increase in soy technical change experienced a

2.4 percentage points larger decline in the agricultural employment share, a 1.8 percent-

age points increase in the manufacturing employment share, and a 0.6 percentage points

increase in the services employment share. Overall, these results indicate that soy tech-

nical change was labor-saving and led to structural transformation, which are the main

findings documented in Bustos et al. (2016).33

Table 3 goes around here

In Panel B, we move to data from the manufacturing survey (PIA), which allows us

to use a yearly panel of microregions. We estimate the specification discussed in section

2.2, equation (3), using as outcome variable the total number of workers in manufacturing

in a given microregion and year (in logs). The estimated coefficient shows that microre-

gions more exposed to soy technical change experienced a larger increase in manufacturing

employment. The magnitude of the coefficient indicates that a one standard deviation

differential change in soy technical change leads to a 7 percent larger increase in manu-

facturing labor. Next, we investigate whether soy technical change also affected capital

investment by manufacturing firms. The results are reported in column (2), and show that

capital also moved towards manufacturing. The estimates suggest that a one standard

deviation differential change in soy technical change leads to an increase in capital in the

manufacturing sector of around 17.6 percent.

In columns (3) to (5), we study the effect of soy technical change on manufacturing

productivity. We construct three measures of productivity using data from the manu-

facturing survey PIA: value added per worker, valued added over wage bill, and total

factor productivity.34 The results show that, although both labor and capital reallocated

33Bustos et al. (2016) find that soy technical change had a positive and significant effect on the em-
ployment share in manufacturing but no significant effect on the employment share in the services sector.
Panel A of Table 3 in this paper documents that microregions more exposed to soy technical change
experienced an increase in employment share in both manufacturing and services. There are two reasons
behind this difference in results when the outcome is the employment share in the services sector. The
first is that, in this paper, we focus on remunerated labor – i.e. workers receiving a wage – whereas
Bustos et al. (2016) also included workers who helped household members without receiving a payment
or worked in subsistence agriculture. The second is the unit of observation, which is a microregion in this
paper, a municipality in Bustos et al. (2016).

34We compute total factor productivity as the Solow residual of a Cobb-Douglas production function
that combines skilled labor, unskilled labor, and capital in constant returns to scale fashion. We compute
the factor shares for skilled and unskilled labor by combining the share of the aggregate wage bill that
corresponds to each type of labor in each type of industry with measures of the labor share at the industry-
level for the US retrieved from Becker, Gray, and Marvakov (2021). The capital share is calibrated by
leveraging the constant returns to scale assumption. These assumptions imply that for a given industry
the production technology is the same across microregions and periods, and thus, changes in the TFP
are dictated by changes in the allocation of production factors. See Appendix B.1 for a more detailed
explanation of how the TFP measure is computed.
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towards manufacturing, regions more exposed to soy technical change experienced a rela-

tive decline in manufacturing productivity. The magnitude of the coefficient in column (3)

indicates that labor productivity declined by about 10 percent for a standard deviation

differential change in soy technical change, which correspond to about 1.5 percent lower

growth rate in manufacturing productivity in the post GE legalization period. We find

similar magnitudes for alternative measures of productivity computed as value added per

wage bill or total factor productivity.

Taken together, the results presented in Table 3 indicate that, despite the fact that

soy technical change drove factors of production from agriculture towards manufacturing,

productivity in manufacturing slowed down in the years following GE soy legalization. In

the next sections, we explore why we find an empirical result that seems to contradict

existing theoretical predictions that moving resources toward manufacturing should boost

productivity, both statically and dynamically. We first investigate the nature of the

agricultural shock in more detail by documenting the skill composition of the workers

moving into manufacturing and the patterns of industrial specialization. Next, in Section

4, we investigate potential mechanisms that can explain the evolution of manufacturing

productivity.

3.2 Unskilled-labor saving agricultural technical change

In this subsection, we study the impact of GE soy technical change on workers with

different skills using data from both the Population Census and social security records

(RAIS). Table 4 presents the results using Census data. We estimate the ten year first-

difference specification presented in equation (1), and use as outcome variables the changes

in the share of unskilled and skilled workers in agriculture, manufacturing and services

between 2000 and 2010.

Columns (1) to (3) focus on unskilled workers. We find that microregions more exposed

to soy technical change experienced a reallocation of unskilled workers from agriculture to

manufacturing. The magnitude of the estimated coefficients indicates that microregions

with a standard deviation higher increase in soy technical change experienced a 2.4 per-

centage points larger decrease in the share of low-skilled workers employed in agriculture,

and a corresponding 2.2 percentage points larger increase in the share of low-skilled work-

ers employed in manufacturing. These magnitudes correspond to a 7.2 percent decrease

in the initial share of low-skilled workers employed in agriculture and a 16.1 percent in-

crease in the share of those employed in manufacturing. Combined with the fact that

soy technical change had no differential effect on total employment (see Table A.5 in the

Appendix), these results are consistent with a decline in the absolute demand for low-skill

labor in agriculture in response to skilled labor-augmenting technical change.

Columns (4) to (6) focus instead on skilled workers. We find that microregions more
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exposed to soy technical change experienced a larger decrease in the share of high-skill

workers in agriculture, and a larger increase in the share of high-skill workers employed in

manufacturing, as expected if low and high-skill workers are to some extent complemen-

tary in production. In terms of magnitude, the effect of soy technical change on low-skill

labor is about twice as large as the effect on high-skill labor.

Table 4 goes around here

Next, we explore in more detail the labor reallocation process described above us-

ing yearly social security data from RAIS. Although RAIS data captures only formal

employment, its annual frequency allows us to check whether the employment changes

documented with Census data occurred right after GE soy was introduced in Brazil. For

this, we plot the interaction of year dummies with our measure of soy technical change

as explained in Section 2.2, see equation (2). As can be seen in Figure 2 (a), low-skilled

labor started to move towards manufacturing in microregions more exposed to soy tech-

nical change around 2002, while there is no systematic difference in the trends leading

to this year. When focusing on formal employment captured by social security data, we

find no differential increase in skilled labor moving towards manufacturing, as shown in

Figure 2 (b). The timing of the effect suggests that changes were permanent. Reallo-

cation of unskilled labor towards manufacturing started around 2002, one year after the

first reported smuggling of the GE soy seeds in Brazil and the year when the area planted

with soy started expanding at a faster rate (Figure 1). The reallocation then accentuated

around 2004, one year after the formal legalization of GE soy in Brazil, and stabilized

during the second half of the decade.

Figure 2 goes around here

Taken together, the estimates presented in Table 4 and Figure 2 show that the agri-

cultural sector experienced a decrease in its employment share of both low-skill and high-

skill labor, while the manufacturing sector experienced an increase in employment driven

mainly by low-skill labor. These findings indicate that labor-saving technical change in

agriculture driven by the adoption of GE soy was skill-biased and led mainly low-skill

workers to reallocate towards manufacturing.

3.3 Industrial specialization

From the point of view of the manufacturing sector, the inflow of former agricultural

workers documented in Section 3.2 amounts to an increase in the (relative) supply of

unskilled labor. In closed economies, this would be accommodated by an increase in the
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use of low-skill workers across industries. In open economies, an inflow of unskilled labor

generates a comparative advantage in unskilled-labor intensive industries, which should

expand by absorbing the inflow of unskilled workers and also attract other complementary

factors such as capital and skilled labor (Rybczynski, 1955). To empirically investigate

the effects of soy technical change on industrial specialization we use the classification of

manufacturing in H and L industries based on PINTEC data described in section 2.3. In

this split, which will be particularly useful in our exploration of the various mechanisms

in Section 4, H (resp. L) industries are defined as those with higher (resp. lower) than

median R&D intensity and tend to use skilled (resp. low-skilled) labor more intensively.

We start by documenting the effect of soy technical change on industrial specialization

using population census data using equation (1). Panel A of Table 5 shows that the labor

inflow into manufacturing is concentrated in L industries whose employment expanded by

around 17 percent for a one standard deviation differential increase in potential soy yields.

In contrast, H industries did not experience any differential change in employment. In

Panel B, we investigate industrial specialization using social security data and the yearly

panel regression introduced in equation (3). The results are in line with the ones obtained

with Population Census data: labor was absorbed by L industries. Point estimates are

smaller possibly due to the fact that social security data only includes formal labor. As

the level of informality is higher in agriculture than manufacturing, it is possible that

former agricultural workers were more likely to accept informal contracts. In this case,

their employment in the manufacturing sector is captured by the Population Census but

not by social security data.

Next, we investigate the effects of agricultural technical change on capital investment

in manufacturing. Agricultural technical change could affect capital investment in two

ways. First, a labor supply channel: the labor inflow in the L industry documented above

would tend to increase the marginal product of capital, which should attract more invest-

ment into this industry. Second, a capital supply channel: high agricultural productivity

increased local savings, as documented in Bustos et al. (2020). In turn, this increase in

local capital supply could have increased capital investment in capital-intensive industries.

Panel C of Table 5 shows that capital inflows to manufacturing concentrated in L indus-

tries, where capital increased by 26.7 percent for a one standard deviation differential

change in soy technical change. In contrast, H industries did not experience these capital

inflows. Hence, this evidence favors the labor supply explanation at the local level.35

Table 5 goes around here

To investigate in more detail the timing of these labor and capital inflows into man-

ufacturing, we estimate the dynamic difference-in-differences specification described in

35Bustos et al. (2020) show that the capital supply channel occurs across regions. We return to this
point in Section 4.4 where we investigate the capital supply mechanism in more detail.
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equation (2). The coefficient estimates are presented in Figure 3, which shows that the

adoption of GM soy induced the reallocation of labor towards L industries starting in

2002. This timing coincides with the first reports of large scale smuggling of GE soy

seeds and the expansion of the area planted with soy (Figure 1) in 2002, which led to

the legalization of the new soy seeds in 2003. In addition, the figure shows that labor

inflows into manufacturing precede capital inflows by one year, which is further evidence

in support of the labor supply mechanism discussed above.

