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ABSTRACT

Integrated assessment models have become the primary tools for comparing climate policies that
seek to reduce greenhouse gas emissions. Policy comparisons have often been performed by
considering a planner who seeks to make optimal trade-offs between the costs of carbon abatement
and the economic damages from climate change. The planning problem has been formalized as one
of optimal control, the objective being to minimize the total costs of abatement and damages over a
time horizon. Studying climate policy as a control problem presumes that a planner knows enough
to make optimization feasible, but physical and economic uncertainties abound. Manski, Sanstad,
and DeCanio (2021) proposed and studied use of the minimax-regret (MMR) decision criterion to
account for deep uncertainty in climate modeling. Here we study choice of climate policy that
minimizes maximum regret with deep uncertainty regarding both the correct climate model and the
appropriate time discount rate to use in intergenerational assessment of policy consequences. The
analysis specifies a range of discount rates to express both empirical and normative uncertainty
about the appropriate rate. The findings regarding climate policy are novel and informative. The
MMR analysis points to use of a relatively low discount rate of 0.02 for climate policy. The MMR
decision rule keeps the maximum future temperature increase below 2°C above the 1900-10 level
for most of the parameter values used to weight costs and damages.
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1. Introduction

Analysis of integrated assessment (IA) models enables quantitative evaluation of the benefits and costs
of alternative climate policies. IA models are long-run (century-scale or more) descriptions of the global
economy including the energy system and its role in economic production. These models incorporate
representations of the climate and the links between the climatic effects of greenhouse gas (GHG) emissions
and their impacts on the economy. IA models have become the primary tools for comparing policies that
seek to reduce GHG emissions.

Policy comparisons have often been performed by considering a social planner who seeks to make
optimal trade-offs between the costs of carbon abatement and the economic damages from climate change,
at a global scale. The planning problem has been formalized as an optimal-control problem with three key
components: (1) equations coupling GHG emissions and abatement to the accumulation of GHGs in the
atmosphere and resulting temperature increases; (2) a damage function that quantifies economic effects of
climate change in terms of the loss of global economic output as a function of temperature increases; and
(3) an abatement cost function that expresses the cost of actions to reduce GHG emissions relative to a
stipulated baseline emissions trajectory. Costs and damages at a point in time are expressed in terms of
reductions in gross world product at that time. The control problem is to minimize the total costs of
abatement and damages over a time horizon.

Studying climate policy as an optimal-control problem presumes that a planner knows enough about
the global climate and economic systems to make optimization feasible. However, uncertainties abound.
Physical and economic uncertainties have been handled in different ways.

The physical scientists whose research informs component (1) of IA models have performed multi-
model ensemble (MME) analysis (Taylor et al., 2012). In the absence of a consensus climate model, they
have developed multiple distinct models. To cope with inter-model structural uncertainty, they compute
simple or weighted averages of the outputs of MMEs. However, choosing appropriate weights has been

problematic.



The economists whose research informs components (2) and (3) have estimated multiple damage
functions and abatement cost functions. In general, economists have not performed MME analyses that
combine multiple functions by weighted averaging. They have instead reported disparate findings,
stemming from their separate studies.

Manski, Sanstad, and DeCanio (2021) (M-S-D hereafter) framed structural uncertainty in climate
modeling as a problem of partial identification, generating deep uncertainty. This problem refers to
situations in which the underlying mechanisms, dynamics, or laws governing a system are not completely
known and cannot be credibly modeled definitively even in the absence of data limitations in a statistical
sense. M-S-D proposed use of the minimax-regret (MMR) decision criterion to account for deep climate
uncertainty in integrated assessment without weighting climate model forecasts. They developed a
theoretical framework for cost-benefit analysis of climate policy based on MMR and applied it
computationally with a simple illustrative IA model.

To simplify the computational analysis, M-S-D studied MMR decision making in the presence only
of physical-science uncertainty regarding the correct climate model. We specified damage and cost
functions with functional forms and parameter values found in the literature on IA models. We engaged
economic uncertainty only by exploring the sensitivity of findings to the specified parameter values of the
damage and cost functions.

To move from illustrative analysis towards realistic comparison of climate policies, it is important to
recognize joint deep uncertainty in the physical and economic components of IA models. Among the many
economic aspects of IA models that have lacked consensus, perhaps the most contentious has been how a
planner should assess the costs and benefits of policies across future generations. In this paper, we study
choice of climate policy that minimizes maximum regret with deep uncertainty regarding both the correct
climate model and the appropriate intergenerational assessment of policy consequences.

Economists have long framed intergenerational policy assessment using a time discount rate. They
have evaluated climate policies by the present discounted value of the sum of abatement costs and the

corresponding damages. However, there has long been debate about what discount rate to use; see, for



example, Arrow et al. (2014) and Heal and Milner (2014). The choice is highly consequential. Low discount
rates favor policies that reduce GHG emissions aggressively and rapidly (Emmerling et al., 2019). High
rates favor policies that act more modestly and slowly. To express deep uncertainty, we suppose that the
appropriate discount rate lies within an interval that covers the spectrum of rates that have been used in the
literature. We suggest that consideration of this range of discount rates may be an attractive way for a
planner to cope with normative uncertainty about the appropriate rate.

From a mathematical perspective, the computational analysis in this paper is a straightforward
generalization of the analysis in M-S-D. That work supposed that the correct physical climate model is one
of six prominent models in the literature on climate science, whereas the correct economic model is known.
Given uncertainty about the climate model, M-S-D supposed that a planner compares six policies, each of
which chooses an emissions abatement path that is optimal under one and only one of the six climate
models. Regret is the loss in welfare if the model used in policy making is not correct and, consequently,
the chosen abatement path is actually sub-optimal. The MMR rule chooses a policy that minimizes the
maximum regret, or largest degree of sub-optimality, across all six climate models.

Here we also suppose that the correct climate model is one of the six models examined in M-S-D. We
characterize uncertainty about the discount rate by supposing that it takes one of the seven values {0.01,
0.02,...,0.07}, arange that covers the rates commonly used. As we explain later, this range reflects both
empirical uncertainty about the future of the economy and normative uncertainty (or perhaps disagreement)
about how the current population values the welfare of future generations.

Given joint uncertainty about the climate model and the discount rate, we suppose that a planner
compares forty-three policies. Each of forty-two policies chooses an emissions abatement path that is
optimal under one of the six climate models and seven discount rates. The remaining one is the benchmark
of'a passive policy in which the planner chooses no abatement. With this setup, there are forty-two {discount
rate, model} pairs, any of which is possibly correct. The regret of a specified policy under each pair is the
loss in welfare if its abatement path is sub-optimal. The MMR criterion chooses a policy that minimizes

maximum regret across all forty-two {discount rate, model} pairs.



Although the mathematical generalization of the earlier analysis is straightforward, the substantive
findings regarding climate policy are novel and informative. The MMR analysis points to use of a relatively
low discount rate for climate policy. The MMR decision rule keeps the maximum future temperature
increase below 2°C for most of the parameter values used to weight costs and damages.

In what follows, Section 2 describes how the physical-science and economics literatures have sought
to cope with uncertainty about the correct climate model and discount rate respectively. Section 3
formalizes MMR policy choice, generalizing the TA model of M-S-D to incorporate discount-rate
uncertainty. Section 4 presents our computational model and Section 5 gives the findings. Section 6

discusses the contributions and limitations of this work.

