Climate-Change Pledges, Actions and Outcomes

Tiloka de Silva

University of Moratuwa

Silvana Tenreyro

London School of Economics, Bank of

England, CfM, CEPR

September 2021

Abstract

We study countries' compliance with the targets pledged in international climate-change

agreements and the impact of those agreements and specific climate laws and policies

on greenhouse-gas emissions and economic outcomes. To do so, we compile and codify

data on international agreements and measures enacted at the national and sub-national

levels. We find that compliance with targets has been mixed. Still, countries that signed the

Kyoto Protocol or the Copenhagen Accord experienced significant reductions in emissions

when compared to non-signatories. Having quantifiable targets led to further reductions.

Effects from the Paris Agreement are not yet evident in the data. Carbon taxes and

the introduction of emission-trading schemes led to material reductions in emissions.

Other climate laws or policies do not appear to have had, individually, a material effect

on emissions. The impact on GDP growth or inflation from most measures was largely

insignificant. Overall, much more ambitious targets would be needed to offset the impact

of economic and population growth on emissions and contain the expansion of the stock

of gases. (JEL: Q54, O44)

Keywords: emissions, climate change, climate agreements, carbon taxes, emission-trading

schemes, climate-change mitigation.

Acknowledgments: For helpful conversations and comments, we thank Francesco Caselli, Rick Van Der Ploeg, Imran Rasaul, and Jan Vlieghe. Tenreyro acknowledges financial support from ERC grant MACROTRADE 681664. The authors declare that they have

no relevant or material financial interests that relate to the research described in this paper.

1. Introduction

Greenhouse-gas (GHG) emissions since the Industrial Revolution have caused material changes to our environment. The cumulative flow of emissions has altered the stock of gases in the atmosphere and is thought to be the most likely cause of global warming and extreme-weather events. As such, GHG emissions are increasingly becoming one of the biggest threats to lives and livelihoods. In response to this escalating problem, three international treaties have been signed, with the overarching aim of reducing emissions: The Kyoto Protocol, the Copenhagen Accord, and the Paris Agreement. The pledges made by countries in each of the international treaties differ in the coverage, timelines and targets set by the various signatories. Moreover, in working towards their targets, countries resorted to different policies and laws over time.

This paper seeks to study the targets pledged by different countries in each of the international agreements, to quantitatively assess countries' compliance with their stated targets, and to gauge the impact on GHG emissions of each of the agreements, as well as the specific policies and laws enacted over time. The paper also explores the indirect impact on economic outputs stemming from these actions.

To do so, the paper combines and codifies historical sectoral- and countrylevel data on emissions and activity, along with information on individual countries' stated goals in each of the treaties, and climate-action laws and policies enacted over time. We use the data in three sets of exercises. In the first set of exercises, we compute comparable individual countries' targets pledged in each of the international agreements and compare those targets with countries' actual emission reductions over time. In the second set of exercises, we study the impact on emissions stemming from signing each of the three climate-change agreements, from stating quantifiable targets, and from implementing specific climate-related measures, including carbon taxes and emission-trading schemes. To help mitigate estimation biases arising from the potential endogeneity of the various interventions, we use propensity matching estimators in the form of inverse probability weighted (IPW) regressions. In addition, to study the dynamic effects of the various climate agreements and measures and to allow for a possible two-way feedback from emissions, we use local projection methods (Jordà 2005) augmented with IPW (Jordà and Taylor 2016 and Angrist et al. 2018). Finally, in a third set of exercises we seek to gauge the indirect effects from the various interventions; specifically, we extend the IPW augmented local projection analysis to investigate the dynamic responses of GDP growth and inflation to the different agreements and specific climate-change measures.

To set the stage, the paper starts by documenting the evolution of total and per capita emissions across different countries since the 1970s, underscoring their main covariates. The trends in emissions are tightly associated with activity and population growth. In absolute levels, the top emitters since

^{1.} The two empirical strategies, IPW regressions and IPW local projections complement each other and lead to comparable results: the first provides the "static" or steady-state effects, while the second helps characterise the timing and trajectory of the effects.

the 1970s have been China, the United States, Russia, Japan, Germany and Canada, with Saudi Arabia, South Korea, India, and Iran joining more recently to the list. Among these top emitters, six are also in the top-ten list of oil producing nations. Other oil-producing countries also record very high per capita emissions, but they make smaller contributions to total emissions.²

We find that compliance with emission-reduction targets has been mixed, with several countries undershooting their targets.³ Nevertheless, signing the Kyoto Protocol or the Copenhagen Accord have led to significant reductions in emissions, when compared to the (control) group of countries that did not sign the agreements. In contrast, signing the Paris Agreement does not appear to have led (yet) to any significant reduction in emissions.⁴ Moreover, having quantifiable targets helped further in reducing emissions. Of all climate-related measures enacted, two stand out as having a material impact in emission reductions: carbon taxes and the introduction of emission-trading schemes (ETS). A few other specific climate-related laws or policies, as well as the total number of climate-related laws enacted, appear to have statistically significant

^{2.} The emissions measure we used (and on which the agreements are based) corresponds to territorial emissions, that is, those produced within a country's geographical borders, as opposed to consumption emissions embodied in the goods and services consumed by the residents of the country. Hence the relevance of oil production as determinant.

^{3.} Relatively few countries overshot their targets, and those who overshot tended to have less ambitious targets to start with.

^{4.} As we discuss later, it might still be too early to see the effects from the Paris Agreement, given that our sample finishes in 2018.

but quantitatively small effects on emissions. The estimated effects on GDP growth and inflation from these measures are largely insignificant.

Overall, it is clear that much more ambitious targets and stricter compliance would be needed to offset the large impact of economic and population growth on the flow of emissions and contain a further expansion in the stock of greenhouse gases.

The findings that signing an agreement and having quantifiable targets matter have an interesting parallel in the micro-evidence presented by Ramadorai and Zeni (2020); using data from a sample of North American public firms, the authors find that firms that consistently report plans for future emission reduction and abatement exhibit more consistent reductions in emissions than firms that do not. (They also provide evidence that the announcement of the Paris Agreement had a significant impact on carbon abatement activities among these firms; in contrast, we do not see an effect from the Paris agreement in the aggregate data.)

The importance of carbon taxes in reducing emissions over time and across countries is consistent with recent work by Metcalf (2019); using data on Canadian provinces over the 1990-2016 time period, he finds evidence of a significant negative impact of the British Columbia carbon tax on emissions.⁵ Our findings on carbon taxes support the conclusions from Hassler, Krusell and

^{5.} See Metcalf (2019) for a survey of the literature on emission reduction impacts of carbon taxes.

Nycander (2016) emphasising the quantitative importance of carbon taxes for reducing emissions; using a quantitative model, the authors argue that while the optimal carbon tax is relatively modest, carbon taxes are more effective than alternative policies such as quantity-based systems or subsidies to green technology.⁶

The finding of negligible effects of carbon taxes on GDP growth is consistent with the results documented by Metcalf and Stock (2020), who estimate a zero to modest positive impact on GDP growth rates, focusing on a sample of European countries; importantly, they find no robust evidence of a negative effect of the tax on either employment or GDP growth. The significant effect of carbon taxes on emissions in our paper is also in line with their study. Our results on the impact of carbon taxes and emission-trading schemes are also consistent with evidence by Kanzig (2021), who uses high-frequency data on changes in carbon futures prices in the European carbon market to estimate the effects of carbon pricing shocks on emissions and economic activity. The author finds that while carbon pricing is successful at reducing emissions, it has less persistent effects on real GDP.

^{6.} Hassler, Krusell, Olovsson and Reiter (2020) take the argument further using a quantitative integrated assessment model to show that carbon taxes that are based on overly-pessimistic views on the climate challenge (that is, higher carbon taxes) are less costly to welfare than taxes based on overly-optimistic views on climate change.

The paper is organised as follows. The next Section describes the data used in the various exercises and discusses the trends in emissions over the 1970-2018 period. Section 3 provides a characterization of the three international climate-change agreements, computes country-specific targets pledged in each of the agreements and contrasts the targeted emissions pledged with actual emissions. It also provides a description of specific climate-change related laws and policies adopted by different countries. Section 4 studies the impact of climate-related pledges, laws and policies on emissions as well as their effect on other economic variables. Section 5 offers concluding remarks.

2. Data

Our study compiles and codifies data from a number of different sources. This Section describes the data sources for each of the variables used in the analysis and outlines the trends in emissions across regions and countries from 1970 to 2018.

2.1. Emissions

We use historical emission data from two sources. The first is the Climate Analysis Indicators Tool (CAIT) Climate Data Explorer compiled by the World Resources Institute (2017). We use this series in Section 3 to construct the targets pledged by each country in each of the international agreements.

The original dataset records historical GHG emissions (which include carbondioxide, methane, nitrous oxide and fluoridated gases) for 196 countries, by sector, for eleven sectors (including energy, transportation, agriculture, industrial processes, land use changes, waste, etc.) from 1850 to 2014. As we explain in more detail in Section 3, we combine this data with the pledges made by countries in each of the international agreements. Given that emissionreduction pledges are often sector-specific (that is, they state a targeted reduction in emissions for a specific sector), we use the data from this source to compute the implied reduction in emissions in millions of metric tons of carbon dioxide equivalent (MTCO2 eq) from the starting year of each pledge. This allowed us to have aggregate comparable targeted emission reductions across time and countries. Since the stated targets also differ across countries in terms of benchmark years (vis-a-vis which emission reductions are pledged), we make the targets comparable by computing the pledged reductions in terms of the emission levels in the starting year of each pledge. Because this dataset ends in 2014, we used the sectoral emissions in 2014 as the benchmark year for the Paris Pledge.

The second source of data on emissions, which we use both to assess compliance against the targets and in our regression analysis, come from the Emission Database for Global Atmospheric Research (EDGAR) compiled by Crippa et al. (2019). This database contains records of fossil CO2 emissions from 212 countries over the 1970 through 2018 period.⁷

While EDGAR reports data on both GHG emissions and Fossil C02 emissions, our regressions focus on the latter, as the series of GHG emissions ends in 2015, whereas Fossil C02 runs until 2018. We show in the next Section that both series are highly correlated since Fossil C02 emissions are the main component of GHG emissions. As explained in detail in Crippa et al. (2019), the series are computed using energy-balance statistics from the International Energy Agency (IEA), which are based on country-specific sectoral activity and technology-mix data, combined with information on fuel consumption. For more information, we refer interested readers to Crippa et al. (2019).

2.2. Climate-change agreements

Information on climate-change agreements and climate-change pledges are obtained from the official documentation of the United Nations Framework Convention on Climate Change (UNFCCC 2008, 2010 and 2011), as well as processed information on the Copenhagen Accord and Paris Agreement from the CAIT Climate Data Explorer database (World Resources Institute 2015 and 2016). In order to quantify the emission-reduction pledges in a way

^{7.} While this dataset also reports GHG emissions by sector, the level of disaggregation is lower than in the CAIT database, with five sectors as opposed to eleven, which makes it somewhat less accurate for the computation of targeted emission reductions; hence our choice to use the CAIT sectoral data to compute targets.

that they are comparable across countries, we augment this information using estimated emissions under business-as-usual (BAU) scenarios from the World Resources Institute's CAIT 2.0 (2015) and Fenhann's Pledge Pipeline (2019). We complement this with information from the World Resources Institute (2018) and Climate Analytics and New Climate Institute (2020). This is necessary to compute targets for countries whose pledges are expressed in terms of BAU scenarios.

Given that the target for European Union (EU) countries is reported collectively for the union in these agreements, in order to calculate country-specific targets for EU countries, we use information from European Commission (2020) and European Union (2020) regulations that specify the distribution of emission-reduction targets for each country within the EU.

2.3. Climate-related laws and policies

Data on climate-related laws and policies were taken from the Grantham Research Institute's Climate Change Laws of the World Database (2020). This database includes information on climate-related laws and policies that are currently in implementation for 198 countries. The data include the starting date and keywords for each law or policy. This database is supplemented with information on carbon price initiatives (carbon taxes and ETS) obtained from the World Bank's Carbon Pricing Dashboard (2020a). This dataset lists carbon taxes and ETS, together with their start date, jurisdiction and coverage.

2.4. Other variables

We obtain background data on real Gross Domestic Product (GDP), expressed in constant 2010 US\$, GDP growth rates, total and urban population, inflation rates, and oil rents as a percentage of GDP from the World Bank's World Development Indicators database (2020b).

2.5. Trends in emissions

To set the stage for our analysis, we start by describing the underlying trends in emissions over the period we analyse. Both total GHG emissions and fossil CO2 emissions have more than doubled over the 1970-2015(18) period. Repriod emissions show a different trend, with visible declines over the 1980s and 1990s followed by a rapid increase from 2000 onward (see Figure 1). Since the time series on GHG emissions ends in 2015, for the remainder of the analysis, we use the series on fossil CO2 emissions, which goes on to 2018. Historically, both series show a very high correlation, not least because fossil CO2 is the main component of GHG emissions.

The total volume of emissions by region, plotted in Figure 2, indicates that the rise in total emissions over the past two decades has been driven by higher

^{8.} Fossil CO2 emissions include sources from fossil fuel use (combustion, flaring), industrial processes (cement, steel, chemicals and urea) and product use. GHG emissions comprise fossil CO2, CH4, N2O and F-gases.

⁹. The latest year for which data on GHG emissions are available is 2015 and the latest year for fossil CO2 emissions is 2018.

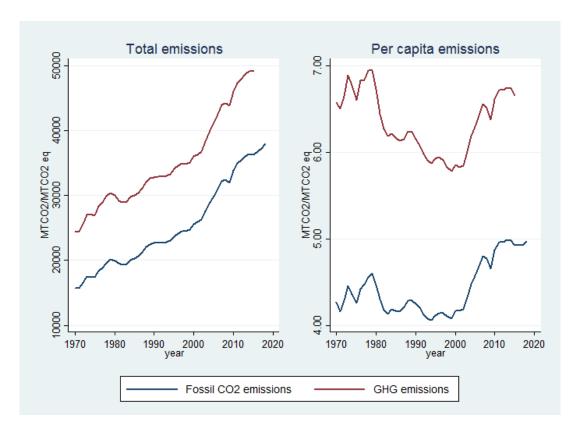


FIGURE 1. Trends in total and per capita emissions

Note: The figures plot the trends in global fossil CO2 emission and greenhouse gas emissions in total and per capita terms. Data on emissions are from EDGAR.

emissions from the Asia-Pacific region, primarily China. Emissions from North America and Europe, which were the largest emitting regions until the 1990s, appear to have stabilized in the following decade and a half, and are gradually declining, albeit from high levels. Emissions from the remaining regions have been increasing, particularly in the South Asian region, led most notably by India. Sub-Saharan Africa remains the region with the lowest total emissions. Interestingly, emissions from the Middle East (the largest oil-producing region in the world) remain at a lower level than in the West or East Asia.

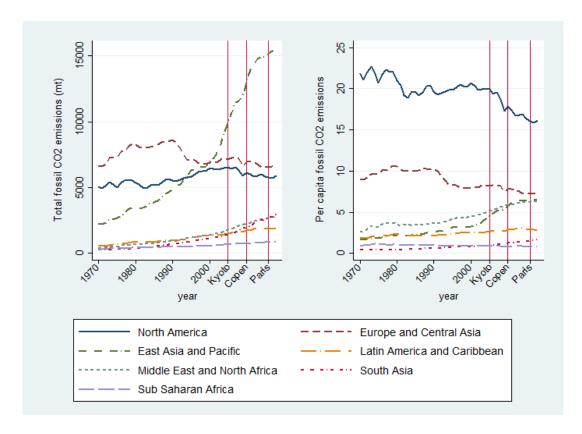


Figure 2. Trends in total and per capita emissions by region

Note: The figures plot the trends in fossil CO2 emissions in total and per capita terms by region, as defined by the World Bank. The vertical lines indicate the year of signing of the Kyoto, Copenhagen and Paris Agreements. Data on emissions are from EDGAR.

Per capita emissions, however, remain highest by far in North America, followed by Europe and Central Asia. These regions show a gradual decline since the 2000s. In contrast, East Asia and the Middle East seem to be converging upwards to the European level.

In order to identify the main contributors to fossil CO2 emissions, we examine total and per capita emissions by country. Figure 3 plots per capita emissions against total emissions. The plot identifies a few countries that record high emissions on both total and per capita dimensions. Country codes are

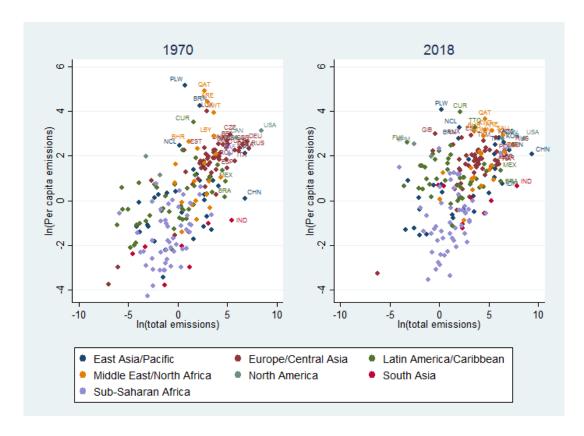


FIGURE 3. Total and per-capita emissions by country, 1970 and 2018

Note: The figures plot total emissions against per capita emissions (in logs) for 1970 and 2018. Data on emissions are from EDGAR.

displayed for the countries in the top 10% of per capita emissions or total emissions in the respective year.

By and large, it is the same set of countries that appear in both 1970 and 2018. India and China are outliers in that they show relatively low per capita emissions but high total emissions. The United States records higher per capita emissions than either of these countries, being the largest emitter of fossil CO2 in 1970 and the second highest in 2018. As Figure 4 shows, most high-income countries record higher emissions, though the relationship with income is more strongly positive for per capita emissions. The clustering of points indicates

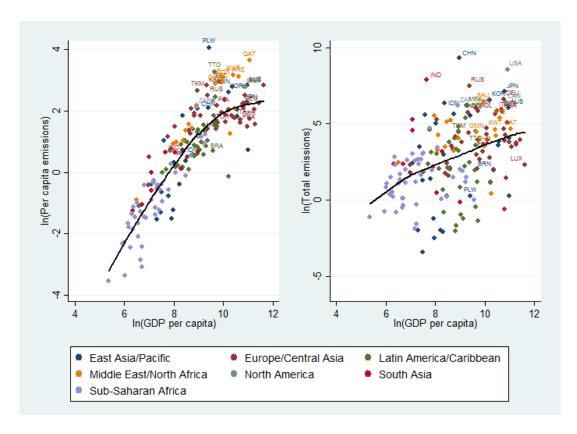


FIGURE 4. Emissions and GDP per capita relationship, 2018

Note: The figures show the scatterplots and fitted line (that is, the lowess smoothed relationship) between total and per capita emissions and per capita GDP for 2018. All variables are converted to logs. Data on emissions are from EDGAR and data on per capita GDP is from the World Development Indicators database.

that countries within Europe, North America, and Latin America are more homogeneous in terms of per capita income and emissions than countries in East and South Asia, Sub-Saharan Africa or the Middle East and North Africa.

