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Abstract

Ordinary Least Squares (OLS) estimation of monetary policy rules produces poten-

tially inconsistent estimates of policy parameters. The reason is that central banks react

to variables, such as inflation and the output gap, that are endogenous to monetary policy

shocks. Endogeneity implies a correlation between regressors and the error term – hence,

an asymptotic bias. In principle, Instrumental Variables (IV) estimation can solve this

endogeneity problem. In practice, however, IV estimation poses challenges, as the validity

of potential instruments depends on various unobserved features of the economic environ-

ment. We argue in favor of OLS estimation of monetary policy rules. To that end, we

show analytically in the three-equation New Keynesian model that the asymptotic OLS

bias is proportional to the fraction of the variance of regressors due to monetary policy

shocks. Using Monte Carlo simulations, we then show that this relationship also holds

in a quantitative model of the U.S. economy. Since monetary policy shocks explain only

a small fraction of the variance of regressors typically included in monetary policy rules,

the endogeneity bias tends to be small. For realistic sample sizes, OLS outperforms IV.

Finally, we estimate a standard Taylor rule on different subsamples of U.S. data and find

that OLS and IV estimates are quite similar.
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1 Introduction

The macroeconomics literature frequently summarizes a central bank’s reaction function with

an interest rate rule, such as the ones introduced in Taylor (1993, 1999). Such policy rules serve

as good representations of how the monetary authority adjusts its policy instrument (typically

a short term interest rate) in response to deviations of inflation and/or economic conditions

(output or unemployment, for example) from their objectives.

Estimation of a central bank’s reaction function poses some challenges, however. Ordinary

Least Squares (OLS) estimation of monetary policy rules produces potentially inconsistent

estimates of policy parameters. This is so because central banks react to variables that are

endogenous to monetary policy shocks. Endogeneity implies a correlation between regressors

and the error term – hence, an asymptotic bias. In principle, estimation by Instrumental

Variables (IV) or Generalized Method of Moments (GMM) can solve this endogeneity problem

(e.g., Clarida, Gaĺı and Gertler, 2000). In practice, however, finding suitable instruments can

be challenging, as their validity depends on details of the economic environment. For example,

persistent monetary shocks tend to invalidate the common practice in the literature of using

lagged endogenous variables as instruments.

In this paper, we argue in favor of OLS estimation of policy rules. To do so, we first

show analytically in a three-equation New Keynesian (NK) model that the asymptotic OLS

estimation bias is proportional to the fraction of the variance of regressors due to monetary

policy shocks. Since there is ample evidence that such shocks explain only a small fraction

of the variance of regressors typically included in estimation of monetary policy rules (e.g.,

Leeper, Sims and Zha, 1996, Christiano, Eichenbaum and Evans, 1999), our analytical finding

suggests that the endogeneity bias is likely to be small. To illustrate the properties of single-

equation estimates of policy parameters in finite samples, we resort to Monte Carlo simulations

and explore different parameterizations of the basic NK model. More specifically, we generate

artificial data from economies for which we know the “true” policy parameters, and compare

them to single-equation OLS and GMM estimates.

We then quantify estimation biases using Monte Carlo simulations of the Smets and Wouters

(2007) model as a laboratory. Our results suggest that endogeneity does induce some bias in the

estimation of interest rate rules by OLS. For empirically relevant sample sizes, however, OLS

estimates outperform GMM estimates. OLS biases are close to those obtained with GMM, but

the estimates are more precise. More importantly, when we look at the economic implications

of estimation biases, we find them to be unimportant, in the sense that replacing the true policy

rule in the model with the one estimated by OLS does not materially change the dynamics of

the model. The impulse response functions (IRFs) produced by the model under the policy rule

estimated by single-equation OLS are close to the true IRFs. In addition, the range of IRFs

produced by the model under the various policy rules estimated by OLS in the Monte Carlo
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exercise is narrower than the corresponding range obtained when using policy rules estimated

by GMM. In a sense, this result suggests an “economic irrelevance” of the OLS estimation bias.1

Finally, we perform an empirical analysis by estimating an interest rate rule by OLS and

GMM using U.S. data. In particular, we build on Clarida, Gaĺı and Gertler (2000) and estimate

an interest rate rule for subsamples corresponding to different Federal Reserve chairs. We find

that OLS and GMM estimated coefficients and the associated IRFs – estimated with the local

projection method proposed by Jordà (2005) – are quite close to each other.

The literature on Taylor rule estimation is quite large, covering debates about whether

monetary policy in the U.S. has changed over time in terms of satisfying the Taylor principle

(e.g., Taylor, 1999, Judd and Rudebusch, 1998, Clarida, Gaĺı and Gertler, 2000, Orphanides,

2004), and whether persistence in interest rates stems from policy inertia or persistent monetary

shocks (e.g., Rudebusch, 2002, and Coibion and Gorodnichenko, 2012), among others.

Our paper does not focus on a particular issue pertaining to Taylor rules, but, rather, sheds

light on the costs and benefits of estimation by OLS or IV. Hence, our contribution is closer

to papers that focus on issues related to estimation of Taylor rules. Cochrane (2011) argues

that Taylor rule parameters are not identified in the baseline NK model. Sims (2008) shows

that Cochrane (2011)’s finding is not a generic implication of NK models, but is rather the

result of a particular assumption regarding the policy rule. He shows that, under assumptions

usually made in the literature, policy parameters are identified. Closest to our paper, de Vries

and Li (2013) investigate the magnitude of the IV estimation bias when monetary shocks are

serially correlated and lags of inflation and output gap are endogenous to monetary shocks,

and thus, are not valid instruments. They find that the endogeneity problem due to serial

correlation does not lead to a large bias in the conventional estimation of Taylor rules based

on the three-equation NK model. We focus on OLS estimation, and use IV estimation only

as a comparison. We show analytically, in the canonical NK model, and by simulation in a

larger model, that the OLS bias depends on the fraction of the variance of endogenous regressors

explained by monetary policy shocks. Because this fraction tend to be small, OLS bias need not

be a material problem. Finally, our argument can be loosely related to “identification through

heteroskedasticity” (Rigobon, 2003). That identification strategy explores time-variation in

the relative volatility of structural shocks, whereas our argument hinges of the fact that the

structural shock that shifts the macroeconomic equation of interest explains only a small fraction

of the endogenous variables used as regressors.

The paper is organized as follows. Section 2 derives analytically the OLS bias for the policy

rule parameter in a three-equation NK model. It also presents Monte Carlo analyses of the bias

in that simple model. Section 3 quantifies estimations biases under OLS and IV methods using

simulated data from the Smets and Wouters (2007) model. Section 4 compares the performance

of OLS and IV empirically. Section 5 concludes.

1We thank the referee for suggesting this interpretation of our findings.
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2 OLS bias in the three-equation New Keynesian model

We are interested in the estimation of interest rate rules such as the ones described in Taylor

(1993) and Taylor (1999). According to such rules, policy interest rates respond to various

macroeconomic variables. Estimation of policy rules may, however, lead to inconsistent esti-

mates, as the Taylor rule equation typically involves endogenous variables that are determined

in macroeconomic equilibrium. This section uses basic versions of the three-equation NK model

to illustrate some of the challenges involved in single-equation estimation of Taylor rules. We

first explore the simplest version of the model and derive analytical results on the asymptotic

OLS bias. We then use simulations of a slightly more involved version of the model to develop

additional intuition on the estimation challenges posed by endogeneity, as well as to illustrate

how the biases behave under realistic sample sizes.

