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Abstract

We derive the class of affine arbitrage-free dynamic term structure models that approx-

imate the widely-used Nelson-Siegel yield curve specification. These arbitrage-free Nelson-

Siegel (AFNS) models can be expressed as slightly restricted versions of the canonical

representation of the three-factor affine arbitrage-free model. Imposing the Nelson-Siegel

structure on the canonical model greatly facilitates estimation and can improve predic-

tive performance. In the future, AFNS models appear likely to be a useful workhorse

representation for term structure research.
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1 Introduction

Understanding the dynamic evolution of the yield curve is important for many tasks, includ-

ing pricing financial assets and their derivatives, managing financial risk, allocating portfolios,

structuring fiscal debt, conducting monetary policy, and valuing capital goods. To investi-

gate yield-curve dynamics, researchers have produced a vast literature with a wide variety

of models. However, those models tend to be either theoretically rigorous but empirically

disappointing, or empirically successful but theoretically lacking. In this paper, we introduce

a theoretically rigorous yield curve model that simultaneously displays empirical tractability,

good fit, and superior forecasting performance.

Because bonds trade in deep and well-organized markets, the theoretical restrictions that

eliminate opportunities for riskless arbitrage across maturities and over time hold powerful

appeal, and they provide the foundation for a large finance literature on arbitrage-free (AF)

models that started with Vasiček (1977) and Cox, Ingersoll, and Ross (1985). Those models

specify the risk-neutral evolution of the underlying yield-curve factors as well as the dynam-

ics of risk premia. Following Duffie and Kan (1996), the affine versions of those models are

particularly popular, because yields are convenient linear functions of underlying latent fac-

tors (state variables that are unobserved by the econometrician) with parameters, or “factor

loadings,” that can be calculated from a simple system of differential equations.

Unfortunately, the canonical affine AF models often exhibit poor empirical time series

performance, especially when forecasting future yields (Duffee, 2002). In addition, and cru-

cially, the estimation of those models is known to be problematic, in large part because of

the existence of numerous likelihood maxima that have essentially identical fit to the data

but very different implications for economic behavior. These empirical problems appear to

reflect a pervasive model over-parameterization, and as a solution, many researchers (e.g.,

Duffee, 2002, and Dai and Singleton, 2002) simply restrict to zero those parameters with

small t-statistics in a first round of estimation. The resulting more parsimonious structure is

typically somewhat easier to estimate and has fewer troublesome likelihood maxima. How-

ever, the additional restrictions on model structure are not well motivated theoretically or

statistically, and their arbitrary application and the computational burden of estimation effec-

tively preclude robust model validation and thorough simulation studies of the finite-sample

properties of the estimators.

In part to overcome the problems with empirical implementation of the canonical affine

AF model, we develop in this paper a new class of affine AF models. This new class is based

on the popular yield-curve representation that was introduced by Nelson and Siegel (1987)

and extended by Diebold and Li (2006) to a dynamic Nelson-Siegel, or DNS, model. Thus,

from one perspective, we take the theoretically rigorous but empirically problematic affine
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AF model and make it empirically tractable by incorporating DNS elements.

From an alternative perspective, we take the DNS model, which is empirically successful

but theoretically lacking, and make it rigorous by imposing absence of arbitrage. This rigor

is important because the Nelson-Siegel model is extremely popular in practice, among both

financial market practitioners and central banks (e.g., Svensson, 1995; Bank for International

Settlements, 2005; Gürkaynak, Sack, and Wright, 2007; Nyholm, 2008). DNS’s popularity

stems from several sources, both empirical and theoretical, as discussed in Diebold and Li

(2006). Empirically, the DNS model is simple and stable to estimate, and it is quite flexible

and fits both the cross section and time series of yields remarkably well, in many countries

and periods, and for many grades of bonds. Theoretically, DNS imposes certain economically-

desirable properties, such as requiring the discount function to approach zero with maturity,

and Diebold and Li (2006) show that it corresponds to a modern three-factor model of time-

varying level, slope and curvature. However, despite its good empirical performance and a

certain amount of theoretical appeal, DNS fails on an important theoretical dimension: it

does not impose the restrictions necessary to eliminate opportunities for riskless arbitrage

(e.g., Filipović, 1999, and Diebold, Piazzesi, and Rudebusch, 2005). This motivates us in this

paper to introduce the class of AF Nelson-Siegel (AFNS) models, which are affine AF term

structure models that maintain the DNS factor-loading structure.

In short, the AFNS models proposed here combine the best of the AF and DNS traditions.

Approached from the AF side, they maintain the AF theoretical restrictions of the canonical

affine models but can be easily estimated, because the dynamic Nelson-Siegel structure helps

identify the latent yield-curve factors and delivers analytical solutions (which we provide)

for zero-coupon bond prices. Approached from the DNS side, they maintain the simplicity

and empirical tractability of the popular DNS models, while simultaneously enforcing the

theoretically desirable property of absence of riskless arbitrage.

After deriving the new class of AFNS models, we examine their in-sample fit and out-of-

sample forecast performance relative to standard DNS models. For both the DNS and the

AFNS models, we estimate parsimonious and flexible versions (with both independent factors

and more richly parameterized correlated factors). We find that the flexible versions of both

models are preferred for in-sample fit, but that the parsimonious versions exhibit significantly

better out-of-sample forecast performance. As a final comparison, we also show that an AFNS

model can outperform the canonical affine AF model in forecasting.

We proceed as follows. First we present the main theoretical results of the paper; in

Section 2 we derive the AFNS class of models, and in Section 3 we characterize the precise

relationship between the AFNS class and the canonical representation of affine AF models.

We next provide an empirical analysis of four leading DNS and AFNS models, incorporating

both parsimonious and flexible versions; in Section 4 we examine in-sample fit, and in Section
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5 we examine out-of-sample forecasting performance. We conclude in Section 6, and we

provide proofs and additional technical details in several appendices.

2 Nelson-Siegel Term Structure Models

Here we review the DNS model and introduce the AFNS class of AF affine term structure

models that maintain the Nelson-Siegel factor loading structure.

2.1 The Dynamic Nelson-Siegel Model

The original Nelson-Siegel model fits the yield curve with the simple functional form

y(τ) = β0 + β1

(1 − e−λτ

λτ

)
+ β2

(1 − e−λτ

λτ
− e−λτ

)
, (1)

where y(τ) is the zero-coupon yield with τ months to maturity, and β0, β1, β2, and λ are

parameters.

As noted earlier, this representation is commonly used by central banks and financial

market practitioners to fit the cross section of yields. Although such a static representation

is useful for some purposes, a dynamic version is required to understand the evolution of

the bond market over time. Hence Diebold and Li (2006) suggest allowing the β coefficients

to vary over time, in which case, given their Nelson-Siegel loadings, the coefficients may be

interpreted as time-varying level, slope and curvature factors. To emphasize this, we re-write

the model as

yt(τ) = Lt + St

(1 − e−λτ

λτ

)
+ Ct

(1 − e−λτ

λτ
− e−λτ

)
. (2)

Diebold and Li assume an autoregressive structure for the factors, which produces the DNS

model, a fully dynamic Nelson-Siegel specification. Indeed, it is a state-space model, with the

yield factors as state variables, as emphasized in Diebold, Rudebusch and Aruoba (2006).

Empirically, the DNS model is highly tractable and typically fits well. Theoretically,

however, it does not require that the dynamic evolution of yields cohere such that arbitrage

opportunities are precluded. Indeed, the results of Filipović (1999) imply that whatever

stochastic dynamics are chosen for the DNS factors, it is impossible to preclude arbitrage at

the bond prices implicit in the resulting Nelson-Siegel yield curve. In the next subsection, we

show how to remedy this theoretical weakness.
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2.2 The Arbitrage-Free Nelson-Siegel Model

Our derivation of the AFNS model starts from the standard continuous-time affine AF struc-

ture of Duffie and Kan (1996).1 To represent an affine diffusion process, define a filtered

probability space (Ω,F , (Ft), Q), where the filtration (Ft) = {Ft : t ≥ 0} satisfies the usual

conditions (Williams, 1997). The state variable Xt is assumed to be a Markov process defined

on a set M ⊂ Rn that solves the stochastic differential equation (SDE),2

dXt = KQ(t)[θQ(t) −Xt]dt + Σ(t)D(Xt, t)dW
Q
t , (3)

where WQ is a standard Brownian motion in Rn, the information of which is contained in

the filtration (Ft). The drifts and dynamics θQ : [0, T ] → Rn and KQ : [0, T ] → Rn×n

are bounded, continuous functions.3 Similarly, the volatility matrix Σ : [0, T ] → Rn×n is a

bounded, continuous function, while D : M × [0, T ] → Rn×n has diagonal structure,





√
γ1(t) + δ11(t)X

1
t + . . . + δ1n(t)Xn

t . . . 0
...

. . .
...

0 . . .
√
γn(t) + δn

1 (t)X1
t + . . .+ δn

n(t)Xn
t



 .

To simplify the notation, γ(t) and δ(t) are defined as

γ(t) =





γ1(t)
...

γn(t)



 and δ(t) =





δ11(t) . . . δ1n(t)
...

. . .
...

δn
1 (t) . . . δn

n(t)



 ,

where γ : [0, T ] → Rn and δ : [0, T ] → Rn×n are bounded, continuous functions. Given this

notation, the SDE of the state variables can be written as

dXt = KQ(t)[θQ(t) −Xt]dt+ Σ(t)





√
γ1(t) + δ1(t)Xt . . . 0

...
. . .

...

0 . . .
√
γn(t) + δn(t)Xt



 dW
Q
t ,

where δi(t) denotes the ith row of the δ(t)-matrix. Finally, the instantaneous risk-free rate is

assumed to be an affine function of the state variables

rt = ρ0(t) + ρ1(t)
′Xt,

1Krippner (2006) derives a special case of the AFNS model with constant risk premiums.
2Note that (3) refers to the risk-neutral (“Q”) dynamics.
3Stationarity of the state variables is ensured if the real components of all eigenvalues of KQ(t) are positive;

see Ahn, Dittmar, and Gallant (2002). However, stationarity is not a necessary requirement for the process to
be well-defined.
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where ρ0 : [0, T ] → R and ρ1 : [0, T ] → Rn are bounded, continuous functions.