Based on the countries identified as having the highest total emissions in 2018, we now examine the trends in the top-ten countries in terms of total emissions. These ten countries account for more than two-thirds (67.3%) of total emissions in 2018. Among them, the United States, Canada, Russia and China were also among the top-ten oil-producing countries in 2018; they were already among the top-ten emitters in 1970, which compounds their contribution to

cumulative GHG emissions. Iran and Saudi Arabia, in turn, rank among the top-ten emitting countries in 2018 as well as among the top-ten oil-producing nations.

Figure 5 shows that total emissions have grown very rapidly in most of these countries over the past five decades (note that the graph shows trends in the log of emissions), with particularly rapid growth in China, India, Iran, South Korea and Saudi Arabia. Total emissions in the remaining countries, notably the United States, Russia, Japan, and Canada have remained stable at very high levels. The only country in which total emissions have declined, albeit from a high starting position, is Germany. In terms of per capita emissions, the biggest emitters are Saudi Arabia, the United States and Canada, though per capita emissions have decreased slightly in Canada and the United States over the past decade. Steep increases in per capita emissions are observed in India, China, Iran and South Korea.

Table 1 provides a numerical summary of the results illustrated in the previous graphs.

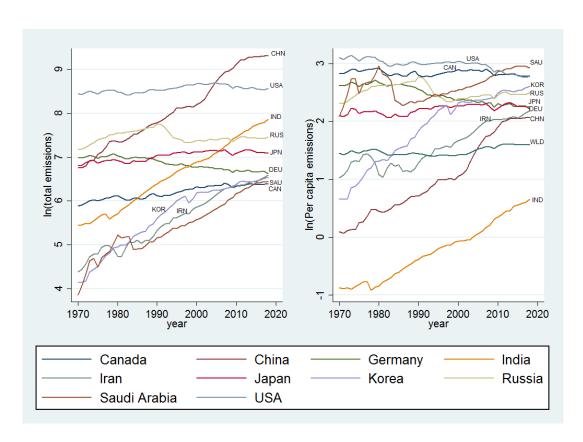


FIGURE 5. Trends in emissions among top 10 emitters

Note: The figures plot the trends in total and per capita emissions (in logs) for the ten countries with the highest levels of total emissions in 2018. Data on emissions are from EDGAR.

Table 1. Fossil CO2 emissions by region and top emitting countries

Country/Region	Per capita	Per capita		Total	Total		Share of world's	Share of world's	
	emissions	emissions		emissions	emissions		emissions 1970	emissions 2018	
	1970	2018		1970	2018		(%)	(%)	
World	4.27	4.97		15775.86	37887.22	(
East Asia and Pacific	1.47	6.58	=	2160.05	15340.13	=	13.69	40.49	=
EU27+UK	9.51	6.78	\Rightarrow	4198.20	3457.29	\Rightarrow	26.61	9.13	\Rightarrow
Europe and Central Asia	8.39	7.28	\Rightarrow	6585.20	6649.63	=	41.74	17.55	\Rightarrow
Latin America and Caribbean	1.78	2.80	(526.30	1830.03	=	3.34	4.83	<i>*</i>
Middle East and North Africa	5.43	6.34	=	356.70	2813.35	=	2.26	7.43	=
North America	21.81	16.14	\Rightarrow	5050.28	5870.12	=	32.01	15.49	\Rightarrow
South Asia	0.37	1.63	=	261.43	2958.00	=	1.66	7.81	=
Sub-Saharan Africa	0.73	0.80	(270.75	860.82	=	1.72	2.27	=
International shipping and aviation				565.14	1565.15	=	3.58	4.13	=
World's top emitters and oil producers									
China	1.10	7.95	=	905.87	11255.88	=	5.74	29.71	=
SO	22.37	16.14	\Rightarrow	4688.52	5275.48	=	29.72	13.92	\Rightarrow
India	0.42	1.94	=	232.12	2621.92	=	1.47	6.92	=
Russia	10.10	12.14	=	1314.17	1748.35	=	8.33	4.61	\Rightarrow
Japan	8.18	9.42	(857.80	1198.55	=	5.44	3.16	\Rightarrow
Germany	13.77	9.15	\Rightarrow	1082.02	752.65	\Rightarrow	6.86	1.99	\Rightarrow
Iran	2.79	8.87	=	79.47	727.81	=	0.50	1.92	=
South Korea	1.94	13.59	=	62.58	695.36	=	0.40	1.84	=
Saudi Arabia	8.06	18.63	=	47.02	624.99	=	0.30	1.65	=
Canada	16.86	16.08	\Rightarrow	361.59	594.20	=	2.29	1.57	\Rightarrow
Brazil	1.16	2.37	(110.16	500.002	=	0.70	1.32	=
UAE	82.54	22.44	\Rightarrow	19.44	214.11	=	0.12	0.57	=
Iraq	2.34	4.78	=	23.19	188.10	=	0.15	0.50	=
Kuwait	51.34	23.91	\Rightarrow	38.34	100.34	=	0.24	0.26	=
Notes. The tells memorate tetal and man senite formi				ladola of most subject to a colonial			2012 10 pm 1070 pm 1070 pm 10010 pm	010	11 22 £

Notes: The table reports total and per capita fossil CO2 emissions (in MTCO2) and contribution to global emissions for 1970 and 2018 by region as well as for the countri accounting for highest emissions and oil production. Data on emissions come from EDGAR.

Table 2. Sectoral contributions to emissions by top emitters

Country	Power Industry	Transport	Buildings	Other industrial	Other sectors
<i>y</i>				combustion	
Brazil	13.81%	40.49%	7.48%	22.27%	15.94%
Canada	14.99%	29.61%	15.93%	32.87%	6.60%
China	40.74%	8.37%	6.92%	27.00%	16.97%
Germany	38.41%	20.76%	18.15%	14.66%	8.03%
India	46.26%	11.03%	7.43%	25.63%	9.65%
Iran	23.82%	19.13%	22.67%	20.57%	13.81%
Iraq	50.72%	14.20%	5.71%	12.74%	16.63%
Japan	46.35%	16.46%	9.52%	20.20%	7.48%
Kuwait	39.81%	12.56%	0.65%	32.28%	14.70%
Russia	46.37%	14.02%	10.28%	15.10%	14.23%
Saudi Arabia	39.52%	20.77%	0.75%	21.98%	16.98%
South Korea	48.72%	14.39%	9.33%	19.08%	8.49%
United Arab Emirates	42.03%	15.62%	0.35%	30.42%	11.57%
United States	35.23%	34.54%	11.39%	13.86%	4.98%
World	36.59%	21.50%	9.29%	20.85%	11.76%

Notes: The table reports sectoral contributions to fossil CO2 emissions for 2018 among the countries accounting for highest emissions and oil production. Data on fossil CO2 emissions come from EDGAR.

There is clearly an important sectoral dimension to emissions. The main contributing sector to both greenhouse gas and fossil CO2 emissions is the power and energy sector, according to the data for both fossil CO2 emissions for 2018 and GHG emissions for 2014. Table 2 provides the sectoral decomposition for fossil CO2 emissions in 2018 for the top emitters in Table 1.

3. Climate Agreements and Actions

This Section provides an overview of the emission reduction pledges, how we construct comparable targets across countries for the pledges made under three international agreements, and the progress made in terms of achieving these targets. After discussing the three pledges, we move to specific climate-change related laws and policies adopted around the world.

3.1. Emission pledges

The first international agreement signed was the Kyoto Protocol, which was accorded in 1997 but came into force in 2005, with the round ending in 2012. The second was the Copenhagen Accord, which came into effect in December 2009 with targets for 2020. The third treaty was the Paris Agreement, which entered into force in November 2016 with targets for 2030.¹⁰

3.1.1. Comparable targets. To compute comparable targets across countries, we examine the emission reduction targets declared by each country. Among the countries that are party to each pledge, we start with the set of countries that have specified a numerical target for emission reduction. Different countries have different baseline years against which reductions in emissions are benchmarked. To facilitate comparability across countries, we use these quantified targets to compute the targeted emissions reductions (in MTCO2 eq) relative to the level of emissions in the starting year of the pledge for all countries; this allows us to compare the magnitudes of the targets on a given pledge across the various countries. Some countries specify their targets relative to a particular sector rather than total emissions (e.g., emission reductions in the energy sector alone) or based on their activity projections; again, for comparability, we translate these emission targets (based on sectors or

^{10.} The Doha Amendment to the Kyoto Protocol was adopted for a second commitment period from 2013 to 2020 but it has not yet entered into force.

projections) into reductions relative to the aggregate level of emissions in the starting year of the pledge. To do so, we need information on baseline emission levels, in some cases for specific sectors (for example, energy), as well as Business-As-Usual (BAU) scenario emission projections for future years. For a few countries that specify targets in terms of carbon intensity of their gross domestic product (GDP), we also need GDP projections. Using publicly available information from several sources (as described in Section 2), we compute comparable targets for the majority of countries making quantified target reduction pledges. For many countries setting their pledges based on reductions from future BAU scenarios, the targeted emission level by the end year of the pledge is actually higher than that recorded in the start year.

As the explanation above suggests, the computation of comparable targets across countries varied widely in terms of complexity. We can further illustrate this using some examples of pledges made under the Paris Agreement. First, consider the Canadian pledge of a 30% reduction in emissions from 2005 levels by 2030. Computing a comparable target for this pledge required only data on emissions for Canada in 2005 and emissions in the starting year of the pledge, making it a relatively easy target to quantify. The targets for individual EU countries were slightly more involved - even though the EU made a collective pledge of a 40% reduction from 1990 levels, the targeted reductions were distributed unevenly amongst member countries so that this additional layer of information was required to compute individual country targets. China pledged

to reduce CO2 emissions per unit of GDP to below 60%-65% of the 2005 level by 2030, so computing the comparable target required data on emissions and GDP in 2005, projected GDP for 2030, and emissions in the start year. The most difficult pledges to quantify were those which specified reductions for specific sub-sectors under a Business-As-Usual scenario. For example, Trinidad and Tobago pledged a 30% reduction in emissions in the transportation sector from the BAU scenario for 2030. This meant we needed data on projected BAU emissions for the transport sector for 2030, and total and transport sector emissions for the start year of the pledge.

Table 3 summarises the main aspects of the pledges made under the three agreements. The full set of computed target reductions by country is given in Appendix A.

The quantification of total emission reductions from the year in which the agreement was signed provides a measure of how ambitious (or not) targets are at the time at which they were set. While the targets established in the Kyoto Protocol are the most straightforward to compute, it appears that when compared to emission levels in 2005 (the year in which the Protocol came into effect), the targets allow an overall increase in emissions. This in large part owes to the extremely high emissions in Russia in 1990, which is the baseline year from which emission reductions are computed. ¹¹ Indeed, excluding Russia,

^{11.} The Kyoto Protocol allowed Russia to increase emissions substantially relative to its 2005 levels.

Table 3. Summary of targeted emission reductions

	Kyoto	Kyoto (without Russia)	Copenhagen	Paris
No. of signatories proposing targets or NAMAs (excluding	37	36	100	188
EU28 in total)				
Start year considered	2005	2005	2010	2014^{a}
Countries with quantified emission reduction targets	37	36	59	151
Countries with quantifiable objectives	$30^{\rm b}$	29	$54^{\rm c}$	117^{d}
Contribution to world GHG emissions by signatories with	22.95	17.73	75.48	83.39
quantifiable objectives in starting year (%)				
Contribution to world GHG emissions by all signatories	24.44	19.22	81.93	98.85
Total emissions by signatories with quantifiable objectives in	9442.768	7295.786	33418.17	39474.53
start year				
Targeted reduction from starting year (conditional)	-679.83	400.4885	3397.412	5402.837
Targeted reduction from starting year (unconditional)	-679.83	400.4885	1427.219	2839.568
Targeted % reduction from starting year (conditional)	-7.2	5.49	10.17	13.69
Targeted % reduction from starting year (unconditional)	-7.2	5.49	4.27	7.19

Notes: ^aTo calculate the targeted reduction in emissions from the start date of the pledge, we need sector specific emissions data for the baseline year as well as for the starting year. 2014 is taken as the starting year for the Paris Agreement because this is the last year for which sector specific GHG emissions data are available.

the total targeted emissions involve a reduction of 400 MTCO2 eq., which is a 5.5% reduction in emissions from 2005.

The targets set in the Copenhagen and Paris agreements appear more ambitious overall in terms of the targeted reduction in emissions from the starting year of the agreement. This is true for both absolute and relative reductions, though comparisons between pledges are not as straightforward given that the implementation timelines became longer in Copenhagen and Paris. Moreover, unlike the Kyoto Protocol in which the targets were fixed and unconditional, the two latter agreements allow countries to specify both unconditional targets as well as targets that are conditional on assistance

^bNo data for emissions pre-1990 for 5 Eastern European countries and no total emissions data for Liechtenstein and Monaco for 1990.

^cNo total emissions data for Liechtenstein and Monaco for 1990. BAU estimates missing for the rest. ^dEmissions target expressed in carbon intensity of GDP for Chile, Malaysia and Singapore - GDP projections are also necessary for computing targeted emissions. No total emissions data for Liechtenstein and Monaco for 1990. BAU estimates missing for the rest.

Targeted reduction in emissions is computed as the difference between targeted emissions and starting emissions in the sectors covered by the pledge.

and action from other, generally developed, countries. There is considerable variation between the unconditional and conditional targeted reductions with the total unconditional target amounting to less than half of the total conditional target under the Copenhagen Accord and just over a half in the Paris Agreement. Figures 6a, 6b and 6c plot the targeted unconditional emission reductions as a percentage of the total GHG emissions in the starting year against total GHG emissions in the starting year. Countries without quantifiable targets are excluded. The figures show significant dispersion in the pledges made by different countries across the three treaties, spanning a wide quantitative range from large targeted reductions to large targeted increases in emissions.

3.1.2. Target achievements. Given that the commitment periods under the Kyoto Protocol and Copenhagen Accord have come to an end, we are in a good position to examine how well countries adhered to their emission-reduction targets. We start by examining emission reductions in signatory and non-signatory countries. For the Kyoto Protocol, we compute the decrease in GHG emissions from the starting year of 2005 to 2012 as a percentage of the 2005 emissions level. Given that we only have data running till 2018, for the Copenhagen Accord, we use fossil CO2 emissions to assess the progress that has been made so far under this agreement and compute the decrease in fossil CO2 emissions from the starting year of 2010 to 2018 as a percentage of the 2010 emissions level. Table 4 presents some summary statistics of observed

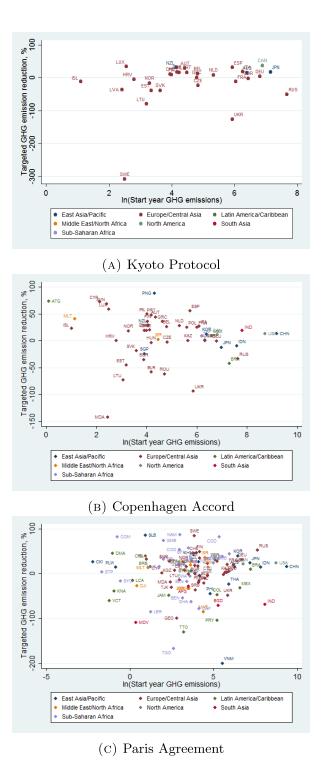


FIGURE 6. Targeted reductions and total emissions

Note: The figures plot the targeted unconditional reduction in emissions as a percentage of the emissions in the starting year against the log of start year emissions for the Kyoto, Copenhagen and Paris Agreements. The graphs in Panel (B) and (C) exclude outliers: Latvia, Kiribati and Madagascar. Note that the axis plots targeted reductions so negative values refer to pledges which involve an increase in emissions from the start year of the pledge.

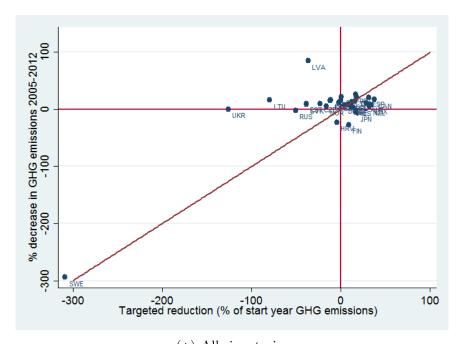
% reduction in emissions Summary Pledge statistic Non-signatory Signatory Kyoto Protocol Mean -18.197.67-57.9025th percentile -1.78Median -13.507.43 75th percentile 15.06 4.63Copenhagen Accord -23.59 Mean -10.3025th percentile -34.93 -23.33Median -27.68-5.03

Table 4. Summary of emission reductions

Notes: The table reports summary statistics for the reduction in GHG emissions between 2005 and 2012 for signatories and non-signatories of the Kyoto Protocol and the reduction in fossil CO2 emissions between 2010 and 2018 for signatories and non-signatories of the Copenhagen Accord. All summary statistics are weighted by emissions in the starting year. Note that a positive value indicates a reduction in emissions while a negative value indicates an increase

-16.19

5.04


75th percentile

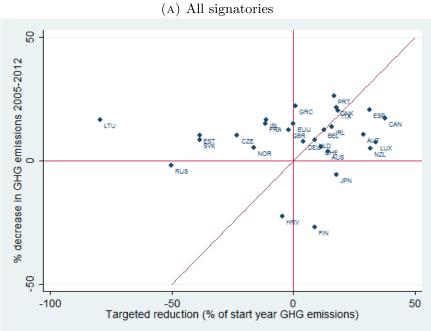

emission reductions weighted by start year emissions levels. Note that a positive value indicates a reduction in emissions whereas a negative value indicates an increase.

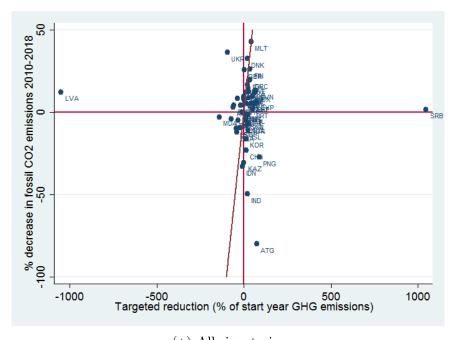
Table 4 shows that GHG emissions increased, on average, among non-signatories of the Kyoto Protocol over the commitment period of 2005-2012, while emissions fell among signatories. The Copenhagen Accord appears to have been less effective by comparison, with fossil CO2 emissions increasing, on average, among both signatory and non-signatory countries though the increase is significantly smaller among the signatories to the pledge. While these numbers provide a crude indication of the effect of signing the pledges, the impact of the pledges on emissions is examined in more detail in Section 4.