2.1 Analytical results

We begin our analysis with the simplest possible three-equation NK model, described in Gaĺı

(2008, Chapter 3). Equilibrium inflation, output, and the policy interest rate evolve as functions

of technology and monetary shocks. The simplicity of the model allows us to obtain an analytical

expression for the asymptotic bias of the OLS estimator of the Taylor rule parameter and develop

intuition on the main point of the paper.

The model consists of: (i) a Phillips curve, equation (1), that relates inflation, πt, to the

current output gap, ỹt, and to expected inflation Et(πt+1); (ii) a dynamic IS curve, equation

(2), that relates the output gap to the expected output gap Et(ỹt+1) and to the gap between the

ex-ante real interest rate, it−Et(πt+1), and the natural rate of interest, rnt ; and (iii) a simplified

policy rule, equation (3), that relates the nominal interest rate, it, to inflation and includes a

monetary shock, vt. The natural interest rate is determined by the dynamics of output in the

model’s flexible-price equilibrium, which is a function of the technology shock, at. Technology

and monetary shocks follow autoregressive processes. Appendix A provides additional details

of the model, which we summarize below using standard notation:

πt = βEt (πt+1) + κỹt, (1)

ỹt = Et (ỹt+1)−
1

σ
(it − Et (πt+1)− rnt ) , (2)

it = ϕππt + vt, (3)

with at = ρaat−1 + ϵat , vt = ρvvt−1 + ϵvt .

The policy parameter of interest is ϕπ. Assuming the Taylor principle holds (ϕπ > 1),

the unique bounded solution of this model can be obtained by the method of undetermined

4



coefficients – details in Appendix A.4. In equilibrium, inflation is given by

πt = −κΛvvt − σψn
ya (1− ρa)κΛaat, (4)

where Λj = 1
(1−βρj)σ(1−ρj)+κ(ϕπ−ρj)

for j = v, a, and ψn
ya is another function of the model’s

structural parameters (see Appendix A.4).

From this solution, it follows that the asymptotic bias of the single-equation OLS estimate

of ϕπ (denoted by ϕ̂OLS
π ) is given by:

plim ϕ̂OLS
π − ϕπ = − 1

κΛv

γv, (5)

where plim denotes probability limit and

γv =
(κΛv)

2 var (vt)

(κΛv)
2 var (vt) +

(
σψn

ya (1− ρa)κΛa

)2
var (at)

is the fraction of the variance of inflation that is due to monetary policy shocks.

Equation (5) shows that the asymptotic OLS bias is proportional to the fraction of the

variance of πt due to monetary shocks. The composite parameter Λv is positive and, hence,

the asymptotic bias is negative. The economic intuition behind this result is simple. An

expansionary monetary policy shock – i.e., a negative innovation to vt – increases inflation (see

equation (4)) and this leads to an endogenous policy response according to the policy parameter

ϕπ. Because the policy shock and the endogenous policy response go in opposite directions, in

equilibrium the interest rate appears to respond less intensely to movements in πt – hence, the

downward bias in ϕ̂OLS
π .2

The key insight produced by this illustrative model is that the OLS bias depends on the

fraction of the variance of inflation that is due to monetary shocks. If these shocks explain only

a small fraction of variation of inflation and other macroeconomic variables to which central

banks respond, then the OLS bias may be small. Whether or not this is the case depends also

on other structural parameters of the economy, as illustrated by equation (5).

The simple NK model allows additional analytical insight into the nature of the OLS bias.

For example, one can study how the strength of the policy response to inflation affects the

bias. There are two – possibly opposite – effects, which can be seen from equations (4) and

(5). On the one hand, a stronger policy response to inflation (i.e., a higher ϕπ) diminishes its

2That the sign of the OLS bias is necessarily negative depends on the assumption that ϕπ > 1, and hence
that the model has a unique bounded equilibrium. If this is not the case, one can find equilibria in which
the OLS bias is positive. This is possible because multiplicity allows for equilibria in which the dynamics of
the economy change considerably relative to the region with a determinate equilibrium. Hence, the nature
of the OLS bias may also change. Future research on the properties of OLS estimates of the Taylor rule in
the presence of multiplicity may contribute to the literature that aims to distinguish between policy rules that
ensure determinacy and those that allow for multiple equilibria (e.g., Clarida, Gaĺı and Gertler, 2000).
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sensitivity to shocks, by reducing the two composite parameters Λv and Λa in equation (4).

On the other hand, the share of the variance of inflation that is due to monetary policy shocks

(γv) may increase or decrease, depending on the relative effect of a stronger policy response

on those two composite parameters. Under the plausible assumption that monetary shocks are

less persistent than technology shocks (ρv < ρa), one can show that the OLS bias increases in

absolute value with the strength of the policy response to inflation (i.e., the bias becomes more

negative as ϕπ increases; proof in Appendix A.6).3

To sidestep endogeneity problems with OLS, a common strategy is to estimate the Taylor

rule by instrumental variables – usually by Generalized Method of Moments (GMM) – with

lagged endogenous variables as instruments. The matrix representation of the simple model

above helps in the understanding of that strategy:

Xt = AΠ(A′A)−1AXt−1 + Aϵt, (6)

where Xt =

(
yt

πt

)
, A =

(
ψπv −ψπaσψ

n
ya(1− ρa)

ψyv −ψyaσψ
n
ya(1− ρa)

)
, Π =

(
ρv 0

0 ρa

)
, ϵt =

(
ϵvt

ϵat

)
, and the

ψ•• parameters in A are functions of the model’s structural parameters (see Appendix A.4).

In this simple model, the rank condition for identification is satisfied if and only if ρv ̸= 0

and ρa ̸= 0, as the determinant of the matrix M = AΠ(A′A)−1A equals ρvρa. Therefore,

identification requires some persistence in the shocks. In this simple environment, this creates

a problem for the standard practice in the literature of using lagged endogenous variables as

instruments. The reason is that, in general, when shocks are persistent, instruments and shocks

may be correlated, hampering the asymptotic properties of GMM estimators. In this simple

model with two shocks, this will be the case whenever the monetary shock is persistent, which

turns out to be a requirement for the rank condition to be satisfied.4

In addition to the issues raised above, the rank condition is not sufficient for reliable es-

timation and inference, as estimates may still suffer from weak instrument problems. Stock,

Wright and Yogo (2002) show that weak instruments lead to poor parameter identification and

asymptotic results become a poor guide to the actual sampling distributions.5

In short, single-equation estimation of interest rate rules poses a few challenges. On the one

3We thank our referee for raising this conjecture and encouraging us to analyze it.
4With additional shocks, the rank condition may be verified even if monetary shocks are i.i.d., so lagged

endogenous variables may be valid instruments (see Section 2.2).
5The strength of identification implied by a given set of instruments can be assessed using a concentration

parameter (e.g., Mavroeidis, 2005 and Stock and Yogo, 2005), which measures the instruments’ signal-to-noise
ratio. More precisely, the concentration parameter is a measure of the variation of the endogenous regressors that
is explained by the instrumental variables after controlling for any exogenous regressors, relative to the variance
of the residuals of the first-stage regression in a two-stage least squared approach. For the simple model above,
the first-stage regression, as described in equation (6), implies a concentration parameter Σ1/2Π′ZtZ

′
tΠΣ

1/2,
where Σ1/2 is the covariance matrix of the vector of errors from the first-stage regression, and Zt contains the
instruments Xt−1. The strength of the instruments can be measured by the smallest eigenvalue of that matrix.
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hand, if one uses OLS to estimate Taylor rule parameters, equation (5) illustrates a natural

source of bias, due to endogeneity. On the other hand, when using GMM one should worry

about instrument validity and strength. In particular, the standard practice of using lagged

endogenous variables as instruments may result in unreliable GMM estimates if the monetary

policy shock displays some persistence, and theoretical asymptotic results may be a poor guide

to the actual sampling distributions.

