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Introduction

Integrated assessment (IA) models enable quantitative evaluation of the benefits and

costs of alternative climate policies.

Policy comparisons are performed by considering a planner who seeks to make optimal

trade-offs between the costs of carbon abatement and the damages from climate change.

The planning problem has been formalized as a control problem with these components:
(1) equations coupling GHG emissions and abatement to the accumulation of GHGs in
the atmosphere and resulting temperature increases.

(2) a damage function that quantifies economic effects of climate change in terms of
the loss of global economic output as a function of temperature increases.
(3) an abatement cost function that expresses the cost of actions to reduce GHG

emissions relative to a stipulated baseline emissions trajectory.



Costs and damages are expressed as percentage reductions in gross world product.

The problem 1s to minimize the costs of abatement and damages over a time horizon.

Studying climate policy as a control problem presumes that a planner knows enough to

make optimization feasible, but physical and economic uncertainties abound.

Physical scientists have performed multi-model ensemble (MME) analysis. Lacking a
consensus climate model, they have developed multiple models. To cope with inter-
model structural uncertainty, they compute simple or weighted averages of the outputs of

MMEs. Choosing appropriate weights has been problematic.

Economists have estimated multiple damage functions and abatement cost functions. In
general, economists have not performed MME analyses that combine multiple functions

by averaging. They have reported disparate findings from separate studies.



Manski, Sanstad, and DeCanio (PNAS, 2021) framed structural uncertainty in climate

modeling as a problem of partial identification, generating deep uncertainty.

This problem refers to situations in which the underlying mechanisms, dynamics, or laws
governing a system are not completely known and cannot be credibly modeled

definitively even in the absence of data limitations in a statistical sense.

We proposed use of the minimax-regret (MMR) decision criterion to account for deep

climate uncertainty in integrated assessment without weighting climate model forecasts.

We developed a theoretical framework for cost-benefit analysis of climate policy based

on MMR and we applied it computationally with a simple illustrative IA model.



It is important to recognize deep uncertainty in both the physical and economic

components of A models.

Perhaps the most contentious economic issue has been how a planner should assess the

costs and benefits of policies across generations.

In our new paper, we study choice of climate policy that minimizes maximum regret with
deep uncertainty regarding both the correct climate model and the appropriate

intergenerational assessment of policy consequences.



Economists have long framed intergenerational policy assessment using a discount rate.

They have evaluated climate policies by the present discounted value of the sum of

abatement costs and the corresponding damages.

There has been considerable debate about what discount rate to use. The choice is

consequential.

Low rates favor policies that reduce GHG emissions aggressively and rapidly.

High rates favor policies that act modestly and slowly.

To express deep uncertainty, we suppose that the appropriate discount rate lies within an

interval that covers the spectrum of rates used in the literature.



Our mathematical analysis is a straightforward generalization of M-S-D.

There we supposed that the correct climate model 1s one of six prominent models in the

literature on climate science, whereas the correct economic model 1s known.

We supposed that a planner compares six policies, each of which chooses an emissions

abatement path that 1s optimal under one and only one of the six climate models.

Regret 1s the loss in welfare if the model used in policy making is not correct and,

consequently, the chosen abatement path 1s actually sub-optimal.

The MMR rule chooses a policy that minimizes the maximum regret, or largest degree of

sub-optimality, across all six climate models.



Here we suppose that the correct climate model is one of the six examined in M-S-D.

We characterize uncertainty about the discount rate by supposing that it takes one of the

seven values {0.01, 0.02, ..., 0.07}, a range that covers the rates commonly used.

This range reflects both empirical uncertainty about the future of the economy and
normative uncertainty (or perhaps disagreement) about how the current population values

the welfare of future generations.

Given joint uncertainty about the climate model and the discount rate, we suppose that a

planner compares forty-three policies.

Forty-two policies entail choosing an emissions abatement path that is optimal under one
of the {discount rate, climate model} pairs. The remaining one is a passive policy in

which the planner chooses no abatement.



The MMR criterion chooses a policy that minimizes maximum regret across all forty-

three potential policies.

The MMR analysis points to use of a discount rate of 0.02 for climate policy.

The MMR decision rule keeps the maximum future temperature increase below 2°C for

most of the parameter values used to weight costs and damages.