Next, we explore, at country level, how well the targets set under these two pledges were achieved. Figure 7a plots the decrease in GHG emissions from the starting year of 2005 until 2012 (as a percentage of the 2005 emissions level) against the targeted reduction as a percentage of the emission levels in 2005. By comparing these two values for each country, we can see which countries reached their targets. The actual reduction in emissions is larger than or equal to the targeted reduction for countries to the left of the 45 degree line and the reduction in emissions fall short of the target for countries to the right of the 45 degree line.

When examining success by country, there is wide variation in both the achievement and ambitiousness of targets. Countries to the left of the 45 degree line (in red) represent the countries that met their target, with countries further from the line having significantly over-achieved their target. Countries to the right of the 45 degree line are those that failed to achieve their targeted emission reduction. The graph indicates that while there are some clear outliers in terms of over-achievement of targets (e.g. Latvia and Ukraine, which pledged increases in emissions), only a few countries actually set targets to reduce emissions from the 2005 emission level (recall that most countries used 1990 as their baseline year) and then met this target (these are the countries in the area to the right of the Y-axis and above the 45 degree line). All of the countries that specified a target involving an increase in emissions from the 2005 level, with the exception

(B) All signatories excluding Sweden, Ukraine and Latvia

FIGURE 7. Achievement of targets under the Kyoto Protocol


Note: The figure plots the decrease in GHG emissions from the starting year of 2005 to 2012 (as a percentage of the 2005 GHG emissions level) against the targeted reduction as a percentage of the emissions in the start year for the Kyoto Agreement. The red line is the Y=X line. The graph is plotted with (Fig 7a) and without (Fig 7b) Sweden, Ukraine and Latvia.

of Croatia, achieved their target.¹² The EU15 countries also collectively overachieved their target – the target reduction was 258 MTCO2 eq. and actual reduction was 462 MTCO2 eq. Though there is huge variation in compliance across countries, adding the emissions and targets of all countries, the group of thirty countries for which targets are quantified actually met the required emissions reduction. Total emissions by these countries as a whole amounted to 8,864 MTCO2 eq. in 2012, compared to a targeted emissions level of 10,057.11 MTCO2 eq.

The Copenhagen Accord specified GHG emission reduction targets for 2020. We undertake a similar comparison to that used for the Kyoto Protocol by contrasting targeted unconditional emission reductions with emission reductions recorded to date (2018). Note that the targeted reductions are as a percentage of GHG emissions in the starting year of the pledge, whereas the reduction to date is as a share of fossil CO2 emissions in the starting year. As said, GHG and CO2 are highly correlated. For this comparison to reflect the true progress under the Accord, we are implicitly assuming that GHG emissions and fossil CO2 emissions change at the same rate.

As Figure 8 illustrates, twenty-one countries had reached or exceeded the targeted emission reduction (countries to the left of the 45 degree line) by 2018,

^{12.} Sweden appears as an outlier in the Kyoto Protocol. It is clear why: by the time the Protocol was signed, Sweden, which fell under the EU umbrella, was actually allowed a 4% increase in emissions relative to its 1990 levels. Since we compute the targeted reduction in emissions from the start year of the pledge, which was 2005, when emissions in Sweden had already reduced substantially, the resulting target becomes a very large targeted increase.

(B) All signatories excluding Latvia and Serbia

FIGURE 8. Progress made under the Copenhagen Accord

Note: The figure plots the decrease in fossil CO2 emissions from the starting year of 2010 to 2018 (as a percentage of the 2010 emissions level) against the targeted unconditional GHG emission reduction as a percentage of the GHG emissions in the start year for the Copenhagen Accord. The red line is the Y=X line. The graph is plotted with (Fig 8a) and without (Fig 8b) Latvia and Serbia.

while thirty-five had not, though countries close to the 45 degree line are those that were reasonably close to achieving their targets. As was the case with the Kyoto Protocol, the vast majority of countries that had already achieved their targets by 2018 were those that specified an increase in emissions from the starting year of 2010 (in the official pledges, many countries continued to specify their baseline year as 1990 under the Copenhagen Accord), with only a few countries, such as Denmark and Malta, having achieved more ambitious targets. Germany, Japan and Russia were the only countries among the top-10 emitters that had already achieved their target level of emissions as of 2018. It is conceivable that with the Covid-19 pandemic and the implied reduction in emissions caused by lower activity, many more countries would have met the targets.

3.2. Climate-change actions

Aside from the signing of international climate-change related pledges, and often as part of those pledges, many countries have adopted a range of laws, policies and instruments to mitigate the impact of climate change. Using the Climate Change Laws of the World database, which records information on 1,809 laws and policies in 200 countries which were in implementation up to the end of 2019, we measure the number of climate-related laws and policies

that are in force in a given country and year.¹³ The database also provides keywords for each of these actions, which we use to gauge the number of policies or actions related to various aspects of climate-change actions including measures for adaptation to climate change, management of energy demand and energy supply, transportation, land use and forestry, and R&D. We combine this information with data from the Carbon Pricing Dashboard, which contains information on carbon taxes and emissions trading schemes (ETS) implemented by country and year.

Table 5 summarises the number of climate-related laws and policies by decade and the number of countries with at least one climate-related law or policy. The number and distribution of policies or laws by sector are listed in Table 6.

Table 5. Laws and policies related to climate change

	Number of	Number of	Countries with	Countries with
	laws passed	policies passed	at least one law	at least one
				policy
Pre 1970	8	1	6	1
1970-79	6	0	10	1
1980-89	17	2	18	3
1990-99	78	31	62	23
2000-09	272	276	119	135
2010-19	394	724	156	176
Total to date	775	1034	156	176

Notes: Computed using data from the Climate Laws of the World Database.

^{13.} The database does not include laws or policies that were abolished, so the numbers for some years could be underestimated. However, the World Bank's Carbon Pricing Dashboard, which lists all carbon taxes and emission-trading schemes ever implemented, shows that very few (just three, of which only one was a national-level action) carbon taxes or emission-trading schemes have been abolished to date. As such, it is unlikely that underestimation of the number of laws and policies is large.

Table 6. Climate-related laws and policies by sector

			Numb	er of polici	es/laws in acti	on by sector			
		Adaptation	Energy	Energy	Institutions	Transport	LULUCF	R&D	Total
			demand	supply					
Pre 1970	No.	7	0	1	4	1	0	0	9
	%	77.8	0.0	11.1	44.4	11.1	0.0	0.0	
1970-79	No.	1	4	2	3	1	0	0	6
	%	16.7	66.7	33.3	50.0	16.7	0.0	0.0	
1980-89	No.	5	6	8	11	1	2	3	19
	%	26.3	31.6	42.1	57.9	5.3	10.5	15.8	
1990-99	No.	32	37	41	64	11	11	14	109
	%	29.4	33.9	37.6	58.7	10.1	10.1	12.8	
2000-09	No.	139	236	299	271	108	99	136	548
	%	25.4	43.1	54.6	49.5	19.7	18.1	24.8	
2010-19	No.	466	396	535	561	205	241	215	1118
	%	41.7	35.4	47.9	50.2	18.3	21.6	19.2	

Notes: Computed using data from the Climate Laws of the World Database. The sum of the sector columns can add up to more than the total number of laws/policies as some laws and policies cover multiple sectors.

Table 5 shows that most climate-related actions (executive or legislative) were taken over the past few decades. While laws were relatively more common in the earlier decades, policies become more common from the 2000s such that as of 2019 there were 1,034 climate-related policies and 775 climate-related laws that had been enacted across the world.

As shown in Table 6, the areas covered by climate-related laws and policies vary over the years. Most of the earliest laws and policies are related to climate-change adaptation or energy demand, while in the later years policies and laws related to energy supply and institutions have become more common. There has also been an increase in the number of laws and policies related to land use, land use change and forestry (LULUCF), as well as R&D over the last few decades.

Table 7 lists out the number of national and sub-national carbon taxes and emissions trading schemes being implemented over the years as well as the number of countries where at least one carbon tax or ETS is implemented.

Table 7. Carbon taxes and Emission Trading Schemes

	No. of car	bon taxes	No. of	ETS	No. of cou	No. of countries with	
	National/	Sub-	National/	Sub-	Carbon	ETS	
	regional	$_{ m national}$	Regional	$_{ m national}$	tax		
Pre-1990	0	0	0	0	0	0	
1990-99	6	0	0	0	6	0	
2000-09	10	1	3	2	9	31	
2010-19	25	5	7	20	23	34	

Notes: Computed using data from the Carbon Pricing Dashboard.

The first carbon-pricing initiatives in the database are the Polish and Finnish Carbon Taxes implemented in 1990. Since then, there has been a gradual increase in the number of carbon pricing initiatives implemented around the world. While most of the carbon taxes are enacted at a national level, most of the ETS are implemented at the sub-national level in the United States, Canada, China and Japan. Only two initiatives in the dataset have been abolished as of 2019 – the Australian national level ETS, which was introduced in 2012 and abolished in 2015, and the Ontario ETS, which was implemented in 2017 and abolished in 2019. Note that while the EU ETS counts as a single initiative, its jurisdiction spans all the EU countries as well as Norway, Iceland and Liechtenstein.

4. Impact of climate agreements and actions

In this Section we combine our datasets on emissions and pledges with information on climate-related laws and policies to examine the relation between total fossil CO2 emissions (for which data are available until 2018) and the climate change pledges and actions. The analysis is based on a panel of 186 countries.

4.1. Static specification: controls and endogeneity correction

Our baseline specification controls for per capita GDP, population, share of urban population, and, for a smaller sample, oil rents as a percentage of GDP, as summarised in Table 8.

Table 8. Covariates of emissions

	Total I	Fossil CO2	emissions ($_{ m in~logs)}$
	(1)	(2)	(3)	(4)
GDP per capita (in logs)	0.843***	0.707***	0.848***	0.696***
	[0.010]	[0.061]	[0.010]	[0.060]
Population (in logs)	1.106***	1.250***	1.109***	1.219***
	[0.006]	[0.176]	[0.006]	[0.158]
Urban population (% of total)	0.011***	0.008*	0.009***	0.008*
,	[0.001]	[0.004]	[0.001]	[0.005]
Oil rents (% of GDP)			0.020***	0.002
,			[0.001]	[0.004]
			. ,	
Country and Year FE	No	Yes	No	Yes
N	7991	7991	7189	7189
R-sq	0.903	0.884	0.907	0.885

Notes: The table reports the results of regressing total fossil CO2 emissions (in logs) on GDP per capita (in constant 2010 US\$) and population (in logs), urban population as a percentage of the total and oil rents as a percentage of GDP. Columns (1) and (3) do not control for country and year fixed effects. All regressions include a constant term.

The values in brackets are robust standard errors. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.

As expected, the main control variables, GDP per capita and population, show statistically significant positive associations with total emissions, with the estimated coefficient on population increasing in magnitude when country- and year-fixed effects are controlled for. The magnitudes are large. A 1% increase in GDP per capita is associated with a 0.84% increase in emissions, while a 1% increase in population is associated with a 1.1% increase in emissions. The share of urban population has a smaller correlation with emissions, with the effect becoming less significant when controlling for country- and yearfixed effects. While oil rents have a much smaller quantitative impact on emissions than the other factors, the association between emissions and oil rents also becomes insignificant once country- and year-fixed effects, along with income and population have been controlled for. This is because most of the oil-production effect on emissions is absorbed in the country-specific effect. Since its inclusion also results in a smaller sample size, we exclude it from the following regressions.

To this set of controls, we add variables that capture the effects of climatechange pledges and actions. The first set of regressions examines the effect of the climate-change pledges on emissions. We start with three indicator variables that take the value one when the corresponding agreements has been signed (0 before and 1 thereafter) with a one-year lag to allow for time between the signature of the agreement and its implementation. To distinguish whether simply signing the agreement has a different effect from having a quantifiable target for emission reduction, we include an indicator that takes a value 1 when the target is quantifiable.¹⁴

The second set of regressions explores the impact of specific climate-related actions undertaken by different countries. We generate indicator variables for the implementation of a carbon tax and of ETS at the national level. ¹⁵ A second variable (or set of variables) aims at capturing other specific climate-related laws and policies. We use two specifications for modelling the effect of climate laws and policies on emissions: the first simply uses the total number of climate laws and policies that are in place, while the second uses the number of laws or policies disaggregated by area of implementation. As with the indicators for signing climate agreements, the number of climate-related laws and policies are included in the model with a one-year lag. All the regressions include country and year fixed effects.

To address potential endogeneity in the decision to sign a climate-pledge, we use inverse probability weighted (IPW) regression estimation. In the first stage, we estimate the probability of signing each climate pledge as a function of GDP per capita, population, share of urban population, and emissions observed in the

^{14.} The relationship between covariates and emissions appears to be relatively stable in the pre-agreement period (1970-2000), except for a slight change in the relationship with GDP per capita in the 1990s. Similarly, the effects are more or less homogeneous across levels of development, especially in the pre-agreement period. See Appendix Tables B.1 and B.2 for more details.

^{15.} The database mentions that the carbon prices are not necessarily comparable between initiatives due to differences in sectors covered, specific exemptions and compensation methods. Given these limitations, we do not use the carbon prices in the analysis.

previous year to obtain a propensity score, the inverse of which is used to weigh the regressions described previously. As discussed in Jordà and Taylor (2016), the idea behind this method is that it focuses the estimator on a rebalanced sample in parts of the treatment and control group that are similar to each other.

Given that for each pledge, a country only faced the decision of whether to sign and not when to sign it (the years in which the pledges are ratified are fixed), we use cross-sections of the data from the year of each pledge being ratified to estimate these propensities using a probit model. Figures 9a, 9b, and 9c show the smooth kernel density estimates of the distribution of the propensity scores for signing for countries adopting (treatment) and not adopting (control) each pledge. These figures check for overlap between the two groups, which allows for the proper identification of the average treatment effect (ATE).

The distribution of propensity scores for treated and untreated groups show considerable overlap, though it appears that a few observations are likely to get very high weights (in the case of the Kyoto Protocol, which was signed by just 36 countries in our sample), while some others are likely to get very low weights (in the case of the Paris Agreement, which was signed by 176 countries in our sample). For this reason, we truncate the minimum and maximum weights to 1.11 and 10, respectively. The computed weights for each of the pledges are then compiled as a panel, assuming that the propensities prior to signing each pledge

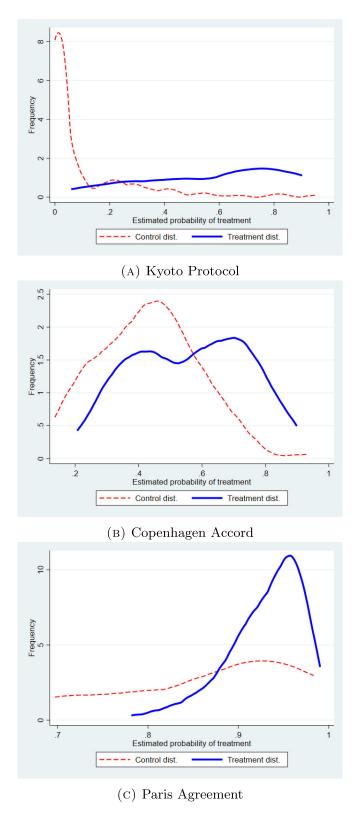


Figure 9. Overlap check: Distribution of treatment propensity score

Note: The figure plots the smooth kernel density estimates of the distribution of the propensity scores for signing for treatment and control countries.

are fixed. These weights are then used for the four regression models discussed earlier, assuming that the propensities for signing climate pledges are similar to the propensities for adopting different climate-related actions. ¹⁶ The results of the regressions examining the impact of signing climate agreements and adopting climate-changed related laws and policies, with and without weighting by inverse probabilities are given in Table 9 and Table 10.

Table 9. Emissions and climate agreements

	$\ln(1)$	Total fossil	CO2 emissio	ons)
	(1)	(2)	(3)	(4)
Signed Kyoto	-0.438***	-0.423***	-0.349***	-0.344***
	[0.023]	[0.023]	[0.029]	[0.029]
Signed Copenhagen	-0.166***	-0.156***	-0.137***	-0.129***
	[0.025]	[0.028]	[0.026]	[0.028]
Signed Paris	0.049	0.078	0.111	0.13
	[0.291]	[0.120]	[0.291]	[0.120]
Have quantified objectives			-0.118***	-0.103***
			[0.027]	[0.027]
Using IPW	No	Yes	No	Yes
N	7870	7870	7870	7870

Notes: The table reports the results of regressing total fossil CO2 emissions (in logs) on lagged indicators for signing different climate-related pledges. All regressions include a constant and control for country and year fixed effects as well as real GDP per capita (in constant 2010 US\$), population (in logs), and urban population as a percentage of the total. Columns (1) and (3) report the unweighted OLS estimates, while the results in the remaining columns are estimated using inverse probability weighting.

The values in brackets are robust standard errors. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.

The regression outcomes in Table 9 indicate that the results from weighted and unweighted regressions are very similar. Columns (1) and (2) show that signing the Kyoto and Copenhagen agreements are associated with significantly

^{16.} In the subsequent Section where we estimate the dynamic effects of one policy option at a time, we relax this assumption, estimating the propensity for adoption of each option separately.

lower emissions, holding population and income constant. However, being a signatory to the Paris agreement does not show any impact on emissions; this could be of course because we have only two years of data post-Paris (recall that the agreement came into force in November of 2016). The magnitude of these estimated effects are large: The results from Column (2) in the table indicate that signing the Kyoto agreement results in 34% lower fossil CO2 emissions when compared with countries that did not sign the agreement.

How do we reconcile this large estimated fall with the rather unambitious targets set in Kyoto? The answer is in the counterfactual or control group: countries that did not sign the Kyoto Protocol recorded a steep rise in emissions. Hence, signing Kyoto had an effect, not so much in reducing emissions but in preventing countries from increasing emissions too rapidly. Signing the Copenhagen Accord led to a reduction in emissions in the order of 14%.¹⁷ ¹⁸ Having quantified objectives for the pledges show a further negative effect on emissions (columns (3) and (4)). This effect is much larger for the Copenhagen Accord, where more than 40% of signatory countries did not specify numerical targets. On the other hand, all countries had numerical targets under the Kyoto

17. As a placebo check, we also re-estimate the model in Column (1) including leads of the indicators for signing the pledges to verify whether emissions started falling in the year prior to the agreements. The results show that emissions reductions are observed in the year before the agreement in the case of the Kyoto Protocol but not for the other two agreements. This can be explained by the fact that while the Kyoto protocol, came into force legally in 2005, it was accorded in 1997; that is, in 1997, countries accorded that the commitment period would be from 2005 to 2012. See Appendix Table C.1 for these results.