2. Prevalent Approaches to Climate and Discount-Rate Uncertainty

2.1. Averaging Outputs of MMEs of Climate Models

The climate is a complex system comprising many different physical processes occurring at a range of
spatial and temporal scales, which climate models aim to represent in a tractable manner. All climate models
are based on a specific set of deterministic nonlinear partial differential equations describing large-scale
atmospheric dynamics. However, implementation of the equations in particular models is subject to
numerous practical choices involving discretization, solution methods, and other details. Moreover, other
components of the system — such as cloud formation and heat transfer between land surfaces and the
atmosphere — are not yet fully understood and must be approximated. For these reasons, multiple climate
models have been developed and are currently in use, each reflecting different but credible choices in model
design and implementation. Existing models yield different projections of the global climate. Neither a
“consensus” climate model nor definitive quantitative climate projections can be specified with current
knowledge (Pindyck, 2022). The range of projections produced by different climate models is a gauge of

deep uncertainty about the climate system given the current state-of-the-science.



Virtually all methods of MME analysis combine model outputs into single projections of future climate
variables. A primary reason is that modelers have perceived policymakers as requiring single projections
(as functions of particular GHG emissions scenarios) for use in decision-making (Parker 2006). However,
climate researchers have recognized persistent methodological problems in combining model projections
(Tebaldi and Knutti, 2007; Sanderson, 2018).

A common technique is to take the simple average across model projections of policy-relevant
variables such as increases in global mean temperature due to anthropogenic carbon emissions. But
computation of simple averages of predictions assumes that equal weight should be given to each model,
an assumption lacking a compelling foundation (Knutti, 2010). Hence, researchers may instead compute
weighted average projections when they believe that models can be ranked with respect to relative accuracy.
However, model performance with respect to specific variables in historical data has not been demonstrated
to imply skill in predicting climate (Flato et al., 2013), weakening the case for this approach to weighting
projections for policy applications.

Combining climate model ensemble outputs into single projected trajectories of the future global
climate remains a challenging and unresolved problem. As summarized in the recent Intergovernmental
Panel on Climate Change (IPCC) physical sciences report, “...despite some progress, no universal, robust
method for weighting a multi-model projection ensemble is available...” (Lee et al., 2021). This state of
affairs poses a quandary for policymakers who rely on climate model output to formulate strategies for

GHG emissions abatement and other approaches to address climate change.

2.2. Uncertainties and Disagreements Regarding the Discount Rate

IA models are subject to uncertainty in their economic assumptions as well as in their representation
of the climate (Heal and Miller, 2014; Weyant, 2017). The paradigmatic example is Nordhaus’s DICE
(Dynamic Integrated Climate Economy) model, the most influential IA model of the last several decades

(Nordhaus, 2019). In DICE and similar models, the economic losses from climate change are represented



by damage functions that give the decreases in world-wide output resulting from increases in mean global
temperature, as a proportional reduction or in dollar terms. These functions have uncertain theoretical and
empirical grounding (Pindyck, 2013).

Economists study dynamic optimization by a social planner, which entails discounting to quantify
the present value of future economic costs and benefits. The appropriate definition and magnitude of the
discount rate is a long-standing and contentious issue in climate change economics and integrated
assessment modeling (e.g., Ackerman et al., 2009; Arrow et al., 2014; Dasgupta, 2019; Pindyck, 2017;
Weisbach and Sunstein, 2017). Controversy persists in part due to the fact that choice of an appropriate
discount rate is not only an empirical question regarding the future of the economy. It is also a normative
matter of ethics, concerning social preferences for equity across future generations which vary in their time
of existence and in their levels of consumption (Dasgupta, 2008).

A simple version of the famous Ramsey formula (Ramsey, 1928) provides a transparent expression of
the interplay of ethical and empirical considerations in choosing a discount rate. Paraphrasing the exposition
in Arrow et al. (2014), let the planner’s utilitarian social welfare function be additively separable in the
utility of future generations. Let p be the rate at which the social planner discounts the utility of future
generations. Let the utility of a representative consumer be an increasing and concave function of
consumption, with constant elasticity (— #) of marginal utility with respect to consumption. Let g; be the
annualized growth rate of consumption between time 0 and a future time ¢. Ramsey showed that it is optimal

to discount future consumption between the present (time 0) and time # at the rate

€Y 6 =p+ng:.

Of the variables on the right-hand side, g, describes future consumption growth in the economy. From
the perspective of the present, the empirical value of g; may be uncertain, perhaps deeply so. Such
uncertainty is similar conceptually to the uncertainty that climate modelers face as they attempt to project

the future trajectory of climate variables.



The time-invariant quantities p and # are normative parameters. The value of p formalizes how the
planner views intergenerational equity, with p = 0 if the planner gives equal weight to the welfare of all
future generations and p > 0 if the planner weights welfare more heavily in the near future than in the distant
future. The value of # formalizes how the planner views the desirability of consumption equity. Under
conventional utilitarian presumptions, the marginal utility of consumption decreases as consumption
increases. Therefore, a larger value of # combined with positive g; (i.e., future generations are richer)
implies that the planner should use a larger discount rate to evaluate costs and benefits, as expressed in
equation (1).

Being normative parameters, p and # are not subject to empirical uncertainty in the sense of g; or
climate projections. Nevertheless, a social planner may feel normative uncertainty about what values are
appropriate to use. Supposing that the planner aims to represent society, a source of this uncertainty may
be normative disagreements within the present population. Such disagreements were evident, for example,
in a highly public dispute between Nordhaus (2007), whose policy analysis used the value
p = 0.03, and Stern (2006), whose analysis used the value p = 0.001. This difference was highly
consequential. Stern concluded that policy should seek to reduce GHG emissions aggressively and rapidly.
Nordhaus favored policies that act more modestly and slowly.

Recognizing that conclusions about climate policy may depend critically on the discount rate used,
economists have struggled to do more than debate the issue. Weitzman (2001) suggested use of a weighted
average of the discount rates considered in the climate-economics literature, a procedure akin to the
weighted averaging performed by climate scientists in MME analysis. Heal and Milner (2014) mention
other possible ways to obtain a discount rate that a planner might find appropriate to use.

We argue against any attempt to cope with empirical and normative uncertainty by choosing a single
discount rate. Instead, we study formation of climate policy recognizing a set of possibly appropriate

discount rates. The remainder of this paper shows how.



3. Minimax-Regret Policy Evaluation

We study a straightforward extension of the MMR policy-choice problem posed by M-S-D. To begin,

we specify the optimal-control problem that a planner would solve in the absence of uncertainty.
3.1. The Optimal-Control Problem

Let B, represent baseline GHG emissions at time ¢, 4, be GHG abatement or mitigation actions at time

t under some climate policy, measured in the same units as emissions, C(4,) be the cost of these actions,
and E:l ¢ = B; — A be the resulting net emissions. (The terms abatement and mitigation are both used in
the literature to describe actions reducing GHGs and related measures.) We refer to 4, and EtA’ as “paths”

or “trajectories,” and we assume that abatement paths are chosen from some space of feasible paths.

Emissions paths are used as inputs to a climate model M. We focus on the global mean temperatures
projected by M as a function of these paths. Thus, let T (EtA !, M) be the global mean temperature at time ¢
determined by the GHG trajectory E,A “when it is simulated in the climate model M. Then a damage function,
as discussed above, can be written as D(T (EIA’, M))

For an abatement path 4; and climate model M, denote the associated total cost (abatement plus

damages) at time 7 as
_ 4,
@ €., M) = () + D(T(E", M)).
A policymaker seeks to minimize the present value of cumulative cost over a planning horizon which, as is

customary in the climate economics literature, we assume to be infinite. The optimal control problem given

a particular climate model M is to solve

3) minf C(A, M)e %tdt,
A J,



where ¢ is a time-invariant discount rate. In this approach, the optimal A; is chosen with commitment at
time zero — that is, it is not updated over time as new climate or cost information is obtained. As stated, (3)
is a deterministic optimization problem that, under certain technical assumptions regarding the feasible
abatement path space and the cost and damage functions, has a unique solution. We will assume that such

conditions hold for the series of problems we describe.