Prevalent Approaches to Climate and Discount-Rate Uncertainty

Averaging Outputs of MMEs of Climate Models

All climate models are based on a specific set of deterministic nonlinear partial

differential equations describing large-scale atmospheric dynamics.

Implementation of the equations is subject to numerous practical choices involving

discretization, solution methods, and other details.

Some components of the system — such as cloud formation and heat transfer between land

surfaces and the atmosphere — are not yet fully understood and must be approximated.

For these reasons, multiple climate models have been developed and are in use, each

reflecting different but credible choices in model design and implementation.



Existing models yield different projections of the global climate.

The range of projections produced by different models 1s a gauge of deep uncertainty

about the climate system given the current state-of-the-science.

Virtually all methods of MME analysis combine model outputs into single projections of

future climate variables.

However, climate researchers have recognized persistent methodological problems in

combining model projections.



A common technique is to take the simple average across model projections of policy-

relevant variables.

Researchers may compute weighted average projections when they believe that models

can be ranked with respect to relative accuracy.

However, model performance with respect to historical data does not imply skill in

predicting the future climate.

Combining MME outputs into single projected trajectories of the future global climate

remains a challenging and unresolved problem.

The recent IPCC physical sciences report states:
“...despite some progress, no universal, robust method for weighting a multi-model

projection ensemble 1s available...”



Uncertainties and Disagreements Regarding the Discount Rate

The economic losses from climate change are represented by damage functions that give

the decreases in world-wide output resulting from increases in mean global temperature.

Economists study dynamic optimization by a planner, which entails discounting to

quantify the present value of future economic costs and benefits.

The appropriate magnitude of the discount rate has been contentious.

Controversy persists in part because choice of a discount rate is not only an empirical

question regarding the future of the economy.

It 1s also a normative question, concerning social preferences for equity across future

generations.



A simple version of the famous Ramsey formula provides a transparent expression of the

interplay of normative and empirical considerations in choosing a discount rate.

Let the social welfare function be additively separable in the utility of future generations.

Let p be the rate at which the planner discounts the utility of future generations.

Let the utility of a representative consumer be an increasing and concave function of

consumption, with constant elasticity (— #) of marginal utility.

Let g be the annualized growth rate of consumption between time 0 and a future time «.

Ramsey showed that it 1s optimal to discount future consumption between the present

(time 0) and time ¢ attherate &6 = p + ng.



From the perspective of the present, the empirical value of g may be uncertain. This
uncertainty 1s similar conceptually to the uncertainty that climate modelers face as they

attempt to project the future trajectory of climate variables.

p formalizes how the planner views intergenerational equity, with p = 0 if the planner
gives equal weight to the welfare of all future generations and p > 0 if the planner
weights welfare more heavily in the near future than in the distant future.

n formalizes the desirability of intergenerational consumption equity.

A planner may feel normative uncertainty about what values of p and # to use.



Supposing that the planner aims to represent society, a source of this uncertainty may be

normative disagreements within the present population.

Such disagreements were evident in a dispute between Nordhaus (2007), who used the

value p = 0.03, and Stern (2006), who used p = 0.001.

Stern concluded that policy should seek to reduce GHG emissions aggressively and

rapidly. Nordhaus favored policies that act more modestly and slowly.

We argue against any attempt to cope with empirical and normative uncertainty by

choosing a single discount rate.

Instead, we study formation of climate policy recognizing a set of possibly appropriate

discount rates.



Minimax-Regret Policy Evaluation

To begin, we specify the control problem that a planner would solve with no uncertainty.

The Optimal-Control Problem

Let B, represent baseline GHG emissions at time ¢, A; be GHG abatement actions at time ¢

under some climate policy, measured in the same units as emissions, C(A4;) be the cost of

these actions, and E:l ' = B; — A; be the resulting net emissions.

We refer to 4; and EtA ' as “paths” or “trajectories,” and we assume that abatement paths

are chosen from some space of feasible paths.



Emissions paths are used as inputs to a climate model M.

We focus on the global mean temperatures projected by M as a function of these paths.