^{18.} We also estimate the regressions again, leaving out the outliers observed in Figures 7b and 8b. The results in Table 9 and 10 are not sensitive to their exclusion. See Appendix D for these results.

Protocol - accordingly, the sum of the coefficients on signing the agreement and having a quantified objective in the Copenhagen Accord is very similar to the coefficient on signing the Kyoto Protocol in the regressions where having a quantified target is not controlled for.

Table 10. Emissions and climate actions

	ln('	Total fossil	CO2 emissio	ons)
	(1)	(2)	(3)	(4)
Number of climate related laws	-0.036***	-0.036***		
	[0.003]	[0.003]		
Number of climate related policies	-0.001	0.000		
	[0.003]	[0.004]		
Have national level carbon tax	-0.215***	-0.208***	-0.222***	-0.211***
	[0.021]	[0.022]	[0.022]	[0.022]
Have national level ETS	-0.325***	-0.309***	-0.342***	-0.332***
	[0.020]	[0.020]	[0.021]	[0.021]
Number of policies by sector				
Adaptation			0.016***	0.018***
			[0.006]	[0.006]
Demand management			-0.020***	-0.019***
			[0.005]	[0.005]
Supply management			-0.026***	-0.026***
			[0.004]	[0.005]
Transport			-0.012*	-0.003
			[0.007]	[0.007]
LULUCF			0.014**	0.006
			[0.006]	[0.007]
R&D			-0.008	-0.011*
			[0.005]	[0.006]
			- ·	
Using IPW	No	Yes	No	Yes
N	7870	7870	7870	7870

Notes: The table reports the results of regressing total fossil CO2 emissions (in logs) on the lagged number of climate related laws and policies implemented as well as indicators for having a national carbon tax and ETS. All regressions include a constant and control for country and year fixed effects as well as real GDP per capita (in constant 2010 US\$), population (in logs), and urban population as a percentage of the total. Columns (1) and (3) report the unweighted OLS estimates, while the results in the remaining columns are estimated using inverse probability weighting.

The values in brackets are robust standard errors. *, ***, and *** indicate significance at 10%, 5%, and

The values in brackets are robust standard errors. * , ** , and *** indicate significance at 10%, 5%, and 1% levels, respectively.

Table 10 shows the estimated effects of climate-related laws and policies on emissions. These estimates suggest that the number of climate-related laws and the presence of nation-wide carbon taxes and emission trading schemes are significantly associated with lower emissions. Given the inclusion of country and time effects, the figures in the table should be read as relative to the emissions in countries that did not implement such policies. In terms of magnitudes, the regressions suggest a reduction of emissions in the order of 19% due to carbon taxes, relative to countries without a national carbon tax. The presence of a national level ETS also shows a negative correlation with emissions, with the effect in the order of 27%.

The number of climate-related policies shows no association with emissions, while the number of laws passed appear to affect emissions negatively. More specifically, emissions appear to decrease by 4% for each additional climate-related law that is enacted. This suggests that the distinction between executive and legislative actions is important. Legal steps can have an important role alongside specific policies, like carbon taxes or ETS. When examining the number of laws or policies by area, a few areas appear to be significantly associated with emissions - for instance the number of policies related to demand and supply management, and research and development are negatively correlated with emissions, while the number of policies related to adaptation is positively correlated. The magnitude of the effects of such laws and policies are quantitatively much smaller than the effects of a carbon tax or ETS.

Therefore, for the analysis of dynamic effects that follows, we focus specifically on being signatory to the Kyoto and Copenhagen pledges, and on the two most (statistically) significant policies, national carbon taxes and ETS.

4.2. Dynamic effects on emissions

The previous sections provided evidence on the relationships between emissions and international climate-change agreements and specific climate-change actions by accounting for selection into the treatments based on observable variables. However, causal inference might be further affected by potential feedback from emission levels to climate-change actions or to the willingness to sign international agreements. For instance, a country with a low level of emissions may find it easier to sign a climate agreement than a country with a high level of emissions (or, with a different sign, a country with high level of emissions might face more international peer pressure to join the agreement). To address this reverse-causality problem, we estimate the dynamic effect of climate-change actions on emissions using the Jordà (2005) local projection method with IPW, adapted to panel data as in Jordà and Taylor (2016).

The identifying assumption implicit in the estimation of local projections is that once past emissions, and current and past international shocks (captured by time fixed effects) are controlled for, the estimation is only left with the exogenous component of climate interventions. By applying IPW regression adjusted estimation within this framework, we are further facilitating

comparability between treatment and control groups. As such, we estimate the following set of equations weighted by inverse propensities:

$$ln(emissions_{i,t+h}) = \gamma(L)ln(emissions_{i,t-1}) + \rho(L)X_{i,t-1} + \theta_h \tau_{i,t}$$

$$+ \delta(L)\tau_{i,t-1} + \alpha_i + W_t + \varepsilon_{i,t}, \qquad h = 0, 1, 2, ..., 7$$

$$(1)$$

where $X_{i,t-1}$ contains a set of controls, including GDP, population and urbanization, $\tau_{i,t}$ is the policy variable of interest (the treatment), and we allow for lags of up to three years for all regressors. α_i and W_t are country and time fixed effects and $\varepsilon_{i,t}$ is the random error term. The coefficient θ_h captures the effect of a change in the climate action policy in year t on emissions, h periods in the future.

Equation 1 is estimated separately for each value of h and for each of the following climate-change actions separately: being a signatory to the Kyoto protocol, being a signatory to the Copenhagen accord, having a national level carbon tax, and having a national level ETS. As such, the propensities for each of these actions are also estimated separately and applied to each set of regressions. As explained in the previous Section, the propensity for signing a pledge is estimated using data only for the specific year of the pledge being ratified. However, in the case of carbon taxes or ETS, since a country is able to decide both whether and when they enact such a policy, the propensities for

enacting a nation-wide carbon tax or ETS are estimated using the full panel dataset. 19

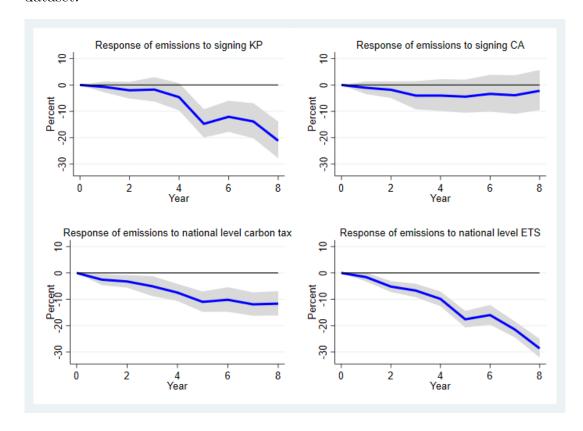


FIGURE 10. Dynamic effects of pledges, carbon taxes and emission-trading schemes on emissions

Note: The figure plots the estimated effect of a change in the climate action policy in year t on emissions, h periods in the future, for each of the policies considered.

Figure ?? plots the values of θ_h against h for each of the climate-change actions considered. The effect on emissions from each of the four interventions builds up gradually over time. By the fourth and fifth year, the estimated dynamic effects are broadly similar to the results shown in the previous sections,

^{19.} While inflation rates are not significantly correlated with the probability of signing the Kyoto or Copenhagen agreements, they are correlated with the implementation of an ETS. Therefore, for the propensity estimation in this Section, we also include inflation rates as a control. The updated graphs for checking overlap for these treatments are in Appendix E.

with all policies considered aside from the signing of the Copenhagen agreement demonstrating significant and persistent negative effects on emissions. As before, these numbers should be interpreted relative to the counterfactual provided by countries that did not put in place similar interventions. As already hinted at in Table 4, in the case of the Kyoto Protocol, the dynamic effects are driven by both falling emissions in the treatment group and continued increase in emissions in the control group (relative to the pre-agreement period). The effect of the Copenhagen Accord is to a larger extent driven by the continued rise in the control. To the extent that countries in that control group recorded significant increases in emissions, the actual reductions in global emissions is of course much more modest.

4.3. Dynamic effects on other economic variables

Motivated by the pubic debate on the potential spillovers of climate-change pledges and actions to the rest of the economy, we extend the analysis to study the impact of pledges and actions on other macroeconomic variables, specifically GDP growth and inflation.

For this purpose, we estimate a set of IPW regressions similar to those specified in Equation 1 using GDP growth and inflation rates as dependent variables, with a few modifications. First, in keeping with the differenced specification of the dependent variables, we use the differences of all controls specified in Equation 1. Second, as there are several countries experiencing

episodes of hyper-inflation in the time period considered (for example, 35 countries record consumer price inflation in excess of 100% over the sample), we exclude the top 6% of the inflation distribution, such that the highest inflation rate observed in our sample is 30%.²⁰ Third, given that the timing of the Kyoto Protocol and the enactment of the EU-ETS coincide with the global financial crisis and EU debt crisis, we further augment the specification of fixed effects to allow for region-specific trends in growth and inflation.²¹ Accordingly, we estimate the following set of equations weighted by inverse propensities:

$$\Delta Y_{i,t+h} = \gamma_{11}(L)\Delta Y_{i,t-1} + \gamma_{21}(L)\Delta P_{i,t-1} + \rho_1(L)\Delta X_{i,t-1} + \theta_{h1}\tau_{i,t}$$

$$+ \delta_1(L)\tau_{i,t-1} + \alpha_i + \rho_g + W_t + \rho_g * W_t + \varepsilon_{i,t}, \qquad h = 0, 1, 2, ..., 7$$
(2)

$$\Delta P_{i,t+h} = \gamma_{12}(L)\Delta Y_{i,t-1} + \gamma_{22}(L)\Delta P_{i,t-1} + \rho_2(L)\Delta X_{i,t-1} + \theta_{h2}\tau_{i,t}$$

$$+ \delta_2(L)\tau_{i,t-1} + \alpha_i + \rho_g + W_t + \rho_g * W_t + \varepsilon_{i,t}, \qquad h = 0, 1, 2, ..., 7$$
(3)

where ΔY refers to GDP growth and ΔP refers to inflation, $\Delta X_{i,t-1}$ includes controls such as emissions, population, and urbanization in first differences, $\tau_{i,t}$ is the policy variable, and lags of upto three years are included for all regressors.

^{20.} The high inflation or hyperinflation does not appear correlated with the signature of pledges or the adoption of climate-change actions.

^{21.} Using this same augmented specification for the emissions equation gives very similar results to those reported in Section 4.2.

 α_i , ρ_g and W_t are country, region and time fixed effects and $\varepsilon_{i,t}$ is the random error term. θ_h is the effect of a change in the climate action policy in year t on emissions, h periods in the future.

The estimated effects on GDP growth and inflation are illustrated in Figures 11 and 12.

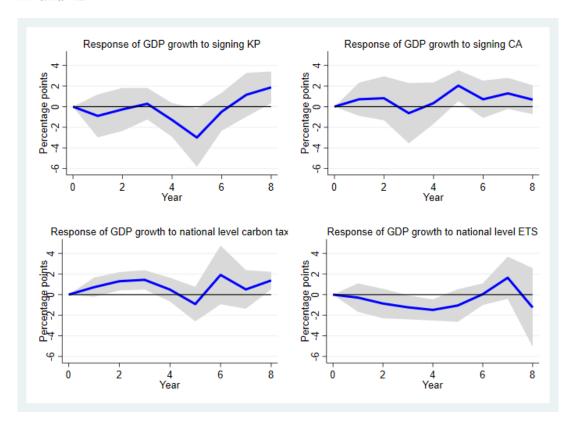


FIGURE 11. Dynamic effects of pledges, carbon taxes and emission-trading schemes on GDP growth

Note: The figure plots the estimated effect of a change in the climate action policy in year t on GDP growth, h periods in the future, for each of the policies considered.

As shown in Figures 11 and 12, the impact of the climate-change pledges and policies on GDP growth and inflation are largely insignificant. These results are consistent with Metcalf and Stock (2020), who do not find any significant negative impact of carbon taxes on GDP growth. They are also in line with

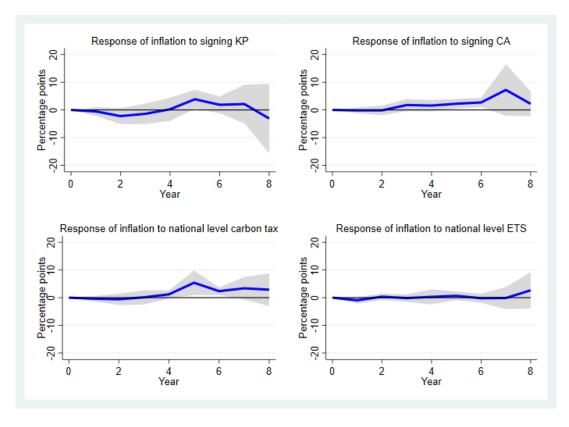


FIGURE 12. Dynamic effects of pledges, carbon taxes and emission-trading schemes on inflation

Note: The figure plots the estimated effect of a change in the climate action policy in year t on inflation, h periods in the future, for each of the policies considered.

Kanzig (2021), who finds that the tightening of the carbon pricing regime within the European carbon market has had persistent negative effects on emissions, but less persistent effects on real GDP.

5. Conclusion

The paper computes comparable emission targets set in the context of the three main international climate-action treaties; it studies compliance with those targets across countries; and it assesses the overall impact of the international treaties, as well as specific climate-change actions, on the level of emissions.

The paper finds that countries' compliance with emission-reduction targets has been highly heterogeneous, with many countries undershooting their targets. Signing the Kyoto Protocol and the Copenhagen Accord has led to significant reductions in emissions when compared with countries that did not sign in the treaties. In contrast, the Paris Agreement has not appeared to have led (yet) to any material reduction. Having quantifiable goals in the context of the Copenhagen Accord has been helpful in further reducing emissions.

In terms of specific actions, the paper finds that carbon taxes and ETS have led to material reductions in emissions. Other climate-related laws and policies appear to have, individually, smaller impacts on emissions. However, the number of climate-related laws is associated with significant reductions in GHG emissions. The impact of climate-related pledges and actions on economic variables such as GDP growth and inflation appear largely insignificant.

Overall, more ambitious targets and stricter compliance would be needed to offset the large impact of economic and population growth on the flow of emissions and contain a further damaging expansion in the stock of greenhouse gases.

TABLE A.1. Targeted emission reduction by country and agreement

			TABLE A.1.	Tar	geted emission reduction by country and agreement	ion by coun	try and agreen	ıent		nate-Change
Country	Pledge	Party to the	Quantified objective specified	Can quantify target	Start year emissions (MTCO2 eq)	Targe Absolute (Cond	Targeted reduction from starting year of pledge Absolute (MTCO2 eq.) Relative (% of start emis Cond Uncond	rom starting y Relative (% Cond	1 0/2	Pregress with Kyote Cosen (%
Afghanistan Afghanistan Afghanistan	Kyoto Cope Paris	Yes Yes	No No Yes	Yes	18.98 30.63 32.99	-9.29	-9.29	-27.86		s, Ac
Albania Albania Albania	Kyoto Cope Paris	$ ho_{ m No}^{ m SS}$	$ ho_{ m No}^{ m No}$	No	9.14 8.10 5.57) !) !			tions a
Algeria Algeria Andorra	Cope Paris Kvoto	$_{ m Yes}^{ m Yes}$	$_{ m No}^{ m No}$	No	$201.69 \\ 0.59$					nd Ou
Andorra Angola	Cope Paris Kvoto	$ m_{No}^{Ke}$	$_{ m No}^{ m No}$	Yes	$\begin{array}{c} 0.53 \\ 0.52 \\ 221.04 \end{array}$	0.18	0.18	37.11	37.11	tcome
Angola Angola	Cope Paris	$_{ m Yes}^{ m No}$	$_{ m Yes}^{ m No}$	Yes	252.04 218.82	124.51	96.21	49.39	38.17) ,
	Kyoto Cope	$_{ m Yes}^{ m No}$	$_{ m Yes}^{ m No}$	Yes	$0.79 \\ 1.11$	0.82	0.82	73.87	73.87	-80.0529
Antigua & Darbuda Argentina Argentina Argentina	Faris Kyoto Cope Paris Kyoto	$_{ m Ves}^{ m res}$	$_{ m No}^{ m No}$	No	394.32 418.67 443.26 6.99					
Armenia Armenia Australia Australia	Cope Paris Kyoto Cope	$_{ m Yes}^{ m Yes}$	$_{ m Yes}^{ m No}$	$_{\rm Yes}^{\rm No}$	7.11 603.39 561.95	85.50 120.72	85.50 3.06	14.17	14.17 0.54	3.6781
Australia Austria Austria	Paris Kyoto Cope	Yes Yes	m Yes $ m Yes$	$egin{array}{c} Yes \ Yes \ Yes \end{array}$	$\begin{array}{c} 523.21 \\ 81.97 \\ 105.03 \end{array}$	88.77 23.57 42.99	76.71 23.57 34.13	16.97 28.76 54.65	14.66 28.76 43.39	10.6217 5.1495
Austria Azerbaijan Azerbaijan	Paris Kyoto	$_{ m No}^{ m Yes}$	$\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}}{\overset{\mathrm{NNS}}{\overset{\mathrm{N}}{\overset{\mathrm{NNS}}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}}{\overset{\mathrm{NNS}}{\overset{\mathrm{NNS}}{\overset{\mathrm{N}}{\overset{\mathrm{N}}}}}{\overset{\mathrm{N}}}}{\overset{\mathrm{N}}}}{\overset{\mathrm{N}}}}{\overset{\mathrm{N}}}}{\overset{\mathrm{N}}}{\overset{\mathrm{N}}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}$		55.51 49.95					Ę