Figure 3 goes around here

In sum, we find evidence of local industrial specialization into L industries. This

finding is consistent with Rybczynski-type forces prevalent in small open economies (Ry-

bczynski, 1955), since the labor released from agriculture was mainly low-skilled and that

L industries tend to use low-skilled labor more intensively. In what follows, we investi-

gate how this pattern of industrial specialization can explain the decline in manufacturing

productivity.

4 Mechanisms

In this section, we investigate the possible causes that can explain the manufacturing

productivity decline documented in section 3.1. We start by showing that manufacturing

productivity decline is similar across sectors. Next, we document how part of the produc-

tivity decline in L industries may be explained by worker composition. Finally, we explore

whether changes in the incentives to innovate can be behind the decline in productivity

in H (and potentially L) industries.

4.1 Industrial composition

Given the evidence shown in section 3, one natural candidate to explain the overall

manufacturing productivity decline is the change in industrial composition. If the indus-

tries that are able to absorb former agricultural workers are less productive to start with,

when resources move toward such industries, overall manufacturing productivity should

mechanically decline. To investigate this channel we decompose the total effect of soy

technical change on manufacturing productivity into three components: changes in pro-

ductivity within the L industry, changes in productivity within the H industry, and the

change in productivity driven by reallocation of factors between industries. Specifically,

we use the following decomposition:
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∆ log TFPit = siLt × ∆ log TFPiLt︸ ︷︷ ︸
Change within L industry

+ (1 − siLt) × ∆ log TFPiHt︸ ︷︷ ︸
Change within H industry

+

+ siLt × ∆ logωit ×
(TFPiLt − TFPiHt)

TFPiLt︸ ︷︷ ︸
Composition effects

+εi

where siLt = ωi×TFPiLt

ωi×TFPiLt+(1−ωi)×TFPiHt
corresponds to the share of TFP in the L industry

weighted by ωi =
V AiL,2000

V AiL,2000+V AiH,2000
which is the value added share of each sector in 2000,

before the adoption of the new GE soy seeds.36 The first and second terms of this equation

reflect changes in manufacturing productivity within the L and H industries, respectively.

The last term captures changes in overall manufacturing productivity due to composition

effects, driven by changes in the relative size of each industry.

The overall decline in manufacturing productivity is shown in panels (a) and (b) of

Figure 4, while the decompositions into between and within components, using value

added per worker and our measure of TFP, are reported in the same Figure 4, graphs

(c) and (d). These graphs show that most of the reduction in the level of manufacturing

productivity is driven by the within components, the between component being small. In

fact, the estimates imply that the “between” component can explain at most 8 percent

of the overall decline in manufacturing productivity. Hence, most of the manufacturing

productivity decline is not driven by a change in the relative size of each industrial sector.

Figure 4 goes around here

Table 6 quantifies further the results shown in Figure 4. The estimated coefficients

in columns (1), (2), and (3) indicate that microregions with a one standard deviation

faster technical change in soy experienced a decline in manufacturing productivity in the

L industry of between 10 and 11 percent when using value added per worker or value

added over wage bill as measures of productivity, and of about 18 percent when using

TFP. The declines in manufacturing productivity in the H industry are between 9 and 11

percent for a standard deviation difference in soy technical change across all measures of

productivity.

Table 6 goes around here

36Notice that εit is a residual that comes from the fact that we use pre-shock weights and aggregate
differences in TFP between sectors, rather than microregion specific ones.
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The large reductions in productivity within the L industry reported above, in the

context of an overall increase in the size of this industry, have important implications

for interpreting the evidence. First, this finding confirms that capital and labor are not

pulled into the L industry by increases in its productivity but pushed by labor-saving

technical change in agriculture. Second, the resulting larger scale of this industry does

not appear to generate increasing returns, as some previous work might have predicted.

Third, the evidence in this section suggests that industrial composition effects do not

explain substantially the manufacturing productivity decline.

4.2 Worker composition

A second mechanism that can explain the decline in manufacturing productivity is

a change in the composition of workers entering the manufacturing sector. Workers en-

tering manufacturing who were previously employed in agriculture may lack the skills

necessary to thrive in the manufacturing sector. This may result in substantial (average)

productivity declines in the industries where they enter, at least temporarily.

Some of the measures of productivity used in section 3.1 such as value added over wage

bill are already designed to account not only for observable differences in workers’ human

capital like education, but also for unobservable differences, to the extent that workers’

productivity is passed on to wages. To see this, note that we can decompose labor

productivity in L industries as valued added per wage bill and average wages: lnV A/L =

lnV A/wL+lnw. In perfectly competitive labor markets, average wages should reflect the

average marginal product of labor, which can be tied almost one to one to productivity

(less than one to one if there are fixed factors of production). In this case, negative worker

selection would manifest in a decline in average wages and, hence, large differences in our

estimates of the effect of soy technical change on manufacturing productivity measured

as value added per worker and as value added per wage bill. Comparing the estimates in

columns (1) and (2) of Table 6 imply that around 11% of the decline in manufacturing

productivity in the L industries can be attributed to worker composition.37

At the micro-level, we can investigate the impact of soy technical change on worker

composition using data from RAIS, which allows us to track the trajectory of workers

initially employed in agriculture. It is important to note that these workers are necessarily

formal, and hence, a relatively small and potentially selected sample. In fact, according to

Census data, over 75% of agricultural workers in 2000 are informal. Still, when comparing

the maximum level of education attained by informal agricultural workers observed in the

Population Census and the one attained by formal agricultural workers observed in RAIS

in 2000, we find similar shares of unskilled labor in both samples (87% among informal

workers in the Census, 83% in RAIS). Overall, we think that following formal workers

37This number results from the following calculation: (0.151 − 0.135)/0.151 = 0.106.
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across sectors in RAIS is informative about the patterns of worker selection.

We start by studying the employment trajectory of individuals observed in agriculture

in the pre-2003 period. As in the case of Census data, we focus this analysis on full-time

male employees between 25 and 55 years of age. We observe 1,304,659 unique individuals

with such characteristics that are formally employed in agriculture in the pre-2003 period.

We then categorize their employment trajectories starting in 2003, which include: remain-

ing in agriculture, moving into sectors other than agriculture, or moving out of sample

(including informality, unemployment or self-employment). We are particularly interested

in studying the effect of soy technical change on the probability of transitioning into H

vs L manufacturing industries. The results are reported in the first two columns of Table

7. Column (1) shows that formal workers who were employed in agriculture prior to 2003

in areas with higher soy technical change are significantly more likely to move toward L

manufacturing industries (3.7 percentage point for a standard deviation higher increase

in potential soy yields). Column (2) shows that such workers are also significantly less

likely to enter H industries. These patterns confirm that formal workers relocated across

sectors in a way that is similar to how all workers relocated – which we captured with

Census data.

In columns (3) and (4) we compare the wages paid to former agricultural workers when

moving toward the L industry with the wages of incumbent workers in the L industry.

For this analysis, we restrict our sample to workers observed in the L industry starting

in 2003, and that were previously employed either in agriculture or in the L industry.

The estimate in column (3) indicates that, unconditionally, former agricultural workers

are paid 27 percent less than incumbent workers in the L industry, which is an indication

that they may be as much as 27 percent less productive.38 In column (4) we use as

outcome a measure of wages that takes into account differences in age and education

across workers. Conditioning on these observable characteristics, the wage penalty for

former agricultural workers is 12 percent.

Table 7 goes around here

We can use the wage penalty estimates of formal worker moving from agriculture to

L manufacturing to assess how much of the productivity decline observed in L manufac-

turing can be explained by changes in worker composition. For this exercise, we compute

how many workers moved from agriculture to L industries and assume that informal work-

ers experience similar wage penalty as formal workers when moving across these sectors.

38In unreported results we investigate if the potential patterns of selection of workers moving from agri-
culture to L industries differs across regions with different soy technical change. The estimated coefficient
on the interaction term between workers moving from agriculture and soy technical change is 0.022 with
a standard error of 0.030. The fact that the interaction coefficient is small and not distinguishable from
zero indicates that the negative selection of movers toward L industries does not change significantly with
the soy shock.
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Microregions with one standard deviation higher soy technical change experience a 17%

higher increase in employment in L manufacturing (Table 5), which is driven by a real-

location of labor from agriculture (Table 3). If the wage penalty that former agricultural

workers face in L industries is due to productivity disadvantages, then worker selection

can explain at most between 25 and 42 percent of the productivity decline in L industries,

depending on the measure of productivity (TFP vs value-added per worker).39

The main caveat with this analysis is that RAIS data only covers formal workers, and

yet, a big share of agricultural workers in Brazil are informal. To investigate the patterns

of selection of agricultural workers we turn to evidence on how the soy technical change

affected wages of informal workers across sectors. In particular, in Table A.6, we focus

on decadal changes in the average wage of unskilled informal workers in manufacturing.40

We see that, on average, wages of unskilled informal workers declined somewhat in man-

ufacturing, particularly in L industries (3.1 percent for a one standard deviation in soy

technical change). If all of this decline reflects changes in productivity, then this estimate

suggests that worker selection can account for at most 31% of the decline in manufacturing

productivity.41

Overall, the results presented in this section indicate that former agricultural workers

are, on average, less productive than incumbent workers in the L industry. The estimates

presented in this section imply that changes in worker composition can contribute to

explain about one third of the decline in productivity within the L industry (25 to 43%

when using formal workers’ wages, and 31% when using informal workers’ wages). This

result can help to rationalize the larger declines in manufacturing productivity observed in

L industries relative to H industries in Table 6. However, worker composition is unlikely

to be a driver of the productivity decline within the H industry, because the latter does not

absorb agricultural workers. Hence, we need to investigate alternative potential drivers of

manufacturing productivity decline across industries. The endogenous growth literature

suggests one natural candidate – innovation – which we discuss in the next section.