2.2 Simulation analysis

In order to complement the analytical insights produced by the simple model and to assess

the behavior of OLS and GMM in small samples, we turn to simulations of the three-equation

NK model. To that end, we augment the simple model described in equations (1)-(3) in two

dimensions. First, we add an unanticipated and possibly persistent “cost-push” shock, ut =

ρuut−1+ε
u
t , which enters the Phillips curve additively. Adding a third shock to the model allows

us to parameterize it so the GMM rank condition is satisfied without the need for persistent

monetary policy shocks. Second, we allow for the possibility of policy smoothing by including a

first-order autoregressive term in the Taylor rule, with coefficient ρi: it = ρiit−1+(1−ρi)ϕππt+vt.

This allows us to study the OLS bias when interest rate persistence stems from policy smoothing

rather than persistent monetary policy shocks, as argued by Coibion and Gorodnichenko (2012).

The resulting augmented model is described in Appendix A.3.

To calibrate this simple model, we set its structural parameters to standard values used

in the literature. The relative scales of nonpolicy (technology and cost-push) shocks do not

affect the OLS bias, so we fix them at arbitrary values. We then use estimates from Smets

and Wouters (2007) to select the scale of monetary policy shocks to be compatible with the

variance of inflation in equilibrium (details in Appendix A.7). Unless stated otherwise, in all

simulations presented below we discipline the scale of monetary shocks as just described.

As discussed before, the persistence of shocks in the model matters for identification when

relying on GMM with lagged dependent variables as instruments. Hence, before we turn to

the comparison between OLS and GMM, we assess identification under different levels of shock

persistence. Note that the augmented model includes three shocks instead of two, and therefore

the conditions for GMM identification in this model differ from those discussed in the previous

section. In the extended version with three shocks, the requirement for identification is that

at least two of the shocks exhibit some persistence. Therefore, to leave identification problems

aside and fairly compare results obtained by OLS and GMM, in what follows we set ρa = ρu =

0.8, and entertain a range of values for ρv.

To compare OLS and GMM estimators of Taylor rule coefficients, we simulate economies over

80 quarters.6 For GMM, we use a k-step estimator, which is frequently used in the empirical

6Lessons based on model simulations with samples of 150 or 500 observations are essentially unchanged.
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Persistent monetary shocks (ρv = 0.8) i.i.d. monetary shocks (ρv = 0)

Figure 1: Distributions of OLS and GMM estimates for different levels of monetary shock
persistence.

Note: OLS distributions in red (solid) lines, GMM distributions in blue (dashed) lines. Vertical black dotted
line corresponds to the true parameter value. Distributions obtained from 50,000 Monte Carlo simulations
of the model with sample size T = 80.

literature (e.g., Clarida, Gaĺı and Gertler, 2000).7 We exclude simulations that fail Sargan-

Hansen’s test for the validity of overidentified restrictions (Sargan, 1958). This is an attempt

to favor GMM, which we view as “conservative” given our findings that OLS is preferable. We

use two lags of inflation and output gap as instruments, and rely on Newey-West standard

errors.8 Results are based on 50,000 simulations, with Gaussian innovations.

Initially, we assume away policy smoothing (ρi = 0). The first set of results are reported

in Figure 1, which displays kernel densities of the estimated Taylor rule coefficients by OLS

(solid red line) and GMM (dashed blue line). The left panel reports results when the model is

calibrated with persistent monetary shocks (ρv = 0.8), while the right panel reports results with

i.i.d. monetary shocks. Vertical black dotted lines indicate the true parameter value (ϕπ = 1.5).

The left panel of Figure 1 shows that, when ρv = 0.8, OLS and GMM estimates have

virtually identical central tendencies, around ϕ̂π = 1.3. The bias in GMM estimates in this case

is not all that surprising. As mentioned before, when monetary shocks are persistent, lagged

dependent variables are correlated with the shock, and therefore are not suitable instruments.

As pointed out by de Vries and Li (2013), the literature on estimation of monetary policy rules

Results available upon request.
7Alternatively, we considered the continuous updating estimator proposed by Hansen, Heaton and Yaron

(1996). The method resulted in too many “extreme” estimates. As discussed in that paper, this may be the
case because the continuous-updating criterion can make the numerical search for the minimizer difficult.

8The Newey-West estimator allows population moment conditions to be serially correlated. We use Bartlett
kernel function with two lags. While numerical results may differ depending on the choice of kernel and the
bandwidth parameter, they are qualitatively unchanged when we consider additional lags.
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Figure 2: Mean OLS and GMM point estimates for ranging levels of monetary shock persis-
tence.

Note: OLS estimates in red (solid) line, GMM estimates in blue (dashed) line. Mean point estimates
obtained from 50,000 Monte Carlo simulations of the model with sample size T = 80.

often ignores this specific endogeneity problem, resulting in GMM estimates that are potentially

as biased as OLS’.9

The right panel of Figure 1 reinforces this assessment by reporting results when monetary

shocks are i.i.d. (i.e., ρv = 0). In this case, GMM is unbiased. OLS does a slightly worse job

in terms of bias, but mean point estimates under both methods are quite close to each other.

Note that the set of instruments used in the estimation is the same in both panels – two lags of

inflation and output gap. When ρv = 0, however, these are valid instruments. Finally, in both

panels, the distribution of OLS estimates is less dispersed than GMM’s.10

Figure 2 complements Figure 1 by reporting mean OLS (solid red line) and GMM (dashed

blue line) point estimates of ϕπ for ranging levels of monetary shock persistence (ρv). When

shock persistence is not too high, GMM and OLS mean point estimates are quite close to each

other and close to the true parameter value (ϕπ = 1.5). As the persistence of monetary policy

shock increases, GMM and OLS mean point estimates approach each other.

We now turn to the analytical insight on how the OLS bias varies with the intensity of

monetary policy’s response to inflation. Figure 3 shows the distributions of OLS and GMM

estimates of the policy parameter for two different values for ϕπ, assuming i.i.d. monetary

policy shocks.11 When ϕπ = 4 (left panel), endogeneity poses a bigger problem for OLS. In

9Following a suggestion by our referee, we also analyzed GMM performance when the true structural technol-
ogy and cost-push shocks are used as instruments. This is the ideal setting for GMM, when the econometrician
has as instruments the true exogenous drivers of the endogenous variables that enter the Taylor Rule. As
expected, in that case GMM performs very well.

10Appendix Table A1 reports additional moments and statistics.
11In these simulations we hold the scale of monetary policy shocks (σv) constant at the value used in the

baseline parameterization.
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Strong response to inflation (ϕπ = 4) Weak response to inflation (ϕπ = 1.01)

Figure 3: Distributions of OLS and GMM estimates for different policy responses to inflation.

Note: OLS estimates in red (solid) lines, GMM estimates in blue (dashed) lines. Vertical black dotted line
corresponds to the true parameter value. Distributions are obtained from 50,000 Monte Carlo simulations
of the model assuming a with sample size T = 80.

turn, the right panel shows that the bias almost disappears when we set the policy parameter

close to the limit imposed by the Taylor principle (ϕπ = 1.01).

