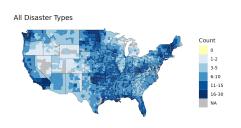
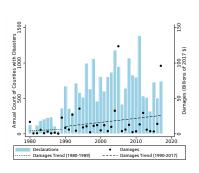


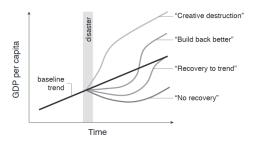
The Local Economic Impact of Natural Disasters


Brigitte Roth Tran¹

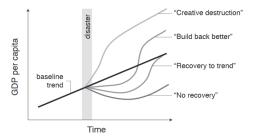

Daniel J. Wilson¹

Virtual Seminar on Climate Economics Thursday, September 21, 2023

1. Federal Reserve Bank of San Francisco. The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the Federal Reserve Bank of San Francisco or its staff.


Natural disasters are widespread, with prevalence and costs having increased in recent decades

Understanding Economic Impact of Disasters is Critical


Potential Paths Considered in the Literature:

Source: Hsiang and Jina (2014)

Understanding Economic Impact of Disasters is Critical

Potential Paths Considered in the Literature:

Source: Hsiang and Jina (2014)

No Consensus in Empirical Literature

- Empirical studies vary by geography, disaster type, methodology
- Results support diverse paths
- Belasen & Polacheck (2008), Strobl (2011), Hsiang & Jina (2014), Deryugina (2017), Lackner (2019), Sawada & Sachs (2019), Groen, Kutzbach, & Polivka (2020), Jerch, Kahn, & Linn (2023)

Several potential mechanisms could drive a range of outcomes

- **Solow growth model:** one-time capital depreciation shock → higher investment and output growth as economy transitions back to steady state
- Standard Neoclassical model of labor supply: one-time neg wealth shock ⇒↑ MU of consumption ⇒↑ labor supply ⇒↑ employment, income
- Hornbeck and Keniston (2017): disasters could \uparrow property values in growing areas (where externalities \rightarrow underinvestment)
- Local labor markets models (Rosen (1979), Roback (1982), Hsieh and Moretti (2019)):
 - + shocks to local amenities: ↑ demand for local housing
 - + shocks to local productivity: ↑ local labor demand which can lead to relative gains in population, house prices, employment, and wages
 - Elasticities of housing, labor supply ⇒ whether shocks affect Q (population, housing stock, employment) and/or P (house prices, wages)

Disasters: negative shocks to household wealth, public/private capital stocks

■ Rebuilding could ↑ amenities and productivity, depending on expectations

Our approach

- Estimate **dynamic impact** of FEMA disasters on U.S. **counties** from 1980-2017 using panel data
- Estimate **heterogeneous** impacts, examine **mechanisms**
- Estimate **spatial spillover** effects and broader geographies
- Analysis does **not** examine welfare effects

Contributions

- Consider broad range of economic outcomes on comprehensive set of disasters using common methodology and data sample → unified picture of economic impact of disasters
- Estimate **dynamics** using local projections
- Uncover strong economic recovery from disasters in US context (US aid, insurance) that could explain continued investment in areas facing high natural hazard risks
- Reveal significant heterogeneity in responses to different types of disasters, raising concerns about external validity of studies focused on one disaster type

Data

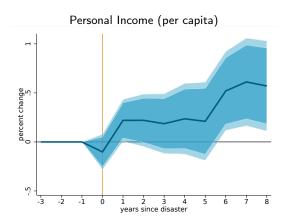
Disaster Indicator / "Treatment" Variable

- Disasters: FEMA major disasters
 - Extensions: SHELDUS (ASU)

Outcomes / Dependent Variables (monthly, quarterly, annual)

- Personal Income Per Capita (BEA)
- Employment: Total Nonfarm, Construction (BLS QCEW)
- Average Weekly Wages (BLS QCEW)
- House Prices (CoreLogic)
- Population (Census)