39These numbers are obtained using the wage penalty implied by column (3) of Table 7. First, we
multiply the percentage increase in employment in the L manufacturing industry for one standard devi-
ation in soy technical change by the wage penalty estimated in Table 7, that is: 0.271 × 0.17 = 0.047.
This gives us the productivity decline due to worker composition for a standard deviation difference in
soy technical change. Next, we compare the 0.047 with the productivity decline in the L industry for
a standard deviation of soy technical change documented in Table 6. The range refers to the log TFP
measure (0.047/0.0186 = 0.251) and the log value added per worker measure (0.047/0.112 = 0.417).
Notice that if we were to use the wage penalty conditional on worker characteristics (column (4) of Table
7), then worker selection could explain between 11 and 18% of the productivity decline, for the same two
measures of productivity.

40In this case we take all workers, including those who work part-time and females, to try to be inclusive
on all potentially informal workers in the economy. See more details on how we compute composition
adjusted wages in the data section.

41This number comes from dividing our wage estimate in Table A.6 by the smallest estimate of manu-
facturing productivity decline shown in Table 6, i.e. 0.042/0.135.
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4.3 Innovation

In this section, we investigate whether part of the simultaneous reduction in produc-

tivity within L and H industries can be explained by changes in innovation activities. A

major challenge to studying the response of industrial innovation to agricultural technical

change is the lack of a measure of investment in R&D which is representative at low levels

of spatial aggregation such as micro-regions. Thus, as detailed in Section 2.3, we use the

description of workers’ occupations in social security data to develop a new measure of in-

vestment in innovation that varies both across regions and sectors. We measure the labor

input in innovation as the total wage bill of workers in innovation-intensive occupations,

which are defined as those effectively producing new ideas – such as new products and

processes – within each industry.

This measure allows us to estimate the effect of agricultural technical change on the

allocation of innovative activities across industries. In particular, we estimate equation

(2) using as outcome variable the total wage bill of workers employed in innovation and

non-innovation intensive occupations and report estimates in Figure 5. The top panels (a)

and (b) confirm that regions more exposed to soy technical change experienced an increase

in the wage bill in non-innovative activities within L industries. In turn, panels (c) and

(d) report the effect of agricultural technical change on investment in innovation-intensive

activities. Estimates reported in panel (c) show that, if anything, innovative activities in

L industries increased slightly. In turn, estimates in panel (d) show that regions more

exposed to soy technical change experienced a sharp decline in investment in innovative

activities within H industries, whose timing corresponds with the legalization of GE soy

in 2003.

Figure 5 goes around here

Table 8 quantifies the effects documented in Figure 5. The coefficients reported in

columns (1) and (2) confirm that microregions with a one standard deviation larger in-

crease in potential soy yields experienced an 11 percent higher increase in the wage bill

of non-innovative labor in L industries and no increase in H industries. In turn, column

(3) shows a positive but not statistically significant increase in the wage bill of innovative

labor in L industries. Finally, column (4) shows that microregions with one standard de-

viation larger increase in soy technical change experienced a 20 percent larger decline in

the wage bill of innovative labor in H industries. Hence, these results suggest that R&D

expenditures and innovation activities moved toward L industries, which were expanding

as a result of the soy shock. It is worth emphasizing that this decline in potentially higher

spillover type industries can explain, at least part, of the manufacturing productivity

decline in both industries.
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Table 8 goes around here

To understand in more detail how this relocation of innovation workers occurred, we

perform two additional exercises. First, we investigate whether the decline of innovation

in the H industry is driven by lower entry or lower retention of workers that might

then be attracted to the L industry. For this, we use social security data to classify

innovation workers employed in the H industry into five different categories: stayers (i.e.

innovation workers already observed in the previous year in the H industry), entrants in

the labor market, entrants from informality/self-employment/unemployment, switchers

from L industries and switchers from sectors other than the L industry. We then estimate

the impact of soy technical change on the wage bill of each of these categories separately.

The results, reported in Figure 6, show that in regions more exposed to soy technical

change, innovation workers are both less likely to enter and to stay in the H industry.

The magnitude of the effect on the different components indicates that about half of the

total effect is driven by a lower probability of innovation workers remaining in the H

industry. The other half is driven by lower entry into the H industry in regions more

exposed to soy technical change.

Figure 6 goes around here

Second, we track whether innovation workers initially in H industries moved differen-

tially into L industries and whether they continued to be employed in innovation tasks or

moved into other occupations. Figure 7 (a) reports that in microregions with a one stan-

dard deviation higher exposure to soy technical change, 2.4 percentage points of the wage

bill share of innovation workers is lost due to reallocation of workers towards the L indus-

try over the whole post-period. Hence, innovation workers seem to have followed other

factors of production such as non-innovation labor and capital. Figure 7 (b), moreover,

shows that a significant fraction of these workers moved into non-innovating activities.42

We find that more than one-third of innovation workers moving from H to L industries

also changed occupation, switching from an innovation-intensive to a non-innovation in-

tensive job.

Figure 7 goes around here

Taken together, the results presented in this section show a decline in innovative

activities performed in H industries in regions more exposed to agricultural technical

42See Figure A.6 for the same figures using labor instead of wage bills.
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change, and a reallocation of such activities from H to L industries. In addition, the

results indicate that a significant fraction of innovation workers moving to L industries

also switched from innovation intensive to non-innovation intensive occupations. These

results can explain the decline in manufacturing productivity growth that accompanied

the industrialization process in such regions. In particular, the results suggest that the

decline in innovation within H industries reduced local knowledge production, potentially

causing manufacturing productivity growth to decline in both industries. Note that lower

innovation in the H industry appears to have a direct effect on its productivity and (po-

tentially) an indirect effect on the productivity of the L industry through local knowledge

spillovers.

4.4 The role of capital

In section 3.3, we documented that the reallocation of agricultural workers into low-

R&D intensive manufacturing industries was followed by an inflow of capital. We evalu-

ated two potential channels through which agricultural productivity growth can lead to

capital investment in manufacturing. First, a labor supply channel: labor-saving technical

change in agriculture generated an inflow of workers in the L industry. Larger employment

is expected to increase the marginal product of capital and thus attract more investment

into this industry. Second, a capital supply channel: high agricultural productivity in-

creased local savings, as documented in Bustos et al. (2020). In turn, this increase in local

capital supply could have increased capital investment in capital-intensive industries. We

concluded that the evidence presented in that section favoured the labor supply mecha-

nism for two reasons. First, capital inflows into manufacturing lagged labor inflows by

one year. Second, capital inflows were concentrated in L industries while both industries

have a similar capital-intensity. Still, in the current section we conduct a more detailed

exploration of the capital supply channel.

We build on previous work studying the effects of the agricultural boom in Brazil on

capital markets. Bustos et al. (2020) document that regions with faster technical change in

soy experienced an increase in local savings deposits which were not lent locally, leading

to an increase in capital outflows. They use detailed credit registry data to track the

destination of capital flows and find that banks capturing deposits in soy boom areas

redirected them to other regions where they had branches. This increase in bank lending

was concentrated outside of soy-producing regions and in the manufacturing and service

sectors. Note that this finding stands in contrast to the findings on the effect of agricultural

technical change on structural transformation through the labor supply channel, which

operates in local labor markets with limited migration responses (see Table A.5). Instead,

the capital supply channel operates across regions financially integrated with soy boom

areas through the bank branch network.
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We can simultaneously estimate the effect of the labor and capital supply mechanisms

on structural transformation by adding to our baseline specification, described in equation

(1), a measure of exposure to capital inflows from soy boom areas through the bank

branch network following Bustos et al. (2020). In this analysis, we use the change in

employment share in manufacturing between 2000 and 2010 as our measure of structural

transformation. Estimation results are reported in Appendix Table A.7. Two key findings

emerge. First, we confirm that the local effect of soy technical change is concentrated

in soy-producing regions, and in low-R&D intensive manufacturing – what we label L

industries in this paper. On the other hand, the indirect effect of soy technical change via

bank exposure to soy boom areas has the following characteristics: it affects manufacturing

in destination regions, it is concentrated in non-soy producing regions, and it is stronger

for high-R&D intensive manufacturing – what we label H industries in this paper.

These results have relevant implications for the role of technical change in agriculture

for industrialization and growth. In particular, they suggest that while agricultural savings

can foster the growth of productivity-enhancing manufacturing in urban regions financially

integrated via the bank network, the reallocation of former agricultural workers towards

low-skill intensive industries can slow down productivity growth at the local level. Thus,

our findings indicate that structural transformation obtained through unskilled labor-

saving technical change in agriculture – which may be quite common when developing

countries adopt agricultural technologies from more developed ones – can attenuate the

standard gains from reallocation into manufacturing emphasized by the existing literature,

and potentially accentuate regional productivity inequalities.

4.5 Robustness Tests

In this section, we address some additional concerns regarding the interpretation of

our estimates. First, we investigate whether the expansion of L manufacturing industries

in areas experiencing technical change in soy could be the result of larger local demand for

agricultural inputs or larger local supply of agricultural outputs for further processing.