Duffie and Kan (1996) prove that zero-coupon bond prices in this framework are exponential-

affine functions of the state variables,

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t

rudu
)]

= exp
(
B(t, T )′Xt + C(t, T )

)
,

where B(t, T ) and C(t, T ) are the solutions to the system of ordinary differential equations

(ODEs)

dB(t, T )

dt
= ρ1 + (KQ)′B(t, T ) −

1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,j(δ
j)′, B(T, T ) = 0 (4)

dC(t, T )

dt
= ρ0 −B(t, T )′KQθQ −

1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,jγ
j , C(T, T ) = 0, (5)

and the possible time-dependence of the parameters is suppressed in the notation. The pricing

functions imply that zero-coupon yields are

y(t, T ) = −
1

T − t
logP (t, T ) = −

B(t, T )′

T − t
Xt −

C(t, T )

T − t
.

Given the pricing functions, for a three-factor affine model with Xt = (X1
t ,X

2
t ,X

3
t ), the

closest match to the Nelson-Siegel yield function is a yield function of the form4

y(t, T ) = X1
t +

1 − e−λ(T−t)

λ(T − t)
X2

t +
[1 − e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
X3

t −
C(t, T )

T − t
,

with ODEs for the B(t, T ) functions that have the solutions

B1(t, T ) = −(T − t),

B2(t, T ) = −
1 − e−λ(T−t)

λ
,

B3(t, T ) = (T − t)e−λ(T−t) −
1 − e−λ(T−t)

λ
.

In this case the factor loadings exactly match Nelson-Siegel, but there is an unavoidable

“yield-adjustment term”, −C(t,T )
T−t

, which depends only on the maturity of the bond, not on

time. As described in the following proposition, there exists a class of affine AF models that

satisfies the above ODEs.

4One could of course define “closest” in other ways. Our strategy is to find the affine AF model with factor
loadings that match Nelson-Siegel exactly.
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Proposition 1:

Suppose that the instantaneous risk-free rate is

rt = X1
t +X2

t ,

where the state variables Xt = (X1
t ,X

2
t ,X

3
t ) are described by the following system of SDEs

under the risk-neutral Q-measure





dX1
t

dX2
t

dX3
t



 =





0 0 0

0 λ −λ

0 0 λ













θ
Q
1

θ
Q
2

θ
Q
3



−





X1
t

X2
t

X3
t







 dt+ Σ





dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 , λ > 0.

Then zero-coupon bond prices are

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t

rudu
)]

= exp
(
B1(t, T )X1

t +B2(t, T )X2
t +B3(t, T )X3

t + C(t, T )
)
,

where B1(t, T ), B2(t, T ), B3(t, T ), and C(t, T ) are the solutions to the system of ODEs:





dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt



 =





1

1

0



+





0 0 0

0 λ 0

0 −λ λ









B1(t, T )

B2(t, T )

B3(t, T )



 (6)

and
dC(t, T )

dt
= −B(t, T )′KQθQ −

1

2

3∑

j=1

(
Σ′B(t, T )B(t, T )′Σ

)
j,j
, (7)

with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = C(T, T ) = 0. The solution to

this system of ODEs is:

B1(t, T ) = −(T − t),

B2(t, T ) = −
1 − e−λ(T−t)

λ
,

B3(t, T ) = (T − t)e−λ(T−t) −
1 − e−λ(T−t)

λ
,

C(t, T ) = (KQθQ)2

∫ T

t

B2(s, T )ds+(KQθQ)3

∫ T

t

B3(s, T )ds+
1

2

3∑

j=1

∫ T

t

(
Σ′B(s, T )B(s, T )′Σ

)
j,j
ds.

Finally, zero-coupon bond yields are

y(t, T ) = X1
t +

1 − e−λ(T−t)

λ(T − t)
X2

t +
[1 − e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
X3

t −
C(t, T )

T − t
.
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Proof: See Appendix A.

The existence of an AFNS model, as defined in Proposition 1, is related to the work

of Trolle and Schwartz (2009), who show that the dynamics of the forward rate curve in a

general m-dimensional Heath-Jarrow-Morton (HJM) model can always be represented by a

finite-dimensional Markov process with time-homogeneous volatility structure if each volatil-

ity function is given by

σi(t, T ) = pn,i(T − t)e−γi(T−t), i = 1, . . . ,m,

where pn,i(τ) is an n-order polynomial in τ . Because the forward rates in the DNS model

satisfy this requirement, there exists such an AF three-dimensional HJM model. However,

the simplicity of the solution in the case of the Nelson-Siegel model presented in Proposition

1 is striking.

Proposition 1 also has several interesting implications. First, the three state variables are

Gaussian Ornstein-Uhlenbeck processes with a constant volatility matrix Σ.5 The instanta-

neous interest rate is the sum of level and slope factors (X1
t and X2

t ), while the curvature

factor’s (X3
t ) sole role is as a stochastic time-varying mean for the slope factor under the Q-

measure. Second, Proposition 1 only imposes structure on the dynamics of the AFNS model

under the Q-measure and is silent about the dynamics under the P -measure. Still, the very

indirect role of curvature generally accords with the empirical literature where it has been dif-

ficult to find sensible interpretations of curvature under the P -measure (Diebold, Rudebusch,

and Aruoba, 2006). Similarly, the level factor is a unit-root process under the Q-measure,

which accords with the usual finding that one or more of the interest rate factors are close to

being nonstationary processes under the P -measure.6 Third, Proposition 1 provides insight

into the nature of the parameter λ. Although a few authors (e.g., Koopman, Mallee, and van

der Wel, 2010) have considered time-varying λ, it is a constant in the AFNS model and has

the interpretation as the mean-reversion rate of the curvature and slope factors as well as the

scale by which a deviation of the curvature factor from its mean affects the mean of the slope

factor. Fourth, and crucially, AFNS contains an additional maturity-dependent term −C(t,T )
T−t

5Proposition 1 can be extended to include jumps in the state variables. As long as the jump arrival
intensity is state-independent, the Nelson-Siegel factor loading structure in the yield function is maintained
because only C(t, T ) is affected by the inclusion of such jumps. See Duffie, Pan, and Singleton (2000) for the
needed modification of the ODEs for C(t, T ) in this case.

6With a unit root in the level factor, −
C(t,T )
T−t

→ −∞ as maturity increases, which implies that with an
unbounded horizon T the model is not arbitrage-free. Therefore, as is often done in theoretical discussions,
we impose an arbitrary maximum horizon. Alternatively, we could modify the mean-reversion matrix KQ to
include a sufficiently small ε > 0 in the upper left-hand position to obtain an AF model that is indistinguishable
from the AFNS model in Proposition 1.
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relative to DNS. This “yield-adjustment” term is a key difference between DNS and AFNS,

and we now examine it in detail.

2.3 The Yield-Adjustment Term

The only parameters in the system of ODEs for the AFNS B(t, T ) functions are ρ1 and KQ,

i.e., the factor loadings of rt and the mean-reversion structure for the state variables under

the Q-measure. The drift term θQ and the volatility matrix Σ do not appear in the ODEs,

but rather in the yield-adjustment term −C(t,T )
T−t

. Hence in the AFNS model the choice of

the volatility matrix Σ affects both the P -dynamics and the yield function through the yield-

adjustment term. In contrast, the DNS model is silent about the real-world dynamics of the

state variables, so the choice of P -dynamics is irrelevant for the yield function.

As discussed in the next section, we identify the AFNS models by fixing the mean levels

of the state variables under the Q-measure at 0, i.e. θQ = 0. This implies that the yield-

adjustment term is of the form:

−
C(t, T )

T − t
= −

1

2

1

T − t

3∑

j=1

∫ T

t

(
Σ′B(s, T )B(s, T )′Σ

)
j,j
ds.

Given a general volatility matrix

Σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 ,

the yield-adjustment term can be derived in analytical form (see Appendix B) as

C(t, T )

T − t
=

1

2

1

T − t

∫ T

t

3∑

j=1

(
Σ′

B(s, T )B(s, T )′Σ
)

j,j
ds

= A
(T − t)2

6
+ B

[ 1

2λ2
−

1

λ3

1 − e−λ(T−t)

T − t
+

1

4λ3

1 − e−2λ(T−t)

T − t

]

+ C
[ 1

2λ2
+

1

λ2
e
−λ(T−t)

−

1

4λ
(T − t)e−2λ(T−t)

−

3

4λ2
e
−2λ(T−t)

−

2

λ3

1 − e−λ(T−t)

T − t
+

5

8λ3

1 − e−2λ(T−t)

T − t

]

+ D
[ 1

2λ
(T − t) +

1

λ2
e
−λ(T−t)

−

1

λ3

1 − e−λ(T−t)

T − t

]

+ E
[ 3

λ2
e
−λ(T−t) +

1

2λ
(T − t) +

1

λ
(T − t)e−λ(T−t)

−

3

λ3

1 − e−λ(T−t)

T − t

]

+ F
[ 1

λ2
+

1

λ2
e
−λ(T−t)

−

1

2λ2
e
−2λ(T−t)

−

3

λ3

1 − e−λ(T−t)

T − t
+

3

4λ3

1 − e−2λ(T−t)

T − t

]
,

whereA = σ2
11+σ

2
12+σ

2
13, B = σ2

21+σ
2
22+σ

2
23, C = σ2

31+σ
2
32+σ

2
33,D = σ11σ21+σ12σ22+σ13σ23,

E = σ11σ31 + σ12σ32 + σ13σ33, and F = σ21σ31 + σ22σ32 + σ23σ33 .
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This result has two implications. First, the fact that AFNS zero-coupon bond yields are

given by an analytical formula greatly facilitates empirical implementation of AFNS models.

Second, the nine underlying volatility parameters are not identified. Indeed, only the six terms

A, B, C, D, E, and F can be identified; hence the maximally-flexible AFNS specification that

can be identified has triangular volatility matrix7

Σ =





σ11 0 0

σ21 σ22 0

σ31 σ32 σ33



 .