C	Progress with Kyoto Cogen (%)	-Chang	ge Pl	edge	s, A	ctio	ons	$\frac{1}{2}$ 3.9131	A2.5092	otu 8.7483 9.010	com	ne) () ()	-12.3165	Continued on next page
	Fargeted reduction from starting year of pledge tre (in MTCO2 eq.) Relative (% of start emissions) Uncond	35.01			-70.64		15.37	-58.70	12.55	$26.01 \\ 22.50$)			-54.70))	15.35		-5.11	000	-42.29 9.96	Continued
	rom starting yea Relative (% o Cond	35.01			-58.76	;	15.37	-47.32	$\frac{-9.79}{12.55}$	38.23 22.50)) 			-34.54						97	30.42		-5.11	0	-30.19 9.96	
	Targeted reduction f Absolute (in MTCO2 eq.) Cond Uncond	22.45			-139.11	:	0.52	-38.17	$\frac{-6.74}{15.69}$	$\frac{31.88}{23.59}$)) •			-12.88						6	4.42		-1.87	1	-627.56 135.20	
revious page	Target Absolute (in Cond	22.45			-115.71		0.52	-30.77	15.69	46.86 23.59)))			-8.13						1	8.70		-1.87	0	-530.95 135.20	
Continued from previous page	Start year emissions (MTCO2 eq)	70.79 1.11 6.86	$\frac{2.80}{24.69}$ 30.43	152.96	83.19	3.60 3.60	3.36 64.83	102.46	$\frac{69.96}{125.05}$	151.71 104.87	15.01	14.23	20.27	12.71	-3.38		120.22	134.18	22.84	27.54	28.80 58.92)))	13.99	1939.66	1440.25 1357.18	
	Can quantify target	Yes	0		Yes	ļ	Yes	Yes	Yes	$_{ m Yes}^{ m Yes}$	}			Yes						ķ	Yes		Yes	, P	Yes	
	Quantified objective specified	Yes No No	No No	N N N N N N	$_{ m Ves}^{ m Vo}$		$_{ m No}^{ m Yes}$	Yes	Yes	$_{ m Yes}^{ m Yes}$	No No	o c	No O	$_{ m Yes}^{ m No}$	S S	No	No O		No.	o Z	res No	No	Yes	No No	Yes Yes	
	Party to the pledge	Yes No No	No No No	$_{ m No}^{ m Yes}$	$_{ m Ne}^{ m No}$	$^{ m N}_{ m N}$	$_{ m No}^{ m Yes}$	Yes	Yes	$_{ m Yes}^{ m Yes}$	SNS SNS	$ m_{Yes}$	ο̈́N;	$_{ m Yes}^{ m Yes}$	No Yes	Yes	$^{ m N}_{ m o}$	Yes	No.	o X X	$_{ m NO}^{ m I}$	Yes	Yes	°N;	Yes Yes	
	Pledge	Paris Kyoto Cope	Kyoto Cope	Paris Kyoto	Cope Paris Kunto	Cope	Paris Kvoto	Cope Domis	Kyoto	Cope Paris	Kyoto	Cope Paris	Kyoto	Cope Paris	Kyoto Cone	Paris	$\overset{ ext{Kyoto}}{G_{00}}$	Cope Paris	Kyoto	Cope F	Faris	Cope	Paris	$\overset{ ext{Kyoto}}{\widetilde{\Omega}}$	Cope Paris	
	Country	Azerbaijan Bahamas, The Bahamas, The	•	Bahrain Bangladesh Bangladash	Dangladesh Bangladesh Barbados	Barbados 	Barbados Belarus	Belarus	Belgium	Belgium Belgium	Belize	Belize Belize	Benin	Benin Benin	Bhutan Bhutan	Bhutan	Bolivia Belicii	Bolivia Bolivia	ઝ,	એ∘	bosnia & Herzegovina Botswana	Botswana	Botswana	Brazil E	Brazil Brazil	

				Co	Continued from previous page	revious page				С
Country	Pledge	Party to the	Quantified objective specified	Can quantify target	Start year emissions (MTCO2 eq)	Targe Absolute (in	Absolute (in MTCO2 eq.) Cond	om starting yez Relative (% o Cond	Fargeted reduction from starting year of pledge tre (in MTCO2 eq.) Relative (% of start emissions) Uncond Cond	Progress with Kyoto Coren (%)
Brunei	Kyoto	No N:	No	0	(F					-C
Brunei Brunei	Cope Paris	$_{ m Ves}^{ m No}$	0 Z Z							ha
Bulgaria	Kvoto	Yes	Yes	No	47.97					gr 8-3.3014
Bulgaria	Cope	Yes	$\overline{ m Yes}$	m Yes	67.02	-7.02	-17.60	-14.24	-35.68	e 8.3237
Bulgaria	$Pa\hat{r}is$	Yes	Yes	Yes	47.89	-0.08	-0.08	-0.17	-0.17	Ρl
Burkina Faso	$\widetilde{\mathrm{K}}\mathrm{yoto}$	oN;	N _o		28.96					ed
	$\overline{\mathrm{Cope}}$	Yes	o N;	,	$\frac{33.06}{1}$:	;		lg€
Burkina Faso	Paris	$\tilde{ ext{Yes}}$	Yes	Yes	32.60	19.43	18.59	59.60	57.04	es,
Burundi	Kyoto	0 Z Z			6.85					A
Burundi Barang di	Cope			Ŋ	1.34					ct
Durumi Cabo Vordo	$\kappa_{ m mot}$	I es		ONI	0.10					io
Cabo Verde	Cone		N N		0.02					$_{ m ns}$
Cabo Verde Cabo Verde	Paris	Zes Ves	Q Z		0.0					s a
Cambodia	Kvoto	No	S Z		53.11					nc
Cambodia	Cope	\hat{Y}_{es}	No		1					d (
Cambodia	Paris	Y_{es}	\hat{Y}_{es}	Yes	33.26	24.79	24.79	47.12	47.12	Οι
Cameroon	Kyoto	$N_{\rm O}$	$ m N_{o}$		196.41					ıtc
Cameroon	Cope	Yes	m No							or
Cameroon	Paris	Yes	m Yes	Yes	137.85	67.13	67.13	34.15	$\frac{34.15}{2}$	$\mathbf{n} \dot{\epsilon}$
Canada	$\overset{ ext{Kyoto}}{G}$	Yes	Yes	Yes	975.74	366.46	366.46	37.56	37.56	17.1222
Canada	Cope	$\overset{ ext{Yes}}{V_{\widehat{c}\widehat{c}}}$	$\overset{ ext{Yes}}{V_{23}}$	$\overset{ ext{Yes}}{ ext{V}_{\widetilde{\mathbb{S}}_{\widetilde{\mathbb{S}}}}}$	900.01	90.15	90.15	10.01	10.01	-5.0093
Canada Control African Don	$rars V_{rroto}$	$\overset{ ext{res}}{\operatorname{NS}}$	$_{ m N}^{ m res}$	res	807.UU 61 13	185.98	183.98	27.77	77.17	
	Cone	NO Ves			61.10					
African	Paris	Yes	Yes	Yes	61.89	-48.58	-48.58	-78.49	-78.49	
	Kyoto	No	No		36.74					
Chad	$\overline{\mathrm{Cope}}$	m Yes	$_{ m o}^{ m N}$!	:	;			;	
Chad	Paris_{V}	Yes	Yes	Yes	52.55	39.20	14.88	74.41	28.26	
Chile	Kyoto			Ž	08.9I					7007
Chile	Cope	$res V_{cc}$	$\overset{\mathrm{res}}{\sim}$		85.48 07.15					-20.7034
China	K_{YO}^{+}		N S	ONT	6057 75					
China	Cone	Yes	Ves Ves	V_{PS}	9712.78	1983 91	1281 37	20.43	13.19	-23 3258
China	Paris	Yes	Yes	m Yes	11600.63	3060.49	1840.32	26.38	15.86	
Colombia	Kyoto	$N_{\rm o}$	$ m N_{o}$		309.04					
Colombia	Cope	Yes	No							
Colombia	$\frac{\text{Paris}}{K_{\text{voto}}}$	$_{ m No}^{ m Yes}$	$_{ m Nc}^{ m Yes}$	Yes	182.39	-85.61	-85.61	-46.94	-46.94	
Comoros	LYDOO	011	ONT		7t:0				Vom time	55 55 55
									Continued	Continuea on next page

Dispress with Kyoto Coffen (%)	-Chan	ge Pl	edges,	Actio	ns an	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	6.4685	10.2714	21,7233	32.4705				Continued on next page
sions)	81.99	82.48	54.18	26.40	39.81	32.92 -4.42 0.52 19.04	72.07	2.08 -23.10 -2.67	-3.86 -7.68	20.43 18.43		-27.15	О	+9.00 Continued
om starting ye Relative (% c Cond	81.99	82.48	54.18	52.45	39.81	32.92 -4.42 0.52 19.04	79.45	2.08 -23.10 -23.10	-3.86 -7.68	32.80 18.43		15.24	77	45.00
vious page Targeted reduction from starting year of pledge Absolute (in MTCO2 eq.) Relative (% of start emis Cond Uncond	0.38	170.52	10.45	0.03	1.01	12.91 -0.73 0.08 3.59	6.07	0.14 -29.08 -3.30	-4.02 11.41	12.72 8.90		-0.41	0.16	0.10
revious page Target Absolute (in Cond	0.38	170.52	10.45	90.0	1.01	12.91 -0.73 0.08 3.59	6.69	0.14 -29.08 15.50	19:93 -4:02 11:41	20.42		0.23	0.16	01:0
Continued from previous page Start year Targ y emissions Absolute (MTCO2 eq) Cond	0.45 0.46 203.27	$208.45 \\ 195.42 \\ 21.30$	$17.78 \\ 19.29 \\ 0.10$	0.07 3.87	5.23 2.53 17.36	37.57 16.40 31.62 18.84 7.38	86.81 8.66 11.04	6.72 125.93 1.77	104.27 104.57 64.56	74.31 48.28	1.17 1.28	1.51	0.77	0.50 19.51 23.73
Can quantify target	Yes	Yes	Yes	Yes	Yes	Yes Yes Yes Yes	m Yes	$_{ m Yes}^{ m Yes}$	$ m _{Yes}^{Yes}$	$Y_{\rm es}^{\rm z}$	3	Yes	\ \ \	r c
Quantified objective specified	$ \begin{array}{c} N_{\rm O} \\ Y_{\rm es} \\ N_{\rm O} \end{array} $	$_{ m No}^{ m No}$	$_{ m No}^{ m No}$	$_{ m Ves}^{ m Vo}$	$_{ m No}^{ m No}$	$egin{array}{c} \operatorname{Yes} & \operatorname{No} & \operatorname{No}$	$egin{array}{c} N_0 \ N_0 \ Y_{\mathrm{es}} \end{array}$	$egin{array}{c} m Yes \ m Yes \ m Ves \end{array}$	Yes	Yes	No No No	$\overset{ ext{Yes}}{\overset{ ext{N}}{\circ}}$		No No
Party to the pledge	No Yes No	$_{ m Ves}^{ m No}$	Yes Yes No	Yes No	$_{ m Ves}^{ m Yes}$	Yes Yes Yes Yes No	$egin{array}{c} No \ Yes \ No \ Yes \end{array}$	Yes Yes	Yes	Yes	S S S S	$\overset{ ext{Yes}}{\overset{ ext{N}}{\sim}}$	$_{ m Yes}^{ m Vo}$	No No No
Pledge	Cope Paris Kyoto	Cope Paris Kyoto	Cope Paris Kyoto	Cope Paris Kyoto	Cope Paris Kyoto	Cope Paris Kyoto Cope Paris Kyoto	Cope Paris Kyoto Cope	Paris Kyoto	Paris Kvoto	Cope Paris	Kyoto Cope	Paris	Nyoto Cope Domis	Kyoto Cope
Country	s S Dem.	Congo, Dem. Rep. Congo, Dem. Rep. Congo, Rep.	Congo, Rep. Congo, Rep. Cook Islands (the)		Costa Rica Costa Rica Cote d'Ivoire	Cote d'Ivoire Cote d'Ivoire Croatia Croatia Cuba	Cuba Cuba Cyprus Cyprus	Cyprus Czech Republic Czech Republic	Czech Republic Czech Republic Denmark	Denmark Denmark	Djibouti Djibouti	Djibouti Deminise	Dominica Dominica Dominica	Dominican Rep. Dominican Rep.

				Co	Continued from previous page	evious page				С
Country	Pledge	Party to the	Quantified objective	Can quantify	Start year emissions	Target Absolute (ir	Absolute (in MTCO2 eq.)	om starting yea Relative (% of	Fargeted reduction from starting year of pledge ite (in MTCO2 eq.) Relative (% of start emissions)	Progress with Kyoto
		$_{ m pledge}$	specified	$_{ m target}$	(MTCO2 eq)	Cond	Uncond	Cond	Uncond	Co g en (%)
Dominican Rep.	$\underset{r'}{\operatorname{Paris}}$	Yes	$Y_{\mathbf{x}'}$	$Y_{\mathbf{s}'}^{\mathrm{es}}$	24.41	6.61	6.61	27.09	27.09	-C
EU28	Kyoto	Yes	Yes	Yes	4556.48	2.69	2.69	0.00	0.06	0010.0 10.0156
EU28	Cope	$\sum_{i=1}^{i} \sum_{j=1}^{i} x_{ij}$	$\overset{ ext{Yes}}{\sim}$	Xes V	5407.85 2697.89	650.94 654.05	654 654 05	14.01 18.07	14.01	cscs.In
EC 20	raris	res N	res VI-	I GS	3024.02 77 0F	004.30	004.90	10.01	10.07	ge
Ecuador	hyoto G	0 N N	ON N		61.95					e F
Ecuador	Cobe	ON	ON	į	87.00					Pl€
	Faris	Yes	Yes	No	41.65					ed
Egypt, Arab Kep.	$\overset{ ext{Kyoto}}{\widetilde{\Omega}}$	0 N;	0 N 2		2.76.98					ge
Egypt, Arab Kep.	Cope	Yes	o No							es,
Egypt, Arab Rep.	Paris	Yes	No							, <i>I</i>
El Salvador	Kyoto	$_{ m No}$	m No		13.04					Αc
El Salvador	Cope	$ m N_{o}$	m No		12.91					ti
El Salvador	Paris	Yes	$ m N_{o}$							oı
Equatorial Guinea	Kvoto	$ m N_{o}$	No		24.92					ıs
Equatorial Guinea	Cope	No	No		25.72					a
Equatorial Guinea	Paris	Yes	Yes	Yes	25.94	5.36	5.36	20.67	20.67	nc
Eritrea	Kvoto	N _o	No		7.08					l (
Eritrea	Cope	Yes	SN)					Эι
Eritrea	Paris	Y_{es}	\hat{Y}_{es}	Yes	7.42	5.82	2.41	78.55	32.55	1te
Estonia	Kvoto	Yes	Ves	Yes	28.20	-10.83	-10.83	-38.39	-38.39	0.3018
Estonia	Cope	Yes	Yes	Yes	25.29	-6.40	-10.93	-26.41	-45.09	U 0 0857
Estonia	Paris	Yes	Ves	Ves	26. <u>2</u> 5	1 80	1 80	7.16	7.16	e
Ethiopia	Kvoto	S Z	N.	3	193.40	7.00	7.00	07:1	01:-	
Lunopia Dthicais	Coro		N _o		146.06					
Etinopia D≠bio≋io	Cope	res Vec		$V_{\alpha\beta}$	140.00	96 19	96 19	34 46	37 76	
Linopia Mississis	r arrs 17	I GS	I GS	I CES	147.70	00.10	00.10	74.40	24.40	
Micronesia Micronesia	Note Cons		NO NO		0.10					
Microposis	Domis	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) V	Voc	0.14	0.07	90 0	78 17	49.99	
Iviter Official	K_{10}	N N	No.	7 (2)	0.10	10.0	0.00	11.01	77:77	
т. 1 <u>1</u> П	Cone	Q Z	ON N		20.0					
1.1.1 1.1.1	Paris	Ves	Ves	$V_{\Theta S}$	10:1	-0 68	89 0-	88 11	88 11	
Finland	Kvoto	Ves	Ves	Ves	53.90	4 77	4 77	. x . x . x	x x x	-27 0559
Finland	Cone	Ves	Ves	ςς. Υσε	80.88 80.88	08 d0	9E 06	7. 7. 7.	36.31	25.0003 27.0003 27.0003
Finland	Parie	Z-C-S	Vec	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	65.00	39.36 39.36	39.36 39.36	70 60	10:01 10:60	70.000
France	K_{VO}^{+}	3 2	5 N	3 S	120.00	26.50	78.87	11 63	11.63	
Figure	Nyoto Cons		Z Z	res S	420.04 707 07	16161	101 09	-11.05	-11.03	
France	Cope	res V	$\Gamma_{\rm es}^{ m res}$	res Ves	000.00 224.90	101.04	101.02 60.6E	09.47	24.07	
Fialice	raiis	I CS	I GS	IES	004.70	03.00	03.00	50.0 4	70.07	
Gabon	$\overset{\mathbf{K}}{\widetilde{\mathbf{M}}}$	ov;	ON 2		0.30					
Gabon	Cope Foot	Yes	oN;	į	000					
Gabon	Faris	Yes	Yes	NO	-80.90					5
									Continued	Continued on next page

	Wit Co	-Cł	nan	ıge					Ao					10	ut	co		9											91 1002	Z1.1097 0 3011	
	ng year of pledge (% of start emis) Uncond		73.72		-99.30	4.17	-1.12	30.94		-62.97	0.97	55.57 -21.43	i				5.92		30.51											68.6	-3.82 -20.03 -
	ion from startir eq.) Relative Cond		73.72				$\frac{13.82}{50.01}$			-5.45	0.97	40.21 -21.43	1				18.60		30.51	10.00											-20.03
nage	Targeted reduction from starting year of pledge Absolute (in MTCO2 eq.) Relative (% of start emissions) Cond Uncond		5.49				0 -9.87					3 -17.88					2.27		9.21	1											$\frac{-2.55}{2}$
Continued from previous page	year T ions Absolu)2 eq) Cond	09	9 5.49	∞,			121.40		20			.55 41.44 44 -17.88		9.	O S	00	40 7.14	98	33 9.21		31	7	22	,		5 rči	76	30	47		00 -12.22
Continued	Can Start year quantify emissions target (MTCO2 eq.	5.60	Yes 7.69	8.1			Yes 1040.28			Yes 38.57		$\frac{1}{2}$ Yes $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$			NO 40 60	40.4	Yes 38.40	26.8	Ves 28	3.64	3.3	18,	12.22	J	7.61	No 8.4					$\frac{1}{2}$
	Quantified objective qu specified t	N N	Yes	0 ° ° Z	m Yes	Yes	$Y_{\mathbf{x}'}$	$_{ m No}^{ m Yes}$	No No	Yes	$\sum_{\mathbf{V} \in \mathcal{L}} \mathbf{V}$	$Y_{ m es}^{ m res}$	No	$_{ m o}^{ m No}$	$\overset{ ext{res}}{\overset{ ext{N}}{\circ}}$	ON ON	Yes	°Z	No Ves	No	No.	0 Z Z	$ m N_{o}$	°N;	o V V	$Y_{\rm es}$	No	°N;	Yes	$ m ^{res}_{ m Vos}$	m Yes
	Party to the pledge	No No No No	Yes	0 V V	Yes	Yes	Yes	Yes	Yes	Yes	$\sum_{i=1}^{N}$	zes Kes	No	°N'	$\overset{ ext{res}}{ ext{N}}$	o Z	Yes	o No	res Ves	No	No	Yes No	No No	Yes	o N N	Yes	No	oN;	Yes	S cs C res	Yes
	Pledge	Kyoto Cone	Paris	Kyoto	Cope Paris	Kyoto	Cope	Faris Kwoto	Cope	Paris	Kyoto	Cope Paris	Kyoto	Cope	Farts	Nyoto Cone	Paris	$\operatorname*{Kyoto}_{\widetilde{G}}$	Cope Paris	Kyoto	Cope	F_{aris}	Cope	Paris	Kyoto	Paris	Kyoto	Cope	Paris V-174	Nyoto Coro	Paris
	Country	Gambia, The Gambia, The		Georgia	Georgia Georgia	Germany	Germany	Germany Chana	Ghana	Ghana	Greece	Greece	Grenada	Grenada	Grenada Guetamele	Guatemala	Guatemala	Guinea	Guinea	Guinea-Bissau	Guinea-Bissau	Guinea-Bissau Guireae	Guyana	Guyana	Haiti Heiti	Haiti	Honduras	Honduras	Honduras	nungary	Hungary