In this case, the expansion of manufacturing employment would be driven by sectors

connected to soy production via input-output linkages. This includes sectors using soy

as an input – such as the food processing industry – or that produce inputs for the

soy sector – such as the production of fertilizers, herbicides or other agricultural inputs.

To identify the sectors linked to soy production via input-output linkages we use the

Input-Output tables computed by the IBGE.43 Although the majority of the output of

the soy sector is exported, two downstream manufacturing sectors report using soy as an

input: “Slaughtering and preparation of meat and fish” (SNA code 1091) and “Other food

43The tables are publicly available on the IBGE website: https://www.ibge.gov.br/en/statistics/economic/national-
accounts/. This IO Tables use the SNA sector classification, which include 67 sectors.
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products” (SNA code 1093).44 Upstream industries of the soy sector include: “Fertilizers

and other inorganic chemicals” (2412, 2413, 2419) and “Refined petroleum” (232).

In Table A.8 in the Appendix we replicate the main results of the paper excluding up-

stream and downstream industries. As shown, the estimated coefficients that we obtain

are similar in magnitude to those obtained in the main tables of the paper. For example,

the coefficient capturing the effect of soy technical change on employment in the L man-

ufacturing industry has a magnitude of 0.121 in Table 5, and a magnitude of 0.124 when

excluding sectors connected via input-output linkages in Table A.8. We interpret these

results as indicating that the effect of soy technical change on local employment is not

driven by local demand effects in manufacturing industries related to soy via production

networks.

Next, we investigate to what extent the reduction in innovation within high R&D

industries has the potential to reduce productivity not only in this industry but also in

the local low R&D industry through local knowledge spillovers. Note that this is key

for our empirical identification strategy that compares microregions differently affected

by soy technical change, and thus requires that knowledge spillovers are stronger within

than across regions. Evidence from the existing literature suggests that spillovers exist

and tend to be local, as shown, for example, in Greenstone, Hornbeck, and Moretti (2010)

and Giroud, Lenzu, Maingi, and Mueller (2021) in the context of the US. Greenstone et al.

(2010) document that the construction of large manufacturing plants in a given county

generates productivity spillovers for existing plants in the same county. Importantly,

they show that such spillovers occur across manufacturing industries, and are stronger

across industries with larger technological linkages, as measured by industry-to-industry

R&D flows and industry-to-industry patent citations (Ellison, Glaeser, and Kerr, 2010).

Building on the same experiment, Giroud et al. (2021) show that across firms and across-

industry spillovers are very local, and only travel across regions within multi-plant firms.

Still, it is worth exploring whether spillovers are also local in our context. First, we

turn to survey evidence from PINTEC. This survey indicates, for each firm acquiring

innovation externally, the location of the external firm that developed the innovation.

In particular, the survey asks respondents to indicate the Brazilian state in which the

external innovating firm is located. Survey responses show that around 70% of external

innovation is developed by firms located in the same state as the respondent, consistent

with important local innovation spillovers. Second, we directly test for spillovers across

microregions, our unit of observation. We augment our main specification of the effect of

44These 2 SNA sectors correspond to the following sectors in the CNAE 1.0 sector classification at
4-digits used in the paper: (1511)-(1514), (1521)-(1523), (1531)-(1533), (1541)-(1543), (1571), (1572),
(1551)-(1556), (1559), (1581)-(1586), and (1589). To identify which of these 29 CNAE 1.0 sectors use
soy as an input we looked at the description of the activities classified in each sector according docu-
mentation provided by the National Commission of Classifications (CONCLA). We identified 5 sectors
whose description indicate they use soy as an input: 1531, 1532, 1533, 1586, 1589. We also added to the
downstream industries the biofuels sector.
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soy technical change on local manufacturing productivity with three additional controls

capturing changes in soy technical change in neighboring microregions. More specifically,

we include soy technical change in the five closest, in the five to ten closest, and in the ten

to twenty closest microregions. Each group captures geographical spillovers at different

distances, starting from adjacent microregions. Table A.9 reports the results for our key

measures of manufacturing productivity. As shown, we find that changes in agricultural

productivity in nearby microregions do not affect local manufacturing productivity.

5 Conclusions

The reallocation of labor from agriculture into manufacturing is generally regarded as

positive in the economic development literature. Several studies have documented that

the manufacturing sector has, on average, higher productivity and pays higher wages.

However, little is known about which type of workers are released from the agricultural

sector and which manufacturing industries absorb them during the process of structural

transformation. Our paper contributes to the literature by showing that the forces driving

structural transformation can shape the type of industries in which a country specializes.

In particular, we show that when labor reallocation from agriculture to manufacturing

is driven by agricultural productivity growth that displaces unskilled labor, it can gen-

erate an expansion in less innovation-intensive manufacturing sectors, which can reduce

investment in innovation and slow down aggregate manufacturing productivity growth.
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6 Figures and Tables

Figure 1: Soy Production and Employment
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(c) Soy: Employment by Skill Group
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Notes: Figures in Panels (a) and (b) are from Bustos et al. (2016). Data sources are CONAB (Panel A), PNAD (Panel B
and C) and 2000 Population Census (Panel D). CONAB is the Companhia Nacional de Abastecimento, an agency within
the Brazilian Ministry of Agriculture, which runs surveys of farmers and agronomists to monitor the annual harvests of
major crops in Brazil. PNAD is the Brazilian National Household Sample Survey. The states of Rondonia, Acre, Amazonas,
Roraima, Pará, Amapá, Tocantins, Mato Grosso do Sul, Goias, and Distrito Federal are excluded due to incomplete coverage
by PNAD in the early years of the sample. In Panels C and D, an individual is classified as skilled if she has completed at
least the 8th grade.
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Figure 2: Effect of agricultural technical change on
manufacturing employment

Yearly Social Security Data (1998-2009)

(a) Unskilled Labor

-.1
0

.1
.2

.3
.4

Lo
g.

 U
ns

ki
lle

d 
W

or
ke

rs

1998 2000 2002 2004 2006 2008 2010
Year

90% C.I Estimated Coefficient

(b) Skilled Labor

-.1
0

.1
.2

.3
.4

Lo
g.

 S
ki

lle
d 

W
or

ke
rs

1998 2000 2002 2004 2006 2008 2010
Year

90% C.I Estimated Coefficient

Notes: The figure shows the point estimates and the 90% confidence intervals for the estimates of the βj of equation (2)
where ln yk,r,t corresponds to aggregate log employment of unskilled and skilled labor in microregion k located in region

r at the end of year t in manufacturing. An individual is classified as skilled if she has completed at least the 8th grade.
(Source: RAIS). Standard errors are clustered at the microregion level.
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Figure 3: Effect of agricultural technical change on labor and
capital allocation within manufacturing

Yearly Social Security Data (1998-2009) and Annual Manufacturing
Survey(2000-2009)
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Notes: The figure shows the point estimates and the 90% confidence intervals for the estimates of the βj coefficients of
equation (2) where ln yk,r,t corresponds to aggregate log employment and log capital in microregion k located in region
r at the end of year t for each type of manufacturing industry (Source: PIA and RAIS). Manufacturing industries are
classified as L or H depending on whether their R&D intensity is below or above the median in 2000 (weighting industries
by number of employees so that each group captures around 50 percent of total manufacturing employment). We define
R&D intensity as R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de
Inovação Tecnológica (PINTEC). Standard errors are clustered at the microregion level.
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Figure 4: The effect of agricultural technical change on manufacturing productivity
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(c) Value Added per Worker: decomposition
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Notes: Graphs (a) and (b) show the point estimates and 90% confidence intervals for the estimates of the βj coefficients of equation (2) using two measures of manufacturing productivity
as outcomes: log value added per worker and log TFP (Source: PIA). Graphs (c) and (d) show the decomposition of the total effect into the within components for each of the two industries
and the between component across industries. Standard errors are clustered at the microregion level.
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Figure 5: Effect of agricultural technical change on expenditure
on non-innovative and innovative occupations

Yearly Social Security Data (1998-2009)
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Notes: The figure shows the point estimates and the 90% confidence intervals for the estimates of the βj coefficients of
equation (2) where ln yk,t corresponds to the log wage bill of non-innovative and innovative labor in microregion k located in
region r at the end of year t for L and H manufacturing industries (Source: RAIS). An occupation is classified as innovative
following the methodology outlined in Section 2.4. Manufacturing industries are classified as L or H depending on whether
their R&D intensity is below or above the median in 2000 (weighting industries by number of employees so that each group
captures around 50 percent of total manufacturing employment). We define R&D intensity as R&D expenditure as a share
of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors
are clustered at the microregion level.
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Figure 6: Decomposition of effect of agricultural technical change on innovation activities in the H

industry
Yearly Social Security Data (1998-2009)
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Notes: The graph shows the decomposition of the total effect of agricultural technical change on log wage bill of innovative workers in the H manufacturing industry into components coming
from workers who stay in the industry, workers transitioning from either informality or self employment, workers transitioning from the L industry, workers who are entering the labor force,
and workers who transition from formal sectors other than the L industry. Manufacturing industries are classified as L or H depending on whether their R&D intensity is below or above
the median in 2000 (weighting industries by number of employees so that each group captures around 50 percent of total manufacturing employment). We define R&D intensity as R&D
expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors are clustered at the microregion level.
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Figure 7: Agricultural technical change and the reallocation of innovation activities across
industries and occupations
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(b) Decomposition by new occupation in the L industry
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Notes: Graph (a) shows the point estimates and the 90% confidence intervals for the estimates of the βj coefficients of equation (2) where the outcome variable is the share of the wage bill
of workers who were employed in innovative occupations in the H sector during a year between 1998 and 2002 that moved to the L industry in microregion k located in region r at the end
of year t (Source: RAIS). Graph (b) decomposes Graph (a) by the new occupation in the L industry of workers who were employed in innovative occupations in the H sector during a year
between 1998 and 2002. An occupation is classified as innovative following the methodology outlined in Section 2.4. Manufacturing industries are classified as L or H depending on whether
their R&D intensity is below or above the median in 2000 (weighting industries by number of employees so that each group captures around 50 percent of total manufacturing employment).
We define R&D intensity as R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors are
clustered at the microregion level.
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Table 1: Summary Statistics of the
Sample of Individuals by Sector