Later we will quantify the yield-adjustment term and examine how it affects empirical

performance in leading specifications, to which we now turn.

2.4 Four Specific Nelson-Siegel Models

In general, the DNS and AFNS models are silent about the P -dynamics, so there are an

infinite number of possible specifications that could be used to match the data. However, for

continuity with the existing literature, we focus on two versions of the DNS model that have

featured prominently in recent studies, examining the effects of imposing absence of arbitrage.

In the independent-factor DNS model, the three state variables are independent first-order

autoregressions, as in Diebold and Li (2006). The state transition equation is





Lt − µL

St − µS

Ct − µC



 =





a11 0 0

0 a22 0

0 0 a33









Lt−1 − µL

St−1 − µS

Ct−1 − µC



+





ηt(L)

ηt(S)

ηt(C)



 ,

where the stochastic shocks ηt(L), ηt(S), and ηt(C) have covariance matrix

Q =





q211 0 0

0 q222 0

0 0 q233



 .

In the correlated-factor DNS model, the state variables follow a first-order vector autoregres-

sion, as in Diebold, Rudebusch, and Aruoba (2006). The transition equation is





Lt − µL

St − µS

Ct − µC



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33









Lt−1 − µL

St−1 − µS

Ct−1 − µC



+





ηt(L)

ηt(S)

ηt(C)



 ,

7The choice of upper or lower triangular is irrelevant.
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where the stochastic shocks ηt(L), ηt(S), and ηt(C) have covariance matrix Q = qq′, where

q =





q11 0 0

q21 q22 0

q31 q32 q33



 .

In both the independent-factor and correlated-factor DNS models, the measurement equation

is 



yt(τ1)

yt(τ2)
...

yt(τN )




=





1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN









Lt

St

Ct



+





εt(τ1)

εt(τ2)
...

εt(τN )




, (8)

where the measurement errors εt(τi) are i.i.d. white noise.

The corresponding AFNS models are formulated in continuous time, and the relationship

between the real-world dynamics under the P -measure and the risk-neutral dynamics under

the Q-measure is given by the measure change

dW
Q
t = dWP

t + Γtdt,

where Γt represents the risk premium. To preserve affine dynamics under the P -measure, we

limit our focus to essentially affine risk premium specifications (see Duffee, 2002), in which

case Γt takes the form

Γt =





γ0
1

γ0
2

γ0
3



+





γ1
11 γ1

12 γ1
13

γ1
21 γ1

22 γ1
23

γ1
31 γ1

32 γ1
33









X1
t

X2
t

X3
t



 .

With this specification the SDE for the state variables under the P -measure,

dXt = KP [θP −Xt]dt + ΣdWP
t , (9)

remains affine. Due to the flexible specification of Γt, we are free to choose any mean vector

θP and mean-reversion matrix KP under the P -measure and still preserve the required Q-

dynamic structure described in Proposition 1. Hence we focus on the two AFNS models that

correspond to the two DNS models above.

In the independent-factor AFNS model, the three state variables are independent under

10



the P -measure,





dX1
t

dX2
t

dX3
t



 =





κP
11 0 0

0 κP
22 0

0 0 κP
33













θP
1

θP
2

θP
3



−





X1
t

X2
t

X3
t







 dt+





σ1 0 0

0 σ2 0

0 0 σ3









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .

In the correlated-factor AFNS model, the three state variables may interact dynamically

and/or their shocks may be correlated,





dX1
t

dX2
t

dX3
t



 =





κP
11 κP

12 κP
13

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33













θP
1

θP
2

θP
3



−





X1
t

X2
t

X3
t







 dt+





σ11 0 0

σ21 σ22 0

σ31 σ32 σ33









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .

This is the most flexible AFNS model with all parameters identified. In both the independent-

factor and correlated-factor AFNS models, the measurement equation is





yt(τ1)

yt(τ2)
...

yt(τN )




=





1 1−e−λτ1

λτ1

1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2

1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN









X1
t

X2
t

X3
t



−





C(τ1)
τ1

C(τ2)
τ2

...
C(τN)

τN




+





εt(τ1)

εt(τ2)
...

εt(τN )




, (10)

where the measurement errors εt(τi) are i.i.d. noise.

3 The AFNS Subclass of Canonical Affine AF Models

Before proceeding to an empirical analysis of the various DNS and AFNS models, we first

answer a key theoretical question: What, precisely, are the restrictions that the AFNS model

imposes on the canonical representation of three-factor affine AF model?8

Denoting the state variables by Yt, the canonical A0(3) model is

rt = δn
0 + (δn

1 )′Yt

dYt = KP
n [θP

n − Yt]dt + ΣndW
P
t

dYt = KQ
n [θQ

n − Yt]dt+ ΣndW
Q
t ,

with δn
0 ∈ R, δn

1 , θ
P
n , θ

Q
n ∈ R3, and KP

n ,K
Q
n ,Σn ∈ R3×3.9 If the essentially affine risk premium

8By this we mean the A0(3) representation, with three state variables and zero square-root processes, as
detailed in Singleton (2006), Chap. 12.

9Note that Yt denotes the state variables of the canonical representation, which are different from the
Xt state variables in the AFNS models, and that subscripts or superscripts of “n” denote coefficients in the
canonical representation.
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specification Γt = γ0
n + γ1

nYt is imposed on the model, the drift terms under the P -measure

(KP
n , θ

P
n ) can be chosen independently of the drift terms under the Q-measure (KQ

n , θ
Q
n ).

Because the latent state variables may rotate without changing the probability distribution

of bond yields, not all parameters in the above model can be identified. Singleton (2006)

imposes identifying restrictions under the Q-measure. Specifically, he sets the mean θ
Q
n = 0,

the volatility matrix Σn equal to the identity matrix, and he sets the mean-reversion matrix

K
Q
n equal to a triangular matrix.10 The canonical representation then has Q-dynamics





dY 1
t

dY 2
t

dY 3
t



 = −





κ
n,Q
11 κ

n,Q
12 κ

n,Q
13

0 κ
n,Q
22 κ

n,Q
23

0 0 κ
n,Q
33









Y 1
t

Y 2
t

Y 3
t



 dt+





1 0 0

0 1 0

0 0 1









dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 ,

and P -dynamics





dY 1
t

dY 2
t

dY 3
t



 =





κ
n,P
11 κ

n,P
12 κ

n,P
13

κ
n,P
21 κ

n,P
22 κ

n,P
23

κ
n,P
31 κ

n,P
32 κ

n,P
33













θ
n,P
1

θ
n,P
2

θ
n,P
3



−





Y 1
t

Y 2
t

Y 3
t







 dt+





1 0 0

0 1 0

0 0 1









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .

The instantaneous risk-free rate is

rt = δn
0 + δn

1,1Y
1
t + δn

1,2Y
2
t + δn

1,3Y
3
t .

Hence there are 22 free parameters in the canonical representation of the A0(3) model class.11

In the AFNS class, the mean-reversion matrix under the Q-measure is triangular, so it is

straightforward to derive the restrictions that must be imposed on the canonical affine repre-

sentation to obtain the class of AFNS models. The procedure through which the restrictions

are identified is based on so-called affine invariant transformations. Appendix C describes

such transformations and derives the restrictions associated with the AFNS models considered

in this paper. The results are summarized in Table 1, which shows that for the correlated-

factor AFNS model there are three key parameter restrictions on the canonical affine model.

First, δn
0 = 0, so there is no constant in the equation for the instantaneous risk-free rate.

There is no need for this constant because, with the second restriction κ
n,Q
1,1 = 0, the first

factor must be a unit-root process under the Q-measure, which also implies that this factor

can be identified as the level factor. Finally, κn,Q
2,2 = κ

n,Q
3,3 , so the own mean-reversion rates of

the second and third factors under the Q-measure must be identical. The independent-factor

AFNS model maintains the three parameter restrictions and adds nine others under both the

10Without loss of generality, we will take it to be upper triangular in what follows.
11Note that, given this canonical representation, there is no loss of generality in fixing the AFNS model

mean under the Q-measure at 0 and leaving the mean under the P -measure, θP , to be estimated.
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AFNS Model δn
0 , δn

1 κQ
n κP

n θP
n Restrictions

δn
0 = 0 κ

n,Q
1,1 = κ

n,Q
1,2 = κ

n,Q
1,3 = 0 κP

n is no
Independent-factor

δn
1,3 = 0 κ

n,Q
2,2 = κ

n,Q
3,3 diagonal restriction

12

κ
n,Q
1,1 = 0 no no

Correlated-factor δn
0 = 0

κ
n,Q
2,2 = κ

n,Q
3,3 restriction restriction

3

Table 1: AFNS Parameter Restrictions on the A0(3) Canonical Representation.

P - and Q-measures.12

The Nelson-Siegel parameter restrictions on the canonical affine AF model greatly facil-

itate estimation.13 They allow a closed-form solution and, as described in the next section,

eliminate in an appealing way the surfeit of troublesome likelihood maxima in estimation.

4 Estimation and In-Sample Fit of DNS and AFNS Models

Thus far we have derived the affine AF class of Nelson-Siegel term structure models, and we

have explicitly characterized the restrictions that it places on the canonical A0(3) model. Here

we undertake estimation of the AFNS model and illustrate its relative simplicity. We proceed

in several steps. First we introduce the state-space/Kalman-filter maximum-likelihood estima-

tion framework that we employ throughout. Second, we estimate and compare independent-

and correlated-factor DNS models. Third, we estimate independent- and correlated-factor

AFNS models, which we compare to each other and to their DNS counterparts, devoting

special attention to the estimated yield adjustment terms. Throughout, our estimates are

based on end-of-month U.S. Treasury bill and bond zero-coupon yields from January 1987 to

December 2002 at sixteen maturities: 3, 6, 9, 12, 18, 24, 36, 48, 60, 84, 96, 108, 120, 180,

240, and 360 months. The data are constructed using the unsmoothed Fama-Bliss (1987)

approach as described in Diebold and Li (2006).