Methodology: panel version of local projections (Jordà 2005)


Estimate separately for each horizon h, from 0 to 8 years after disaster:

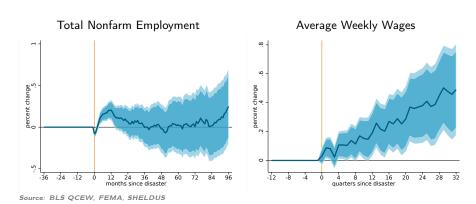
$$y_{c,t+h} - y_{c,t-1} = \beta^h D_{c,t} + \alpha_{r(c),t} + \alpha_{c,m(t)} + X'_{ct} \gamma^h + \varepsilon_{c,t+h}$$

- \blacksquare county c, time t (month, quarter, or year)
- $y_{c,t+h} y_{c,t-1}$: Cumulative change in dependent variable
- $D_{c,t}$: Disaster treatment indicator
- Controls:
 - time-by-region fixed effects
 - county-by-month (or quarter) fixed effects
 - control vector (X′_{ct}) includes 3 years of pretrends and intervening disasters
- Standard errors clustered by county and by state-time

Main Result

Per capita personal income response is consistent with "Build back better" scenario

Source: BEA. FEMA. SHELDUS


■ Consistent with Solow growth model, neoclassical labor supply models

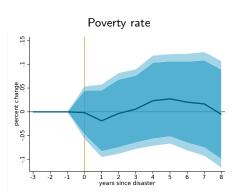
Result is robust to:

- Dropping counties with very high or low number of disasters
- Using only disasters with recorded damages (from SHELDUS)
- Using Conley Standard Errors
- Controlling for political alignment of state governor and US President
- Using same sample for all horizons
- Replacing individual lags of dependent variable with cumulative lag or county time trend
- Extending data back to 1970

Mechanisms

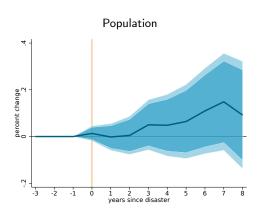
Short-run personal income increase due to employment, longer-run due to higher average wages

- Consistent w/productivity gains from improved local capital stock
- Two potential explanations: 1) inelastic labor supply, 2) composition shift

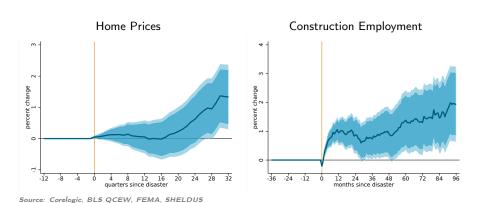

Composition shift may help explain higher wages

■ "composition-based wages" = local emplmt shares × nat'l industry wages

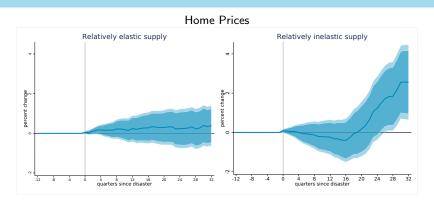
- Composition-based wages do not rise like actual wages
- Suggests relatively elastic labor supply (if higher wage workers migrate to areas hit by disasters)


Higher income per capita not accompanied by decline in poverty

Source: Census Bureau's Small Area Income and Poverty Estimates program, FEMA, SHELDUS


- Composition shift unlikely to be driven by out-migration of lowest income households
- Suggests rising inequality Income heterogeneity

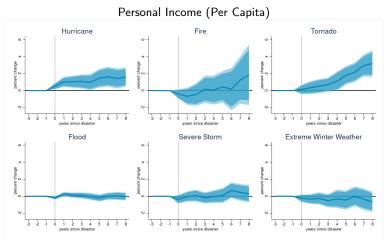
Despite composition shifts, total population size generally unaffected


Source: Census, FEMA, SHELDUS

Higher home prices and construction employment consistent with "build back better" model