Dingress with Kyoto Coffen (%)	41.2264 41.2264	ange I	7005 7180 71800 71	Actions	O bur 3.8135	utcome	2	-5.0496 -0.0939		-30.6793		Continued on next page
g year of pledge (% of start emissions) Uncond	22.95 32.85	19.40 -68.64	-9.44 14.10		$\begin{array}{c} 15.69 \\ 49.32 \\ 17.30 \end{array}$	1.82 36.02 18.37 26.66	4.96	17.59 -12.27 23.81	-32.44	$0.12 \\ 2.22$		Continued
IE a	22.95 32.85	24.44 -63.61	-9.44 31.51		15.69 59.85 17.30	1.82 36.02 18.37 39.86	4.96	17.59 -12.27 23.81	-13.19	$0.12 \\ 13.52$		
vious page Targeted reduction f Absolute (in MTCO2 eq.) Cond	$0.64 \\ 0.90$	479.03 -2198.14	-188.22 348.58		$\begin{array}{c} 10.80 \\ 27.45 \\ 10.08 \end{array}$	1.59 31.49 96.11 118.60	18.29 -4.94	222.41 -132.95 314.83	-10.51	$0.35 \\ 6.48$		
revious page Target Absolute (in Cond	0.64 0.90	603.38 -2036.93	-188.22 778.93		$\begin{array}{c} 10.80 \\ 33.31 \\ 10.08 \end{array}$	$ \begin{array}{c} 1.59 \\ 31.49 \\ 96.11 \\ 177.31 \end{array} $	18.29	222.41 -132.95 314.83	-4.27	$0.35 \\ 39.47$		
Continued from previous page Start year Targ y emissions Absolute (MTCO2 eq) Cond	2.78	$1805.11 \\ 2469.01 \\ 3202.31 $	$1748.60 \\ 1994.78 \\ 2471.64 \\ 565.91 \\ 670.47$	800.68 172.41 229.62 29.4	68.84 74.31 58.27	74.53 87.19 90.74 523.18 588.26	368.82 13.26 9.76 7.36	$\begin{array}{c} 1264.30 \\ 1083.31 \\ 1322.05 \\ 24.48 \end{array}$	32.40	283.68 286.86 2.86.86	-0.30 27.85 29.29 0.07	0.08
Can quantify target	Yes Yes	$_{ m Yes}^{ m Yes}$	$_{ m Yes}$	N N	Yes Yes Yes	Yes Yes Yes	Yes Yes	$_{ m Yes}^{ m Yes}$	Yes	$_{ m Yes}^{ m Yes}$	$N_{\rm O}$	
Quantified objective specified	Yes	$_{ m Yes}^{ m No}$	$egin{array}{c} No \ Yes \ No \ N$	$ ho_{ m No}^{ m Yes}$	$egin{array}{c} m Yes \ m Yes \ m Yes \ m Ves \ m N_{\odot} \end{array}$	$egin{array}{c} m Yes \ m $	$ ho_{ m No}^{ m Yes}$	$\begin{array}{c} {\rm res} \\ {\rm Yes} \\ {\rm Ne} \\ {\rm No} \end{array}$	$_{ m No}^{ m No}$	Yes Yes	$_{ m No}^{ m No}$	No
Party to the pledge	Yes	$_{ m Yes}^{ m No}$	$_{ m No}^{ m No}$	Yes No No	Yes Yes	Yes Yes Yes	Yes No Yes	$_{ m Yes}^{ m Yes}$ $_{ m No}^{ m Yes}$	$ m _{Kes}^{Kes}$	Yes	$_{ m No}^{ m No}$	No
Pledge	Cope Paris	Kyoto Cope Paris	Kyoto Cope Paris Kyoto Cope	Paris Kyoto Cope Paris	Kyoto Cope Paris	Ayoto Cope Faris Kyoto Cope	Faris Kyoto Cope Paris	Kyoto Cope Paris Kyoto	Cope Paris Kweto	Cope Paris	Ayoto Cope Paris Kvoto	Cope
Country	Iceland Iceland	India India India	Indonesia Indonesia Indonesia Iran, Islamic Rep. Iran, Islamic Rep.	Iran, Islamic Rep. Iraq Iraq Iraq	Ireland Ireland Ireland	lsrael Israel Italy Italy	Italy Jamaica Jamaica Jamaica	Japan Japan Japan Jordan	Jordan Jordan Karabhetan	Kazakhstan Kazakhstan	Kenya Kenya Kenya Kirihati	Kiribati

				Co_1	Continued from previous page	evious page				C
Country	Pledge	Party to the pledge	Quantified objective specified	Can quantify target	Start year emissions (MTCO2 eq)	Target Absolute (in Cond	Targeted reduction fi Absolute (in MTCO2 eq.) Cond Uncond	om starting yes Relative ($\%$ or Cond	Fargeted reduction from starting year of pledge to (in MTCO2 eq.) Relative (% of start emissions) Uncond Cond Uncond	Progress with Kyoto Copen (%)
Kiribati Korea, DPR Korea, DPR. Korea, DPR	Paris Kyoto Cope Paris	Yes No No No	No No No No	Yes	0.06 114.18 108.22 83.02 504.45	-68.52	-68.52	-86515.27	-86515.27	-Change
Notea, Arp. Korea, Rep. Kosovo Kosovo Kosovo	Ayoto Cope Kyoto Cope Paris	$egin{array}{c} Yes \ Yes \ No \ N$	$_{ m No}^{ m Kes}$	$_{ m Yes}^{ m Yes}$	596.94 671.19	70.47 251.52	70.47 251.52	$\frac{11.81}{39.82}$	11.81 39.82	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
	Kyoto Cope Paris	No Yes			173.95 187.25					Action
Kyrgyz Republic Kyrgyz Republic Kyrgyz Republic Lao PDR Lao PDR	Kyoto Cope Paris Kyoto Cope Paris	$egin{array}{c} m No \\ m No \\ m No \\ m No \\ m Vo \end{array}$	$_{ m NO}^{ m Kes}$	$_{ m Yes}^{ m No}$	7.55 26.18 14.35 27.63 32.91	4.00	1.08	27.89	7.51	s and Out
Jatvia Jatvia Jatvia Jebanon Jebanon	Kyoto Cope Paris Kyoto Cope	$egin{array}{c} Y_{\mathrm{es}}^{\mathrm{c}} \ Y_{\mathrm{es}}^{\mathrm{c}} \ N_{\mathrm{o}} \ N_{\mathrm{o}} \ \end{array}$	Yes Yes No No	$_{\rm Yes}^{\rm Yes}$	11.23 16.52 1.84 19.33 23.82	-4.12 -3.99 -8.71	-4.12 -6.92 -8.71	-36.73 -605.36 -472.36	-36.73 -1049.91 -472.36	34.6417 = 12.1852
Lebanon Lesotho Lesotho Liberia	Paris Kyoto Cope Paris Kyoto	Yes No Yes No	$egin{array}{c} Y_{ m es}^{ m c} \ N_{ m O} \ S_{ m es} \ S_{ m $	N N N	28.59 3.96 4.14 4.35 16.60					
Liboria Libya Libya Libya Licchtenstein Licchtenstein	Paris Kyoto Cope Paris Kyoto Cope	Kes Kes Kes Kes	Kes Kes Kes Kes	Yes No No No	1.52 121.14 139.58 133.67 0.08	-2.98	-2.98	-85.01	-85.01	
Lithuania Lithuania Lithuania	Kyoto Cope Paris	Yes Yes Yes	Yes Yes Yes	$Y_{\rm es}$ $Y_{\rm es}$ $Y_{\rm es}$	24.33 25.03 19.47	-19.32 -10.55 -2.67	-19.32 -15.63 -2.67	-79.40 -49.42 -13.71	-79.40 -73.24 -13.71	16.5011 -4.3121
									Continued	Continued on neat page

C.	Pingress with Kyoto Copen (%)	-Cha	$_{ m nge}$	Pl	ledg	ges,	A	ctio	ons	an	.d (Эu	ıtc	om	e				8 5798	12.5209	0	$\frac{4.9136}{71179}$	6/11./-						(Continued on next page
	Fargeted reduction from starting year of pledge ite (in MTCO2 eq.) Relative (% of start emissions) Cond			-4.84		66.73		-85.22						87.33					88	27.70	$\frac{27.37}{2}$	31.75	29.03 26.99	0000						Continued
	rom starting yee Relative (% o Cond			-4.84		66.73		-44.77						87.33					× × ×	38.79	$\frac{27.37}{2}$	$\frac{31.75}{90.00}$	29.03 26.99	0000						
	Targeted reduction f Absolute (in MTCO2 eq.) Cond Uncond			-3.17		2.29		-68.37						17.17					18 14	55.75	49.64	$\frac{19.98}{16.74}$	10.74 16.29	01						
evious page	Targe Absolute (i Cond			-3.17		2.29		-35.92						17.17					18 14	78.08	49.64	$\frac{19.98}{16.74}$	10.74 16.29	01.01						
Continued from previous page	Start year emissions (MTCO2 eq)		49.46	40.86	2.53	3.89 53.65	09.00	$\frac{80.22}{\tilde{90}}$	60.71 59.19	170 40	1.0.48 186.70		$\frac{19.47}{66.48}$	$20.42 \\ 19.66$	0.07	0.05	60.63	39.14	205 78	234.37	181.33	62.93	50.54 60.34	42.21	42.74	14.74	21.26	26.00 29.52	443.65	
	Can quantify target	O O O)	Yes		Yes		Yes						Yes					$V_{\Theta S}$	$\widetilde{ m Yes}$	$\overset{ ext{Yes}}{ ext{.}}$	Yes	res Ves	3				Z	2	
	Quantified objective specified	$Y_{ m es}$ $Y_{ m es}$	No No	Y_{es}	8 N	m Yes	S S	Yes	$\overset{ m N}{\overset{ m N}{ m N}}$	$_{ m N_o}^{ m N_o}$	o o N N	No	o N N	$_{ m Yes}$	No	0 Z	No No	oN.	$_{ m No}^{ m No}$	m Yes	Yes	Yes	Yes Yes	S N	No No	°Z;	o N Z	$_{ m No}^{ m No}$	No	
	Party to the pledge	Yes Yes Yes		Yes	S S S	m Yes	No Yes	Yes	o o XX	$\operatorname{Yes}_{\mathbf{M}_{\mathbf{s}}}$		Yes	%Z	$_{ m Yes}$	No.	oN Se	No	No	$_{ m Ves}^{ m Yes}$	Yes	Yes	Yes	Yes Yes	No.	No No	No No	o Z Z		No	
	Pledge	Kyoto Cope Paris	Kyoto	Cope Paris	Kyoto Cone	Paris V.m.t.	Cope	Paris	Kyoto Cope	Paris	Nyoto Cope	Paris	$\operatorname*{Kyoto}_{\widetilde{G}}$	Cope Paris	$\widetilde{\mathrm{Kyoto}}$	Cope Paris	Kvoto	Cópe	Faris Kvoto	Cope	Paris	Kyoto	Cope Paris	Kvoto	Cope	Paris	$\overset{ ext{Kyoto}}{\widetilde{\Omega}}$	Cope Paris	Kyoto	,
	Country	Monaco Monaco Monaco	Mongolia Mongolia	Mongolia	Montenegro Montenegro	Montenegro	Morocco	Morocco	Mozambique Mozambique	Mozambique	Myanmar Myanmar	Myanmar	Namibia	Namibia Namibia	Nauru	Nauru Nauru	Nepal Nepal	Nepal	Nepal Netherlands	Netherlands	Netherlands	New Zealand	New Zealand New Zealand	Nicaragua	Nicaragua	Nicaragua	Niger	Niger Niger	Nigeria)

				C_{O}	Continued from previous page	revious page				С
Country	Pledge	Party to the pledge	Quantified objective specified	Can quantify target	Start year emissions (MTCO2 eq)	Targe Absolute (ii Cond	Targeted reduction fr Absolute (in MTCO2 eq.) Cond Uncond	om starting yea Relative (% of Cond	Fargeted reduction from starting year of pledge tre (in MTCO2 eq.) Relative (% of start emissions) Uncond Cond	Progress with Kyoto Copen (%)
Nigeria Nigeria	Cope Paris	No Yes	No Yes	No	461.16 492.44					-Ch
Niue	Kyoto	$\overset{ ext{No}}{\overset{ ext{No}}{\circ}}$	$\overset{ ext{No}}{\circ}$		0.08					anş
Niue	Paris	$ m_{Yes}$	No No		۲. ۲۰:۵					ge l
Norway	$\widetilde{\mathrm{Kyoto}}$	Yes	Yes	Yes	27.03	-4.44	-4.44	-16.41	-16.41	JS 1873
Norway	Cope Paris	Yes	$_{ m Ves}^{ m Yes}$	$_{ m Ves}^{ m Yes}$	26.62 24.94	7.93 6.25	4.81 5.55	29.78 25.05	18.08 8.08 8.08	c0c6.7.ed€
ivorway Oman	Kvoto	No No		r co	64.88	0.4.0	0.70	60.07	20.02	${ m ges}$
Öman	Cope	No	No		84.60					S, 1
Oman	Paris	Yes	Yes	Yes	104.73	16.01	16.01	15.06	15.06	Ac
Fakistan Pakistan	Kyoto Cope	o N N	0 0 Z Z		$284.03 \\ 329.18$					tioı
Pakistan	Paris	Yes	No							$_{ m ns}$
Palau	$\widetilde{\mathrm{Kyoto}}$	N;	oN.		0.14					ar
Palau E	Cope	o N;	No Y	ř	0.27	0	0	0	7	ıd
Palau Delectice	Paris V	$\overset{ ext{Yes}}{\overset{ ext{N}}{\circ}}$	$\overset{ ext{Yes}}{\overset{ ext{NL}}{\sim}}$	Yes	0.28	0.06	0.06	14.09	14.09	Ο
Falestine Palestine	Nyoto Cono									ut
r aresome Palestine	Paris	No No	S N							co
Panama	$\widetilde{\mathrm{K}}\mathrm{yoto}$	No No	o.		22.03					me
Panama	Cope Parië	o N N	ON V		24.00					ò
ranama Papua New Guinea	Falls Kvoto	S N N			65.66					
	Cope	Yes	Yes	Yes	74.24	65.24	65.24	87.88	87.88	-27.3768
Papua New Guinea	Paris	Yes	No No		1					
Paraguay Dangguay	Kyoto	No No			102.75					
r araguay Paraguay	Cope Paris	Yes	Yes	Yes	183.23	-149.57	-191.17	-81.63	-104.33	
Peru	Kyoto	No	No	!	110.98					
Peru	Cope P	Yes	°Z;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		000	100	000	00	
Feru Bi ::	Faris	Yes	Yes	Yes	101.51	04.00	50.03	39.02	31.00	
Fullippines Dhilippines	Ayoto	NO NO			155.70 184 56					
r minppines Philippines	Cope	Ves	Ves	$V_{\Theta S}$	68 17	-54 80	-54.80	-45 16	-45 16	
Poland	Kvoto	$Y_{\rm es}$	Yes	No No	343.81					0.6898
Poland	$\mathring{\mathrm{Cope}}$	Yes	Yes	Yes	423.56	111.01	66.36	41.22	24.64	-1.6672
Poland	Paris	Yes	Yes	Yes	327.80	8.05	8.05	2.46	2.46	
Portugal	Kyoto	Yes	Yes	Y_{es}	88.42	$\begin{array}{c} 14.71 \\ 97.59 \end{array}$	14.71	$\frac{16.63}{77.40}$	16.63	26.2474
Fortugal	Cope	res	res	res	83.94	37.08	31.07	57.49	47.40	800/:16
									Continued	Continued on n ex t page