4.1 Estimation Framework

We first display the state-space representations of the DNS and AFNS models. For the DNS

models, the state transition equation is

Xt = (I −A)µ+AXt−1 + ηt,

12For both specifications, there is a further modest restriction described in Appendix C: κ
n,Q
2,3 must have the

opposite sign of κ
n,Q
2,2 and κ

n,Q
3,3 , but its absolute numerical size can vary freely.

13Note that in the AFNS model, the connection between the P -dynamics and the yield function is explicitly
tied to the yield adjustment term through the specification of the volatility matrix, while in the canonical
representation it is blurred by an interplay between the specifications of δn

1 and KQ
n .
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where Xt = (Lt, St, Ct), and the measurement equation is

yt = BXt + εt. (11)

For the continuous-time AFNS models, the conditional mean vector and the conditional

covariance matrix are

EP [XT |Ft] = (I − exp(−KP ∆t))θP + exp(−KP ∆t)Xt

V P [XT |Ft] =

∫ ∆t

0
e−KP sΣΣ′e−(KP )′sds,

where ∆t = T − t. We compute conditional moments of discrete observations and obtain the

AFNS state transition equation

Xt = (I − exp(−KP ∆t))θP + exp(−KP ∆t)Xt−1 + ηt,

where ∆t is the time between observations. The AFNS measurement equation is14

yt = A+BXt + εt.

In both the DNS and AFNS environments, the assumed error structure is

(
ηt

εt

)

∼ N

[(
0

0

)

,

(
Q 0

0 H

)]

,

where the matrix H is diagonal, and the matrix Q is diagonal in the independent-factor

and non-diagonal in the correlated-factor case. In the AFNS case, moreover, Q has special

structure,

Q =

∫ ∆t

0
e−KP sΣΣ′e−(KP )′sds.

In addition, the transition and measurement errors are assumed orthogonal to the initial

state.

Now we consider Kalman filtering, which we use to evaluate the likelihood functions of

the DNS and AFNS models. We initialize the filter at the unconditional mean and variance

of the state variables under the P -measure.15 For the DNS models we have X0 = µ and

Σ0 = V , where V solves V = AV A′ + Q. For the AFNS models we have X0 = θP and

Σ0 =
∫∞
0 e−KP sΣΣ′e−(KP )′sds, which we calculate using the analytical solutions provided in

14Note that the matrix B is identical in the DNS and AFNS models (compare equations (8) and (10)). The
only difference is the addition of the vector A containing the yield-adjustment terms in the AFNS models.

15We ensure covariance stationarity under the P measure in the DNS case by restricting the eigenvalues of
A to be less than 1, and in the AFNS case by restricting the real component of each eigenvalue of KP to be
positive.
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Fisher and Gilles (1996).

Denote the information available at time t by Yt = (y1, y2, . . . , yt), and denote model

parameters by ψ. Consider period t−1 and suppose that the state update Xt−1 and its mean

square error matrix Σt−1 have been obtained. The prediction step is

Xt|t−1 = EP [Xt|Yt−1] = ΦX,0
t (ψ) + ΦX,1

t (ψ)Xt−1,

Σt|t−1 = ΦX,1
t (ψ)Σt−1Φ

X,1
t (ψ)′ +Qt(ψ),

where for the DNS models we have ΦX,0
t = (I − A)µ, ΦX,1

t = A, and Qt = Q, and for

the AFNS models we have ΦX,0
t = (I − exp(−KP ∆t))θP , ΦX,1

t = exp(−KP ∆t), and Qt =
∫ ∆t

0 e−KP sΣΣ′e−(KP )′sds, where ∆t is the time between observations.

In the time-t update step, Xt|t−1 is improved by using the additional information contained

in Yt. We have

Xt = E[Xt|Yt] = Xt|t−1 + Σt|t−1B(ψ)′F−1
t vt,

Σt = Σt|t−1 − Σt|t−1B(ψ)′F−1
t B(ψ)Σt|t−1,

where

vt = yt − E[yt|Yt−1] = yt −A(ψ) −B(ψ)Xt|t−1,

Ft = cov(vt) = B(ψ)Σt|t−1B(ψ)′ +H(ψ),

H(ψ) = diag(σ2
ε (τ1), . . . , σ

2
ε(τN )).

At this point, the Kalman filter has delivered all ingredients needed to evaluate the Gaus-

sian log likelihood, the prediction-error decomposition of which is

log l(y1, . . . , yT ;ψ) =
T∑

t=1

(
−
N

2
log(2π) −

1

2
log |Ft| −

1

2
v′tF

−1
t vt

)
,

where N is the number of observed yields. We numerically maximize the likelihood with

respect to ψ using the Nelder-Mead simplex algorithm. Upon convergence, we obtain standard

errors from the estimated covariance matrix,

Ω̂(ψ̂) =
1

T

[ 1

T

T∑

t=1

∂ log lt(ψ̂)

∂ψ

∂ log lt(ψ̂)

∂ψ

′]−1
,

where ψ̂ denotes the estimated model parameters.

15



A Matrix Mean

A·,1 A·,2 A·,3 µ

A1,· 0.9827 0 0 0.0696
(0.0128) (0.0137)

A2,· 0 0.9778 0 -0.0249
(0.0166) (0.0151)

A3,· 0 0 0.9189 -0.0108
(0.0284) (0.0079)

q Matrix

q·,1 q·,2 q·,3

q1,· 0.0025 0 0
(0.0002)

q2,· 0 0.0033 0
(0.0002)

q3,· 0 0 0.0075
(0.0004)

Table 2: Estimated Independent-Factor DNS Model. The left panel contains the
estimated A matrix and µ vector. The right panel contains the estimated q matrix. Standard
errors appear in parentheses. The estimated λ is 0.06040 (0.00100) for maturities measured
in months. The maximized log likelihood is 16,332.94.

4.2 DNS Model Estimation

Independent-factor DNS estimates appear in Table 2, and correlated-factor DNS estimates

appear in Table 3. In both models the level factor is the most persistent, and the curvature

factor is least persistent. In the correlated-factor DNS model, only one off-diagonal element

of the estimated A-matrix is statistically significant.16

Volatility parameters are most easily compared by converting from Cholesky factors to

conditional covariance matrices. For independent-factor DNS we have

QDNS
indep = qq′ =





6.17 × 10−6 0 0

0 1.11 × 10−5 0

0 0 5.58 × 10−5



 , (12)

and for correlated-factor DNS we have

QDNS
corr = qq′ =





6.03 × 10−6 −5.47 × 10−6 6.76 × 10−6

−5.47 × 10−6 1.01 × 10−5 −4.73 × 10−6

6.76 × 10−6 −4.73 × 10−6 5.09 × 10−5



 . (13)

The variances of shocks to each state variable are similar across the independent- and correlated-

factor DNS models, with level factor shocks the least volatile and curvature factor shocks the

most volatile. The covariance estimates obtained in the correlated-factor DNS model trans-

late into a correlation of -0.701 for shocks to the level and slope factors, a correlation of 0.385

for shocks to the level and curvature factors, and a correlation of -0.208 for shocks to the

slope and curvature factors.

The independent- and correlated-factor DNS models are nested, so we can test the independent-

16Interestingly, the significant parameter is ASt,Ct−1 , which is the key non-zero off-diagonal element required
in Proposition 1 for the AFNS specification.
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A Matrix Mean

A·,1 A·,2 A·,3 µ

A1,· 0.9874 0.0050 -0.0097 0.0723
(0.0165) (0.0183) (0.0157) (0.0145)

A2,· 0.0066 0.9332 0.0819 -0.0294
(0.0228) (0.0229) (0.0202) (0.0159)

A3,· 0.0152 0.0401 0.9011 -0.0120
(0.0526) (0.0418) (0.0377) (0.0126)

q Matrix

q·,1 q·,2 q·,3

q1,· 0.0025 0 0
(0.0001)

q2,· -0.0022 0.0023 0
(0.0003) (0.0001)

q3,· 0.0028 0.0006 0.0066
(0.0007) (0.0006) (0.0004)

Table 3: Estimated Correlated-Factor DNS Model. The left panel contains the esti-
mated A matrix and µ vector. The right panel contains the estimated q matrix. Standard
errors appear in parentheses. The estimated λ is 0.06248 (0.00109) for maturities measured
in months. The maximized log likelihood is 16,415.36.

factor restrictions using a standard likelihood-ratio (LR) test. Under the null hypothesis of

independent-factor DNS, LR = 2[logL(θcorr)−logL(θindep)] ∼ χ2(9). We obtain LR = 164.8,

with associated p-value less than .0001, so we would formally reject the restrictions imposed

in the independent-factor DNS model. This rejection reflects an elevated negative correlation

between the shocks to the level and slope factors and a significant positive correlation through

the mean-reversion matrix between changes in the slope factor and deviations of the curvature

factor from its mean.

Crucially, however, the extra parameters in the correlated-factor model, although sta-

tistically significant, appear economically unimportant. That is, the increased flexibility of

the correlated-factor DNS model provides little advantage in fitting observed yields, as doc-

umented in Table 4, which reports means and root mean squared errors (RMSEs) for model

residuals. The RMSE differences appear negligible (typically less than one half of one basis

point), maturity-by-maturity, and no consistent advantage across maturities accrues to the

correlated-factor model. Interestingly, both models have difficulty fitting yields beyond the

10-year maturity, which suggests that a maturity-dependent yield adjustment term could im-

prove fit. We now examine the empirical performance of AFNS models, which incorporate

precisely such yield adjustments.

4.3 AFNS Model Estimation

Thus far we have examined just one simple model (DNS), comparing fit in the independent-

and correlated-factor cases. Now we bring AFNS into the mix, and things get more interesting.