2000 2010

Agriculture
Age 38.0 39.0
Male (% of the Total) 89.3 81.2
White (% of the Total) 55.4 48.6
Education level (highest degree obtained)

Less than Middle School (% of the Total) 86.1 72.7
Completed Middle School (% of the Total) 7.4 13.8
High School Graduates (% of the Total) 5.2 11.4
University Graduates (% of the Total) 1.3 2.1

Average log real hourly wage 0.81 1.06
For skilled labor 1.39 1.38
For unskilled labor 0.71 0.95

Manufacturing L Industry
Age 36.8 37.3
Male (% of the Total) 61.6 58.7
White (% of the Total) 65.0 55.6
Education level (highest degree obtained)

Less than Middle School (% of the Total) 52.2 36.8
Completed Middle School (% of the Total) 20.4 21.5
High School Graduates (% of the Total) 21.9 35.2
University Graduates (% of the Total) 5.5 6.6

Average log real hourly wage 1.23 1.51
For skilled labor 1.73 1.63
For unskilled labor 1.15 1.23

Manufacturing H Industry
Age 36.28 36.9
Male (% of the Total) 80.6 76.2
White (% of the Total) 63.0 55.2
Education level (highest degree obtained)

Less than Middle School (% of the Total) 49.8 31.3
Completed Middle School (% of the Total) 20.0 19.8
High School Graduates (% of the Total) 23.4 39.8
University Graduates (% of the Total) 6.8 9.1

Average log real hourly wage 1.58 1.66
For skilled labor 1.92 1.81
For unskilled labor 1.24 1.35

Services
Age 37.1 37.8
Male (% of the Total) 67.3 62.1
White (% of the Total) 58.9 50.8
Education level (highest degree obtained)

Less than Middle School (% of the Total) 51.1 36.0
Completed Middle School (% of the Total) 17.9 19.3
High School Graduates (% of the Total) 23.4 34.3
University Graduates (% of the Total) 7.6 10.4

Average log real hourly wage 1.42 1.51
For skilled labor 1.77 1.67
For unskilled labor 1.01 1.24

Notes: The data comes from the Population Censuses for years 2000 and

2010. Summary statistics refer to our final sample of individuals as detailed

in Section 2.3. An individual is classified as skilled if she has at least com-

pleted the 8th grade. This level should be attained when an individual is 14

or 15 years old and is equivalent to graduating from middle school. Manufac-

turing industries are classified as L or H intensive depending on whether their

R&D intensity is below or above the median in 2000 (weighting industries by

number of employees so that each group captures around 50 percent of total

manufacturing employment). We define R&D intensity as R&D expenditure

as a share of total sales at baseline and we source it from from the 2000

Pesquisa de Inovação Tecnológica (PINTEC).
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Table 2: Summary Statistics of the Sample of Microregions

Panel A: Decadal Variables

2000 ∆2000-2010

Source: Mean SD Mean SD Observations

Potential Yields FAO-GAEZ
Soy 0.286 0.135 1.787 0.740 557
Maize 1.847 0.9984 3.082 1.639 557

Employment Shares Population Census
Agriculture 0.279 0.140 -0.050 0.055 557
Manufacturing L Industry 0.081 0.055 0.007 0.033 557
Manufacturing H Industry 0.067 0.043 -0.001 0.025 557
Services 0.573 0.118 0.044 0.057 557

Log. Employment Population Census
Agriculture 8.268 0.890 0.122 0.249 557
Manufacturing L Industry 7.076 1.569 0.358 0.400 557
Manufacturing H Industry 6.897 1.485 0.309 0.394 557
Services 9.194 1.887 0.404 0.175 557

Panel B: Yearly Variables

Source: Mean SD Observations

Manufacturing Employment RAIS (1998-2009)
Log. Employment

Manufacturing L Industry 7.753 1.315 3,816
Manufacturing H Industry 7.509 1.384 3,816

Log. Non-Innovative Wage Bill
Manufacturing L Industry 16.103 2.206 3,816
Manufacturing H Industry 15.883 2.304 3,816

Log. Innovative Wage Bill
Manufacturing L Industry 12.781 2.869 3,816
Manufacturing H Industry 12.523 3.273 3,816

Manufacturing Productivity PIA (2000-2009)
Log. Value Added per Worker

Manufacturing L Industry 10.692 0.866 3,070
Manufacturing H Industry 10.536 0.944 3,070

Log. Value Added per Wage Bill
Manufacturing L Industry 1.537 0.593 3,070
Manufacturing H Industry 1.360 0.613 3,070

Log. Total Factor Productivity
Manufacturing L Industry 5.623 0.788 3,035
Manufacturing H Industry 5.722 0.752 2,950

Log. Capital PIA (2000-2009)
Manufacturing L Industry 17.812 2.216 3,037
Manufacturing H Industry 16.359 2.580 2,971

Notes: The data sources are the Population Census (2000, 2010), RAIS and PIA. Manufacturing industries are classified as Low-R&D

or High-R&D intensive depending on whether their R&D intensity is below or above the median in 2000 (weighting industries by number

of employees so that each group captures around 50 percent of total manufacturing employment). We define R&D intensity as R&D

expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). A

worker is classified as skilled if she has completed at least the 8th grade (completed middle school).
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Table 3: Effect of agricultural technical change on sectoral
employment shares, manufacturing growth and manufacturing

productivity

Panel A: Decadal Population Census Data (2000 and 2010)

Outcome: Change in employment shares by sector

Agriculture Manufacturing Services
(1) (2) (3)

∆Asoy more more space -0.033*** space 0.025*** space 0.008*
[0.005] [0.005] [0.004]

Observations 557 557 557
R-squared 0.246 0.166 0.359
Region FE Yes Yes Yes
Controls Yes Yes Yes

Panel B: Yearly Manufacturing Survey Data (2000-2009)

Outcome: Manufacturing Outcomes

Labor Capital VA/L VA/WL TFP
(1) (2) (3) (4) (5)

Asoy 0.095*** 0.257** -0.141*** -0.133*** -0.173***
[0.035] [0.092] [0.043] [0.040] [0.066]

Observations 3,070 3,069 3,070 3,070 3,069
R-squared 0.977 0.913 0.876 0.735 0.542
Microregion FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Controls × Linear trends Yes Yes Yes Yes Yes
Region x Year FEs Yes Yes Yes Yes Yes

Notes: Panel A shows coefficient estimates corresponding to equation (1). Changes in dependent

variables are calculated over the years 2000 and 2010. The unit of observation is the microregion. These

regressions include as controls the share of rural population, income per capita (in logs), population

density (in logs), literacy rate, all observed in the 1991 Population Census, a measure of technical

change in maize and region fixed effects. Panel B shows coefficient estimates corresponding to equation

(3). The dependent variables correspond to the total labor (in logs), total capital (in logs), total value

added divided by employment (in logs), total value added divided by total wage bill (in logs) and

total factor productivity for manufacturing in each microregion. We include only those microregions

that have positive employment for all the years in the sample. Controls include the share of rural

population, income per capita (in logs), population density (in logs), literacy rate, all observed in

1991, all interacted with a linear trend, a measure of technical change in maize and region times year

fixed effects. Robust standard errors are reported in brackets in Panel A, and standard errors clustered

at the microregion level are reported in brackets in Panel B. Significance levels: ∗∗∗p < 0.01,∗∗ p <

0.05,∗ p < 0.1.
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Table 4: Effect of agricultural technical change on sectoral
employment shares by skill group

Decadal Population Census Data (2000 and 2010)

Outcome: Change in employment shares of Change in employment shares of
unskilled workers by sector skilled workers by sector

Sector: Agriculture Manufacturing Services Agriculture Manufacturing Services
(1) (2) (3) (4) (5) (6)

∆Asoy -0.033*** 0.030*** 0.004 -0.015*** 0.014*** 0.001
[0.006] [0.005] [0.004] [0.004] [0.005] [0.005]

Observations 557 557 557 557 557 557
R-squared 0.126 0.157 0.208 0.047 0.112 0.103
Region FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses).