Let T(E tAt, M) be the global mean temperature at time ¢ determined by the GHG trajectory

EtAf when it is predicted by the climate model M.
Then a damage function can be written as D(T (EtA’ : M))

For abatement path 4; and climate model M, denote the associated total cost (abatement

plus damages) at time ¢ as

C(4,, M) = C(4,) + D (T(Eff, M))



A policymaker seeks to minimize the present value of cost over a planning horizon. As

usual in the climate economics literature, we assume an infinite horizon.

The control problem given climate model M i1s to solve

minj C(A,, M)e~%dt
A ),

where 0 1s the discount rate.

We suppose that the optimal A; 1s chosen with commitment at time zero. That is, it is not

updated over time as new climate or cost information is obtained.

Under certain assumptions, this optimization problem has a unique solution.



The Minimax-Regret Decision Rule

Let A = {01,..., 0k} be a set of discount rates and M = {M,,...,Mx} be a model ensemble.

The planner now faces the problem of minimizing cost over the horizon while

recognizing joint {discount rate, model} uncertainty.

For rate J; and model Mj, let A5 M, be the optimal abatement path defined by

A5, = arg min f C(A¢, M)eSit dt
0

Let C*(A}.<. .., 0:, M; | be the associated minimum cost;
t;6¢,Mjr “ir 7]

C* (A:;Si:Mj' 51,M]) = j C(A*,Mj)e_(sitdt
0



Now consider any feasible abatement trajectory 4. The regret R(A¢, 6;, Mj) associated

with A;, when discount rate o; and climate model M, describe the world, 1s the difference

between the cost of 4; and the cost of the optimal policy associated with o, and M;:

R(A,, 6;, M;) = j C(4p My)e~0%dt — C (A5, 65 M;)
0

To apply the MMR rule, the planner considers each feasible abatement path 4; and finds

the model and discount rate combination that maximizes regret, solving the problem

max ]:R(Atl 51:) Ml)

M j

. -0 — C*(A* . .
= ?;1,1%[)]( [L C(At,M])e tdt @ (At;SiIMj' 511 Mj)]

The MMR solution is to find A, to solve the problem

mln [rrll?f]( R(A¢, 6;, M]-)]



Rather than use the MMR rule, one might use the minimax rule, which embodies the

principle of preparing for the worst case.

MMR analysis uses information in a more nuanced and less conservative way.

If a climate policy maker selects one model and discount rate from an ensemble and
chooses an emissions abatement path that 1s optimal for that {model, rate} pair, regret is
the excess cost of that abatement path if a different (model, rate) pair 1s the correct one.

Thus, regret measures the potential sub-optimality of policies.

Choosing a policy to minimize maximum regret means choosing one to minimize the

maximum degree of sub-optimality across the set of policies under consideration.



Use of A to Express Empirical and Normative Uncertainty

The term “uncertainty” has usually referred to incomplete knowledge of the empirical

environment of a decision maker, called the “state of nature” or the “state of the world.”

This notion of uncertainty applies to incomplete knowledge of the future global

temperature, abatement costs, and damages under alternative climate policies.

We also consider uncertainty about the discount rate.

Our use of the set A to express both empirical and normative uncertainty regarding the

discount rate departs from the usual decision-theoretic focus on empirical uncertainty.



Normative uncertainty may have an empirical source, namely incomplete knowledge of

the population preferences that a utilitarian planner would seek to maximize.

The planner may face the difficult task of representing a population whose members may

not be clear about their time preferences or concern with intergenerational inequalities.

Using A to express normative uncertainty i1s a more radical departure from the decision-

theoretic norm if normative disagreements exist within the present population.

A segment of the population may strongly value intergenerational equity whereas another

segment may be less concerned with the fate of future generations.

Then one may think it necessary to abandon the idealization of a utilitarian planner and

replace it with conceptualization of policy making as a non-cooperative political game.



We nonetheless find it attractive to study MMR decision making in this setting.

The MMR rule has some appeal as a broadly acceptable mechanism for policy choice.
Recall that the regret of a policy in a specified state of nature measures its degree of sub-
optimality in that state, and maximum regret measures the maximum degree of sub-

optimality across all states.

Suppose that the members of a heterogeneous present population disagree on what

{discount rate, model} should be considered the “true” state of nature.

Then use of the MMR rule to choose policy minimizes the maximum degree of sub-

optimality that will be experienced across the population.