If one is interested in testing whether monetary policy satisfies the Taylor principle (ϕπ > 1),

results in Figures 1 and 3 illustrate that biases in OLS and GMM estimates are unlikely to pose

a problem if the policy response to inflation is strong enough. For example, when ϕπ = 1.5

(Figure 1) or ϕπ = 4 (Figure 3, left panel), nearly all estimates exceed unit. In other words,

one is quite unlikely to reject the Taylor principle in these cases. When the policy response to

inflation is weak (ϕπ = 1.01, right panel of Figure 3), however, both GMM and OLS wrongly

reject the Taylor principle more than half of the time.12

Finally, we illustrate how OLS and GMM biases behave when persistence in the Taylor rule

stems from policy smoothing rather than persistent policy shocks. This case is not covered

by the analytical results presented in Section 2.1. For this exercise, we set ρi = 0.8 and

assume i.i.d. monetary policy shocks. Mirroring Figure 1, Figure 4 displays kernel densities

of the estimated Taylor rule coefficients by OLS (solid red line) and GMM (dashed blue line).

The left panel reports estimates of the policy smoothing parameter (ρi), while the right panel

presents estimates of the coefficient on inflation ((1−ρi)ϕπ). Vertical black dotted lines indicate

the true parameter values (ρi = 0.8, (1−ρi)ϕπ = 0.3). As in the case without policy smoothing,

GMM outperforms OLS in terms of bias when monetary policy shocks are i.i.d. (Figure 1, right

panel).13

12The frequencies of undue rejections of the Taylor principle are obtained by computing the area under the
kernel densities to the left of unit.

13Appendix Table A2 reports additional moments and statistics.
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Figure 4: Distributions of OLS and GMM estimates with interest rate smoothing (ρi = 0.8)
and i.i.d. monetary shocks.

Note: GMM estimates in blue (dashed) line, OLS estimates in red (solid) line. Vertical black dotted line
corresponds to the true parameter value. Distributions are obtained from 50,000 Monte Carlo simulations
of the model assuming a with sample size T = 80.

In conclusion, while the simple New Keynesian model studied in Section 2.1 allows inter-

esting analytical insights, the simulations presented in this section illustrate that the relative

merits of OLS versus GMM may depend on various features of the economic environment.

Hence, assessing their relative performance in quantitative terms requires a richer model. In

the next section, we pursue this route and study OLS and GMM performance using the Smets

and Wouters (2007) model as a laboratory.

3 Assessing estimation bias with a quantitative DSGE

model

The three-equation NK models considered in Section 2 are very simple. In more quantitative

representations of the macroeconomy, there are at least a few endogenous state variables and

the economy is driven by a larger set of disturbances.

A (log-linearized) medium-scale NK model can be cast in the form:14

Γ0yt = C + Γ1yt−1 +Ψzt +Πηt,

where yt is a vector of state variables, C is a vector of constants, zt is vector of exogenous

variables, and ηt is a vector of expectational errors, satisfying Et[ηt+1] = 0 for all t. The

interest rate is included in the vector yt, while monetary shock innovations are included in the

14We follow the notation in Sims (2002).
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vector zt.

The solution of the linear rational expectation model can be cast in the following reduced

form:

yt = Ac(θ) + Ay(θ)yt−1 + Az(θ)zt, (7)

i.e., a vector autoregressive representation, where θ collects the model’s structural parameters.

The solution described in equation (7) shows that all endogenous variables may be affected by

monetary shocks, raising concerns of endogeneity biases if one estimates the interest rate rule

coefficients by OLS. Furthermore, as discussed before, when monetary shocks are persistent,

lagged endogenous variables may be correlated with monetary shocks as well, and hence they

may be invalid instruments for a single-equation GMM estimation approach. The set of valid

instruments will depend on details of the model.

To study the performance of OLS and GMM under a richer data generating process, we rely

on the workhorse model of Smets and Wouters (2007), who estimate a fully-specified medium-

scale DSGE model for the U.S. economy that includes several types of real and nominal frictions

and a good number of structural shocks. The model is estimated using a Bayesian approach

and is used to investigate the relative importance of its various frictions and shocks for the U.S.

business cycle.15

We proceed as in Section 2.2, and generate artificial data using the Smets and Wouters

(2007) model, with parameters at the mode of the joint posterior distribution estimated by

the authors. We generate 50, 000 simulations of the model over T = 80 quarters (results with

T = 150 in Appendix B) with Gaussian innovations, and use model-simulated data to estimate

the model’s policy rule, which is given by:

rt = ρrt−1 + (1− ρ) [ϕππt + ry(yt − ypt )] + r∆
[
(yt − ypt )− (yt−1 − ypt−1)

]
+ εrt , (8)

where the monetary shock, εrt , follows an autoregressive process (εrt = ρrε
r
t−1 + ηrt ).

The policy rule described in equation (8) follows the same notation as in Smets and Wouters

(2007). It allows for both persistent shocks and policy inertia, thus speaking to the debate on

which of these two factors helps explain the persistence in policy rates (e.g., Rudebusch, 2002;

Coibion and Gorodnichenko, 2012). The posterior mode values estimated by Smets andWouters

(2007) imply a relatively high degree of policy inertia (ρ = 0.81), a strong policy response to

inflation (ϕπ = 2.03), some response to the output gap (ry = 0.08) and to output-gap growth

(r∆ = 0.22), a low degree of monetary shock persistence (ρr = 0.12), and relatively small

monetary shocks (standard deviation of monetary policy innovations σr = 0.24).

The low degree of persistence in monetary policy shocks is beneficial for GMM estimation

with lagged regressors as instruments. Nevertheless, to give GMM its best chance of outper-

15Iskrev (2010) finds that this model is locally identified, which allows for consistent estimation of structural
parameters. Local identification also guarantees the usual asymptotic properties of estimators.
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forming OLS, we refrain from using lagged regressors as instruments, and use current values and

three lags of marginal cost and wages instead.16 As in our analysis of three-equation model, we

rely on Newey-West standard errors. Finally, we discard samples that yield “extreme” GMM

estimates, keeping estimates only when the model is not rejected by Sargan-Hansen’s test for

the validity of overidentification restrictions (Sargan, 1958).

Note that equation (8) can be rewritten as:

rt = θ1rt−1 + θ2πt + θ3ỹt + θ4ỹt−1 + ϵrt , (9)

where θ1 = ρ, θ2 = (1 − ρ)ϕπ, θ3 = (1 − ρ)ry + r∆y, and θ4 = −r∆y. ỹt = yt − ypt is the

output gap. Hence, in practice, we estimate equation (9) and recover estimates of structural

parameters from estimates of reduced-form parameters {θ̂1, θ̂2, θ̂3, θ̂4}.
With parameters at the estimated posterior mode, the Smets and Wouters (2007) model

implies that monetary shocks account for 4.88% and 2.73% of the variance of inflation and

output, respectively. Our analytical results suggest this should lead to only a small endogeneity

bias, and thus single-equation OLS estimation should perform well.

Figure 5 reports the distribution of parameters estimated by OLS (solid red line) and GMM

(dashed blue line). The horizontal dotted black lines report the true Taylor rule parameters.

Similarly to the findings based on the three-equation model, the central tendencies of OLS

and GMM estimates are close to one another and, importantly, somewhat close to the true

parameter values. In addition, the dispersion in estimated coefficients is much larger for GMM

than for OLS. These findings also hold when we consider larger samples (see Appendix Figure

A2).