C	Progress	_	-Ch	ıan	ge	P	leo	6 32.4512	$^{ m a}_{ m a}$, <i>A</i>	1.7815 7.7815		$_{ m ns}$	an	nd	Ο	ut	co	\mathbf{m}	e														-0.6313	(Continued on next page
	g year of pledge	o or start emissions Uncond	-15.85			1046.67	-36.77	•	-62.39	340.44	-50.32	-55.55 52.31	 									7 18	4.10				17.90	00.11-		-16.25				86 1/6_		Continue
	rom starting	_	-15.85			1046.67	-36.77		-40.10	340.44	-50.32	-17.08 60.26)									116	4.10				37 6	0¥.7		-16.25				86 76	1	
	Targeted reduction from starting year of pledge	n M I CO2 eq.) Uncond	-10.04			-60.47	-18.42		-69.79	-187.16	-1080.32	-080.40 1061.95										0.01	0.01				70.3	14:0-		-0.09				71.01	21	
revious page	$\operatorname{Targe}_{\Lambda_{E_{0}}\cap \Pi_{1}+0}$	Absolute (1. Cond	-10.04			-60.47	-18.42		-44.85	-187.16	-1080.32	-505.75 1223.31										0.01	0.01				72	0.1.0		-0.09				1015	1	
Continued from previous page	Start year	(MTCO2 eq)	63.35 45.07	69.54	20.00	59.90 -5.78	50.10	134.88	129.73	-54.98	2146.98	2030.73	-4.12	5.94	Č	0.31	-0.09				0.14	$0.46 \\ 0.10$	0.19 9E0 70	330.70 482.79) • • •	$\frac{28.32}{24.92}$	$\frac{31.02}{20.45}$	0.40 0.75	0.51	0.56	10.27		700	42.64 50.01	52.42	
	$\operatorname{Can}_{\widetilde{\alpha}}$	quantiny target	Yes			Yes	Yes	No	Yes	Yes	$\sum_{i=1}^{N}$	Yes Yes								m No		202	res				2	r co		Yes				Voc	$N_{\rm o}$	
	Quantified	objective	Yes	N _o		No Yes	Yes	Yes	Yes	$\tilde{\lambda}$ es	Yes	Yes Yes	No	o N	°Z;	o Z		QZ Z	No	Yes	S,	No Ko	res N	o c	No	S.	No No	S N	No.	$\tilde{ m Yes}$	$ m N_{o}$	S,	0 Z Z		Yes	
	Party $_{t_{0}}$	o tne pledge	Yes No	$_{ m No}$	$_{ m N}^{ m res}$	No Yes	Yes	Yes	Yes	Yes	$\sum_{i=1}^{N}$	Zes Zes	No	oN;	Yes	oZ Z		S N	Yes	Yes	No No		res M	S Z	Yes	ν,		N S N	No No	Yes	N_{0}	Yes	Yes		Yes	
	Dlodes	Fledge	Paris Kvoto	Cope	F_{100}^{2}	Cope	Paris	Kyoto	$\dot{\text{Cope}}$	Paris	Kyoto	Cope Paris	Kyoto	Cope	Paris	Kyoto	Cope	Kvoto	Cope	Paris	$\widetilde{\mathrm{K}}$ yoto	Cope	raris V	Cope	Paris	$\operatorname*{Kyoto}$	Cope	Kvoto	Cope	Paris	Kyoto	Cope Sope	Faris	Nyoto Cone	Paris	
	00000	Country	Portugal Oatar	Qatar Qatar	Vatar Domitio of Contrib				Romania	Romania	Russian Federation	Russian Federation Bussian Federation	Rwanda	Rwanda	Rwanda	Samoa	Samoa	San Marino	San Marino	San Marino	Sao Tome & Principe	Sao Tome & Principe	Sao Tome & Frincipe	Saudi Arabia Saudi Arabia	Saudi Arabia	Senegal	Senegal Senegal	Severbelles	Sevchelles	Seychelles	Sierra Leone	Sierra Leone	Sierra Leone	Singapore Singapore	Singapore	•

C	Progress with Kyoto	Coffen (%)	78.5027 03.8865	a na	ਜ਼ੌ37.6560	-13.0695	Ρl	ec	lge	es,	Α	ct	io	n	0-2.0023	ın	d	О)u	\mathbf{tc}	OI.	n€	,																		Continued on next nage	of Long Lab
	Fargeted reduction from starting year of pledge ite (in MTCO2 eq.) Relative (% of start emissions)	Uncond	-38.64	-10:12		68.28	27.38			85.53				0	8.80				(($\frac{31.38}{2}$	55.54	-2.37						-39.07		(-14.84			-59.71							Continued)
	om starting ye Relative (%	Cond	-38.64	-0.43		86.87	27.38			85.53				0	8.80				0	$\frac{31.38}{2}$	66.45	-2.37						-39.07		(-14.84			-59.71								
	Targeted reduction fr Absolute (in MTCO2 eq.)	Uncond	-14.56	-0.13		7.63	2.86			2.18				00 07	45.52				0	$\frac{118.35}{11}$	170.48	-6.46						-0.15		1	-0.I7		;	-0.17								
evious page	Targete Absolute (in	Cond	-14.56	-0.14		9.70	2.86			2.18				00 01	45.52				1000	$\frac{118.35}{2}$	203.97	-6.46						-0.15		1	-0.17			-0.17								
Continued from previous page	Start year emissions	(MTCO2 eq)	37.69	33.02	8.94	24.24	10.46	2.15	2.15	$\frac{2.18}{3.18}$	$\frac{42.12}{52.95}$	37.98	7.0 0.17	453.34	492.05				((1 1	$\frac{377.20}{20}$	$\frac{438.39}{628.39}$	272.67	41.60	39.51	39.42	0.26	0.42	0.39	$\frac{1.05}{0.00}$	1.34	0.41	0.24	0.47	0.29	412.79	344.83	,	6.96	96.9	00 6	7.30	
Con	Can quantify	target	Yes	Zes Z	No	Yes	Yes			Yes				7	Yes				,	Yes	Yes	Yes		,	$ m N_{o}$!	Yes		,	Yes		,	Yes								
	Quantified objective	specified	Yes	Yes	Yes	Yes	Yes	m No	$N_{ m o}$	Yes	o N S	0 0	NO	ON's	$ m_{N_{\hat{s}}}$	NO N	No No	oN;	oZ;	Yes	Yes	Yes	oN;	oN:	$ m ar{ m Yes}$	$ m N_{0}$	No	$ar{ ext{Yes}}$	o N	oN;	Yes	o No	oN:	Yes	No	oN;	oN;	o No	o No	0 (Z Z	ONT	
	Party to the	pledge	Yes	Zes Kes	Yes	Yes	Yes	$N_{\rm o}$	$_{ m No}$	Yes	o Z Z		res		res Vec	i i	0 2 2	oN;	Yes	Yes	Yes	Yes	oZ;	o N	$ m ar{ m Yes}$	$ m N_{o}$	o No	$ m ar{ m Yes}$	o N	oN;	Yes	o No	o N	Yes	o N	o Z;	Yes	o Z;	o N;	$_{ m N_{ m o}}^{ m Yes}$	ONT	
	Pledge)	Kyoto	Paris	Kyoto	Cope	Paris	Kyoto	m Cope	Paris	$\overset{ ext{Kyoto}}{\widetilde{\Omega}}$	Cope	Faris	Ayoto	Cope	raris 174-	Nyoto	Cope	Paris	$\widetilde{ ext{Kyoto}}$	Cope	Paris	$\widetilde{ ext{Kyoto}}$	$\bar{\text{Cobe}}$	Paris	Kyoto	$\overline{\mathrm{Cope}}$	Paris	$\widetilde{\mathrm{Kyoto}}$	Cope Cope	Paris	$\operatorname*{Kyoto}$	$\overline{\mathrm{Cobe}}$	Paris	m Kyoto	Cope	Paris	$\widetilde{\mathrm{Kyoto}}$	Cope	Paris	Nyoro	
	Country)	Slovak Republic	Slovak Republic	Slovenia	Slovenia	Slovenia	Solomon Islands	Solomon Islands	Solomon Islands	Somalia :	Somalia Semalia	Somana G1- A f.:	South Africa	South Africa				South Sudan	Spain	Spain	Spain			Lanka	Kitts &		Kitts &	_	_	St. Lucia	St. Vincent	and the	Grenadines	Sudan	Sudan	Sudan	Suriname	Suriname	Suriname	Swazilaliu	

Pledge Cope Cope Cope Cope Cope Cope Cope Co	Party to the pledge Yes Yes Yes Yes Yes Yes Yes Yes No	Quantified objective specified No Yes Yes Yes Yes Yes Yes No	Can quantify target Yes Yes Yes Yes Yes Yes	Start year Targ emissions Absolute (MTCO2 eq) Cond 12.16 -37.51 80.42 19.17 46.91 39.62 51.88 5.94 49.61 14.65 46.15 21.18 87.58 88.24 62.20	Target Absolute (in Cond -37.51 19.17 5.94 14.65	Absolute (in MTCO2 eq.) Cond Uncond -37.51 -37.51	Selative (% of Cond Cond -308.47	Targeted reduction from starting year of pledge to (in MTCO2 eq.) Relative (% of start emissions) Cond Uncond Uncond 1 -37.51 -308.47 -308.47	Pugress with Kyoto Coffen (%)
land Cope Paris Ryoto and China Ryoto Cope Paris Parland Cope Paris Parland Cope Paris Paris Paris Paris Ryoto Cope Paris Ryoto Cope Paris Stan Cope Paris Stan Cope Paris Paris And Cope Paris	ledge Yes Yes Yes No No No No No No No No No No No No No	specified No No Yes Yes Yes No	Yes	(MTCO2 eq) 12.16 80.42 46.91 51.88 49.61 46.15 87.58 88.24 62.20	Cond -37.51 19.17 39.62 5.94 14.65	Uncond -37.51	Cond -308.47	Uncond -308.47	Coppen (%)
land Cope land Faris n Expoto n Cope strand Ryoto carland Cope strand Ryoto Cope n, China Ryoto Cope n, China Ryoto Cope stan Cope Stan Cope Stan Cope nia Ryoto Cope nia Ryoto Cope stan Cope nia Ryoto Cope stan Cope nia Ryoto Moto Moto Moto Moto Moto Moto Moto	$\begin{pmatrix} \kappa_{\rm c} & \kappa_$	$\begin{array}{c} N_{\rm NO} \\ Y_{\rm es} \\ N_{\rm NO} \\ N_{\rm$	$\begin{array}{c} Yes \\ Yes \\ Yes \\ Yes \\ Yes \\ Yes \end{array}$	12.16 80.42 46.91 51.88 49.61 46.15 87.58 88.24 62.20	-37.51 19.17 39.62 5.94 14.65	-37.51	-308.47	-308.47	 -Cl
range of the property of the p	$ \begin{array}{c} \text{NS} & \text{SS} & \text{SS} \\ \text{NS} & \text{SS} & \text{SS} \\ \text{NS} & \text{NS} & \text{NS} \\ \text{NS} & \text{NS} \\ \text{NS} & \text{NS} & \text{NS} \\ \text{NS} & \text{NS} & \text{NS} \\ \text{NS} $	$ \begin{array}{c} X \\ X \\$	Yes Yes Yes Yes Yes	12.16 80.42 46.91 51.88 49.61 46.15 87.58 88.24 62.20 7.13	-37.51 19.17 39.62 5.94 14.65	-37.51	-308.47	-308.47	
and Cope Paris Frand Cope Paris Frand Cope Paris Frand Cope Paris Frand Franco Cope Paris Paris Paris Frand Cope Paris Frand Cope Stan Cope Franco Cope Stan Frand Cope Franco Cope Franco Cope Paris	$ \begin{array}{c} \text{NN} & \text{NN} \\ \text{NN} $	$egin{array}{c} Y_{\mathrm{GS}} & $	Yes Yes Yes Yes Yes	80.42 46.91 51.88 49.61 46.15 87.58 88.24 62.20 7.13	19.17 39.62 5.94 14.65	1 () 1		-294.3839
erland Kyoto erland Cope erland Cope erland Ryoto Cope Ryoto Cope n, China Kyoto n, China Cope n, China Cope estan Cope estan Ryoto mia Ryoto mia Ryoto mia Ryoto mia Ryoto mia Ryoto mia Cope estan Cope estan Cope estan Cope estan Ryoto mia Cope	$egin{array}{c} \chi_{\mathrm{cs}} & $	$egin{array}{c} \chi_{ m GS}^{ m Kes} \ \chi_{ m GS}^{ m Kes} \ \chi_{ m NO} \ \chi_{ m $	Yes Yes Yes	46.91 51.88 49.61 46.15 87.58 88.24 62.20 7.13	39.62 5.94 14.65	10.42	35.15	19.11	516.4064
erland Kyoto erland Cope erland Paris Kyoto Cope Paris n, China Kyoto n, China Cope estan Cope stan Cope stan Cope stan Cope stan Cope mia Paris nia Cope Muia Kyoto mia Cope extan Cope stan Cope stan Cope stan Cope mia Kyoto mia Cope	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} X_{ m KeS}^{ m KeS} \ X_{ m NO}^{ m NO} \ NO $	Yes Yes Yes	51.88 49.61 46.15 87.58 88.24 62.20 7.13	5.94 14.65	39.62	84.45	84.45	e :
erland Cope erland Faris Kyoto Cope Paris n, China Kyoto n, China Cope stan Cope stan Cope stan Cope stan Cope stan Cope mia Kyoto Myoto Mia Kyoto Mia Cope Mia Cope Mia Cope Mia Cope	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Yes	49.61 46.15 87.58 88.24 62.20 7.13	14.65	5.94	11.44	11.44	Ρl
erland Faris Kyoto Cope Paris n, China Kyoto n, China Cope n, China Paris stan Cope stan Kyoto stan Kyoto stan Kyoto mia Faris nia Cope mia Kyoto mia Kyoto mia Kyoto mia Cope mia Kyoto	$egin{array}{cccc} { m Kg} { m S} { m NN} { $	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Yes	46.15 87.58 88.24 62.20 7.13	0	99.6	29.53	19.46	ec
Kyoto Cope Paris n, China Kyoto Cope n, China Cope Stan Cope Stan Cope Stan Cope Stan Cope Stan Cope Mia Cope Mia Cope Mia Kyoto Mia Kyoto Mia Cope	$egin{array}{c} NNo \ $	$\overset{\circ}{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\mathsf$		87.58 88.24 62.20 7.13	21.18	21.18	45.90	45.90	lge
Cope Paris n, China Kyoto n, China Cope stan Kyoto Stan Cope stan Cope stan Cope stan Paris nia Kyoto nia Kyoto nia Kyoto nia Kyoto nia Cope nia Cope nia Cope nia Cope	$egin{array}{c} NNo \ $	$\overset{\circ}{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\mathsf$		88.24 62.20 7.13					es
haris n, China Kyoto n, China Cope n, China Paris stan Cope stan Cope stan Paris nia Kyoto nia Cope nia Kyoto nia Cope nia Kyoto nia Cope	$egin{array}{c} NNo \ NNo \ NS \ Yes \ NO \ N$	$\overset{\circ}{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\overset{R}\mathsf$		62.20					, <i>P</i>
China Kyoto China Cope China Paris In Cope Ryoto Cope In Paris Ryoto Cope Cope Ryoto Cope Ryoto	$\begin{array}{c} ho_{ m N} ho_{ ho}_{ m N} ho_{ m N$	$\overset{\circ}{R}\overset{\circ}{N}\overset{N}\overset$		7.13					Λc
China Cope China Paris Nyoto Cope n Paris Cope Nyoto Cope Cope Ryoto Cope Ryoto	$\begin{array}{c} No \\ No \\ Yes \\ No \\ No \end{array}$	$^{ m NNo}_{ m KNNo}$		7.13					tio
China Paris Kyoto Cope Namis Namis Cope Cope Cope Cope Cope Cope Cope	$\begin{array}{c} No \\ No \\ Yes \\ No \\ No \end{array}$	$^{ m N}_{ m KNN}^{ m NNN}$		7.13					on
n Kyoto Cope n Paris Kyoto Cope Cope Ryoto Cope Ryoto	$egin{array}{l} m No \\ m Yes \\ m No \\ m $	$_{ m No}^{ m No}$		7.13					s
n Cope Kyoto Cope Paris Kyoto	$_{ m No}^{ m Yes}$	$_{ m No}^{ m No}$							ar
n Faris Kyoto Cope Paris Kyoto Cope	$_{ m No}^{ m Yes}$	$_{ m No}^{ m Yes}$							nd
Kyoto Cope Paris Kyoto Cope	$\overset{ ext{N}}{\overset{\circ}{\text{N}}}$	No	Yes	11.96	0.64	-3.71	5.35	-31.06	. (
Cope Paris Kyoto Cope	$_{ m No}$			317.43					Эu
Paris Kyoto Cope		m No		299.83					.tc
Kyoto Cope	Yes	Yes	$ m N_{o}$	286.49					:OI
Cope	$ m N_{0}$	m No		311.04					me
	Yes	Yes	$ m N_{o}$	296.48					-14.5617
	Yes	Yes	Yes	358.42	-57.83	-85.58	-15.45	-22.86	
Kyoto	N_{0}	$N_{ m o}$							
Cope	N_{0}	m No							
r-Leste Paris	m No	m No							
Kyoto	$_{ m N}^{ m N}$	$_{ m o}^{ m N}$		12.15					
Cope	Yes	oN:	ļ						
Paris	Yes	Yes	Yes	11.86	-14.95	-22.73	-110.20	-167.48	
$\widetilde{\mathrm{Kyoto}}$	%; %;	oN;		0.29					
Cope	oN;	o No		-0.19					
Faris	Yes	ON 2		100					
& Tobago Kyoto	%; No	oN;		$\frac{21.37}{21.23}$					
& Tobago Cope	$_{ m N}^{ m N}$	No	i	25.73		:			
d & Tobago Paris	Yes	Yes	Yes	3.20	-32.42	-32.42	-130.08	-130.08	
$\widetilde{ ext{Kyoto}}$	oN;	o No		30.26					
Cope	Yes	No							
Paris	Yes	Yes	Yes	37.88	17.07	7.20	45.07	19.00	
$\widetilde{ ext{Kyoto}}$	No S	o No		286.24					
Cope	$ m N_{0}$	No		320.08					6