3.2. The Minimax-Regret Decision Rule

Now let A = {d1, ..., dk} be a set of possibly appropriate discount rates and M = {M,,....My} be a
model ensemble. The planner now faces the problem of minimizing total present-value cost over the infinite
horizon while recognizing joint {discount rate, model} uncertainty. For a particular discount rate J; and
model M;, let Aj, S,M; be the abatement path defined by
4) A’;;si‘Mj = arg I&linf C(4,, Mj)e-Sit dt

t Jo
That is, this cost-minimizing 4" is the optimal trajectory when the discount rate is J; and the model is M;.
Let C* (A:; S,M 0; Mj) be the associated minimum cost:

(5) C* (Aps,m, 00 M;) = JO C(A;, My)e~Sitdt

(Note the change in notation: Previously, C(4, M;),) was total cost at time ¢, now, (C*(A’;;(gi’Mj, (SL-,M/-) is
total discounted cost, i.e., an integral.)

Now consider any feasible abatement trajectory 4. The regret R(As, 6;, M;) associated with 4,, when

discount rate J; and climate model M; describe the actual state of the world, is the difference between the

cost of 4, in the actual state of the world and the cost of the optimal policy associated with J; and M;:

6) R(A,, &, M;) = fo C(Ae My)e 0t de — € (Ap 5,6, M)
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To apply the MMR rule, the planner first considers each feasible abatement path 4, and finds the model

and discount rate combination that maximizes regret as defined in Equation (6), solving the problem
— -6 — C*(A* .M.

(7) max R(A¢, 6;, M;) = max [ JO C(Ap, My)e~%tdt — C (Ats,m, 60 M| -

The MMR solution is then to find 4, to solve the problem

(8) min [gn% R(4¢, 6;, Mj)] -

3.3. Use of A to Express Empirical and Normative Uncertainty

In research on decision making under uncertainty, the term “uncertainty” has usually referred to
incomplete knowledge of the empirical environment of the decision maker, commonly called the “state of
nature” or the “state of the world.” In study of climate policy, this interpretation of uncertainty applies to
incomplete knowledge of the future global temperature, abatement costs, and damages that will occur if
alternative climate policies are chosen. It also applies to uncertainty about the discount rate that stems from
difficulty in predicting the future of the economy.

For example, economists using the Ramsey formula to specify a discount rate have studied policy
formation when the growth path g; of future consumption is generated by an assumed stochastic process;
see the discussion in Arrow et al. (2014). A planner may feel unable to specify a credible stochastic-process
for g;, so uncertainty about the discount rate is deep. If so, the MMR rule given in (8) provides a reasonable
approach to policy making with the Ramsey formula.

In the computational analysis of Section 5, we will use the MMR rule in (8) to embrace normative as
well as empirical uncertainty about the appropriate discount rate to use when evaluating climate policy. We
need to consider normative uncertainty (or perhaps disagreement) because, as discussed in Section 2.2,

debate among economists about the appropriate discount rate has stemmed from more than empirical
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uncertainty about the future economy. Notably, the dispute between Nordhaus (2007) and Stern (2006)
regarding optimal climate policy, mentioned earlier, occurred largely because they specified different
values for the normative parameter p in the Ramsey formula.

Our use of the set A to express both empirical and normative uncertainty regarding the appropriate
discount rate departs only modestly from the usual decision-theoretic focus on empirical uncertainty if the
planner is a utilitarian entity who has incomplete knowledge of the intergenerational preferences of the
present population. Then the planner’s normative uncertainty has an empirical source, namely incomplete
knowledge of the population preferences that a utilitarian would seek to maximize. Pushing this idea further,
the planner may face the difficult task of representing a population whose members may not themselves be
clear about their pure time preferences or willingness to accept intergenerational inequalities.

Social planning using A to express normative uncertainty is a more radical departure from the decision-
theoretic norm if the underlying problem is clear and yet sharp normative disagreements exist within the
present population. That is, a segment of the population may strongly value intergenerational equity
whereas another segment may be less concerned with the fate of future generations. In this case, one may
think it necessary to abandon the idealization of a utilitarian planner and replace it with conceptualization
of policy making as a non-cooperative political game.

We nonetheless find it attractive to study MMR decision making even in this challenging setting. The
reason is that the MMR rule has some appeal as a broadly acceptable mechanism for policy choice. Recall
that the regret of a policy in a specified state of nature measures its degree of sub-optimality in that state,
and that maximum regret measures the maximum degree of sub-optimality across all states. Suppose that
the members of a heterogeneous present population disagree on what {discount rate, model} should be
considered the “true” state of nature. Then use of the MMR rule to choose policy minimizes the maximum
degree of sub-optimality that will be experienced across the population.

The notion that the MMR policy may be broadly acceptable because it minimizes maximum sub-
optimality is reminiscent of Rawls’s consideration of social decision making behind a veil of ignorance. As

with Rawls, we find it appealing to minimize some measure of the maximum harm experienced by a
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heterogeneous population. However, the two settings differ in important respects. Formation of
intergenerational climate policy differs from Rawls’s concern with static income distribution, and the MMR

decision rule differs from Rawls’s consideration of maximin decisions.

4. Computational Model

A number of elaborate computational IA models have been proposed in the literature and are used in
climate policy analysis. To show in broad terms the consequences of adoption of the MMR decision rule in
this context, we instead present a very simple IA model that summarizes the essential economic and
physical mechanisms at work. While the standard in the IA literature is to report results only about a century
into the future, analyzing the uncertainty associated with discount rates necessitates attention to longer time
horizons because phenomena in the more distant future that are negligible in economic terms with
conventional discounting become salient with low rates. Notwithstanding the speculative nature of extreme
emissions reduction or reversal scenarios (see Appendix A for additional discussion), we follow the
convention of assuming them in our computational model, both in a baseline emissions trajectory and in

abatement paths.

4.1 Model Details

To illustrate quantitatively the solution of MMR equation (8) in Section 3.2, we specify functional
forms and parameters for the climate damages, abatement costs, and climate dynamics in order to create a
simple IA model. To define simple reduced forms of complex climate model dynamics, we draw on the
work of Matthews et al. (2009). They showed that the “carbon-climate response” (CCR), the change in
global mean temperature over periods of decades or longer, varies approximately linearly with the increase

in cumulative carbon emissions over the same period. We define net cumulative emissions as
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t t
9) Elt = f Eftdt = f (B, — Apdt
0 0

Matthews et al. analyzed the case 4, = 0; that is, no abatement relative to the baseline at any time. Note that
there is no requirement our definition that (B, — 4;) be non-negative. 4; exceeding B; implies adoption of
mitigation measures that yield negative net emissions at some time 7. Doing so may result in declining net
cumulative emissions if sustained long enough.

The CCR parameter m(M;), or m; for short, associated with each full-scale numerical climate model is
estimated by determining the model’s projected temperature response when it is driven by a carbon

emissions path according to

(10) T, = mE, i=1..6

where T henceforth indicates the temperature increase over its initial value at time # = 0. The CCRs vary
across climate models, reflecting structural and other forms of uncertainty. The CCR allows incorporating
both reduced-form climate dynamics and deep climate model uncertainty into our simple IA modeling
framework.