Our analytical results of Section 2.1 suggest the OLS endogeneity bias should be related

to the fraction of the variance of Taylor rule regressors that is due to monetary shocks. To

assess whether this result also holds under a richer data generating process, Figure 6 shows

how OLS and GMM mean point estimates behave as we vary monetary shock volatility (σr)

between 0.05 and 0.7. Dotted vertical lines in Figure 6 report the “true” (estimated posterior

mode) volatility of monetary policy shocks, σr = 0.24, while dotted horizontal lines report the

“true” Taylor rule parameters. In line with our analysis of Section 2, OLS estimates become

more biased as σr increases. GMM estimates also become more biased as σr increases, but less

so.

So far we have focused on estimates of individual parameters. This is useful and informative

if the focus is on their specific estimated values. Frequently, however, one is interested in the

dynamics of the model as a whole, which depend jointly on all estimated parameters. These

dynamics are commonly summarized by impulse response functions (IRFs) that yield the path

16We also considered other sets of instruments, such as lags of output and inflation, but those were less
favorable to GMM.
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Figure 5: Distributions of OLS and GMM estimates, Smets and Wouters (2007) model.

Note: OLS distributions in red (solid) lines, GMM distributions in blue (dashed) lines. Vertical black
dotted lines correspond to the true parameter values. Simulations are based on the Smets and Wouters
(2007) model with parameters set at their posterior modes. Distributions obtained from 50,000 Monte Carlo
simulations of the model with sample size T = 80.

followed by endogenous variables in response to an unexpected shock. Hence, we now report

the IRFs that obtain when we replace the model’s true Taylor rule parameters with estimates

obtained through single-equation estimation methods.

Figure 7 reports IRFs of output and inflation to a monetary policy shock. The black lines

are the “true” IRFs of output and inflation – i.e., the responses that obtain with the true

Taylor rule parameters. The figure also reports the responses obtained when the Taylor rule is

parameterized using mean OLS (red line) and GMM (blue line) point estimates.17 Finally, the

panels in Figure 7 include shaded areas that report, for each time horizon, the range between

the 5th and 95th percentiles of the distribution of IRFs produced by our Monte Carlo exercise.

Each IRF underlying this range is obtained by plugging into the DSGE model a Taylor rule

estimated through single-equation methods on one of the artificial samples. Repeating this

procedure for all artificial samples gives rise to the distribution underlying the reported IRF

range.

As shown in Figure 7, IRFs obtained under Taylor rules estimated by both OLS and GMM

are close to the true IRFs. In other words, OLS endogeneity bias need not induce meaningful

biases in the dynamics implied by the model. Shaded areas in Figure 7 reinforce the higher

precision of OLS estimates. While mean point estimates from OLS and GMM yield IRFs that

17Appendix Table A3 reports mean OLS and GMM point estimates, as well as true parameter values, used
to construct the exhibits in Figure 7. Results for a larger sample size are reported in Appendix Figure A3.
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Figure 6: Mean OLS and GMM point estimates for varying monetary shock volatility, Smets
and Wouters (2007) model.

Note: OLS estimates in red (solid) line, GMM estimates in blue (dashed) line. Vertical dotted black lines
correspond to the calibrated standard deviation of the monetary shock, while horizontal dotted black line
reports the “true” Taylor rule parameters. Simulations are based on the Smets and Wouters (2007) model
with all other parameters set at their posterior modes. Mean point estimates obtained from 50,000 Monte
Carlo simulations of the model with sample size T = 80.

are close to one another and to the true one, narrower shaded areas in the left-hand-side panels

show that OLS yields more precise estimates than GMM.

In sum, using the Smets and Wouters (2007) model as a laboratory, we find the OLS

estimation bias to be small. More importantly, OLS estimates imply model dynamics that

are remarkably close to the true ones, with higher precision than dynamics implied by GMM

estimates.

4 An empirical analysis

In the previous section we relied on a quantitative DSGE model as a laboratory to quantify and

study the endogeneity bias produced by different single-equation estimation methods. One key

advantage of that approach is that, in such an exercise, we know the data-generating processes,

the true parameters, and the interest rate rule specification to compare our estimates to.

Having made the case for OLS estimation using known data-generating processes, it is only

natural that we take our findings to actual data. We compare OLS and IV estimates of an

interest rate rule similar to the one analyzed in Clarida, Gaĺı and Gertler (2000).
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OLS GMM

Figure 7: Output and inflation responses to monetary shock in Smets and Wouters (2007)
model for different Taylor rule parameters.

Note: Black lines are IRFs implied by the Smets andWouters (2007) model with parameters at the estimated
posterior mode. Red (blue) lines are IRFs with mean OLS (GMM) estimates of the Taylor rule parameters.
Shaded areas cover, for each point in time, range between 5th and 95th percentiles of the distribution of IRFs
implied by the different OLS (or GMM) point estimates of the Taylor rule. Remaining model parameters
fixed at the posterior mode estimated by Smets and Wouters (2007). Estimates obtained from 50,000 Monte
Carlo simulations of the model with sample size T = 80.

Using instrumental variables, Clarida, Gaĺı and Gertler (2000) estimate:

E{[rt − ρ1rt−1 − ρ2rt−2 − (1− ρ1 − ρ2)(βπt+1 + γxt + rr∗ + (1− β)π∗)]zt} = 0, (10)

where rt is the fed funds rate, rr∗ is the equilibrium real interest rate, π∗ is the inflation target,

πt+1 denotes the percentage change in the price level between t and t + 1, and xt denotes the

average output gap at t. The set of instruments zt includes four lags of inflation, output gap,

the fed funds rate, money growth, the spread between long and short term bond rates, and

commodity price inflation. For additional details, we refer the reader to Clarida, Gaĺı and

Gertler (2000).

Because our goal is to compare OLS and IV estimates, we consider an interest rate rule with

current inflation, instead of the forward-looking specification in equation (10). In particular,

we estimate:

rt = αaux + ρ1,auxrt−1 + ρ2,auxrt−2 + βauxπt + γauxxt + ϵt, (11)

to obtain α̂aux, ρ̂1,aux, ρ̂2,aux, β̂aux, and γ̂aux, from which we can back out ρ̂ = ρ̂1,aux + ρ̂2,aux,
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γ̂ = γ̂aux
1−ρ̂

, β̂ = β̂aux

1−ρ̂
, and π̂∗ = α̂aux−(1−ρ̂)r̂r∗

(1−ρ̂)(1−β̂)
.18 To estimate the equilibrium real rate, we follow

Clarida, Gaĺı and Gertler (2000) and set r̂r∗ to the sample average of the ex-post real rate,

rt − πt+1, for each subsample.

We use real-time quarterly data, from 1960Q1 to 2007Q4.19 Interest rate is the federal funds

rate, inflation is the year-on-year rate of change in core PCE, output gap is constructed using

the Congressional Budget Office estimate of potential GDP, money growth is the percentage

change in M2, commodity prices are a composite of commodity goods (including oil, gold and

food items), and long- and short-term bond yields are the 10-year and 3-month Treasury bill

rates, respectively. We rely on the same set of instruments as Clarida, Gaĺı and Gertler (2000).