				Co	Continued from previous page	revious page				C
	ā	Party	Quantified	$\operatorname{Can}_{i:\mathcal{E}}$	Start year	Targe	ted reduction fi	com starting y	Targeted reduction from starting year of pledge	Progress
Country	Pledge	to the pledge	objective specified	quantify target	$\frac{\text{emissions}}{\text{(MTCO2 eq)}}$	Absolute (11 Cond	Absolute (in MTCO2 eq.) Cond Uncond	Relative (% Cond	of start emissions) Uncond	wit z Kyoto Co z en (%)
Turkey Turkmenistan	Paris Kvoto	Yes	Yes No	No	366.61 85 93					-Cł
Turkmenistan	Cope	No No	No		98.91					nar
Turkmenistan	Paris	Yes	Yes	m No						nge
Tuvalu	Kyoto	No No	$N_{\rm o}$		0.02					e F
Tuvalu	Cope			1/2	0.02	0.01	100	00 77	00 44	Pl€
Tuvalu II menede	Faris	$\overset{ ext{Yes}}{\text{NI}_{\circ}}$	$ m_{N_{\hat{s}}}^{res}$	res	0.01	0.01	0.01	44.80	44.80	edg
Uganda Handa	Ayoto				45.70 56.79					ges
Ogailda Handa	Cope			N	24.00					s,
Ogailda Henino	$V_{ m MO}^{ m L}$		Z Z		977 17	77 77	77 77	108.80	195 80	A Second
Uklaine Hesino	Cons		Z So	V I CS	25.1.17 25.1.20	-4/4.4/ 250 03	250 03	03 80	09.671-	2007.0 C
Uklaine Hkraine	Cope Paris	Ves	Ves	Ves	344 13	-529.95	-166.85	-95.69 -48.48	-95.69 -48.48	0000
IIAE.	Kvoto	SZ	N	3	147.12	70000	00:001	0.04	04.04	ns
UAE	Cope	N S	N		196.05					a
ŬĀĒ	\tilde{Paris}	\hat{Y}_{es}	No)					$\mathbf{n}\mathbf{d}$
	Kyoto	Yes	Yes	Yes	622.37	-12.51	-12.51	-2.01	-2.01	52.3712
	Cope	Yes	Yes	Yes	688.82	91.94	6.67	16.41	1.19	L. 6896
	Paris	Yes	Yes	Yes	493.90	101.80	101.80	20.61	20.61	tc
	$\widetilde{\mathrm{Kyoto}}$	o Z;	oN;	,	6429.55) (()) () (1	1	on
	Cope F	Y_{i}^{c}	Yes	Yes	6115.68	779.15	779.15	12.74	12.74	2.0332 ne
United States	Faris	Yes	Yes	Yes	6319.02	1089.75	1501.10	20.74	24.71	
Uruguay	Ayoto	No No	NO		18.13					
Uruguay Hene	Cope		NO		15.43					
Oruguay Verice	Faris	$\overset{\mathrm{res}}{\sim}$	NO		0					
Vanuatu Vanuatu	ryoto Cono		NO NO		0.01					
Vanuatu	Paris	Yes	Yes	N	0.0 0.0					
Venezuela. RB	Kvoto	S No	No)	353.01					
	Cope	$N_{\rm o}$	$N_{ m o}$		272.54					
Venezuela, RB	Paris	Yes	Yes	$ m N_{o}$	11.35					
Vietnam	Kyoto	$_{ m No}$	m No		165.26					
Vietnam	Cope	$_{ m No}$	$N_{ m o}$		242.12					
Vietnam	Paris	Yes	Yes	Yes	220.76	-369.79	-503.64	-146.77	-199.90	
	m Kyoto	o N	No							
	$\bar{\mathrm{Cope}}$	o N	oN:							
Western Sahara	Paris	o No	o N		100					
Yemen, Kep.	$\overset{\mathbf{K}}{\widetilde{\mathbf{M}}}$	0 N Z	0 N Z		27.37					
	Cope	$_{ m No}^{ m No}$		V_{cc}	33.26	70 7	11 07	15 70	00 E4	
remen, rep.	Faris	res	res	res	32.31	-5.57	-11.07	-10.79	-32.34	6
									Continued	Continued on n'ext page

C	Progres with Ky	Co g en (-Ch	ar	ıg	e]	Ρŀ	edges, Actions and Outcome
	sions)			44.06				Notes: The table provides a summary of the agreements made under the Kyoto Protocol, Copenhagen Accord and Paris Agreement by country. The quantified objective refers to whether there is sufficient information to convert the aforementioned numerical objective into a targeted reduction in emissions from the starting year of the pledge. The targeted reductions are provided for the countries for which this calculation is carried out as described in Section 3. Start year GHG emissions are measured in millions of metric tons of carbon dioxide equivalent and the start years for the Kyoto, Copenhagen and Paris agreements are taken as 2005, 2009 and 2014, respectively. The last column reports progress made to date on the Kyoto and Copenhagen agreements. Progress is defined as the decrease in emissions from the start year to the end year as a percentage of start year emissions. It is measured in GHG emissions for the Kyoto protocol and fossil CO2 emissions for the Copenhagen accord. The end year for the Kyoto protocol is 2012 and the end year for the Copenhagen accord is the last year for which data is available, 2018.
	om starting Relative (%	Cond		44.06				l Paris Agree the column s jective into a on 3. Start ye Paris agreeme decrease in en ol and fossil 'ast year for w
	eted reduction finances of the MTCO2 eq.)	Uncond		167.36				agen Accord and duction whereas ned numerical observibed in Section Sopenhagen and six defined as the Kyoto protocen accord is the laccord is
evious page	Targe Absolute (i	Cond		167.36				emissions recaptored aforemention reid out as de the Kyoto, C the Kyoto, C the Kyoto, C the Copenhage
Continued from previous page	Start year emissions	(MTCO2 eq)	$476.86 \\ 399.41$	378.72	62.88	63.14	14.85	the Kyoto Protcal objective for on to convert the calculation is car as start years for nhagen agreemer sured in GHG e he end year for the
S	Can quantify	target		Yes			$ m N_{o}$	nade under d a numeri, t informatic which this calent and the co and Cope is 2012 and t
	Quantified objective	specified	$_{ m No}^{ m No}$	Yes	$ m N_{o}$	$ m N_{o}$	Yes	agreements 1 untry provide re is sufficien. countries for dioxide equiv e on the Kyot year emission to protocol is
	Party to the	pledge	$_{ m No}^{ m No}$	Yes	$N_{\rm o}$	$_{ m N}^{ m O}$	Yes	ary of the ter the conhether the pledge defor the of carbon ade to dat e of start or the Kyc
	Pledge		Kyoto Cope	Paris	Kyoto	Cope	Paris	refers to wheth fied refers to wheth fied refers to we sarting year of tons are provide of metric tons ctively. The end year first as a percentag
	Country		Zambia Zambia	Zambia	Zimbabwe	Zimbabwe	Zimbabwe	Notes: The table provides a summary of the agreements quantified objective refers to whether the country provitarget can be quantified refers to whether there is sufficientissions from the starting year of the pledge. The targeted reductions are provided for the countries for measured in millions of metric tons of carbon dioxide equ. 2009 and 2014, respectively. The last column reports progress made to date on the Kyyear to the end year as a percentage of start year emissis Copenhagen accord. The end year for the Kyoto protocol 2018.

Appendix B

In this section, we examine the stability of the estimated coefficients across different levels of development as well as over time. We do so by interacting all variables with, correspondingly, development group indicators and time effects. The overall conclusion, given the insignificance of most interactions, is that the estimated coefficients shown earlier are generally stable.

Table B.1. Relationship between covariates and emissions at different levels of development

	Full-period	Pre-period
	(1970-2018)	(1970-2000)
ln(GDP per capita)	0.551***	0.712***
	[0.121]	[0.135]
Low income*ln(GDP per capita)	0.316	0.243
	[0.203]	[0.228]
Lower middle income*ln(GDP per capita)	0.225	0.02
	[0.157]	[0.195]
Upper middle income*ln(GDP per capita)	0.23	0.277
	[0.153]	[0.187]
ln(Population)	1.000***	1.067***
	[0.172]	[0.215]
Low income*ln(Population)	0.115	0.742
	[0.244]	[0.514]
Lower middle income*ln(Population)	-0.25	-0.276
, - ,	[0.231]	[0.336]
Upper middle income*ln(Population)	0.328	0.294
/	[0.257]	[0.315]
% urban population	-0.003	-0.007
• •	[0.007]	[0.006]
Low income*Urban pop	0.028*	0.004
• •	[0.015]	[0.028]
Lower middle income*Urban pop	0.025**	0.033*
	[0.011]	[0.017]
Upper middle income*Urban pop	0	[0.012]
• •	[0.010]	[0.010]
	. ,	. ,
Country FE	Yes	Yes
Year FE	Yes	Yes
N	7893	4375
R-square	0.194	0.021
*		

Notes: The table reports the results of regressing total fossil CO2 emissions (in logs) on GDP per capita (in constant 2010 US\$) and population (in logs), and urban population as a percentage of the total, where each covariate is interacted with a dummy variable to indicate the income group of the country as classified by the World Bank. All regressions include a constant term and country and year fixed effects.

The values in brackets are robust standard errors. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.

Table B.2. Relationship between covariates and emissions over time

	Full-period (1970-2018)	Pre-period
Base=1970s	(1970-2018)	(1970-2000)
	0.207	0.276
1980s	0.387	0.276
1000	[0.315]	[0.297]
1990s	1.222***	1.006**
2000	[0.408]	[0.403]
2000s	1.758***	
	[0.593]	
2010s	3.010***	
	[0.740]	
ln(GDP per capita)	0.774***	0.873***
	[0.064]	[0.076]
1980s*ln(GDP per capita)	-0.048	-0.037
	[0.040]	[0.036]
1990s*ln(GDP per capita)	-0.108**	-0.086*
	[0.046]	[0.046]
2000s*ln(GDP per capita)	-0.072	. ,
, , ,	[0.054]	
2010s*ln(GDP per capita)	-0.116*	
-oron m(car per capita)	[0.061]	
ln(Population)	1.040***	1.071***
in(i opaiation)	[0.128]	[0.152]
1980s*ln(Population)	0.002	0.005
1900s In(1 Optilation)		
1000g*ln(Population)	[0.013] -0.026	[0.011] -0.02
1990s*ln(Population)		
2000-*l(Dl-+:)	$[0.016] \\ -0.064**$	[0.016]
2000s*ln(Population)		
2010 *1 (D. 1)	[0.029]	
2010s*ln(Population)	-0.112***	
~	[0.040]	
% urban population	0.013***	0.007
	[0.004]	[0.005]
1980s*Urban pop	-0.002	-0.003
	[0.002]	[0.002]
1990s*Urban pop	0	-0.002
	[0.003]	[0.003]
2000s*Urban pop	-0.005	
	[0.003]	
2010s*Urban pop	-0.007*	
• •	[0.004]	
Country FE	Yes	Yes
Year FE	No	No
N	7991	4435

Notes: The table reports the results of regressing total fossil CO2 emissions (in logs) on GDP per capita (in constant 2010 US\$) and population (in logs), and urban population as a percentage of the total, where each covariate is interacted with a dummy variable to indicate the decade. All regressions include a constant term. The values in brackets are robust standard errors. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.

Appendix C

Table C.1. Placebo check for impact of signing agreements

	ln(Total emissions)
F1.Signed Kyoto	-0.305***
v	[0.084]
L0.Signed Kyoto	-0.012
	[0.013]
L1.Signed Kyoto	-0.127***
	[0.042]
F1.Signed Copenhagen	-0.087
	[0.071]
L0.Signed Copenhagen	-0.013
	[0.015]
L1.Signed Copenhagen	-0.075**
	[0.031]
F1.Signed Paris	-0.040
	[0.248]
L0.Signed Paris	0.003
	[0.012]
L1.Signed Paris	
	[.]
	3 7
Controls	Yes
Country and Year FE	Yes
N	7687
- "	0.645
R-square	

Notes: The table reports the results of regressing total fossil CO2 emissions (in logs) on the lead, contemporaneous and lagged indicators for signing different climate-related pledges. All regressions include a constant and control for country and year fixed effects as well as real GDP per capita (in constant 2010 US\$), population (in logs), and urban population as a percentage of the total.

The values in brackets are robust standard errors. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.

Appendix D

In this section, we re-estimate the impact of signing the climate agreements and adopting different climate-change related actions after excluding the outlier countries identified in Figures 7b and 8b. The results in Tables D.1 and D.2 below indicate that our main results in Table 9 and Table 10 are not sensitive to the inclusion of these outliers.

Table D.1. Emissions and climate agreements: excluding outliers

	$\ln(1)$	Total fossil	CO2 emissio	ons)
	(1)	(2)	(3)	(4)
Signed Kyoto	-0.432***	-0.420***	-0.345***	-0.344***
	[0.023]	[0.023]	[0.030]	[0.030]
Signed Copenhagen	-0.168***	-0.155***	-0.138***	-0.128***
	[0.025]	[0.028]	[0.026]	[0.029]
Signed Paris	0.057	0.085	0.118	0.136
	[0.290]	[0.120]	[0.290]	[0.120]
Have quantified objectives			-0.115***	-0.099***
			[0.028]	[0.028]
Using IPW	No	Yes	No	Yes
N	7741	7741	7741	7741

Notes: The table reports the results of regressing total fossil CO2 emissions (in logs) on lagged indicators for signing different climate-related pledges excluding the outlier countries identified in Figure 7b and 8b. All regressions include a constant and control for country and year fixed effects as well as real GDP per capita (in constant 2010 US\$), population (in logs), and urban population as a percentage of the total. Columns (1) and (3) report the unweighted OLS estimates, while the results in the remaining columns are estimated using inverse probability weighting.

The values in brackets are robust standard errors. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.

Table D.2. Emissions and climate actions: excluding outliers

	- /		~~~	
	,	Total fossil		,
	(1)	(2)	(3)	(4)
Number of climate related laws	-0.035***	-0.034***		
	[0.003]	[0.003]		
Number of climate related policies	-0.002	-0.001		
	[0.003]	[0.004]		
Have national level carbon tax	-0.156***	-0.146***	-0.170***	-0.158***
	[0.020]	[0.020]	[0.021]	[0.021]
Have national level ETS	-0.339***	-0.332***	-0.353***	-0.351***
	[0.021]	[0.021]	[0.021]	[0.022]
Number of policies by sector	. ,	. ,	. ,	. ,
Adaptation			0.013**	0.013**
•			[0.006]	[0.006]
Demand management			-0.022***	
O			[0.005]	
Supply management			-0.026***	
			[0.005]	
Transport			-0.011	
r			[0.007]	
LULUCF			0.015**	
			[0.006]	
R&D			0	0
			[0.006]	[0.006]
			[0.000]	[0.000]
Using IPW	No	Yes	No	Yes
N	7741	7741	7741	7741
				

Notes: The table reports the results of regressing total fossil CO2 emissions (in logs) on the lagged number of climate related laws and policies implemented as well as indicators for having a national carbon tax and ETS, excluding the outlier countries identified in Figure 7b and 8b. All regressions include a constant and control for country and year fixed effects as well as real GDP per capita (in constant 2010 US\$), population (in logs), and urban population as a percentage of the total. Columns (1) and (3) report the unweighted OLS estimates, while the results in the remaining columns are estimated using inverse probability weighting.

The values in brackets are robust standard errors. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.

Appendix E

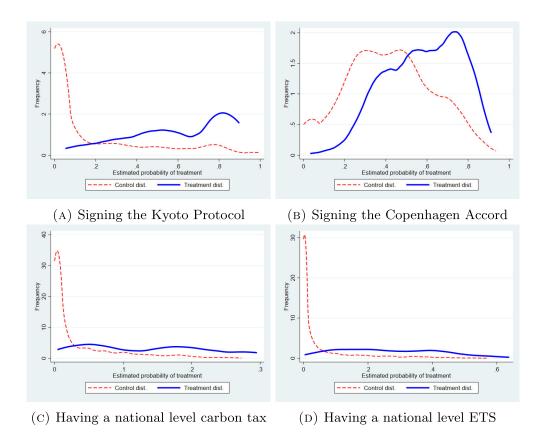


FIGURE E.1. Distribution of propensity scores used for local projections

Note: The figure plots the smooth kernel density estimates of the distribution of the propensity scores for the four treatments considered in Section 4.2 and 4.3.

References

- Angrist, Joshua D., Òscar Jordà, and Guido M. Kuersteiner (2018).

 "Semiparametric Estimates of Monetary Policy Effects: String Theory
 Revisited." Journal of Business & Economic Statistics, 36(3), 371–387.
- Climate Analytics and New Climate Institute (2020). "Climate Action Tracker." https://climateactiontracker.org/. [Accessed on August 31, 2020].
- Crippa, Monica, Gabriel Oreggioni, Diego Guizzardi, Marilena Muntean, Edwin Schaaf, Eleonora Lo Vullo, Efisio Solazzo, Fabio Monforti-Ferrario, Job Olivier, and Elisabetta Vignati (2019). Fossil CO2 and GHG emissions of all world countries 2019 Report. Publications Office of the European Union.
- European Commission (2020). "Kyoto 1st commitment period (2008–12)." https://ec.europa.eu/clima/policies/strategies/progress/kyoto_1_en.
 [Accessed on August 31, 2020].
- European Union (2020). "Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No 525/2013." http://data.europa.eu/eli/reg/2018/842/oj. [Accessed on August 31, 2020].
- Fenhann, Joergen (2019). "Pledge Pipeline." Tech. rep., UNEP DTU Partnership. [Accessed on August 31, 2020].

- Grantham Research Institute on Climate Change and the Environment and Sabin Center for Climate Change Law (2020). "Climate Change Laws of the World database." climate-laws.org. [Accessed on August 31, 2020].
- Hassler, John, Per Krusell, and Jonas Nycander (2016). "Climate policy." *Economic Policy*, 31(87), 503–558.
- Hassler, John, Per Krusell, Conny Olovsson, and Michael Reiter (2020). "On the effectiveness of climate policies." (Working Paper).
- Jordà, Oscar (2005). "Estimation and Inference of Impulse Responses by Local Projections." American Economic Review, 95(1), 161–182.
- Jordà, Oscar and Alan M. Taylor (2016). "The Time for Austerity: Estimating the Average Treatment Effect of Fiscal Policy." *The Economic Journal*, 126(590), 219–255.
- Kanzig, Diego R. (2021). "The economic consequences of putting a price on carbon.", URL https://ssrn.com/abstract=3786030. (Working Paper).
- Metcalf, Gilbert E. (2019). "On the economics of a carbon tax for the United States." Brookings Papers on Economic Activity, Spring, 405–458.
- Metcalf, Gilbert E. and James H. Stock (2020). "Measuring the Macroeconomic Impact of Carbon Taxes." AEA Papers and Proceedings, 110, 101–06.
- Ramadorai, Tarun and Federica Zeni (2020). "Climate regulation and emissions abatement: theory and evidence from firms' disclosures.", URL https://ssrn.com/abstract=3469787. (Working Paper).

- UNFCCC (2008). "Kyoto Protocol Targets for the first commitment period." https://unfccc.int/process-and-meetings/the-kyoto-protocol/what-is-the-kyoto-protocol/kyoto-protocol-targets-for-the-first-commitment-period.

 [Accessed on August 31, 2020].
- UNFCCC (2010). "Appendix I Quantified economy-wide emissions targets for 2020." https://unfccc.int/process/conferences/pastconferences/copenhagen-climate-change-conference-december-2009/statements-and-resources/appendix-i-quantified-economy-wide-emissions-targets-for-2020. [Accessed on August 31, 2020].
- UNFCCC (2011). "Compilation of information on nationally appropriate mitigation actions to be implemented by Parties not included in Annex I to the Convention." Tech. rep., UNFCCC. [Accessed on August 31, 2020].
- World Bank (2020a). "Carbon Pricing Dashboard." https://carbonpricingdashboard.worldbank.org/map_data. [Accessed on August 31, 2020].
- World Bank (2020b). "World Development Indicators Database." https://databank.worldbank.org/source/world-development-indicators.

 [Accessed on August 31, 2020].
- World Resources Institute (2015). "CAIT 2.0 CAIT Projections Beta." http://cait2.wri.org/projections. [Accessed on August 31, 2020].
- World Resources Institute (2016). "CAIT Climate Data Explorer CAIT Paris Contributions Map." http://cait.wri.org/indcs/. [Accessed on August 31,

2020].

World Resources Institute (2017). "CAIT Climate Data Explorer." http://cait.wri.org . [Accessed on August 31, 2020].

World Resources Institute (2018). "Climate Watch." https://www.climatewatchdata.org. [Accessed on August 31, 2020].