Computational Model

To show the consequences of adoption of the MMR decision rule, we present a simple IA

model that summarizes the essential economic and physical mechanisms.

The standard 1n the literature has been to report results about a century into the future.

Analyzing the uncertainty associated with discount rates necessitates attention to longer

time horizons.

Phenomena in the more distant future that are negligible in economic terms with high

discount rates become salient with low rates.



Model Details

As a simple expression of complex climate dynamics, we use Matthews et al. (2009).

They showed that the “‘carbon-climate response” (CCR), the change in global mean
temperature over periods of decades or longer, varies approximately linearly with the

increase in cumulative carbon emissions over the same period.

Net cumulative emissions 1s

t t
E't = jo Etdt = L (B, — A)dt

There is no requirement that (B; — 4;) be non-negative. 4, exceeding B; implies adoption

of mitigation measures that yield negative net emissions.



The CCR vary across climate models. The CCR parameter m for model A is estimated
by determining the model’s projected temperature response when driven by a carbon
emissions path according to

T, = mE,", j=1,...6

where 7T henceforth indicates the temperature increase over its initial value at time ¢ = 0.

We estimate m; with historic and projected emissions and temperature data from model j.

Our model ensemble M comprises six Earth System Models (ESMs). These ESMs were
used in the Climate Model Intercomparison Project Phase 5 (CMIPY).



Table 1

Earth system models used to estimate Carbon-Climate Response (CCR)
parameters, with estimated CCR values (°C per teraton carbon)

Model and model number CCR

1. GFDL-ESM-2G - Geophysical Fluid
Dynamics Laboratory Earth System Model 0.00157
version 2G

2. BCC-CSM-I - Beijing Climate Center

Climate System Model version 1.1 0.00186

3.  FIO-ESM - FIO-ESM - First Institute of
Oceanography Earth System Model 0.00194

4. Had-GEM2-ES - Hadley Global

Environmental Model 2 - Earth System 0.00229

5. IPSL-CMS5A-MR - Institut Pierre Simon
Laplace Coupled Model 5A - Medium 0.00236

Resolution

6. MIROC-ESM - Model for
Interdisciplinary Research on Climate - 0.00244
Earth System Model




We specify abatement cost and climate damage functions in quadratic form to implement
the IA model as an optimal control problem, allowing for plausible non-linearity in these

functions as the abatement effort A, and the global temperature increase 7; at time t:

D(T;) = %,Bth

The quadratic form and value of a are derived from Dietz and Venmans (2019).

The quadratic form and the value of £ are taken from Nordhaus and Moffat (2017).



A baseline emissions trajectory B; is derived from the “Representative Concentration

Pathway (RCP) 8.5” scenario in its extended version to year 2500.

This envisions a relatively high growth rate of global carbon emissions from fossil fuel
use through the 21% century, followed by a peak plateau period of constant emissions

until 2150, and then a decline to a very low level by 2250.

A smoothed functional form having the same general shape as the RCP 8.5 was fitted by
nonlinear least squares. The fitted equation for B; 1s

Bg
exp(6¢)

B, = (Ht + ) exp (—0(t — ¢)) .



The control problem is to minimize, for a given discount rate and model, the present
value of abatement costs plus climate damages over an infinite horizon, subject to the

dynamic relationship between cumulative emissions and temperature:

“1
minj 5 (aA? + BT?) e~ Otdt
0

At
subject to
SE{t = E/* = B, — 4,
T, = mE,*
Ef = E,

The last equation specifies an initial condition for net cumulative emissions.



First-order necessary conditions include two coupled differential equations in abatement

and the atmospheric greenhouse gas concentration associated with the optimal abatement:

dAt Bmz A
—=0A Et
dt t a t
At

dE
L = B, — A

dt t t

These equations can be solved 1n closed form for 4; and Eft.

The model satisfies convexity properties implying that the first-order conditions are

sufficient for these to be unique optimal solutions to the control problem.



The left-hand panel of Figure 1 shows the baseline B; and the optimal abatement A4, for a

particular set of parameters.

The right-hand panel shows net cumulative emissions under 4; and under a policy of no

abatement (4; = 0 for all 7).
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MMR Analysis

We discussed our climate model ensemble M above. We specify the possible discount
rates as A = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}. There are thus forty-two

combinations of (9, m) expressing the range of deep uncertainty.