In particular, we can compare independent- and correlated-factor cases, with and without

imposition of absence of arbitrage. As many have noted, estimation of the canonical affine

A0(3) term structure model is very difficult and time-consuming and effectively prevents

the kind of repetitive re-estimation required in a comprehensive simulation study or out-of-
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DNS DNS AFNS AFNS
Indep-Factor Corr-Factor Indep-Factor Corr-Factor

Maturity Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 -1.64 12.26 -1.84 11.96 -2.85 18.53 -2.49 11.55
6 -0.24 1.09 -0.29 1.34 -1.19 7.12 -0.03 0.64
9 -0.54 7.13 -0.51 6.92 -1.24 3.45 -0.33 6.91
12 4.04 11.19 4.11 10.86 3.58 9.60 3.72 10.14
18 7.22 10.76 7.28 10.42 7.14 10.43 5.53 8.33
24 1.18 5.83 1.19 5.29 1.37 5.94 -1.18 4.37
36 -0.07 1.51 -0.19 2.09 0.30 1.98 -1.10 3.16
48 -0.67 3.92 -0.85 4.03 -0.40 3.72 0.93 4.13
60 -5.33 7.13 -5.51 7.31 -5.27 6.82 -2.01 5.22
84 -1.22 4.25 -1.30 4.25 -1.50 4.29 0.89 3.83
96 1.31 2.10 1.29 2.02 1.03 2.11 1.05 1.83
108 0.03 2.94 0.07 3.11 -0.11 3.02 -3.23 5.26
120 -5.11 8.51 -5.01 8.53 -4.95 8.23 -11.65 14.00
180 24.11 29.44 24.40 29.66 27.87 32.66 3.85 16.53
240 25.61 34.99 26.00 35.33 35.96 42.61 4.32 23.97
360 -29.62 37.61 -29.12 37.18 1.37 22.03 -0.81 23.04

Table 4: Summary Statistics for in-Sample Model Fit. Residual means and root mean
squared errors for sixteen maturities. Maturities are in months; means and RMSEs are in
basis points.

18



KP Matrix Mean

KP
·,1 KP

·,2 KP
·,3 θP

KP
1,· 0.0816 0 0 0.0710

(0.0615) (0.0129)
KP

2,· 0 0.2114 0 -0.0282
(0.1780) (0.0173)

KP
3,· 0 0 1.2330 -0.0093

(0.4240) (0.0061)

Σ Matrix

Σ·,1 Σ·,2 Σ·,3

Σ1,· 0.0051 0 0
(0.0001)

Σ2,· 0 0.0110 0
(0.0006)

Σ3,· 0 0 0.0264
(0.0014)

Table 5: Estimated Independent-Factor AFNS Model. The left panel contains the
estimated KP matrix and θP vector. The right panel contains the estimated Σ matrix.
Standard errors appear in parentheses. The estimated λ is 0.5975 (0.0115) for maturities
measured in years. The maximized log likelihood is 16,279.92.

sample forecast exercise, which we pursue with the AFNS model in the next section.17 By

comparison, the estimation of the AFNS model is straightforward and robust in large part

because the role of each latent factor is not left unidentified as in the maximally flexible

A0(3) model. Even though the factors are latent in the AFNS model, with the Nelson-Siegel

factor loading structure, they can be clearly identified as level, slope, and curvature. This

identification eliminates the troublesome local maxima reported by Kim and Orphanides

(2005), i.e., maxima with likelihood values very close to the global maximum but with very

different interpretations of the three factors and their dynamics.18

The estimated independent-factor AFNS model is reported in Table 5. Although the

independent-factor DNS and AFNS models are non-nested, they contain the same number

of parameters, so their likelihoods can be compared directly. The lower log likelihood value

obtained for the AFNS model (16,280 vs. 16,332) suggests weaker in-sample performance,

which appears consistent with the RMSEs in Table 4.

Although the two independent-factor models differ statistically, they are quite similar eco-

nomically, as can be seen in two ways. First, we compare mean reversion matrices, covariance

matrices, and mean vectors. To compare the independent-factor AFNS mean-reversion ma-

trix to that of the independent-factor DNS model, we translate the continuous-time matrix

in Table 5 into the one-month conditional mean-reversion matrix,

exp
(
−KP 1

12

)
=





0.993 0 0

0 0.983 0

0 0 0.902



 . (14)

17For example, Rudebusch, Swanson, and Wu (2006) report difficulty replicating the published estimates of
a no-arbitrage model even though they use identical data and estimation programs.

18Other strategies to facilitate estimation include adding survey information (Kim and Orphanides, 2005)
or assuming the latent yield-curve factors are observable (Ang, Piazzesi, and Wei, 2006).
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Figure 1: Yield-Adjustment Terms for AFNS Models.

Similarly, we convert the volatility matrix into a one-month conditional covariance matrix

QAFNS
indep =

∫ 1
12

0
e−KP sΣΣ′e−(KP )′sds =





2.15 × 10−6 0 0

0 9.94 × 10−6 0

0 0 5.26 × 10−5



 . (15)

Inspection reveals that the mean reversion matrix and covariance matrix (and also the factor

mean vector) are similar across the independent-factor DNS and AFNS models.

Second, the similarity of the independent-factor DNS and AFNS models can be seen

by noting that they make identical assumptions about the P -dynamics and therefore differ

only by the yield-adjustment term, which is quite rigid in the independent-factor case. In

particular, the independent-factor AFNS yield adjustment is

−

C(t, T )

T − t
= −

σ2
11

2

1

T − t

∫ T

t

B
1(s, T )2ds −

σ2
22
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B
2(s, T )2ds −

σ2
33

2

1

T − t
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B
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2
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+

1
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1
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−
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1 − e−λ(T−t)
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+
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1 − e−2λ(T−t)

T − t

]
,

and is plotted in Figure 1. It is everywhere negative, monotonically increasing in absolute

value, and very smooth. Presumably a more flexible yield-adjustment term is needed to
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KP Matrix Mean

KP
·,1 KP

·,2 KP
·,3 θP

KP
1,· 5.2740 9.0130 -10.7100 0.0794

(1.3100) (1.4200) (1.4800) (0.0084)
KP

2,· -0.2848 0.5730 -0.5528 -0.0396
(1.3200) (2.3200) (2.7600) (0.0200)

KP
3,· -37.3100 -66.7700 80.0900 -0.0279

(11.0000) (11.9000) (12.1000) (0.0193)

Σ Matrix

Σ·,1 Σ·,2 Σ·,3

Σ1,· 0.0154 0 0
(0.0004)

Σ2,· -0.0013 0.0117 0
(0.0051) (0.0018)

Σ3,· -0.1641 -0.0590 0.0001
(0.0069) (0.0106) (6.8900)

Table 6: Estimated Correlated-Factor AFNS Model. The left panel contains the esti-
mated KP matrix and θP vector. The right panel contains the estimated Σ matrix. Standard
errors appear in parentheses. The estimated λ is 0.8244 (0.0122) for maturities measured in
years. The maximized log likelihood is 16,494.29.

achieve substantial improvement in fit. The correlated-factor AFNS model, to which we now

turn, achieves this.

We begin with two model comparisons that involve correlated-factor AFNS. First consider

independent- vs. correlated-factor AFNS. The models are nested, so under the null hypothesis

of independent-factor AFNS, LR = 2[logL(θcorr) − logL(θindep)] ∼ χ2(9). We obtain LR =

428.7, with associated p-value less than .0001, so independent-factor AFNS is dominated by

correlated-factor AFNS. Second, consider correlated-factor DNS vs. correlated-factor AFNS.

The models are non-nested but contain equal numbers of parameters, so we compare their

log likelihoods directly, with the clear result that correlated-factor DNS is dominated by

correlated-factor AFNS.

Combining the model comparison results above with those reported earlier in Section

4.2, correlated-factor AFNS emerges as the clear in-sample favorite among all the various

combinations of independent-factor, correlated-factor, DNS and AFNS models. Presumably,

this is due to the greater flexibility of the correlated-factor AFNS yield adjustment. We

report the estimated correlated-factor AFNS model in Table 6, from which we can infer the

estimated yield adjustment. In population, the adjustment is

−
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Figure 2: Mean Yield Curves. We show the empirical mean yield curve, and the
independent- and correlated-factor DNS and AFNS model mean yield curves.

Replacing population parameters with estimates delivers the corresponding estimated yield

adjustment, which we plot in Figure 1. It is indeed more flexible, with an interesting hump

in the 15- to 20-year maturity range, which improves the fit of those long-term yields in

particular, although it also helps with shorter maturities.

Another way to appreciate the role of the yield adjustment term is to compare the mean

fitted yield curves from the independent- and correlated-factor AFNS and DNS models to the

sample mean yield curve, which is done in Figure 2. All of the models match the mean yield

curve well for maturities up to ten years, but their behavior diverges for longer maturities.

Note that the DNS model curve is monotonically increasing, while with the yield-adjustment

terms, the AFNS models can bend downward and achieve better long-maturity fit.19

The enhanced flexibility produced by the correlated-factor AFNS yield adjustment term

allows the level factor to become less persistent, as evidenced by the estimated one-month

19This result suggests why the DNS model is not arbitrage free. At very long maturities, only the level
factor has any appreciable influence on bond yields. To eliminate the arbitrage opportunity from going long
on a bond with very long maturity and hedging the risk by shorting a bond with a slightly shorter maturity,
eventually the yield curve must slope downwards (an application of Jensen’s inequality and an illustration of
convexity), which the DNS model cannot support.
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conditional mean-reversion matrix

exp
(
−KP 1

12

)
=





0.917 −0.107 0.122

0.0390 0.981 0.0112

0.456 0.769 0.0667



 . (16)

Evidently, the level factor becomes less persistent once the flexible correlated-factor AFNS

yield adjustment is incorporated, because the level factor is more free to work with slope and

curvature to improve fit at shorter maturities, given that the yield adjustment is most helpful

at long maturities.

The one-month conditional covariance matrix is

QAFNS
corr =

∫ 1
12

0

e−KP sΣΣ′e−(KP )′sds =





7.42 × 10−6 −6.11 × 10−6 −7.62× 10−6

−6.11 × 10−6 1.07 × 10−5 5.89 × 10−7

−7.62 × 10−6 5.89 × 10−7 1.87 × 10−4



 . (17)

The conditional variances in the diagonal are about the same for the level and slope factors as

those obtained in the correlated-factor DNS model, but the conditional variance for curvature

is much larger. In terms of covariances, the negative correlation between the shocks to level

and slope is maintained. For the correlations between shocks to curvature and shocks to level

and slope, the signs have changed relative to the unconstrained correlated-factor DNS model.