We consider four subsamples:20 (1) “Pre-Volcker” from 1960Q1 to 1979Q2, (2) “Volcker-

Greenspan” from 1979Q3 to 2005Q4, (3) “Greenspan-Bernanke” from 1987Q3 to 2007Q4, and

(4) “Post-Volcker” from 1979Q3 to 2007Q4. Because real-time data on core PCE inflation and

M2 growth are only available starting in 1959Q2 and we use four lags as instruments, our first

subsample has 77 data points.

Table 1 reports the results. The top panel shows IV estimates and the bottom panel reports

OLS estimates. While there are some differences in estimated coefficients, the two panels show

that, in general, OLS and IV estimates are close to one another and that the former tends to

be more precise.21

To further assess the properties of OLS and IV estimates, we consider three approaches.

First, we take the residuals from the regressions above and estimate local projections as intro-

duced by Jordà (2005) to obtain impulse response functions of inflation and output to estimated

OLS and IV residuals. Next, we undertake an alternative estimation in which we use Green-

book forecasts as regressors. This strategy was introduced by Romer and Romer (2004) in

order to address endogeneity and forward-looking Federal Reserve behavior. It was later used

by Coibion and Gorodnichenko (2011) to study time-variation in the Taylor rule. Finally, we

directly assess some of the properties of the estimated OLS and IV residuals by comparing

them to estimates of structural monetary policy shocks available in the literature.

18We took a similar two-step approach in Section 3. Alternatively, one could directly estimate a nonlinear
regression similar to equation (10). Results for the latter approach yield the same conclusions and are available
upon request.

19Sample vintages are reported in the Appendix Table A4. Results based on the latest vintage of data are
qualitatively similar and are available upon request.

20In their benchmark specification, Clarida, Gaĺı and Gertler (2000) consider two sample periods: “Pre-
Volcker”, which runs from 1960Q2 to 1979Q2, and “Volcker-Greenspan”. which runs from 1979Q3 to 1996Q4.

21The estimates reported in columns (1) and (2) of Table 1 do not exactly replicate the findings reported in
Clarida, Gaĺı and Gertler (2000, Table II). The reasons for this are fourfold. First, we estimate an interest rate
rule with current, instead of expected inflation. Second, we rely on core PCE as a measure of inflation, while
those authors use, alternatively, GDP deflator or CPI. Third, we expand the Volcker-Greenspan sample up to
the last quarter of Greenspan’s term, instead of stopping that subsample in 1996Q4 (the latest data point used
by those authors). Fourth, we use real-time data (real-time core CPI data yields similar results as real-time core
PCE data). When we use the same subsamples, dataset, and interest rate rule specification, our results nearly
perfectly match those of Clarida, Gaĺı and Gertler (2000). We thank the authors for kindly sharing their data.
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Table 1: IV and OLS estimates

IV estimates

Pre-Volcker Volcker-Greenspan Greenspan-Bernanke Post-Volcker

1960Q1-1979Q2 1979Q3-2005Q4 1987Q3-2007Q4 1979Q3-2007Q4

β 0.86*** 1.97*** 1.40*** 1.97***

(0.22) (0.41) (0.32) (0.43)

γ 0.75** 0.65*** 0.95*** 0.70***

(0.32) (0.21) (0.20) (0.24)

ρ 0.81*** 0.63*** 0.83*** 0.64***

(0.10) (0.11) (0.05) (0.10)

π∗ 4.24 2.86*** 1.42 2.75**

(5.28) (1.05) (2.04) (1.08)

N 77 106 82 114

R2 0.89 0.86 0.96 0.86

RMSE 0.82 1.42 0.41 1.38

OLS estimates

Pre-Volcker Volcker-Greenspan Greenspan-Bernanke Post-Volcker

1960Q1-1979Q2 1979Q3-2005Q4 1987Q3-2007Q4 1979Q3-2007Q4

β 0.90*** 1.99*** 1.39*** 2.00***

(0.22) (0.30) (0.29) (0.31)

γ 0.79*** 0.75*** 1.01*** 0.81***

(0.29) (0.15) (0.19) (0.16)

ρ 0.80*** 0.55*** 0.82*** 0.56***

(0.08) (0.12) (0.04) (0.12)

π∗ 4.34 2.75*** 1.29 2.63***

(7.14) (0.80) (1.92) (0.81)

N 77 106 82 114

R2 0.89 0.87 0.96 0.87

RMSE 0.84 1.42 0.42 1.37

Note: The table reports estimates of equation (11) by OLS and IV. The set of instruments includes four
lags of inflation, output gap, the fed funds rate, money growth (M2), the spread between long and short
term bond rates, and commodity price inflation. Statistical significance at the 90/95/99% confidence level
indicated with ∗/∗∗/∗∗∗, respectively. Data vintages are reported in the Appendix Table A4. Robust standard
errors are reported in parenthesis.

Turning to our first approach, we resort to local projections, as introduced by Jordà (2005),

and estimate:
πt+h = µπ,h + δπ,hϵ̂m,t + λπ,ict−i,

xt+h = µx,h + δy,hϵ̂m,t + λx,ict−i,
(12)

where ϵ̂m,t are the residuals from the OLS and IV regressions from Table 1, i.e.,m = {OLS, IV }.
ct−i is a matrix of control variables that includes four lags (i = 1, ..., 4) of rt, πt, and xt. The

impulse responses of inflation and output are given by the estimated coefficients δπ,h and δx,h,
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Pre-Volcker
(1960Q1-1979Q2)

Real time with lags

Pre−Volcker (1960Q2 − 1979Q2)

Post−Volcker (1979Q3 − 2007Q4)

Post-Volcker
(1979Q3-2007Q4)

Real time with lags

Pre−Volcker (1960Q2 − 1979Q2)

Post−Volcker (1979Q3 − 2007Q4)

Figure 8: OLS and IV empirical impulse response functions.

Note: The red line shows the response implied by OLS estimates. The blue line reports the response
implied by IV estimates. The dashed lines corresponds to 90% confidence bands. IRFs are constructed by
local projections of inflation and output on OLS and IV residuals, as described in equation (12).

respectively, for horizons h = 1, ..., 24.

Figure 8 reports the resulting impulse response functions of inflation and output gap to

a one-standard-deviation shock. We focus on the pre- and post-Volcker periods to achieve

reasonable sample sizes. All four panels of Figure 8 yield the conclusion that the OLS- and IV-

based IRFs are close to each other.22 In addition, the IRFs reported in Figure 8 show patterns

that accord with findings of the empirical literature on the effects of monetary policy shocks

on inflation and output. In particular, the response of inflation during the pre-Volcker period

shows a statistically significant “price puzzle” (Sims, 1992 and Eichenbaum, 1992) that becomes

insignificant during the post-Volcker sample (Castelnuovo and Surico, 2010 and Baumeister, Liu

and Mumtaz, 2013).23 Moreover, the response of economic slack supports the evidence that

22Estimates of equation (12) that do not include the control variable matrix ct−i also yield OLS- and IV-based
IRFs that are close to each other.

23An attentive reader may be initially troubled by a price puzzle in the first part of the sample. Note,
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monetary policy has become more stabilizing in the later part of the sample (e.g., Boivin and

Giannoni, 2006, Castelnuovo and Surico, 2010 and Baumeister, Liu and Mumtaz, 2013).