Our model ensemble M is obtained by drawing on results from simulations of six “Earth System
Models (ESMs),” which combine physical climate models with representations of biogeochemistry in order
to simulate the complete atmospheric, oceanic, and terrestrial carbon cycle. These ESMs were used in the

Climate Model Intercomparison Project Phase 5 (CMIPS5), a study under the auspices of the World Climate
Research Programme. We estimate CCR parameters m, using historic and projected emissions and

temperature data from each of the six ESMs (see M-S-D for details). Our model ensemble can then be

described succinctly by M = {m, ..., ms}. The models and their associated m; are shown in Table 1.
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Table 1

Earth system models used to estimate Carbon-Climate Response (CCR)
parameters, with estimated CCR values (°C per teraton carbon)

Model and model number CCR

1. GFDL-ESM-2G - Geophysical Fluid
Dynamics Laboratory Earth System
Model version 2G

0.00157

2. BCC-CSM-1 - Beijing Climate Center

Climate System Model version 1.1 0.00186

3.  FIO-ESM - FIO-ESM - First Institute of

Oceanography Earth System Model 0.00194

4. Had-GEM2-ES - Hadley Global

Environmental Model 2 - Earth System 0.00229

5. IPSL-CMS5A-MR - Institut Pierre Simon
Laplace Coupled Model 5A - Medium
Resolution

0.00236

6. MIROC-ESM - Model for
Interdisciplinary Research on Climate -
Earth System Model

0.00244

Taylor et al. (2012), Collins et al. (2013)

Next, we specify abatement cost and climate damage functions in quadratic form to implement the IA
model as an optimal control problem, allowing for plausible non-linearity in these functions as the
abatement effort and the temperature increase:

(11) CA) =L ak?
(12) D(T,) = ;BT
where a and S are weighting parameters calibrated to numerical estimates in the climate economics
literature, and 7; is, as above, global mean temperature increase as of time . For damages, the quadratic

form and the value of § are taken from a statistical survey by Nordhaus and Moffat (2017), and comprise
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these researchers’ preferred regression model for approximating existing empirical damage estimates. The
quadratic form and value of o are derived from Dietz’s and Venman’s (2019) synthesis of global marginal
abatement costs reported in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report
(Clarke et al., 2014).

A baseline emissions trajectory B; is derived from the so-called “Representative Concentration
Pathway (RCP) 8.5 scenario in its extended version to year 2500, which envisions a relatively high growth
rate of global carbon emissions from fossil fuel use through the 21 century, followed by a peak or plateau
period of constant emissions until 2150, and then a decline to a very low level by 2250 (Riahi et al., 2011,
Meinshausen et al., 2011). In its original form with a 2100 time horizon, the RCP 8.5 reflects an absence
of explicit global climate policy. This, and several other extended RCP scenarios assuming different
emissions paths, were devised for research purposes, with no explanation given of the policies,
technological advances, or other factors that could bring about this peaking, leveling, and decline. See
Appendix A for discussion of issues in specifying a realistic baseline trajectory for IA modeling of climate
policy.

A functional form having the same general shape as the RCP 8.5 was fitted by nonlinear least squares

using the Levenberg-Marquardt method in Mathematica (2019). The fitted equation for B; is

(13) B, = (91: + eXpB("e(p)) 0 exp (—(t— ).

This equation smooths connected segments of the extended RCP 8.5, including the plateau during the first
half of the 22" century, and captures its rapid 21%-century increase and subsequent dramatic decline.
Equation (13) fits the scenario data well, with an R? of 0.927.

Combining these various components, the optimal control problem is to minimize, for a particular
discount rate and model, the present value of abatement costs plus climate damages over an infinite horizon,

subject to the dynamic relationship between cumulative emissions and temperature:

©1
(14) minf — (ad? + BT?) e~ Otdt
A Jy 2
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subject to

(15) %Eff —EM =B, — A,
(16) T, = mE.*

(17) Elt = E,

where the last equation specifies an initial condition for net cumulative emissions. Applying standard
solution techniques (see, e.g., Barro and Sala-i-Martin, 1995) yields first-order conditions including two
coupled differential equations in abatement and the atmospheric greenhouse gas concentration associated

with the optimal abatement:

(18) = 54, - B g
dEAt
(19) = B~ A

These equations can be solved in closed form for the optimal abatement path A4, and resulting optimal
temperature, costs, damages, and present-value total cost.

We discussed our numerical reduced-form climate model ensemble M above. For numerical solution
of the MMR problem in equation (8), it is also necessary to specify the discount rate set A. Following the
discussion in Section 3.3, we pick seven possible discount rates ranging from a low of 0.01 to a high of
0.07 to represent the extent of empirically-based and normative uncertainty; these values roughly span the
set of discounts rates that have been used in the climate economics literature. For numerical
implementation, we pick the seven values {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07} in this interval. It should
be noted that a zero discount has also been analyzed and debated, but the optimal control problem stated in
Equations (14) — (17) does not have a solution in this case because the transversality first-order condition
is not satisfied. As an approximation, we selected J =0.01 for the smallest potential J value. The largest
value, 0.07, corresponds to the real, pre-tax return on private investment (Arrow et al., 2013, citing U.S.
Office of Management, 2003). The six reduced-form climate models in the ensemble M are defined by the

different values of their CCRs as discussed above (see Table 1). With seven values in the ensemble A, there
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are thus forty-two combinations of ¢ and m representing the range of the two types of deep uncertainty we
have discussed.

Before turning to uncertainty analysis, we illustrate how the model works, including the influence of
the baseline emissions scenario approximating the RCP 8.5 and the implications of the discount rate
uncertainty. The left-hand panel of Figure 1 shows the baseline B; and the optimal abatement A; for a
particular set of parameters. The right-hand panel shows net cumulative emissions under 4, and under a
policy of no abatement (4, = 0 for all ), respectively. Starting from the initial year, abatement increases
along with baseline emissions, but with a lag: Through the 21 century the model does not find it optimal
to abate baseline emissions completely. In the 22" century, by contrast, optimal abatement begins to exceed
the baseline, resulting in a decline in net cumulative emissions, as seen in the right-hand panel. This panel
also shows that optimal abatement policy entails a significant reduction in net cumulative emissions relative

to no abatement.

Figure 1 — Trajectories of B, optimal A, Eft, and E?Oabatement

for m = 0.002286, o = 0.000125, = 0.018, and 6 = 0.05
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The computational model shows the importance of the discount rate. With the parameters of Figure 1,
the optimal total economic loss from climate change, including abatement cost, is 0.51% of the present-

discounted value of future global GDP. If the discount rate were 1%, this optimal value would be 3.51%.



18

By way of comparison, with no abatement and the parameters of Figure 1 (i.e., with a discount rate of 5%),
the total economic cost of climate change would be 0.79% of the present-discounted value of future global
GDP, while at a 1% discount rate these damages would be 42.02% of present-discounted value of future

global GDP.

5. MMR Analysis

The computational model presented in Section 4 enables us to quantify the theoretical discussion in
Section 3.2. For the middle values of the economic parameters o and f, the full set of regrets (from Equation
(6)) across all possible pairs of dand m is shown in the three-part Table B-1 in Appendix B. Regrets can be
calculated for any feasible abatement path 4;, but to keep the calculations tractable (and because a planner
presumably would seek to pick a “best” policy) we focus on those paths that are optimal for those
combinations of ¢ and m that are in the A and M ensembles. There are 42 such combinations. In Table B-
1, a policy is defined by optimizing using the {d;, m;} pair at the top of each column, while the {J; m;}
values that correspond to the actual state of the world are indicated by the row headings on the leftmost
border. For example, if policy is optimized assuming {0.03, m>}, while the actual state-of-the-world is best
described by {0.04, m;}, the regret is 0.049, as highlighted in bold in the fourth row and tenth column of
Part 1 of Table B-1. Appendix Figure B-1 gives a color-shaded plot of the 1849 numbers in Table B-1.