 Consistent with: substantially improved local capital stock, inelastic housing supply, underinvestment prior to disaster

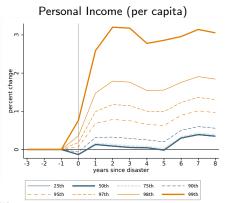
Home price increases are driven by supply-constrained areas



Source: Corelogic, BLS QCEW, FEMA, SHELDUS

- Population increasing in relatively elastic counties, flat in relatively inelastic counties
- Home price growth also driven by counties with already growing prices ▶ results
- Consistent w/ underinvestment-based prediction in Hornbeck & Keniston (2017)

Exploring Heterogeneity


Boost to personal income driven by a few disaster types

Source: BEA, FEMA, SHELDUS

■ Could be due to severity or likelihood of repeat disasters

Most severe disasters yield larger boosts to personal income

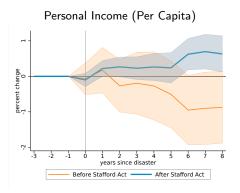


Source: BEA, FEMA, SHELDUS

■ Consistent w/role of rebuilding, underinvestment

► Severity by hurricane wind speed

Most severe disasters \Rightarrow different equilibria as population & home prices fall in medium to longer run



Source: Corelogic, Census, FEMA, SHELDUS

- Long-run severe pattern consistent w/Boustan, Kahn, Rhode, & Yanguas (2017)
- Severe finding consistent with falling amenity values

▶ Migration by severity

Boost to income driven by second half of sample

Source: BEA, FEMA, SHELDUS

- Consistent with increasing severity of disasters...
- ... and/or effects of Stafford Act (1988)

Spatial lags

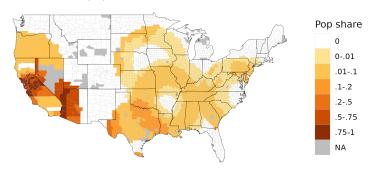
Spatial lag analysis to examine reallocation

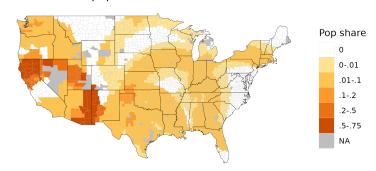
$$y_{c,t+h} - y_{c,t-1} = \beta^h D_{c,t} + \sum_{b \in B} \pi^{h,b} D_{c,t}^b$$
$$+ \alpha_{r(c),t} + \alpha_{c,m(t)} + X'_{ct} \gamma^h + \varepsilon_{c,t+h}$$

- $D_{c,t}$: Original disaster treatment indicator
- $D_{c,t}^b$: share of population within band b living in county that experienced a disaster in period t

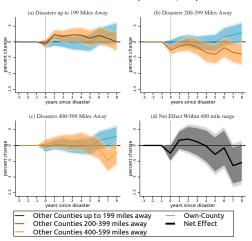
Net effect estimated as

$$\hat{\beta}^h \bar{D}_{c,t} + \sum_{b \in B} \hat{\pi}^{h,b} \bar{D}_{c,t}^b$$


Counties with disasters in 1988


0 - 199 mile population share with disasters in 1988

200 - 399 mile population share with disasters in 1988



400 - 599 mile population share with disasters in 1988

Negative longer run personal income effect on counties over 200 mi away suggests negative net regional effect, could reflect reallocation

Personal Income (Per Capita)