This suggests that the off-diagonal elements of Σ are heavily influenced by the required shape

of the yield-adjustment term rather than the dynamics of the state variables. On the other

hand, the estimated covariances of the shocks in the DNS models are likely to be unbiased as

they are varied to provide the best fit for the P -dynamics without any implications for the

cross-sectional fit of the model.

5 Out-of-Sample Predictive Performance

Here we investigate whether the in-sample superiority of the correlated-factor AFNS model

carries over to out-of-sample forecast accuracy. We first describe the recursive estimation

and prediction procedure employed. Second, we compare performance of the four uncorre-

lated/correlated factor DNS/AFNS models, exactly as in the in-sample analysis of Section 4

except that we work out-of-sample as opposed to in-sample. Third, we compare the out-of-

sample predictive performance of AFNS to that of the canonical A0(3) model.

5.1 Construction of Out-of-Sample Forecasts

We construct six- and twelve-month-ahead forecasts from the four DNS and AFNS models

for yields at various maturities. We estimate and forecast using an expanding sample. The
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first estimation sample is January 1987 to December 1996; then January 1987 to January

1997, and so on. The largest estimation sample for the one-month-ahead forecasts ends in

November 2002 (72 forecasts in all). For the six- and twelve-month horizons, the largest

samples end in June 2002 and December 2001 (67 and 61 forecasts), respectively.

Under quadratic loss the optimal forecast is simply the relevant conditional expectation.

The optimal DNS forecast for a maturity-τ yield made at time t for time t+ h is therefore

yDNS
t+h,t(τ) ≡ EP

t [yt+h(τ)] = EP
t [Lt+h] + EP

t [St+h]
(1 − e−λτ

λτ

)
+ EP

t [Ct+h]
(1 − e−λτ

λτ
− e−λτ

)
.

(18)

But from the first-order transition dynamics we have immediately

EP
t [Xt+h] =

( h−1∑

i=0

Ai
)
(I −A)µ+AhXt, (19)

where Xt = (Lt, St, Ct). The straightforward forecasting of the state vector (19) translates

into straightforward forecasting of the yield vector via (18).

Similarly, the optimal AFNS forecast for a maturity-τ yield made at time t for time t+ h

is

yAFNS
t+h,t (τ) ≡ EP

t [yt+h(τ)] = EP
t [X1

t+h]+EP
t [X2

t+h]
(1 − e−λτ

λτ

)
+EP

t [X3
t+h]

(1 − e−λτ

λτ
−e−λτ

)
−
C(τ)

τ
,

where

EP
0 [Xt] = (I − exp(−KP t))θP + exp(−KP t)X0,

and Xt = (X1
t ,X

2
t ,X

3
t ).20

5.2 Evaluation of Out-of-Sample Forecasts

Predictive accuracy has been a key metric to evaluate the adequacy of yield-curve mod-

els; recent analyses include Ang and Piazzesi (2003), Hördahl, Tristani, and Vestin (2005),

De Pooter, Ravazzolo, and van Dijk (2007), Chua et al. (2008), Mönch (2008), and Zant-

edeschi, Damien and Polson (2009). Define the h-step-ahead forecast error for maturity

τ as êt+h,t(τ) = yt+h(τ) − ŷt+h,t(τ). Then the forecast performances of the four models

(DNS/AFNS, independent/correlated) are compared using the root mean squared forecast

error (RMSFE) for τ = 3, 12, 36, 60, 120, 360, and h = 6, 12 (in months). These RMSFEs

are shown in Table 7. For each of the 12 combinations of yield maturity and forecast hori-

zon, the most accurate model’s RMSFE is boxed. The results are striking. In 11 of the 12

combinations, the most accurate model is the independent-factor AFNS model. In particu-

20Making the formulae operational of course requires replacing population system parameters with estimates.
We denote the operational forecasts by ŷDNS

t+h,t(τ ) and ŷAF NS
t+h,t (τ ).
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Figure 3: Out-of-Sample Root Mean Squared Forecast Error Ratios.

lar, the in-sample advantage of the correlated-factor AFNS model disappears out of sample.

Evidently, the correlated-factor AFNS model is prone to in-sample overfitting due to its rich

P -dynamics.21

In examining forecast performance, we are interested in two broad questions. First,

how does the forecast performance of the correlated-factor models compare to that of the

independent-factor models, and second, how does the imposition of AF structure affect fore-

cast performance. Figure 3 suggests the answers, showing ratios of RMSFEs for various

combinations of model, maturity and forecast horizon. The first question is addressed in the

left and middle panels, which show the ratios of the independent-factor and correlated-factor

DNS models and the independent-factor and correlated-factor AFNS models, respectively.

The ratios are almost uniformly below one, which supports the parsimonious models.

The second question is addressed in the right panel, which shows RMSFE ratios of the

independent-factor AFNS and DNS models. The evidence is somewhat mixed—due largely

to anomalous behavior at the twenty-year maturity—but overall the AF version dominates.

Therefore, out-of-sample forecast performance appears largely improved by imposing freedom

from arbitrage, especially at the longer 12-month forecast horizon.

5.3 Comparison to Duffee (2002)

An important remaining issue is the forecasting performance of AFNS relative to the canonical

AF A0(3) model. In this sub-section we address that issue, and in so doing we provide insight

21The single case in which the independent-factor AFNS model is not the most accurate pertains to the
3-month yield. This advantage likely reflects idiosyncratic fluctuations in short-term Treasury bill yields from
institutional factors unrelated to yields on longer-maturity Treasuries, as described by Duffee (1996). The
more flexible models appear to have a slight advantage in fitting such idiosyncratic movements.

25



Forecast Horizon in Months

Model h=6 h=12

3-Month Yield

DNSindep 96.87 173.39

DNScorr 87.43 166.91
AFNSindep 91.63 164.70

AFNScorr 88.49 161.94

1-Year Yield

DNSindep 103.25 170.85
DNScorr 102.71 173.14

AFNSindep 98.49 163.46
AFNScorr 98.63 165.50

3-Year Yield

DNSindep 92.22 135.24
DNScorr 99.55 145.82

AFNSindep 86.99 126.95
AFNScorr 90.64 135.79

5-Year Yield

DNSindep 87.87 122.09
DNScorr 94.95 132.40

AFNSindep 82.41 112.85
AFNScorr 88.15 124.87

10-Year Yield

DNSindep 74.71 105.02
DNScorr 79.48 112.37

AFNSindep 67.48 92.39
AFNScorr 90.21 123.89

30-Year Yield

DNSindep 71.35 96.90
DNScorr 72.71 99.68

AFNSindep 48.06 61.97
AFNScorr 71.38 96.75

Table 7: Out-of-Sample Root Mean Squared Forecast Errors, Four Models. For
each maturity and horizon, the smallest RMSFE is boxed. Units are basis points.

26



KP Matrix Mean

KP
·,1 KP

·,2 KP
·,3 θP

KP
1,· 0.0299 0 0 0.0609

(0.0249) (0.0224)
KP

2,· 0 0.7436 0 -0.0162
(0.1550) (0.0054)

KP
3,· 0 0 2.5250 -0.0043

(0.3540) (0.0026)

Σ Matrix

Σ·,1 Σ·,2 Σ·,3

Σ1,· 0.0069 0 0
(0.0002)

Σ2,· 0 0.0208 0
(0.0004)

Σ3,· 0 0 0.0363
(0.0009)

Table 8: Estimated Independent-Factor AFNS Model, Duffee (2002) Data Set.
The left panel contains the estimated KP matrix and θP vector. The right panel contains
the estimated Σ matrix. Standard errors appear in parentheses. The estimated λ is 0.8131
(0.0183) for maturities measured in years. The maximized log likelihood is 14,948.79.

into the benefits of imposing the Nelson-Siegel restrictions.

We hasten to add that, quite apart from any effects on forecasting performance, impo-

sition of the Nelson-Siegel restrictions delivers clear benefits simply in achieving estimation

tractability. The simple estimation of AFNS contrasts starkly with the “challenging” es-

timation of the maximally-flexible A0(3) model, whose recalcitrance is well-known. Our

earlier-implemented expanding-sample AFNS estimation, for example, is infeasible for the

maximally-flexible A0(3) model. Hence, instead of estimating a somewhat arbitrary A0(3)

model for our data set, we take an existing optimized empirical A0(3) model from the litera-

ture, specifically Duffee (2002), and we compare it to an AFNS model estimated on the same

data.

Duffee (2002) examines the predictive performance of the A0(3) model class, estimating

both the maximally-flexible version (given an essentially affine risk premium structure) and

a more parsimonious “preferred” specification on a single sample from January 1952 to De-

cember 1994.22 Fixing the parameters at estimated values, Duffee sequentially updates the

state variables and produces three-, six- and twelve-month-ahead yield forecasts.23

We extend Duffee’s forecast comparison to include the independent-factor AFNS model,

estimated using three-month, six-month, one-year, two-year, five-year, and ten-year yields

from January 1952 to December 1994, as reported in Table 8.24 Fixing parameters at esti-

mated values, we sequentially update the state variables using the Kalman filter. Based on

the updated state variables, we produce six- and twelve-month-ahead yield forecasts as above.

RMSFEs appear in Table 9 for the two models examined by Duffee (2002) (random walk

and A0(3)) plus the independent-factor AFNS model, for the six-month, two-year and ten-

22The data used are available at http://econ.jhu.edu/People/Duffee/index.htm.
23The estimation method used by Duffee (2002) differs from ours in that he avoids filtering by assuming

that the six-month, two-year, and ten-year yields are observed without error. Duffee therefore evaluates out-
of-sample forecast performance only at those maturities.

24There are 21 parameters estimated in Duffee’s preferred A0(3) model and 16 parameters estimated in our
AFNS model, including the six measurement error standard deviations.