The maximum regret for each policy is given in the final row of the Table, across each of its three
parts. From those maximum regrets, the minimum of them (i.e., Equation (8)) can be read off directly. For
this (o, f) combination it is 0.273, which appears at the bottom of the second column of Part 3.

To explore the sensitivity of the MMR to different combinations of the a and f parameters, we
calculated the full matrix of 1806 regrets, the maximum regret for each {J;, m;} combination, and the MMR
for nine combinations of a and . The values of the MMR, along with the combination of ¢ and Model that
yield the MMR, are given in Table 2. The most striking result exhibited in this Table is that, under all

combinations of o and f, the discount rate corresponding to the MMR solution is 0.02, near the low end of



19

the range of discount rates considered. Different climate models are picked by the MMR rule depending on
the (a, ff) combination, although the three models appearing in Table 2 are the ones with the highest values
of the CCR parameter m. However, in all cases the MMR decision rule points unambiguously to use of a
relatively low discount rate in evaluating the costs and benefits of climate mitigation measures. The strong
finding regarding the low value of J selected by the MMR criterion is reinforced if we consider cases where
the Model is known and only ¢ is uncertain. These results are not shown here, but are available from the
authors on request.

The simple IA model also allows for calculation of the maximum temperature increase that will be
reached for any policy path, and how long it will take to reach that temperature, two quantities of
considerable importance in climate science and policy (Clarke et al. 2014, IPCC, 2021). Once the MMR
policy combination of {J, m} is selected, the abatement and net cumulative emissions paths are determined.
The maximum temperature increase given such a path is determined by equation (10), and will occur when
net cumulative emissions is at a maximum. The value of the CCR parameter in the actual state of the world

may be different from that in the MMR policy combination.



20

Table 2
Values of MMR, uncertain Model and &, for combinations of ¢ and S
Potential values of 6: {0.01,0.02,0.02,0.03,0.04,0.05,0.06,0.07}
a=0.000075 a=0.000075 a=0.000075
p=0.014 p=0.018 £=0.022
Model o MMR Model ) MMR Model ) MMR
IPSL 0.02 0.172 HAD 0.02 0.172 HAD 0.02 0.178
a=0.000125 a=0.000125 a=0.000125
p=0.014 p=0.018 p=0.022
Model 0 MMR Model ) MMR Model ) MMR
MIROC | 0.02 0.266 IPSL 0.02 0.273 IPSL 0.02 0.284
a=10.0002 a=10.0002 a=10.0002
p=0.014 p=0.018 p=0.022
Model ) MMR Model ) MMR Model ) MMR
MIROC | 0.02 0.478 MIROC | 0.02 0.436 MIROC | 0.02 0.423

Because the actual state of the world is unknown, the temperature increase under the MMR policy cannot

be known at the time the policy decision is made. What is known is that it will be less than or equal to the

maximum over all six models, which will occur if MIROC is the true model because ms is the greatest of

the CCRs. Table 3 shows these maxima for the nine combinations of {a, f}, and the year at which it is

reached. It can be seen from Table 3 that for almost all the parameter combinations considered here, the

MMR policy keeps the peak temperature increase under 2°C. Only for the costliest abatement (cases with

a.=0.0002) does the maximum temperature increase exceed 2°C. Under the MMR abatement policy across

the nine (a, f) combinations, the global mean temperature will reach its maximum between 118 and 149

years from the initial point. Although not shown in the Table, it is worth noting that without any abatement,
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the maximum temperature increase can be quite high, for example, it is 14.7°C as time goes to infinity for

the middle values of a and f and the Hadley model (714).

Table 3
Values of Maximum Temperature Increase (Tmax) and Years until it is reached,
uncertain Model and J, for combinations of a and f
Potential values of 6: {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}
a=0.000075 a=0.000075 a=10.000075
p=0.014 p=0.018 p=0.022
MMR MMR MMR
Model Years Tmax Model Years Tmax Model Years Tmax
IPSL 124 1.248 HAD 121 1.055 HAD 118 0.877
a=10.000125 a=10.000125 a=10.000125
p=0.014 p=0.018 £=0.022
MMR MMR MMR
Model Years Tmax Model Years Tmax Model Years Tmax
MIROC 134 1.831 IPSL 130 1.564 IPSL 125 1.315
a=0.0002 a=0.0002 a=0.0002
p=0014 p=0.018 £=0.022
MMR MMR MMR
Model Years Tmax Model Years Tmax Model Years Tmax
MIROC 149 2.660 MIROC 141 2.187 MIROC 135 1.859
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6. Discussion

We consider the minimax regret rule to provide a reasonable way to form climate policy with both
empirical uncertainty about the physical climate system and normative uncertainty regarding the discount
rate. Our computational analysis of MMR decision making offers a new reason for using a low discount
rate in climate policy analysis, a rate on the order of 2% per annum. This discount rate encompasses the
pure rate of time preference, intergenerational inequality aversion, and projection of the economy’s future
rate of growth.

MMR decision making copes with deep uncertainty without adopting the extreme conservatism of
minimax decisions. As discussed in Section 3.3, MMR enables a planner to deal with heterogeneous
populations, who may not themselves be clear about their time preferences or willingness to accept
intergenerational inequalities. There is no scientific or economic reason that everyone should hold the same
normative values. Furthermore, some people may have only a vague understanding of discounting.

We also find it appealing to view the MMR decision rule as a consensus-building mechanism.
Calculating regrets enables people with different values to see how implementation of alternative policies
might play out from their perspectives. Having the appeal of limiting maximal harm across the population,
choosing policy by MMR may be acceptable to holders of incompatible preferences.

Of course, the modeling in this paper does not address the philosophical problems that some may have
with the utilitarian framework. Aggregating individualistic “utilities” may be a questionable basis for
societal decisions. It is possible to aggregate monetary costs and benefits, but these can be translated into
utilities only if Kaldor-Hicks compensations are implemented — something that rarely takes place in the real
world. Some forms of compensation are impossible to accomplish: future generations cannot pay us to
mitigate climate change.

The IA model described in our paper is simple and computationally tractable. This is partially because
we have not considered all possible sources of uncertainty. As shown in Appendix A, the appropriate

baseline emissions path is highly uncertain. Despite the best efforts of economists, the shapes and
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parameters of the abatement cost and climate damage functions are also uncertain. We have addressed this
partially by sensitivity analysis, calculating MMR solutions with various parameters (&, £) on abatement
cost and climate damages. However, it would be better to expand our MMR analysis to encompass deep
uncertainty about the correct values for these weights, a formidable computational task. Future research
may narrow the realistic ranges of these parameters, as well clarify the shapes of the abatement cost and
damage functions. Knowledge of realistic baseline scenarios may improve. Ongoing progress in physical
climate modeling is likely to lead to better understanding of the relationship between greenhouse gas
emissions, global temperatures, and other features of the geophysical system.

And yet, as discussed in Sections 2.2 and 3.3, there is an intrinsic difference between the discount rate,
which depends on normative considerations, and the models/parameters of the physical climate and the
economy. Geophysical and economic models may continue to be improved by new scientific research, but
the normative parameters determining the discount rate involve issues that are beyond the reach of science.
We suggest that the MMR approach to climate policy decision-making provides an attractive way to cope

with both empirical and normative uncertainty.
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Appendix A. Specifying the Baseline Emissions and Abatement Paths

In Section 3.1 we defined a “net emissions” path as E;l = B, — A;, where B, is a baseline emissions
path and A, is a path of carbon emissions abatement actions. In the climate economics literature, quantitative
baselines have usually been specified on the basis of narrative scenarios describing in qualitative terms how
the world economy, society, and energy system might evolve over the course of the twenty-first century
and beyond. Projected abatement paths that reduce emissions relative to baselines are similarly conceived
and quantified.