Regrets can be calculated for any feasible abatement path 4.

To keep calculation tractable, and because a planner may restrict attention to policies that
are optimal in some state of nature, we consider policies that are optimal for some (0, m)

in A x M. There are 42 such policies, and a 43" when “No Abatement” is a possibility.

To explore the sensitivity of the MMR policy to the a and f parameters, we calculated the

MMR for nine combinations of a and 5.



Table 2

Values of MMR, uncertain Model and J, for combinations of ¢ and f
Potential values of 6: {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}

Baseline RCP 8.5 (fitted): B, = (60t +

By
exp(6¢}

exp(—0(t — ¢)); 6 > 0.0123125, ¢ — 339.565

a=0.000075
B=0.014

Model ) MMR

IPSL  0.02 0.172

a=0.000075
B=0.018

Model ) MMR

HAD  0.02 0.172

a=0.000075
B=0.022

Model ) MMR

HAD 0.02 0.178

a=0.000125 a=0.000125 a=0.000125
B=0.014 p=0.018 B=0.022

Model & MMR Model &  MMR Model &  MMR

MIROC  0.02 0.266 IPSL  0.02 0273 IPSL  0.02  0.284
a=0.0002 a=0.0002 a=0.0002
B=0.014 B=0.018 B=0.022

Model & MMR Model &  MMR Model &  MMR

MIROC 0.02 0.478

MIROC 0.02 0.436

MIROC 0.02  0.423




For all (a, ) combinations, the discount rate corresponding to the MMR solution 1s 0.02.

The TA model allows for calculation of the maximum temperature increase that will be

reached for any policy path, and how long it will take to reach that temperature.

Because the actual state of the world 1s unknown, the temperature increase under the

MMR policy cannot be known at the time the policy decision 1s made.

What is known is that it will be less than or equal to the maximum over all six models,

which will occur if MIROC is the true model because me is the greatest of the CCRs.

We find that the MMR decision rule keeps the maximum future temperature increase

below 2°C above the 1900-09 level for most parameter values.



Table 3

Values of Maximum Temperature Increase (Tmax) in °C and Years after 2000 when reached,

a = 0.000075
B=0.014

MMR

Model Years Tmax

IPSL 124 1.248

a=0.000075
B=0.018

MMR

Model Years Tmax

HAD 121 1.056

a = 0.000075
B=0.022

MMR

Model Years Tmax

HAD 118 0.879

a = 0.000125
B=0.014

MMR

Model Years Tmax

MIROC 134 1.831

a=0.000125
B=0.018

MMR

Model Years Tmax

IPSL 130 1.564

a=0.000125
£=0.022
MMR
Model Years Tmax

IPSL 125 1.315

MMR

Model Years Tmax

MIROC 141 2.187

MMR

Model Years Tmax

MIROC 135 1.859




Discussion

The MMR rule provides a reasonable way to form climate policy with empirical

uncertainty about the climate and normative uncertainty regarding the discount rate.

Our computational analysis offers a new reason for using a low discount rate in climate

policy analysis, on the order of 2% per annum.

This discount rate encompasses the pure rate of time preference, intergenerational
inequality aversion, projection of the economy’s future rate of growth, and other factors

that potentially can affect the discount rate.



MMR decision making copes with deep uncertainty without adopting the extreme

conservatism of minimax decisions.

MMR enables a planner to deal with heterogeneous populations, who may not themselves

be clear about their time preferences or concern with intergenerational equity.

There 1s no scientific or economic reason that everyone should hold the same normative

values. Some people may have only a vague understanding of discounting.

We also find it appealing to view MMR as a consensus-building mechanism.

Calculating regrets enables people with different values to see how implementation of

alternative policies might play out from their perspectives.



Our IA model is simple and computationally tractable.

This 1s partially because we have not considered all possible sources of uncertainty.

The appropriate baseline emissions path is highly uncertain.

The abatement cost and climate damage functions are also uncertain.

We have addressed this partially by sensitivity analysis, calculating MMR solutions with

various parameters (a, f) on abatement cost and climate damages.

It would be desirable to expand the analysis to encompass deep uncertainty about the

correct values for these weights, a formidable computational task.