27



Forecast Horizon in Months

Maturity/Model h=6 h=12

6-Month Yield

Random Walk 40.0 48.4
Preferred A0(3) 36.5 42.1

AFNSindep 34.0 41.3

2-Year Yield

Random Walk 65.2 76.2
Preferred A0(3) 56.6 60.0

AFNSindep 54.3 59.0

10-Year Yield

Random Walk 66.9 81.5
Preferred A0(3) 63.6 73.8

AFNSindep 60.7 71.8

Table 9: Out-of-Sample Root Mean Squared Forecast Errors, Three Models. We
show RMSFEs for the random walk model, the preferred A0(3) model as selected and esti-
mated by Duffee (2002, Table 8), and the independent-factor AFNS estimated using Duffee’s
data set. For each maturity and horizon, the smallest RMSFE is boxed. Units are basis
points.
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year yield maturities examined by Duffee. RMSFEs for each forecasting model are based on

42 six-month-ahead forecasts from January 1995 to June 1998, and 36 twelve-month-ahead

forecasts from January 1995 to December 1997. For each maturity/horizon combination, the

independent-factor AFNS forecasts are the most accurate, consistently outperforming both

the random walk and Duffee’s preferred A0(3) model. This superior out-of-sample forecast

performance indicates the AFNS class is a leading and, not least, well-identified member of

the general A0(3) class of models.

6 Concluding Remarks

Asset pricing, portfolio allocation, and risk management are fundamental tasks in financial

asset markets. For fixed income securities, superior yield-curve modeling translates into

superior pricing, portfolio returns, and risk management. Accordingly, we have focused on two

important and successful yield curve literatures: the Nelson-Siegel empirically based one and

the no-arbitrage theoretically based one. Yield-curve models in both of these traditions are

impressive successes, albeit for very different reasons. Ironically, both approaches are equally

impressive failures, and for the same reasons, swapped. That is, models in the Nelson-Siegel

tradition fit and forecast well, but they lack theoretical rigor insofar as they admit arbitrage

possibilities. Conversely, models in the arbitrage-free tradition are theoretically rigorous

insofar as they enforce absence of arbitrage, but they fit and forecast poorly.

We have bridged the divide, proposing Nelson-Siegel-inspired models that enforce absence

of arbitrage. We analyzed our models theoretically, relating them to the canonical Dai-

Singleton (2000) representation of three-factor arbitrage-free affine models. We also analyzed

our models empirically, both in terms of in-sample fit and out-of-sample prediction. As

regards in-sample fit, we showed that the Nelson-Siegel parameter restrictions greatly facilitate

estimation, enabling one to escape the challenging A0(3) estimation environment in favor of

the simple and robust AFNS environment, and that the data strongly favor the correlated-

factor AFNS specification.

As regards out-of-sample prediction, we showed that the tables are turned: the more par-

simonious independent-factor models fare better. The results also suggest that gains may be

achieved by imposing absence of arbitrage, particularly for moderate to long yield maturities

and forecast horizons, although the evidence is much less conclusive than for in-sample fit. All

told, the independent-factor AFNS model fares well in out-of-sample prediction, consistently

outperforming, for example, the canonical A0(3).

Going forward, this new AFNS structure appears likely to be a useful representation

for term structure research, as its embedded three-factor structure (level, slope, curvature)

maintains fidelity to key aspects of term-structure data that have been recognized at least since
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Litterman and Scheinkman (1991), while simultaneously imposing absence of arbitrage. On

the theoretical side, it has recently been significantly enriched to include nonlinear regime-

switching dynamics by Zantedeschi, Damien and Polson (2009). On the applied side, it

has recently been extended in Christensen, Lopez, and Rudebusch (2008) to provide a joint

empirical model of nominal and real yield curves and in Christensen, Lopez, and Rudebusch

(2009) to model the interbank lending market.

30



Appendix A: Proof of Proposition 1

Start the analysis by limiting the volatility to be constant. Then the system of ODEs for

B(t, T ) is
dB(t, T )

dt
= ρ1 + (KQ)′B(t, T ), B(T, T ) = 0.

Because

d

dt

[
e(K

Q)′(T−t)B(t, T )
]

= e(K
Q)′(T−t) dB(t, T )

dt
− (KQ)′e(K

Q)′(T−t)B(t, T ),

it follows from the system of ODEs that

∫ T

t

d

ds

[
e(K

Q)′(T−s)B(s, T )
]
ds =

∫ T

t

e(K
Q)′(T−s)ρ1ds,

or equivalently, using the boundary conditions,

B(t, T ) = −e−(KQ)′(T−t)

∫ T

t

e(K
Q)′(T−s)ρ1ds.

Now impose the following structure on (KQ)′ and ρ1:

(KQ)′ =





0 0 0

0 λ 0

0 −λ λ



 and ρ1 =





1

1

0



 .

It is then easy to show that

e
(KQ)′(T−t) =





1 0 0

0 eλ(T−t) 0

0 −λ(T − t)eλ(T−t) eλ(T−t)



 and e
−(KQ)′(T−t) =





1 0 0

0 e−λ(T−t) 0

0 λ(T − t)e−λ(T−t) e−λ(T−t)



 .

Inserting this in the ODE, we obtain

B(t, T ) = −





1 0 0

0 e−λ(T−t) 0

0 λ(T − t)e−λ(T−t) e−λ(T−t)





∫ T

t





1 0 0

0 eλ(T−s) 0

0 −λ(T − s)eλ(T−s) eλ(T−s)









1

1

0



 ds

= −





1 0 0

0 e−λ(T−t) 0

0 λ(T − t)e−λ(T−t) e−λ(T−t)





∫ T

t





1

eλ(T−s)

−λ(T − s)eλ(T−s)



 ds.

Because ∫ T

t

ds = T − t,
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and ∫ T

t

eλ(T−s)ds =
[−1

λ
eλ(T−s)

]T
t

= −
1 − eλ(T−t)

λ
,

and

∫ T

t

−λ(T−s)eλ(T−s)ds =
1

λ

∫ 0

λ(T−t)

xexdx =
1

λ
[xex]0λ(T−t)−

1

λ

∫ 0

λ(T−t)

exdx = −(T−t)eλ(T−t)−
1 − eλ(T−t)

λ
,

the system of ODEs can be reduced to

B(t, T ) = −





1 0 0

0 e−λ(T−t) 0

0 λ(T − t)e−λ(T−t) e−λ(T−t)









T − t

−
1−eλ(T−t)

λ

−(T − t)eλ(T−t)
−

1−eλ(T−t)

λ



 =





−(T − t)

−
1−e−λ(T−t)

λ

(T − t)e−λ(T−t)
−

1−e−λ(T−t)

λ



 ,

which is identical to the claim in Proposition 1.

Appendix B: The AFNS Yield-Adjustment Term

In the AFNS models the yield-adjustment term is in general

C(t, T )

T − t
=

1

2

1

T − t

∫ T

t

3∑

j=1

(
Σ′

B(s, T )B(s, T )′Σ
)

j,j
ds

=
1

2

1

T − t

∫ T

t

3∑

j=1









σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33









B1(t, T )

B2(t, T )

B3(t, T )




(

B1(t, T ) B2(t, T ) B3(t, T )
)




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33









j,j

=
A

2

1

T − t

∫ T

t

B
1(s, T )2ds +

B

2

1

T − t

∫ T

t

B
2(s, T )2ds +

C

2

1

T − t

∫ T

t

B
3(s, T )2ds

+ D
1

T − t

∫ T

t

B
1(s, T )B2(s, T )ds + E

1

T − t

∫ T

t

B
1(s, T )B3(s, T )ds + F

1

T − t

∫ T

t

B
2(s, T )B3(s, T )ds,

where

A = σ2
11 + σ2

12 + σ2
13,

B = σ2
21 + σ2

22 + σ2
23,

C = σ2
31 + σ2

32 + σ2
33,

D = σ11σ21 + σ12σ22 + σ13σ23,

E = σ11σ31 + σ12σ32 + σ13σ33,

F = σ21σ31 + σ22σ32 + σ23σ33.

To derive the analytical formula for C(t,T )
T−t

, six integrals need to be solved:
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I1 =
A

2

1

T − t

∫ T

t

B1(s, T )2ds =
A

2

1

T − t

∫ T

t

(T − s)2ds =
A

6
(T − t)2.

I2 =
B

2

1

T − t

∫ T

t

B2(s, T )ds =
B

2

1

T − t

∫ T

t

[
−

1 − e−λ(T−s)

λ

]2
ds = B

[ 1

2λ2
−

1

λ3

1 − e−λ(T−t)

T − t
+

1

4λ3

1 − e−2λ(T−t)

T − t

]
.

I3 =
C

2

1

T − t

∫ T

t

B
3(s, T )ds =

C

2

1

T − t

∫ T

t

{
(T − s)e−λ(T−s)

−

1 − e−λ(T−s)

λ

}2

ds

= C
[ 1

2λ2
+

1

λ2
e
−λ(T−t)

−

1

4λ
(T − t)e−2λ(T−t)

−

3

4λ2
e
−2λ(T−t)

−

2

λ3

1 − e−λ(T−t)

T − t
+

5

8λ3

1 − e−2λ(T−t)

T − t

]
.

I4 =
D

T − t

∫ T

t

B
1(s, T )B2(s, T )ds =

D

T − t

∫ T

t

[
−(T−s)

][
−

1 − e−λ(T−s)

λ

]
ds = D

[ 1

2λ
(T−t)+

1

λ2
e
−λ(T−t)

−

1

λ3

1 − e−λ(T−t)

T − t

]
.

I5 = E
1

T − t

∫ T

t

B1(s, T )B3(s, T )ds = E
1

T − t

∫ T

t

[
− (T − s)

][
(T − s)e−λ(T−s) −

1 − e−λ(T−s)

λ

]
ds

= E
[ 3

λ2
e−λ(T−t) +

1

2λ
(T − t) +

1

λ
(T − t)e−λ(T−t) −

3

λ3

1 − e−λ(T−t)

T − t

]
.