Both baseline scenarios and abatement paths have been developed to reflect a range of global GHG
emissions projections, including both continued high fossil fuel use and dramatic reductions. Reductions
are modeled as being achieved through measures including carbon pricing, emissions cap and trade systems,
and adoption of low-carbon or non-carbon primary power generation — solar, wind, nuclear, and fossil with
carbon capture and sequestration. However, there are no generally accepted criteria stipulating what should
be considered feasible or realistic in these low-carbon scenarios, whether technologically, economically, or
politically. In many cases, scenarios project implementation of measures significantly beyond past or
current levels. Indeed, there are examples in which scenarios project rapid global deployment of
technologies that are at present still only in the development and demonstration phase.

Increasing attention is being directed toward even more radical measures, which would go beyond
reducing emissions to reversing them. “Carbon dioxide removal” (CDR) refers to human activities such as
afforestation, ocean fertilization, and direct air capture and sequestration, which extract already-emitted
carbon from the atmosphere and store it in underground reservoirs or other repositories. Aggressive
deployment of CDR could result in “net negative” emissions, meaning that the rate of removal would
exceed the rate of new emissions. But CDR on scales sufficiently large and sustained to meaningfully affect
global climate change is at this point highly speculative, both in terms of technologically and with respect

to its effects on the climate and other impacts, such as on agriculture. Nevertheless, it has come to the fore



25

with the advent of highly ambitious global temperature change limits as an international policy goal.
Notably, in modeling of emissions paths to prevent mean global warming of more than 1.5°C over the pre-
industrial level, most scenarios in which this limit is achieved entail global net zero, and then negative,
emissions during the twenty-first century, requiring CDR far beyond what is currently feasible, even on
small, demonstration-level scales.

Another form of geoengineering is “Solar Radiation Modification (SRM),” which entails changes in
the planetary radiation budget by measures such as injecting aluminum silicate particles into the
stratosphere. Like CDR, there is considerable technological and scientific uncertainty regarding SRM, and
it has to date received much less attention in the integrated assessment literature. Additionally, fusion power
has been proposed for many decades, without yet coming to fruition. There is no way of knowing at this

time whether these speculative possibilities, or others that have not even been imagined, will materialize.



Appendix B. Regret Computations

Actual
World

81 ml
62 ml
83 ml
84 m1
85 ml
86 m1
87 ml
81 m2
82 m2
83 m2
64 m2
85 m2
86 m2
87 m2
81 m3
82 m3
03 m3
84 m3
85 m3
86 m3
87 m3
81 m4
62 m4
83 m4
84 m4
05 m4
86 m4
87 m4
81 m5
82 m5
83 m5
84 m5
85 m5
86 m5
87 m5
81 m6
82 m6
83 mé6
84 m6
85 m6
86 m6
87 m6

Max
Regret

61 m1

0.000
0.137
0.239
0.268
0.264
0.249
0.230
0.056
0.046
0.143
0.193
0.208
0.207
0.198
0.086
0.031
0.123
0.176
0.195
0.196
0.190
0.303
0.004
0.051
0.104
0.135
0.149
0.152
0.364
0.006
0.040
0.092
0.124
0.139
0.144
0.431
0.012
0.030
0.079
0.112
0.129
0.136

0.431
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Table B-1

Regrets

a=0.000125, #=0.018

Part1 of 3

Parameter Combinations (Model used for policy) (Columns)

62 m1

0312
0.000
0.040
0.076
0.090
0.093
0.090
0.761
0.041
0.005
0.033
0.054
0.064
0.068
0.897
0.063
0.002
0.025
0.046
0.058
0.063
1.691
0.230
0.017
0.003
0.017
0.030
0.039
1.887
0.278
0.027
0.001
0.012
0.025
0.035
2.099
0.332
0.040
0.001
0.009
0.021
0.030

2.099

83
ml

1.015
0.075
0.000
0.012
0.025
0.032
0.034
1.924
0.255
0.023
0.000
0.007
0.015
0.020
2.186
0.315
0.036
0.001
0.004
0.012
0.017
3.658
0.687
0.138
0.022
0.001
0.001
0.006
4.012
0.783
0.168
0.031
0.003
0.001
0.004
4.394
0.889
0.202
0.042
0.006
0.000
0.002

4.394

&4
ml

1.865
0.225
0.020
0.000
0.004
0.009
0.012
3.238
0.532
0.093
0.012
0.000
0.001
0.004
3.628
0.627
0.119
0.019
0.001
0.001
0.003
5.783
1.187
0.295
0.077
0.019
0.003
0.000
6.298
1.327
0.342
0.095
0.025
0.005
0.000
6.851
1.479
0.394
0.115
0.033
0.008
0.001

6.851

85
ml

2.735
0.392
0.059
0.006
0.000
0.002
0.004
4.546
0.808
0.173
0.038
0.007
0.000
0.000
5.055
0.933
0.210
0.050
0.011
0.001
0.000
7.855
1.654
0.446
0.136
0.044
0.014
0.004
8.521
1.831
0.507
0.160
0.054
0.018
0.005
9.235
2.024
0.574
0.187
0.066
0.023
0.008

9.235

46 m1

3.567
0.551
0.102
0.018
0.002
0.000
0.001
5.778
1.060
0.248
0.065
0.017
0.004
0.000
6.396
1.210
0.295
0.081
0.023
0.006
0.001
9.784
2.067
0.578
0.189
0.068
0.026
0.010
10.589
2277
0.651
0.219
0.081
0.032
0.013
11.449
2.503
0.730
0.251
0.096
0.039
0.016

11.449

87 m1

4.340
0.696
0.142
0.032
0.006
0.001
0.000
6.911
1.283
0.315
0.090
0.028
0.008
0.002
7.627
1.454
0.369
0.110
0.035
0.012
0.004
11.545
2.426
0.692
0.235
0.090
0.037
0.016
12.474
2.663
0.773
0.269
0.105
0.044
0.019
13.467
2918
0.863
0.306
0.122
0.053
0.024

13.467

81
m2

0.043
0.253
0.347
0.361
0.345
0.319
0.293
0.000
0.127
0.236
0.278
0.283
0.274
0.258
0.002
0.104
0.212
0.258
0.269
0.263
0.250
0.073
0.028
0.117
0.175
0.201
0.209
0.207
0.099
0.018
0.101
0.159
0.188
0.198
0.198
0.130
0.011
0.085
0.144
0.175
0.187
0.189

0.361

82
m2

0.071
0.033
0.110
0.145
0.152
0.148
0.139
0.280
0.000
0.043
0.086
0.107
0.113
0.113
0.351
0.002
0.032
0.074
0.096
0.105
0.106
0.793
0.061
0.002
0.027
0.053
0.068
0.076
0.907
0.084
0.001
0.020
0.045
0.061
0.070
1.030
0.111
0.002
0.014
0.037
0.054
0.064

1.030

83
m2

0.428
0.006
0.020
0.049
0.062
0.066
0.066
0.955
0.079
0.000
0.015
0.032
0.042
0.047
1.113
0.110
0.001
0.010
0.026
0.037
0.042
2.022
0.324
0.040
0.001
0.005
0.015
0.023
2.245
0.383
0.056
0.002
0.003
0.012
0.019
2.486
0.449
0.074
0.006
0.001
0.009
0.016

2.486

o4
m2

0.962
0.074
0.000
0.011
0.023
0.029
0.031
1.832
0.251
0.024
0.000
0.006
0.013
0.018
2.083
0.310
0.037
0.001
0.003
0.010
0.015
3.497
0.678
0.141
0.024
0.002
0.001
0.004
3.839
0.773
0.171
0.034
0.004
0.000
0.003
4.206
0.877
0.206
0.045
0.007
0.000
0.002