Turning to our second approach, we estimate a version of equation (11) in which we replace

inflation and output gap by their one-quarter-ahead Greenbook forecasts. More specifically, we

estimate:

rt = αaux + ρ1,auxrt−1 + ρ2,auxrt−2 + βauxEt[πt+1] + γauxEt[xt+1] + ut, (13)

where Et[xt+1] and Et[πt+1] are one-quarter-ahead Greenbook forecasts for the output gap and

inflation, respectively. Because Greenbook forecasts for core PCE are only available starting in

2000, we rely instead on Greenbook forecasts for core CPI inflation, which are available since

1986Q1.24 To make results more comparable, we also switch to real-time core CPI data when

estimating the Taylor rule by OLS.

Table 2 compares OLS estimates using real-time data and one-quarter-ahead Greenbook

forecasts.25 Most point estimates using real-time data and Greenbook forecasts are not too far

from one another. The larger estimated R2 and smaller RMSEs in regressions using Greenbook

forecasts suggest this approach would be preferable with respect to OLS. One important draw-

back of the former, however, is that Greenbook forecasts are only available with a 5 year delay

– a meaningful impediment to more timely analyses. Finally, differences in point estimates are

to be expected, given the much broader information set underlying Greenbook forecasts (see

footnote 23).

Finally, we compare OLS and IV residuals to monetary shocks estimated by Tenreyro and

Thwaites (2016). The authors apply the well-known methodology of Romer and Romer (2004)

to extend the series of shocks based on information in the Fed’s Greenbook releases.

For ease of exposition, denote the regression-based estimated residuals by εit, where i ∈
{OLS, IV }, and the Greenbook-based shocks, from Tenreyro and Thwaites (2016), by εGB

t .

Table 3 reports the correlations σ(εOLS
t , εGB

t ), σ(εIVt , εGB
t ) and σ(εOLS

t , εIVt ), as well as the stan-

dard deviations σ(εOLS
t ), σ(εIVt ) and σ(εGB

t ) for each subsample. The correlations σ(εOLS
t , εIVt )

are close to one in all samples. This underscores the key point of this paper, that OLS and

however, that the Taylor rules we estimate feature a very limited information set – in fact, the same information
set as in canonical 3-variable VARs that have been extensively used in the literature on the effects of monetary
policy shocks. Hence, a price puzzle is actually to be expected. The point of this paper is not to argue that
one can recover true structural monetary shocks with a simple Taylor rule estimated with a narrow information
set. Rather, our point is that OLS endogeneity bias is not such a material problem. This is established through
the comparisons with IV estimates that we have explored throughout the paper. Estimating proper monetary
policy shocks still requires getting the central bank’s information set right (see, e.g., Bernanke, Boivin and
Eliasz, 2005).

24GDP deflator forecasts are available since the 1960s. Output gap estimates and forecasts, however, are also
only available since 1986Q1, and hence these are the data that restrict our sample period.

25We also estimated specifications with four-quarter-ahead forecasts and results are qualitatively
similar (available upon request). Forecasts are obtained from https://www.philadelphiafed.org/

research-and-data/real-time-center/greenbook-data.
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Table 2: Estimates using Greenbook forecasts for output and core CPI inflation

OLS estimates with Greenbook forecasts

Pre-Volcker Volcker-Greenspan Greenspan-Bernanke Post-Volcker

1960Q1-1979Q2 1986Q1-2005Q4 1987Q3-2007Q4 1986Q1-2007Q4

β - 1.76*** 1.81*** 1.70***

- (0.22) (0.23) (0.23)

γ - 0.80*** 0.79*** 0.80***

- (0.10) (0.11) (0.11)

ρ - 0.80*** 0.82*** 0.81***

- (0.03) (0.03) (0.03)

π∗ - 2.86*** 2.70*** 2.81***

- (0.78) (0.75) (0.86)

N - 80 82 88

R2 - 0.98 0.98 0.98

RMSE - 0.36 0.31 0.35

OLS estimates with real-time core CPI data

Pre-Volcker Volcker-Greenspan Greenspan-Bernanke Post-Volcker

1960Q1-1979Q2 1986Q1-2005Q4 1987Q3-2007Q4 1986Q1-2007Q4

β - 1.32*** 1.19*** 1.24***

- (0.20) (0.32) (0.28)

γ - 0.99*** 0.91*** 1.06***

- (0.10) (0.21) (0.15)

ρ - 0.64*** 0.82*** 0.74***

- (0.10) (0.05) (0.07)

π∗ - 1.73 0.81 1.08

- (1.86) (5.09) (3.35)

N - 80 82 88

R2 - 0.91 0.96 0.91

RMSE - 0.68 0.43 0.67

Note: The table reports estimates of equation (11) using real-time data and equation (13) using Greenbook
forecasts for output gap and core CPI inflation. Subsample periods differ from those used earlier due to data
availability. Statistical significance at the 90/95/99% confidence level indicated with ∗/∗∗/∗∗∗, respectively.
Data vintages are reported in the Appendix Table A4. Robust standard errors are reported in parenthesis.

IV estimation of Taylor rules deliver very similar results. The table also provides correlations

between OLS and IV estimated residuals and the Tenreyro and Thwaites (2016)’s Greenbook-

based shocks. Not surprisingly, given the near-perfect correlation between OLS and IV residuals,

the correlations of OLS and IV residuals with Greenbook-based shocks are very close to one

another. The Volcker-Greenspan sample shows the highest correlations between Greenbook-

based shocks and our estimated residuals. Other subsamples yield lower, but still meaningful

correlations (e.g., the Greenspan-Bernanke period). When it comes to standard deviations,
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Table 3: Residual correlations

Correlations Standard Deviations

σ(εIVt , εGB
t ) σ(εOLS

t , εGB
t ) σ(εOLS

t , εIVt ) σ(εIV ) σ(εOLS) σ(εGB)

Pre-Volcker 0.76 0.76 0.99 0.82 0.82 0.53

(1960Q1 – 1979Q2)

Volcker-Greenspan 0.76 0.68 0.97 1.43 1.39 0.61

(1979Q3 – 2005Q4)

Greenspan-Bernanke 0.44 0.47 1 0.41 0.41 0.3

(1987Q3 – 2007Q4)

Post-Volcker 0.76 0.68 0.97 1.38 1.34 0.59

(1979Q3 – 2007Q4)

Note: Real time data pulled from Archival FRED on April 25, 2019. Greenbook-based monetary shocks
are obtained from Tenreyro and Thwaites (2016).

Greenbook-based shocks clearly tend to be less volatile than OLS and IV residuals.

Differences between Greenbook-based shocks and OLS or IV residuals are to be expected for

at least two reasons. First, this is a common finding when one compares different estimates of

“structural shocks” obtained through arguably valid – but different – identification strategies.

Thus, it is not surprising that a given series of structural shocks and OLS or IV residuals do

not line up perfectly. Second, reinforcing earlier remarks, the information set underlying shocks

identified from Greenbook releases is certainly much broader than the information contained

in the time series of inflation and the output gap (see footnote 23).

5 Conclusion

This paper argues in favor of estimation of Taylor rule parameters by OLS. We show analytically,

in a three-equation NK model, that the OLS asymptotic bias is a function of the fraction of the

variance of inflation due to monetary policy shocks. This suggests the endogeneity bias in OLS

estimates may be limited, given that monetary policy shocks appear to explain only a small

fraction of the variance of endogenous variables to which the monetary authority responds, such

as inflation and the output gap (e.g., Leeper, Sims and Zha, 1996, Christiano, Eichenbaum and

Evans, 1999).