Source: BEA, FEMA, SHELDUS

Results from state level analysis not significant

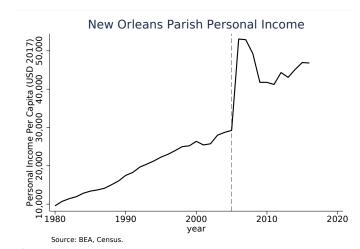
Source: BEA, FEMA, SHELDUS

Treatment: share of state population in a county with a disaster at t=0

■ Consistent w/ reallocation of resources to areas hit with disasters

Summary

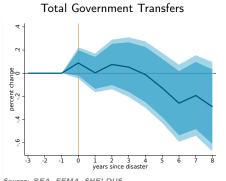
- Using U.S. county panel data, we find average response of income per capita after disasters is positive over longer run
 - Roughly consistent with "Build back better"
- Consistent with improvements to local capital stock, prior underinvestment
- Disasters spur investment / improvements funded by insurance and aid
- Important caveats:
 - Composition shifts due to productivity and amenity gains coupled with housing supply constraints
 - Suggestive of rising inequality
 - Moral hazard and expectations about future growth and disasters
 - Reallocation from other areas in region
 - Positive average effect masks substantial heterogeneity

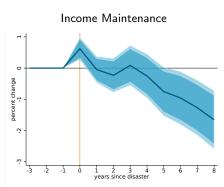

Thank you!

Summary Statistics

	Mean	Std Dev	Min	Max	N
Personal income p.c.	23,201	11,991	2583	204,67	111,516
Total nonfarm employment	30,501	117,547	0	3,875,009	1,317,168
Construction employment	2,566	7,609	0	181,710	662,688
Average weekly wages	460	190	0	8,456	441,523
House price index	102	44	19	369	186,560
Population	89,195	290,606	55	10,163,510	116,581
Government transfers p.c.	4,512	2,751	218	18,223	111,516
Income maintenance transfers p.c.	434	328	8	2,995	111,516
UI transfers p.c.	113	104	8	2,995	111,516
FEMA IHP aid p.c.	3	47	0	6,548	116,581
SBA disaster loans p.c.	5	100	0	14,282	92,037
NFIP payouts p.c.	5	151	0	34,950	116,581
Wage & salary income p.c.	9,385	7,449	710	272,927	111,516

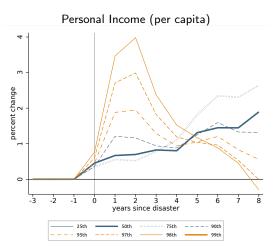
Source: QCEW, Census, CoreLogic, BEA, FEMA, and SBA.

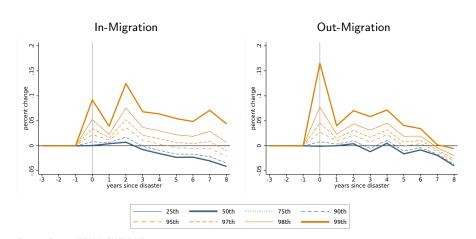

Example of Hurricane Katrina



Source: BEA and Census.

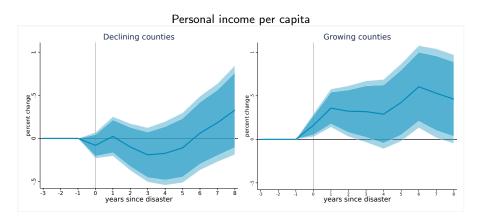
Note: Vertical red line indicates 2005, the year of Hurricane Katrina.


Transfer income from federal, state, & local government may increase in near-term but decrease over longer run

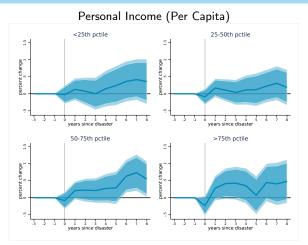


Source: BEA. FEMA. SHELDUS

Wind speed to measure severity



Most severe disasters increase in and out-migration; Typical disasters decrease in- and out- migration


The post-disaster income per capita increase is driven by already-growing counties

Source: Corelogic, BLS QCEW, FEMA, SHELDUS

■ Consistent w/ underinvestment-based prediction in Hornbeck and Keniston (2017) • back

Though disasters may increase inequality, boost in personal income not exclusive to higher income counties

Source: BEA, FEMA, SHELDUS

▶ back

■ Significant government transfers and insurance support broad recovery