4.206

85
m2

1.574
0.182
0.013
0.000
0.006
0.011
0.014
2.787
0.455
0.075
0.008
0.000
0.002
0.006
3.133
0.541
0.099
0.014
0.000
0.001
0.004
5.053
1.050
0.258
0.066
0.015
0.002
0.000
5.513
1.178
0.302
0.082
0.020
0.004
0.000
6.006
1.318
0.350
0.100
0.027
0.006
0.001

6.006

56
m2

2.208
0.303
0.039
0.002
0.001
0.004
0.006
3.752
0.662
0.134
0.026
0.003
0.000
0.001
4.188
0.771
0.167
0.036
0.006
0.000
0.000
6.594
1.407
0.374
0.110
0.033
0.009
0.002
7.168
1.565
0.429
0.131
0.042
0.013
0.003
7.783
1.736
0.489
0.155
0.052
0.017
0.005

7.783

87
m2

2.833
0.424
0.070
0.009
0.000
0.001
0.002
4.689
0.859
0.192
0.046
0.010
0.001
0.000
5.209
0.989
0.232
0.059
0.015
0.003
0.000
8.073
1.736
0.480
0.152
0.052
0.018
0.006
8.755
1.920
0.545
0.178
0.063
0.023
0.008
9.485
2.119
0.615
0.207
0.076
0.029
0.011

9.485
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Table B-1 (continued)
Regrets
a=10.000125, #=0.018

Part 2 of 3

Parameter Combinations (Model used for policy) (Columns)

Actual
World 61 m3 62 m3 83 m3 84 m3 85 m3 86 m3 87 m3 61 m4 82 m4 83 m4 84m4 05 m4 86 m4 87 m4

61 ml 0.062 0.044 0338 0.808 1364 1951 2539 0.167 0.011 0.08 0321 0.651 1.037  1.452
62 ml 0280 0.048 0.002 0.052 0.146 0256 0370 0407 0.141 0.027 0.004 0.035 0.095 0.171
63 ml 0372 0.130 0.029 0.001 0.007 0.029 0.056 0483 0229 0.093 0.029 0.004 0.002 0.013
64 m1 0383 0.163 0.060 0.017 0.002 0.001 0.006 0479 0252 0.125 0.057 0.022 0.006 0.001
65 ml 0364 0.168 0.073 0.029 0.009 0.002 0.000 0447 0246 0.132 0.069 0.034 0.016 0.006
66 m1 0336 0.162 0.076  0.035 0.015 0.006 0.001 0409 0230 0.129 0.072 0.040 0.021  0.011
67 ml 0308 0.15s1 0.075 0.037 0.018 0.008 0.003 0374 0212 0.121 0.070 0.041 0.024 0.013
61m2 0.002 0212 0.796 1.584 2461 3362 4247 0.052 0.038 0304 0.756 1318 1942  2.592
62m2  0.149 0.002 0.054 0202 038 0583 0771 0255 0.047 0.002 0.054 0.159 0290 0.432
63m2 0258 0.057 0.001 0.015 0.058 0.112 0.167 0359 0.134 0.032 0.001 0.009 0.036 0.073
64m2 0298 0.101 0.022 0.001 0.004 0.019 0.037 0387 0.178 0.070 0.020 0.002 0.001  0.008
65m2 0301 0.121 0.041 0.009 0.000 0.001 0.007 0381 0.191 0.089 0.037 0.013 0.002 0.000
66 m2 0289 0.126 0.051 0.017 0.004 0.000 0.001 0360 0.189 0.096 0.047 0.021  0.008  0.002
67m2 0272 0.124 0.054 0.022 0.008 0.002 0.000 0336 0.181 0.096 0.050 0.026 0.012  0.005
61m3 0.000 0272 0935 1.810 2775 3.761 4728 0.035 0.059 0378 0.888 1515 2203 2917
62m3  0.124 0.000 0.079 0254 0466 0.683 0.892 0225 0.032 0.006 0.079 0204 0354 0.514
63m3 0234 0.044 0.000 0.025 0.079 0.141 0204 0332 0.115 0.022 0.000 0.017 0.052 0.096
64m3 0278 0.088 0.016 0.000 0.009 0.028 0.049 0366 0.161 0.059 0.014 0.001 0.003 0.014
65m3 0286 0.110 0.034 0.006 0.000 0.003 0.011 0364 0.178 0.080 0.031 0.009 0.001 0.001
66 m3 0278 0.117 0.045 0.014 0.003 0.000 0.001 0348 0.179 0.089 0.041 0.017 0.006 0.001
67m3 0264 0.117 0.050 0.019 0.006 0.001 0.000 0327 0.174 0.090 0.046 0.022 0.010 0.004
6lm4 0.046 0.652 1.743 3.085 4525 5972 7377 0.000 0.232 0.829 1.662 2.631 3.668 4.728
62m4  0.039 0.040 0263 0584 0931 1272 1590 0.110 0.000 0.077 0260 0495 0.749 1.006
63m4 0.134 0.005 0.027 0.113 0222 0332 0435 0218 0.043 0.000 0.028 0.091 0.169 0.252
64m4 0192 0.037 0.000 0.016 0.052 0.094 0.135 0272 0.092 0.018 0.000 0.011 0.035 0.065
65m4 0217 0.063 0.009 0.000 0.010 0.026 0.044 0290 0.120 0.040 0.008 0.000 0.005 0.015
66 m4 0224 0.079 0.021 0.002 0.001 0.006 0.014 029 0.133 0.054 0.018 0.003 0.000 0.002
67m4 0220 0.086 0.029 0.007 0.000 0.001 0.004 0281 0.137 0.062 0.026 0.009 0.002 0.000
6lmS  0.066 0.751 1942 3393 4944 6500 8.008 0.001 0282 0945 1.853 2902 4.021 5.163
62mS  0.028 0.058 0315 0.670 1.049 1418 1.762 0.092 0.001 0.103 0311 0572 0.851 1.130
63mS 0.117 0.002 0.039 0.140 0261 0382 0495 0.198 0.033 0.001 0.041 0.115 0203 0.294
64mS 0176 0.029 0.000 0.024 0.067 0.113 0.158 0253 0.080 0.012 0.001 0.017 0.047 0.081
65mS 0203 0.055 0.006 0.001 0.015 0.034 0.054 0275 0.109 0.033 0.005 0.000 0.008 0.021
66 mS 0212 0.071 0.016 0.001 0.002 0.009 0018 0277 0.124 0.048 0.014 0.002 0.000 0.004
67mS 0211 0.080 0.025 0.005 0.000 0.002 0.006 0271 0.129 0.057 0.022 0.006 0.001 0.000
61mé6 0.091 0.860 2.157 3.725 5395 7.066 8.684 0.006 0339 1.071 2.059 3.194 4401 5.629
62m6 0.019 0.079 0373 0.764 1.178 1.578 1949 0.075 0.005 0.133 0369 0.656 0.961 1.265
63m6 0.101 0.001 0.054 0.171 0306 0438 0561 0.178 0.024 0.004 0.056 0.142 0.241 0.342
64m6 0.160 0.021 0.002 0.034 0.083 0.136  0.185 0235 0.068 0.007 0.003 0.026 0.060 0.099
65m6 0.190 0.047 0.003 0.004 0.021 0.043 0.066 0260 0.098 0.027 0.002 0.002 0.012 0.028
66 m6 0201 0.064 0.013 0.000 0.004 0.013 0.024 0265 0.114 0.042 0.011 0.001 0.001 0.007
67m6 0202 0.073 0.021 0.003 0.000 0.003 0.008 0261 0121 0.051 0.018 0.004 0.000 0.001