The unit of observation is the microregion. All the regressions include as controls the share of rural population, income

per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census, a measure

of technical change in maize and region fixed effects. Robust standard errors reported in brackets. Significance levels:
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 5: Effect of agricultural technical change on industrial
specialization within manufacturing

Panel A: Decadal Population Census Data (2000 and 2010)

Outcome: Change in employment by manufacturing industry

Industry: L Industry H Industry
(1) (2)

∆Asoy more more more space 0.233*** 0.015
[0.038] [0.036]

Observations 557 557
R-squared 0.129 0.099
Region FE Yes Yes
Controls Yes Yes

Panel B: Yearly Social Security Data (1998-2009)

Outcome: Employment by manufacturing industry

Industry: L Industry H Industry
(1) (2)

Asoy 0.121** -0.008
[0.050] [0.037]

Observations 5,640 5,640
R-squared 0.455 0.410
Microregion FE Yes Yes
Year FE Yes Yes
Controls × Linear trends Yes Yes
Region x Year FEs Yes Yes

Panel C: Yearly Manufacturing Survey Data (2000-2009)

Outcome: Capital by manufacturing industry

Industry: L Industry H Industry
(1) (2)

Asoy 0.360*** 0.027
[0.112] [0.115]

Observations 3,037 2,969
R-squared 0.891 0.894
Microregion FE Yes Yes
Year FE Yes Yes
Controls × Linear trends Yes Yes
Region x Year FEs Yes Yes

Notes: In Panel A the dependent variables are changes in total employment (in logs) calculated over the years 2000 and

2010 (source: Population Censuses). The unit of observation is the microregion. Controls include: share of rural population

in 1991, income per capita (in logs), population density (in logs), and literacy rate, all observed in the 1991 Population

Census, as well as a measure of technical change in maize and region fixed effects. In Panel B, the dependent variable is total

employment (in logs) for each manufacturing industry in each microregion. We use aggregate information from RAIS at the

microregion-industry level for the time period 1998-2009. We include only those microregions that have positive employment

for all the years in the sample. In Panel C, the dependent variable is capital (in logs) for each manufacturing industry in each

microregion. We use aggregate information from PIA at the microregion level for the time period 2000-2009. In Panels B and

C, Asoy is defined as potential soy yield under high inputs for the years between 2003 and 2009, and the potential soy yield

under low inputs for the years between 2000 and 2002. Controls include the share of rural population, income per capita (in

logs), population density (in logs), literacy rate, all observed in 1991, all interacted with a linear trend, a measure of technical

change in maize and region year fixed effects. In these regressions, manufacturing industries are classified as L or H depending

on whether their R&D intensity is below or above the median in 2000 (weighting industries by number of employees so that

each group captures around 50 percent of total manufacturing employment). We define R&D intensity as R&D expenditure

as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Robust

standard errors are reported in Panel A, and standard errors clustered at the microregion level are reported in Panels B and

C. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 6: Effect of agricultural technical change on
manufacturing productivity

Yearly Manufacturing Survey Data (2000-2009)

Outcomes: L Industry Productivity H Industry Productivity

Measure: Log Value Added Log Value Added Log TFP Log Value Added Log Value Added Log TFP
per Worker per Wage Bill per Worker per Wage Bill

(1) (2) (3) (4) (5) (6)

Asoy -0.151** -0.135** -0.251*** -0.119* -0.109* -0.128*
[0.059] [0.054] [0.077] [0.071] [0.057] [0.073]

Observations 3,070 3,070 3,035 3,070 3,070 2,949
R-squared 0.796 0.627 0.590 0.799 0.635 0.572
Region x Year FEs Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: The dependent variables are: total value added divided by employment (in logs), total value added divided by total wage bill (in logs) and total

factor productivity for each type of manufacturing industry in each microregion as a proxy for productivity. We include only those microregions that

have positive employment for all the years in the sample. Asoy is defined as potential soy yield under high inputs for the years between 2003 and 2009,

and the potential soy yield under low inputs for the years between 2000 and 2002. Controls include the share of rural population, income per capita

(in logs), population density (in logs), literacy rate, all observed in 1991, all interacted with a linear trend, a measure of technical change in maize and

region year fixed effects. The unit of observation is a microregion. In these regressions, manufacturing industries are classified as L or H depending on

whether their R&D intensity is below or above the median in 2000 (weighting industries by number of employees so that each group captures around 50

percent of total manufacturing employment). We define R&D intensity as R&D expenditure as a share of total sales at baseline and we source it from

from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors clustered at the microregion level reported in parentheses. Significance

levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 7: Worker-level trajectories from agriculture to manufacturing, and
wages of former agricultural workers

Sample: Employed in Agriculture pre-2003 Employed in L industry from 2003,
in Agriculture or L-industry pre-2003

Outcomes: Move to L industry Move to H industry log(wage)

composition-adjusted
(1) (2) (3) (4)

∆Asoy in pre-2003 microregion 0.050*** -0.008***
[0.009] [0.002]

1(Employed in Agriculture pre-2003) -0.271*** -0.118***
[0.020] [0.017]

Observations 1,304,659 1,304,659 951,453 951,453
R-squared 0.025 0.003 0.205 0.155
Microregion Controls Yes Yes Yes Yes

Notes: Microregion Controls include the share of rural population, income per capita (in logs), population density (in logs), literacy rate, the share

of individuals earning minimum wage, all observed in 1991, and a measure of technical change in maize. Standard errors clustered at micro-region

level reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 8: Effect of agricultural technical change on innovation in
manufacturing

Yearly Social Security Data (1998-2009)

Outcomes: Wage Bill of Non-Innovation Workers Wage Bill of Innovation Workers

Industry: L Industry H Industry L Industry H Industry
(1) (2) (3) (4)

Asoy 0.144*** -0.019 0.048 -0.274*
[0.047] [0.046] [0.107] [0.151]

Observations 3,828 3,828 3,828 3,828
R-squared 0.969 0.978 0.910 0.905
Controls Yes Yes Yes Yes

Notes: The dependent variables in columns (1) and (2) are the total wage bill of non-innovation workers

(in logs) for each manufacturing industry in each microregion as a proxy for industry size, and in columns (3)

and (4) are the total wage bill of innovation workers (in logs) for each type of industry in every microregion as

a proxy for expenditure in innovation. We use aggregate information from RAIS at the microregion-industry

level for the time period 1998-2009. We include only those microregions that have positive employment for

all the years in the sample. Asoy is defined as potential soy yield under high inputs for the years between

2003 and 2009, and the potential soy yield under low inputs for the years between 1998 and 2002. Controls

include the share of rural population, income per capita (in logs), population density (in logs), literacy

rate, all observed in 1991, all interacted with a linear trend, a measure of technical change in maize and

region year fixed effects. The unit of observation is a microregion. In these regressions, manufacturing

industries are classified as Low-R&D or High-R&D intensive depending on whether their R&D intensity is

below or above the median in 2000 (weighting industries by number of employees so that each group captures

around 50 percent of total manufacturing employment). We define R&D intensity as R&D expenditure as

a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica

(PINTEC). Standard errors clustered at the microregion level reported in parentheses. Significance levels:
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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A Appendix: Figures and Tables

Figure A.1: ∆ in Potential Soy Yield 2000-2010
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no data

Notes: Authors’ calculations from FAO-GAEZ data. Technical change in soy production for each microregion is computed
by deducting the average potential yield under low inputs from the average potential yield under high inputs.
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Figure A.2: Skill Intensity and R&D Intensity at Industry Level
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Notes: We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we
source it from the 2000 Population Census. Our measure of R&D activity is R&D expenditure as a share of total sales at
baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica ](PINTEC). The correlation between these
variables is approximately 0.34.
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Figure A.3: Manufacturing Employment in Innovation Intensive
Occupations
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Notes: Authors’ calculations using RAIS data. Innovation intensive occupations are defined using the methodology
described in Section 2.4.
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Figure A.4: Geographical distribution of share of manufacturing
workers in innovation intensive occupations in 2000

Notes: The Figure reports the share of innovation intensive workers over total workers in the manufacturing sector in the
year 2000 by microregion. Innovation intensive occupations are defined using the methodology described in Section 2.4.
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Figure A.5: Correlations between share of workers in innovation
intensive occupations and industry-level measures of innovation

(a) R&D expenditure/sales
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(d) Process innovation share
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(e) Product or Process innovation share
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(f) Patents vs Product or Process innovation share
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Notes: The share of workers in innovation intensive occupations in each sector is constructed using RAIS data for the year
2000 and the methodology described in Section 2.4. All measures of innovation at industry level (R&D expenditure over
sales, patent share, product and process innovation share) are computed using the 2000 Pesquisa de Inovação Tecnológica
(PINTEC). Dot size captures size of the industry in terms of number of employees in 2000.
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Figure A.6: Agricultural technical change and the reallocation of innovation workers across
industries and occupations

(a) Reallocation of innovative workers from H to L Industry
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(b) Decomposition by new occupation in the L industry
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Notes: Graph (a) shows the point estimates and the 90% confidence intervals for the estimates of the βj coefficients of equation (2) where the outcome variable is the share of workers who
were employed in innovative occupations in the H sector during a year between 1998 and 2002 that moved to the L industry in microregion k located in region r at the end of year t (Source:
RAIS). Graph (b) decomposes Graph (a) by the new occupation in the L industry of workers who were employed in innovative occupations in the H sector during a year between 1998 and
2002. An occupation is classified as innovative following the methodology outlined in Section 2.4. Manufacturing industries are classified as L or H depending on whether their R&D intensity
is below or above the median in 2000 (weighting industries by number of employees so that each group captures around 50 percent of total manufacturing employment). We define R&D
intensity as R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors are clustered at the
microregion level.
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Table A.1: Effect of Agricultural Technical Change on GE Soy Adoption

Panel A ∆ GE-soy area share ∆ GE-soy area share ∆ non-GE soy area share ∆ non-GE soy area share
(1) (2) (3) (4)

∆Asoy 0.022*** 0.020*** -0.007* -0.008**
[0.005] [0.004] [0.004] [0.004]

Share rural population 0.034*** 0.117*** -0.009 -0.057**
[0.010] [0.023] [0.009] [0.023]

Log Income per capita -0.009 -0.002
[0.006] [0.007]

Literacy rate 0.162*** -0.043
[0.034] [0.035]

Log population density 0.005*** -0.006***
[0.001] [0.001]

Observations 557 557 557 557
R-squared 0.094 0.208 0.013 0.053

Panel B ∆ Soy area share ∆ Soy area share ∆ Maize area share ∆ Maize area share
(1) (2) (3) (4)