I6 = F
1

T − t

∫ T

t

B2(s, T )B3(s, T )ds = F
1

T − t

∫ T

t

[
−

1 − e−λ(T−s)

λ

][
(T − s)e−λ(T−s) −

1 − e−λ(T−s)

λ

]
ds

= F
[ 1

λ2
+

1

λ2
e−λ(T−t) −

1

2λ2
e−2λ(T−t) −

3

λ3

1 − e−λ(T−t)

T − t
+

3

4λ3

1 − e−2λ(T−t)

T − t

]
.

Combining the six integrals, the analytical formula reported in subsection 2.3 is obtained.

Appendix C: Restrictions Imposed in the AFNS Model

Derivation of the AFNS restrictions imposed on the canonical representation of the A0(3)

class of affine models starts with an arbitrary affine diffusion process represented by

dYt = K
Q
Y [θQ

Y − Yt]dt + ΣY dW
Q
t .
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Now consider the affine transformation TY : AYt + η, where A is a nonsingular square matrix

of the same dimension as Yt and η is a vector of constants of the same dimension as Yt. Denote

the transformed process by Xt = AYt + η. By Ito’s lemma it follows that

dXt = AdYt = [AKQ
Y θ

Q
Y −AK

Q
Y Yt]dt +AΣY dW

Q
t = AK

Q
Y A

−1[AθQ
Y −AYt − η + η]dt +AΣY dW

Q
t

= AK
Q
Y A

−1[AθQ
Y + η −Xt]dt +AΣY dW

Q
t = K

Q
X [θQ

X −Xt]dt+ ΣXdW
Q
t .

Thus, Xt is itself an affine diffusion process with parameter specification:

K
Q
X = AK

Q
Y A

−1, θ
Q
X = Aθ

Q
Y + η, and ΣX = AΣY .

A similar result holds for the dynamics under the P -measure.

In terms of the short rate process there exists the following relationship:

rt = δY
0 + (δY

1 )′Yt = δY
0 + (δY

1 )′A−1AYt = δY
0 + (δY

1 )′A−1[AYt + η − η]

= δY
0 − (δY

1 )′A−1η + (δY
1 )′A−1Xt.

Thus, defining δX
0 = δY

0 − (δY
1 )′A−1η and δX

1 = (δY
1 )′A−1, the short rate process is left

unchanged and may be represented in either way

rt = δY
0 + (δY

1 )′Yt = δX
0 + (δX

1 )′Xt.

Because both Yt and Xt are affine latent factor processes that deliver the same distribution

for the short rate process rt, they are equivalent representations of the same fundamental

model; hence, TX is called an affine invariant transformation.

In the canonical representation of the subset of A0(3) affine term structure models con-

sidered here, the Q-dynamics are





dY 1
t

dY 2
t

dY 3
t



 = −





κ
Y,Q
11 κ

Y,Q
12 κ

Y,Q
13

0 κ
Y,Q
22 κ

Y,Q
23

0 0 κ
Y,Q
33









Y 1
t

Y 2
t

Y 3
t



 dt+





1 0 0

0 1 0

0 0 1









dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 ,

and the P -dynamics are





dY 1
t

dY 2
t

dY 3
t



 =





κ
Y,P
11 κ

Y,P
12 κ

Y,P
13

κ
Y,P
21 κ

Y,P
22 κ

Y,P
23

κ
Y,P
31 κ

Y,P
32 κ

Y,P
33













θ
Y,P
1

θ
Y,P
2

θ
Y,P
3



−





Y 1
t

Y 2
t

Y 3
t







 dt+





1 0 0

0 1 0

0 0 1









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .
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Finally, the instantaneous risk-free rate is

rt = δY
0 + δY

1,1Y
1
t + δY

1,2Y
2
t + δY

1,3Y
3
t .

There are 22 parameters in this maximally flexible canonical representation of the A3(0)

class of models, and here we present the parameter restrictions needed to arrive at the affine

AFNS models.

(1) The AFNS model with independent factors

The independent-factor AFNS model has P -dynamics





dX1
t

dX2
t

dX3
t



 =





κ
X,P
11 0 0

0 κ
X,P
22 0

0 0 κ
X,P
33













θ
X,P
1

θ
X,P
2

θ
X,P
3



 −





X1
t

X2
t

X3
t







 dt +





σX
11 0 0

0 σX
22 0

0 0 σX
33









dW
1,P
t

dW
2,P
t

dW
3,P
t



 ,

and the Q-dynamics are given by Proposition 1 as





dX1
t

dX2
t

dX3
t



 = −





0 0 0

0 λ −λ

0 0 λ









X1
t

X2
t

X3
t



 dt +





σX
11 0 0

0 σX
22 0

0 0 σX
33









dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 .

Finally, the short rate process is rt = X1
t + X2

t . This model has a total of 10 parameters;

thus, 12 parameter restrictions need to be imposed on the canonical A0(3) model.

It is easy to verify that the affine invariant transformation TA(Yt) = AYt + η with

A =





σX
11 0 0

0 σX
22 0

0 0 σX
33



 η =





0

0

0





will convert the canonical representation into the independent-factor AFNS model. For the

mean-reversion matrices, the relationship between the two representations is

KP
X = AKP

Y A
−1 ⇐⇒ KP

Y = A−1KP
XA

K
Q
X = AK

Q
Y A

−1 ⇐⇒ K
Q
Y = A−1K

Q
XA.

The equivalent mean-reversion matrix under the Q-measure is then

K
Q
Y =





1
σX
11

0 0

0 1
σX
22

0

0 0 1
σX
33









0 0 0

0 λ −λ

0 0 λ









σX
11 0 0

0 σX
22 0

0 0 σX
33



 =





0 0 0

0 λ −λ
σX
33

σX
22

0 0 λ



 .
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Thus, four restrictions need to be imposed on the upper triangular mean-reversion matrix

K
Q
Y :

K
Y,Q
11 = 0, K

Y,Q
12 = 0, K

Y,Q
13 = 0 and K

Y,Q
33 = KY

22.

Furthermore, notice that KY,Q
23 will always have the opposite sign of KY,Q

22 and KY,Q
33 , but its

absolute size can vary independently of these two parameters. Because KP
X , A, and A−1 are

all diagonal matrices, KP
Y is a diagonal matrix, too. This gives another six restrictions.

Finally, we can study the factor loadings in the affine function for the short rate process.

In all AFNS models, rt = X1
t +X2

t , which is equivalent to fixing

δX
0 = 0, δX

1 =





1

1

0



 .

From the relation (δX
1 )′ = (δY

1 )′A−1 it follows that

(δY
1 )′ = (δX

1 )′A =
(

1 1 0
)




σX
11 0 0

0 σX
22 0

0 0 σX
33



 =
(
σX

11 σX
22 0

)
.

For the constant term it holds that

δX
0 = δY

0 − (δY
1 )′A−1η ⇐⇒ δY

0 = δX
0 = 0.

Thus, we have obtained two additional parameter restrictions

δY
0 = 0 and δY

1,3 = 0.

(2) The AFNS model with correlated factors

In the correlated-factor AFNS model, the P -dynamics are





dX1
t

dX2
t

dX3
t



 =





κ
X,P
11 κ

X,P
12 κ

X,P
13

κ
X,P
21 κ

X,P
22 κ

X,P
23

κ
X,P
31 κ

X,P
32 κ

X,P
33













θ
X,P
1

θ
X,P
2

θ
X,P
3



−





X1
t

X2
t

X3
t







 dt+





σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33









dW
1,P
t

dW
2,P
t

dW
3,P
t



 ,

and the Q-dynamics are given by Proposition 1 as





dX1
t

dX2
t

dX3
t



 = −





0 0 0

0 λ −λ

0 0 λ









X1
t

X2
t

X3
t



 dt +





σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33









dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 .
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This model has a total of 19 parameters; thus, three parameter restrictions are needed.

It is easy to verify that the affine invariant transformation TA(Yt) = AYt + η with

A =





σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33



 and η =





0

0

0





will convert the canonical representation into the correlated-factor AFNS model. For the

mean-reversion matrices, the relationships between the two representations are

KP
X = AKP

Y A
−1 ⇐⇒ KP

Y = A−1KP
XA

K
Q
X = AK

Q
Y A

−1 ⇐⇒ K
Q
Y = A−1K

Q
XA.

The equivalent mean-reversion matrix under the Q-measure is then

K
Q
Y =





1
σX
11

−
σX
12

σX
11σX

22
−
(

σX
13

σX
11σX

33
−

σX
12σX

23

σX
11σX

22σX
33

)

0 1
σX
22

−
σX
23

σX
22σX

33

0 0 1
σX
33









0 0 0

0 λ −λ

0 0 λ









σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33





=





0 −λ
σX
12

σX
11

λ
σX
12σX

33−σX
22σX

13

σX
11σX

22

0 λ −λ
σX
33

σX
22

0 0 λ



 .

Thus, two restrictions need to be imposed on the upper triangular mean-reversion matrix

K
Q
Y :

K
Y,Q
11 = 0, K

Y,Q
33 = K

Y,Q
22 .

Furthermore, notice that KY,Q
23 will always have the opposite sign of KY,Q

22 and KY,Q
33 , but its

absolute size can vary independently of the two other parameters.

Next we study the factor loadings in the affine function for the short rate process. In the

AFNS models, rt = X1
t +X2

t , which is equivalent to fixing

δX
0 = 0, δX

1 =





1

1

0



 .
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From the relation (δX
1 )′ = (δY

1 )′A−1, it follows that

(δY
1 )′ = (δX

1 )′A =
(

1 1 0
)




σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33



 =
(
σX

11 σX
21 + σX

22 σX
13 + σX

23

)
.

This shows that there are no restrictions on δY
1 . For the constant term, we have

δX
0 = δY

0 − (δY
1 )′A−1η ⇐⇒ δY

0 = δX
0 = 0.

Thus, we have obtained one additional parameter restriction,

δY
0 = 0.

Finally, for the mean-reversion matrix under the P -measure, we have

KP
X = AKP

Y A
−1 ⇐⇒ KP

Y = A−1KP
XA.

Because KP
X is a free 3 × 3 matrix, KP

Y is also a free 3 × 3 matrix. Thus, no restrictions are

imposed on the P -dynamics in the equivalent canonical representation of this model.
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