RMaxt 0.383 0860 2.157 3.725 5395 7.066 8.684 0.483 0.339 1.071 2.059 3.194 4401 5.629
egre
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Table B-1 (continued)
Regrets
a=10.000125, #=0.018

Part 3 of 3

Parameter Combinations (Model used for policy) (Columns), and No Abatement case

Actual No
World 81m5 &2m5 83m5 84m5 d5m5 66m5 87m5 d61m6 o62m6 o63m6 o64m6 o65m6 d6m6 57m6 Abmt

6lml  0.190 0.017 0.063 0258 0.550 0.899 1.282 0214 0.026 0.044 0204 0459 0.774 1.124 16.802
62ml 0431 0.163 0.039 0.004 0.023 0.074 0.140 0456 0.186 0.053 0.007 0.015 0.055 0.113 2.441
63ml  0.505 0.250 0.109 0.038 0.008 0.001 0.008 0.526 0272 0.127 0.049 0.013 0.002 0.004 0.606
64ml 0497 0270 0.140 0.068 0.029 0.010 0.002 0516 0290 0.156 0.079 0.037 0.014 0.004 0.202
6o5ml 0463 0.262 0.146 0.079 0.041 0.020 0.009 0480 0.279 0.160 0.090 0.049 0.026 0.012 0.082
66 ml 0424 0245 0.141 0.081 0.046 0.026 0.014 0439 0259 0.153 0.090 0.053 0.031 0.017 0.039
67ml 0387 0.225 0.132 0.078 0.047 0.028 0.016 0400 0238 0.143 0.087 0.053 0.033 0.020 0.020
61m2  0.067 0.023 0.242 0.639 1.148 1.721 2326 0.084 0.013 0.189 0.536 0993 1517 2.077 24.657
62m2  0.277 0.061 0.001 0.037 0.127 0245 0376 0298 0.077 0.004 0.024 0.099 0204 0.324 3.809
63m2 0379 0.152 0.043 0.004 0.004 0.026 0.058 0.399 0.170 0.055 0.008 0.002 0.018 0.045 1.001
604m2 0405 0.194 0.082 0.027 0.005 0.000 0.005 0423 0212 0.095 0.036 0.009 0.000 0.003 0.349
65m2 039 0.206 0.101 0.045 0.017 0.005 0.000 0412 0222 0.113 0.054 0.023 0.007 0.001 0.147
66 m2 0374 0.203 0.107 0.054 0.026 0.011 0.004 0.38% 0217 0.118 0.062 0.031 0.015 0.006 0.071
607m2 0349 0.194 0.106 0.058 0.030 0.015 0.007 0362 0206 0.116 0.065 0.036 0.019 0.010 0.038
61m3  0.048 0.039 0306 0.758 1.325 1959 2.625 0.062 0.024 0243 0.641 1.153 1.734 2352 26.817
62m3  0.245 0.044 0.002 0.057 0.166 0.303 0451 0266 0.058 0.001 0.039 0.133 0.256 0.393 4.193
63m3 0352 0.132 0.031 0.001 0.010 0.039 0.079 0371 0.149 0.042 0.003 0.005 0.028 0.063 1.115
64m3 0384 0.177 0.070 0.020 0.002 0.001 0.009 0401 0.194 0.082 0.027 0.005 0.000 0.006 0.392
65m3 0380 0.193 0.091 0.038 0.013 0.002 0.000 039 0208 0.103 0.046 0.017 0.004 0.000 0.166
66 m3 0362 0.193 0.099 0.048 0.022 0.008 0.002 0376 0206 0.110 0.056 0.027 0.011 0.004 0.081
67m3 0339 0.186 0.100 0.053 0.027 0.013 0.005 0.352 0.198 0.110 0.060 0.032 0.016 0.007 0.044
61m4  0.001 0.181 0.703 1453 2340 3302 4295 0.005 0.138 0.591 1263 2.072 2960 3.888 38.510
62m4  0.126 0.001 0.055 0214 0427 0.664 0906 0.143 0.005 0.037 0.173 0364 0.583 0.811 6.314
63m4  0.235 0.055 0.001 0.018 0.072 0.143 0.220 0.253 0.068 0.004 0.011 0.056 0.119 0.191 1.765
64m4  0.288 0.106 0.025 0.001 0.006 0.027 0.054 0.304 0.119 0.033 0.003 0.003 0.019 0.043 0.648
6o5m4 0304 0.133 0.048 0.012 0.000 0.002 0.011 0319 0.147 0.058 0.016 0.002 0.001 0.007 0.284
66 m4 0303 0.145 0.063 0.023 0.006 0.000 0.001 0316 0.157 0.072 0.029 0.009 0.001 0.000 0.142
67m4 0293 0.148 0.070 0.031 0.012 0.003 0.000 0.305 0.159 0.079 0.037 0.015 0.005 0.001 0.078
61mS  0.000 0.224 0.806 1.625 2.587 3.626 4.697 0.001 0.175 0.683 1418 2297 3258 4258 41.262
62mS  0.107 0.000 0.076 0.259 0497 0.757 1.021 0.123 0.001 0.054 0.213 0427 0.669 0.918 6.820
63mS  0.214 0.043 0.000 0.028 0.093 0.174 0.260 0.231 0.055 0.001 0.018 0.074 0.147 0.227 1.923
64mS  0.269 0.093 0.018 0.000 0.011 0.037 0.068 0285 0.106 0.025 0.001 0.007 0.028 0.056 0.712
o5mS  0.289 0.122 0.041 0.008 0.000 0.005 0.016 0304 0.135 0.050 0.012 0.000 0.002 0.011 0315
66 mS 0290 0.135 0.056 0.019 0.004 0.000 0.002 0.304 0.148 0.065 0.024 0.006 0.000 0.001 0.158
67mS  0.283 0.140 0.065 0.027 0.009 0.002 0.000 0.295 0.151 0.073 0.032 0.012 0.003 0.000 0.087
61mé6 0.001 0.273 0919 1.812 2.854 3975 5.128 0.000 0217 0.783 1.587 2.540 3.578 4.655 44.201
62m6 0.089 0.001 0.102 0310 0.574 0.859 1.147 0.104 0.000 0.075 0.258 0.497 0.763 1.035 7.363
63m6  0.194 0.033 0.001 0.041 0.117 0.209 0.304 0.210 0.043 0.000 0.029 0.095 0.178 0.268 2.094
64m6 0.251 0.080 0.012 0.001 0.018 0.049 0.085 0.266 0.093 0.018 0.000 0.012 0.038 0.071 0.782
65mé6 0.274 0.110 0.034 0.005 0.000 0.008 0.022 0.288 0.123 0.042 0.008 0.000 0.005 0.017 0.348
66 m6  0.278 0.126  0.049 0.015 0.002 0.000 0.004 0.291 0.138 0.058 0.019 0.004 0.000 0.002 0.175
67mé6  0.272 0.132 0.059 0.023 0.007 0.001 0.000 0.284 0.143 0.067 0.028 0.010 0.002 0.000 0.097

Max
Regret  0.505 0.273 0.919 1.812 2.854 3975 5.128 0.526 0.290 0.783 1.587 2.540 3.578 4.655 44.201
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Figure B-1: Color-shaded plot of the entries in Table B-1
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In this color plot, each cell corresponds to an entry in Table B-1. Lighter shading towards white means that
the values of the cells are relatively low; darker shading towards red means the values are relatively high.
The white main diagonal reflects that if the {d, m} combination chosen for policy is the same as that which
best describes the actual world, the regret will be zero. The highest values of the regrets are associated with
the No Abatement policy. The lighter-shaded, diagonally shaped areas indicate that if the {J, m}

combination chosen for policy is close to the actual {d, m} combination, the regret tends to be small.
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