∆Asoy 0.022*** 0.016*** -0.006 0.000
[0.004] [0.004] [0.004] [0.004]

∆Amaize -0.003** -0.001 0.005*** 0.003*
[0.001] [0.001] [0.002] [0.002]

Share rural population 0.029*** 0.064*** 0.020*** 0.012
[0.007] [0.013] [0.008] [0.015]

Log Income per capita -0.010* -0.011
[0.006] [0.007]

Literacy rate 0.122*** -0.002
[0.018] [0.023]

Log population density -0.001 0.003***
[0.001] [0.001]

Observations 557 557 556 556
R-squared 0.135 0.245 0.041 0.066

Notes: Changes in dependent variables are calculated over the years 1996 and 2006 (source: Agricultural Census). The unit of observation is the

microregion. Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.2: Classification of Manufacturing Industries by R&D Intensity

IBGE Code Description R&D Share of Sales Skill Intensity

26091 Ceramic products 0.106 0.275
34001 Manufacturing and assembly of motor vehicles 0.105 0.738
23030 Production of nuclear fuels 0.100 0.830
31002 Electrical material for vehicles 0.088 0.599
27001 Steel products 0.084 0.659
35030 Construction, assembly and repair of airplanes 0.080 0.875
28002 Foundries, stamping shops, powder metallurgy and metal treatment services 0.066 0.502
33003 Machines, equipment for electronic systems for industrial automation, and control 0.064 0.848
24020 Pharmaceutical products 0.062 0.809
33001 Medical equipment 0.061 0.753
29002 Appliances 0.058 0.709
34002 Cabins, car bodies, trailers and parts for motor vehicles 0.058 0.637
20000 Wooden products 0.055 0.247
33004 Equipment, instruments and optical, photographic and cinematographic material 0.055 0.709
33002 Measuring, testing and control equipment - except for controlling industrial processes 0.054 0.725
24010 Paints, dyes, varnish, enamels and lacquers 0.053 0.656
25020 Plastic products 0.052 0.543
32000 Electronic material and communications equipment 0.052 0.757
31001 Machines, equipment and miscellaneous electric material - except for vehicles 0.051 0.678
27003 Foundries 0.051 0.462
15043 Other food products 0.049 0.426
36090 Miscellaneous products 0.048 0.576
23010 Coke plants 0.047 0.487
37000 Recycling 0.045 0.304
35090 Miscellaneous transportation equipment 0.044 0.581
21002 Corrugated cardboard, packaging, and paper and cardboard objects 0.044 0.577
17001 Processing of fibers, weaving and cloth making 0.043 0.471
28001 Metal products - except machines and equipment 0.042 0.496
24030 Soap, detergents, cleaning products and toiletries 0.042 0.658
29001 Machines and equipment - except appliances 0.041 0.605
21001 Pulp, paper and smooth cardboard, poster paper and card paper 0.040 0.602
34003 Reconditioning or restoration of engines of motor vehicles 0.038 0.556
24090 Miscellaneous chemical products 0.037 0.635
25010 Rubber products 0.036 0.567
26092 Miscellaneous products of non-metallic minerals 0.035 0.382
22000 Editing, printing and reproduction of recordings 0.035 0.702
19012 Leather objects 0.034 0.453
30000 Office machines and data-processing equipment 0.034 0.852
36010 Pieces of furniture 0.034 0.402
26010 Glass and glass products 0.031 0.576
15021 Preserves of fruit, vegetables and other vegetable products 0.029 0.484
17002 Manufacturing of textile objects based on cloth - except for garments 0.028 0.433
18001 Making of clothing articles and accessories - except on order 0.023 0.425
18002 Making clothing articles and accessories - on order 0.023 0.435
18999 Making of clothing articles and accessories - on order or not 0.023 0.690
27002 Non-ferrous metals 0.022 0.644
15030 Dairy products 0.022 0.433
19020 Footwear 0.019 0.348
15010 Slaughtering and preparation of meat and fish 0.018 0.355
35010 Construction and repair of boats 0.018 0.493
23020 Products in oil refining 0.015 0.763
33005 Chronometers, clocks and watches 0.015 0.751
23400 Alcohol production 0.014 0.350
15041 Manufacturing and refining of sugar 0.013 0.334
15042 Roasting and grinding of coffee 0.013 0.499
19011 Tanning and other preparations of leather 0.013 0.325
16000 Tobacco products 0.013 0.496
15050 Beverages 0.012 0.555
15022 Vegetable fat and oil 0.009 0.446
35020 Construction and assembly of locomotives, cars and other rolling stock 0.004 0.632

Median 0.041 0.432

Notes: The industry codes correspond to the CNAE-Domiciliar, the industry classification used in the 2000 Population Census. Industries are sorted by their R&D intensity at

baseline. We measure R&D intensity as R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC).

We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we source it from the 2000 Population Census. The correlation

between these variables is approximately 0.34. Industries below the median are classified as low and the ones above the median as high.
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Table A.3: Keywords Used to Identify Innovative Occupations

Panel A: Nouns or combination of nouns from task description of occupations

Portuguese English

pesquisa e desenvolvimento research and development
inovação innovation
p&d R&D
desenvolvimento de produtos product development
desenvolvimento de processos process development
pesquisador researcher
novas tecnologias new technologies
protótipos prototypes
pesquisas tecnologicas technological research
automaçao de processos process automation

Panel B: Actions (verb + noun) from task description of occupations

Portuguese English

desenvolvem produtos develop products
desenvolvem pesquisas develop research
desenvolvem equipamentos develop equipment
desenvolvem processos develop processes
desenvolvem dispositivos develop devices
otimizam métodos optimize methods
otimizam os meios optimize means
aperfeiçoam sistemas improve systems
aperfeiçoam processos improve processes
aperfeiçoam produtos improve products
aperfeiçoam dispositivos improve devices
implementam dispositivos de automaçao implement automation devices
desenvolvem, testam e supervisionam sistemas, processos e
métodos produtivos

develop, test and supervise systems, pro-
cesses and production methods

Panel C: Nouns or combinations of nouns from PINTEC survey

Portuguese English

produto novo / novo produto new product
produtos novos / novos produtos new products
produto aprimorado improved product
produtos aprimorados improved produts
inovação de produto product innovation
aperfeiçoamento de produto product improvement
processo novo / novo processo new process
processos novos / novos processos new processes
processo aprimorado improved process
processos aprimorados improved processes
inovação de processo process innovation
aperfeiçoamento de processo process improvement

Notes: The Table reports the keywords used to identify innovation intensive occupations and their English translation.

Keywords reported in Panels A and B are sourced from the ”Brazilian Classification of Occupations”, Ministry of Labor, 3rd

Edition (2010). Keywords reported in Panel C are sourced from the Technical Appendix of the 2008 PINTEC Survey.
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Table A.4: Industry-level Measures of Innovation

Outcome: Measure of Industrial Innovation

Measure: log R&D expenditure Share of Share of product Share of process Share of product or process
over sales patenting firms innovation firms innovation firms innovation firms

(1) (2) (3) (4) (5)

Share of innovation 5.929** 1.557*** 2.178*** 0.885** 1.628***
(2.502) (0.411) (0.406) (0.427) (0.473)

Observations 271 274 274 274 274
R-squared 0.062 0.166 0.172 0.037 0.098

Notes: Dependent variables are calculated from 2000 Pesquisa de Inovação Tecnológica (PINTEC). The unit of observation is the 4-digit CNAE industry. These regressions

compute the OLS coefficient of a number of outcomes on the share of innovation workers. The share of innovation workers in each industry are computed for the year 2000 using the

methodology described in Section 2.4. All regressions are weighted by number of workers in each industry in 2000. Robust standard errors reported in brackets. Significance levels:

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.5: Internal migration

Skill Group: All Skilled Unskilled

Outcomes ∆ logL Net Migration In-Migration Out-Migration Net Migration In-Migration Out-Migration Net Migration In-Migration Out-Migration

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆Asoy -0.014 0.004 0.002 -0.003 -0.001 -0.004 -0.003 0.012 0.011** -0.002
[0.013] [0.009] [0.005] [0.006] [0.010] [0.005] [0.007] [0.008] [0.005] [0.006]

Observations 557 557 557 557 557 557 557 557 557 557
R-squared 0.171 0.553 0.401 0.592 0.507 0.380 0.593 0.582 0.407 0.566
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Dependent variables are calculated for 2010 (source: Population Censuses). The unit of observation is the microregion. These regressions compute the 5 year internal migration rate between 2005

and 2010, using the microregion of residence 5 years prior to the Census 2010. All the regressions include the baseline specification controls which are the share of rural population in 1991, a measure of

technical change in maize and region fixed effects. The regressions with all controls also include income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population

Census. Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.6: Effect of technical change in soy on informal
workers’ wages

(1) (2) (3)
Manufacturing L-Manufacturing H-Manufacturing

VARIABLES Unskilled Unskilled Unskilled

∆Asoy -0.027 -0.042** -0.020
[0.019] [0.017] [0.024]

Observations 556 556 556
R-squared 0.180 0.140 0.129
Baseline Controls Yes Yes Yes
Region FE Yes Yes Yes
All Controls Yes Yes Yes

Notes: Changes in informal wages are calculated over the years 2000 to 2010. Informal

workers are defined based on the position held in the occupation of the main job. Controls

include the share of rural population, income per capita (in logs), population density (in

logs), literacy rate, all observed in 1991, a measure of technical change in maize, and the

change in the share of workers below the minimum wages. Dependent variables are computed

from taking the average log hourly wage. Robust standard errors reported in brackets.

Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.7: Labor (direct) and Capital (indirect) Channels of
Structural Transformation

Outcome: Change in manufacturing employment share
Region/Industry: All Soy regions Non-soy regions L industries H industries

(1) (2) (3) (4) (5)

∆Asoy 0.015*** 0.020*** -0.002 0.014*** 0.001
[0.004] [0.005] [0.006] [0.003] [0.003]

∆ Exposure to capital inflows 0.023* 0.001 0.042 0.004 0.019*
[0.014] [0.016] [0.028] [0.010] [0.011]

Observations 540 385 155 540 540
R-squared 0.253 0.099 0.431 0.292 0.076

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit

of observation is the microregion. All the regressions include as controls the share of rural population, income per capita (in

logs), population density (in logs), literacy rate, all observed in the 1991 Population Census, a measure of technical change

in maize and region fixed effects. Observations are weighted by total employment in a given microregion in 2000. Robust

standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1..
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Table A.8: Effect of agricultural technical change on
manufacturing outcomes excluding industries linked to soy
Yearly Social Security Data (1998-2009) and Yearly Manufacturing

Survey Data (2000-2009)

Panel A

Outcome: Employment by manufacturing Capital by manufacturing
industry industry

Industry: L Industry H Industry L Industry H Industry
(1) (2) (3) (4)

Asoy 0.124** -0.006 0.363*** 0.043
[0.050] [0.041] [0.118] [0.122]

Observations 5,640 5,640 3,001 2,942
R-squared 0.448 0.385 0.900 0.894
Region x Year FEs Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Panel B

Outcomes: L Industry Productivity H Industry Productivity

Measure: Log Value Added Log Value Added Log TFP Log Value Added Log Value Added Log TFP
per Worker per Wage Bill per Worker per Wage Bill

(1) (2) (3) (4) (5) (6)

Asoy -0.150** -0.135** -0.234*** -0.126* -0.118** -0.144*
[0.061] [0.054] [0.081] [0.072] [0.057] [0.074]

Observations 3,055 3,055 2,999 3,069 3,069 2,922
R-squared 0.770 0.568 0.594 0.797 0.633 0.585
Region x Year FEs Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Panel C

Outcomes: Wage Bill of Non-Innovation Workers Wage Bill of Innovation Workers

Industry: L Industry H Industry L Industry H Industry
(1) (2) (3) (4)

Asoy 0.153*** -0.005 0.034 -0.284*
[0.047] [0.049] [0.111] [0.167]

Observations 3,816 3,816 3,796 3,815
R-squared 0.983 0.987 0.935 0.927
Controls Yes Yes Yes Yes

Notes: This table replicates the results presented in Table 5 (Panel A), Table 6 (Panel B) and Table 7 (Panel

C) excluding sectors directly linked to soy via input-output linkages. Such sectors include: “Slaughtering

and preparation of meat and fish” (SNA code 1091), “Other food products” (SNA code 1093), “Fertilizers

and other inorganic chemicals” (2412, 2413, 2419) and “Refined petroleum” (232). Standard errors clustered

at the microregion level reported in parentheses. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.9: Geographical spillovers of the effect of technical change in soy on
manufacturing outcomes

Outcomes: Log Value Added per Worker Log Value Added per Wage Bill Log TFP

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Asoy -0.141*** -0.120* -0.120* -0.133*** -0.107* -0.108* -0.173*** -0.178* -0.178*
[0.043] [0.067] [0.068] [0.040] [0.061] [0.062] [0.066] [0.095] [0.096]

Asoy N5 -0.028 -0.023 -0.034 -0.017 0.006 0.008
[0.061] [0.092] [0.056] [0.079] [0.091] [0.117]

Asoy N5-N10 -0.006 -0.021 -0.002
[0.071] [0.062] [0.097]

Observations 3,070 3,070 3,070 3,070 3,070 3,070 3,069 3,069 3,069
R-squared 0.876 0.876 0.876 0.735 0.735 0.735 0.542 0.542 0.542
Region x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The dependent variables correspond to the total value added divided by employment (in logs), and total factor productivity for each type

of manufacturing industry in each microregion as a proxy for productivity. We use aggregate information from PIA at the microregion level for

the time period 2000-2009. We include only those microregions that have positive employment for all the years in the sample. Asoy is defined as

potential soy yield under high inputs for the years between 2003 and 2009, and the potential soy yield under low inputs for the years between 2000

and 2002. Asoy N5, Asoy N5-N10 and Asoy N10-20 are defined as the average potential soy yield for the five closest neighbors, the fifth to the tenth

closest neighbors and the tenth to twentieth closest neighbors of a particular microregion weighted by the inverse distance. Controls include the share

of rural population, income per capita (in logs), population density (in logs), literacy rate, all observed in 1991, all interacted with a linear trend,

a measure of technical change in maize and region year fixed effects. Standard errors clustered at the microregion level reported in parentheses.

Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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B Appendix: data

B.1 Total Factor Productivity

In this Appendix, we describe how we compute the measure of total factor productivity

at the microregion-industry level that is used to understand the impact on manufacturing

productivity of the reallocation of workers to manufacturing induced by the introduction

of GE soy. Concretely, we compute total factor productivity in a manufacturing industry

as the Solow residual of a Neoclassical Cobb-Douglas production function that combines

skilled labor, unskilled labor, and capital and features constant returns to scale, i.e we

start by assuming the following Cobb-Douglas value-added function for each industry j

located in microregion i in a period t,

V Aijt = ezijtS
αs,j

ijt U
αu,j

ijt K
1−αs,j−αu,j

ijt (4)

where i indexes microregions, j indexes industries and t refers to time. Notice that for

a given industry the production technology is the same across microregions and periods.

As is well known in the Growth Accounting literature, the growth rate in value added

can be decomposed into components associated to factor accumulation and technological

progress. Assuming industries are perfectly competitive and price takers in factor markets,

one can recover the parameters of the production function using data on factor shares.

It is worth noticing that in this formulation we are assuming that industries in different

microregions share the same primitive technological parameters and the differences in

value added are the result of either different productivity levels or differences in the

number of production factors used as inputs.

We calibrate the factor shares for skilled and unskilled labor using a two-step approach.

In the first step, we compute the labor share out of value added for L and H industries. To

do this, we use the NBER-CES Manufacturing Database (Becker et al. 2021) to compute

the labor share as the fraction of value added that corresponds to labor payments for

each NAIC-1997 industry. We match each NAICS industry to the corresponding CNAE

industry in the database using the crosswalk provided in Muendler (2002). Then, we

compute the labor share in L and H industries as the simple average of the corresponding

labor shares of the industries that belong to each category. Doing this we compute a labor

share of 0.40 for L industries and of 0.42 for H industries.

The reason for using an external source to compute the labor share as opposed to

computing them directly in PIA is that the values obtained from computing the labor

share in the PIA dataset are much smaller than the other estimates of the labor share for

Brazil (e.g. Reinbold and Restrepo-Echavarria 2018) and for similar industries in other

countries. This is related to the high degree of informality in the manufacturing sector

in Brazil which makes observing the true wage bill, and thus, computing the labor share
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challenging as approximately 50% of the Brazilian labor force is informally employed. (see

Ulyssea 2018 and Dix-Carneiro, Goldberg, Meghir, and Ulyssea (2021)).

In the second step, we split the calibrated labor share values between skilled and

unskilled labor. Since PIA does not differentiate between skilled and unskilled labor,

we compute wage bill shares by type of labor in RAIS and, then, apportion the labor

share previously computed in PIA to skilled and unskilled labor. Therefore, in practice

αs,j =
WRAIS

s,j SRAIS
j

WRAIS
s,j SRAIS

j +WRAIS
u,j URAIS

j

WPIA
j LPIA

j

V APIA
j

and αu,j =
WRAIS

u,j URAIS
j

WRAIS
s,j SRAIS

j +WRAIS
u,j URAIS

j

WPIA
j LPIA

j

V APIA
j

.

Finally, we leverage the constant returns to scale assumption to compute the capi-

tal share αk,j as 1 − αs,j − αu,j. In Table B.10, we describe the factor shares for the

manufacturing L industry and the H industry.

Once we have computed the shares for the three types of factors, we compute log TFP

in microregion i, industry j and time t as

log TFPijt = log V Aijt − αkj log(ptKijt) − α1j log(L1,ijt) − α2j log(L2,ijt) (5)

Table B.10: Factor Shares

L Industry H Industry
αs αu αk αs αu αk

0.29 0.11 0.60 0.33 0.09 0.58

B.2 Wages

To compute composition-adjusted wages we estimate the following Mincerian regres-

sions:

ln(wikt) = γkt +HiktβHt + εikt for t=2000, 2010 (6)

where ln(wijkt) is the log hourly wage of individual i, working in sector j in microregion

k at time t, and γkt is a microregion fixed effect, while Hijkt is a vector of individual

characteristics, which includes dummies for sector, skill group, age group, race, and all the

interactions between these variables. We estimate the previous Mincerian regression for

each microregion and for each broad sector separately. Also, we estimate these regressions

constraining the sample to either unskilled or skilled labor only, recovering the unit price

of labor in each microregion for each type of labor in both cross sections. Since the

existing literature documented how Brazil has experienced a considerable reduction in

its gender pay gap (Ferreira, Firpo, and Messina 2017), we estimate equation (6) only

for male workers. Observations are weighted by their corresponding population census

weight. Next, we use the microregion fixed effects estimated above as the unit price of
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labor for a given skill group in a given microregion, and we compute the change in unit

prices of labor in microregion k between 2000 and 2010 as ∆γk = γk,2010 − γk,2000, which

gives us the change in the composition-adjusted wages at the microregion level.
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