To quantify the estimation bias, we resort to Monte Carlo simulations of the well-established

Smets and Wouters (2007) model. We generate artificial data from the model and estimate its

interest rate rule by OLS and GMM. For realistic sample sizes, OLS and GMM estimates are

close to one another and close to the true parameter values. This arises because monetary

policy shocks play a limited role in explaining inflation and output gap variation in the model.

OLS estimates are, however, more precise. More importantly, the dynamic properties of the
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model are essentially unaffected by the OLS estimation bias. More specifically, impulse response

functions produced by the DSGE model when using Taylor rules estimated by single-equation

OLS in place of the true one are close to the model’s IRF with the true Taylor rule.

The insight we exploit to establish the benefits of OLS estimation of Taylor rules may be

useful in the context of single-equation estimation of other equations that are of interest in

macroeconomics. The key is that the structural shock that enters the equation of interest be

relatively unimportant in the variance decomposition of endogenous regressors. If this is the

case, then the latter are “not too endogenous” to the shock that shifts the equation of interest,

and OLS estimates are likely to have good properties.
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Appendix

A The basic New Keynesian model

This section presents a version of the basic NK model, building on Gaĺı (2008, chapter 3).

A.1 Households

A representative infinitely-lived household maximizes:

Eo

∞∑
t=0

βt

[
C1−σ

t

1− σ
− N1+φ

t

1 + φ

]
,

where consumption Ct is given by:

Ct ≡
(∫ 1

0

Ct (i)
ε−1
ε di

) ε
ε−1

,

and Ct (i) represents the quantity of good i consumed by the household in period t.

The budget constraint takes the form:∫ 1

0

Pt (i)Ct (i) di+QtBt ≤ Bt−1 +WtNt + Tt,

for t = 0, 1, 2, ..., where Pt (i) is the price of good i, Nt denotes hours of work, Wt is the nominal

wage, Bt represents purchases of one-period bonds at price Qt, and Tt is lump-sum income.

Optimality conditions yield the household’s demand equations:

Ct (i) =

(
Pt (i)

Pt

)−ε

Ct,

for all i ∈ [0, 1], where Pt ≡
(∫ 1

0
Pt (i)

1−ε di
) 1

1−ε
is the aggregate price index.

A.2 Firms

Firms produce differentiated varieties with the following production function:

Yt (i) = AtNt (i)
1−α ,

where At is the level of technology.

They adjust prices as in Calvo (1983), where each firm resets its price with probability

(1− θ) in any given period.
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A firm optimizing in period t chooses a price P ∗
t to solve:

max
P ∗
t

∞∑
k=0

θkEt

{
Qt,t+k

[
P ∗
t Yt+k/t −Ψt+k

(
Yt+k/t

)]}
s.t.

Yt+k/t =

(
P ∗
t

Pt+k

)−ε

Ct+k for k = {0, 1, 2, . . . },

where Qt,t+k ≡ βk
(

Ct+k

Ct

)−σ (
Pt

Pt+k

)
is the stochastic discount factor, Ψt (.) is the cost function

and Yt+k/t denotes output in period t+ k for a firm that last adjusted its price in period t.

A.3 The three-equation model

A log-linear approximation of the model around its zero-inflation steady state yields:

πt = βEt {πt+1}+ κỹt,

ỹt = Et {ỹt+1} −
1

σ
(it − Et {πt+1} − rnt ) ,

where ỹt = yt − ynt , y
n
t = ψn

yaat, with ψn
ya ≡ 1+φ

σ(1−α)+φ+α
, rnt ≡ σψn

yaEt {∆at+1}, and κ ≡
(1−θ)(1−βθ)(1−α)

θ(1−α+αε)

(
σ + φ+α

1−α

)
.

Closing the model requires specifying a monetary policy rule, which we assume to be:

it = ρiit−1 + (1− ρi)ϕππt + vt,

where vt is a monetary shock.

Assuming shocks follow AR(1) processes, and appending a cost-push shock to the Phillips

curve, this simple NK economy is summarized by:

πt = βEt {πt+1}+ κỹt + ut (A.1)

ỹt = Et {ỹt+1} −
1

σ
(it − Et {πt+1} − rnt ) (A.2)

it = ρiit−1 + (1− ρi)ϕππt + vt (A.3)

rnt = σψn
yaEt {∆at+1} (A.4)

at = ρaat−1 + εat ρa ∈ [0, 1) (A.5)

vt = ρvvt−1 + εvt ρv ∈ [0, 1) (A.6)

ut = ρuut−1 + εut ρu ∈ [0, 1) (A.7)

The first three equations correspond to the Phillips curve, IS curve, and monetary policy

rule, respectively. The fourth equation defines the natural rate of interest. The last three
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equations specify the dynamics of the technology, monetary, and cost-push shocks.

A.4 Solving the three-equation model analytically

We solve the model by the method of undetermined coefficients. For simplicity, we abstract

from the shock to the Phillips curve. Obtaining the analytical solution with the three shocks

is straightforward and does not generate any additional insight for our purposes.

To obtain the analytical results explored in Section 2.1, we set ρi = 0, and guess the solution

takes the form:

ỹt = ψyvvt + ψyar
n
t , (A.8)

πt = ψπvvt + ψπar
n
t , (A.9)

it = ϕππt + vt,

where coefficients ψyv, ψya, ψπv, and ψπa are to be determined.

Because all shocks follow autoregressive processes:

rnt = −σψn
ya (1− ρa) at ⇒ Et

(
rnt+1

)
= ρar

n
t ,

vt = ρvvt−1 + εvt ⇒ Et (vt+1) = ρvvt.

Replacing equations (A.3), (A.8) and (A.9) in equation (A.2) and rearranging:

ỹt = Et {ỹt+1} −
1

σ
(it − Et {πt+1} − rnt )

=

{
− 1

σ
ϕπψπv +

1

σ
ψπvρv + ψyvρv −

1

σ

}
vt

+

{
1

σ
− ϕπ

1

σ
ψπa +

1

σ
ψπaρa + ψyaρa

}
rnt .

Replacing equations (A.3), (A.8) and (A.9) in equation (A.1) and rearranging:

πt = βEt {πt+1}+ κỹt + ut

= {βψπvρv + κψyv} vt + {βψπaρa + κψya} rnt .
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Matching coefficients:

ψyv =

{
− 1

σ
ϕπψπv +

1

σ
ψπvρv + ψyvρv −

1

σ

}
,

ψya =

{
1

σ
− ϕπ

1

σ
ψπa +

1

σ
ψπaρa + ψyaρa

}
,

ψπv = {βψπvρv + κψyv} ,
ψπa = {βψπaρa + κψya} .

Solving for the coefficients:

ψyv =
− (1− βρv)

σ (1− ρv) (1− βρv) + κ (ϕπ − ρv)
,

ψya =
(1− βρa)

σ (1− ρa) (1− βρa) + κ (ϕπ − ρa)
,

ψπv =
−κ

σ (1− ρv) (1− βρv) + κ (ϕπ − ρv)
,

ψπa =
κ

σ (1− ρa) (1− βρa) + κ (ϕπ − ρa)
.

Define:

Λv ≡ 1

σ (1− ρv) (1− βρv) + κ (ϕπ − ρv)
, (A.10)

Λa ≡ 1

σ (1− ρa) (1− βρa) + κ (ϕπ − ρa)
, (A.11)

and we can rewrite:

ψyv = − (1− βρv) Λv,

ψya = (1− βρa) Λa,

ψπv = −κΛv,

ψπa = κΛa.

Hence, equilibrium inflation evolves according to

πt = −κΛvvt − σψn
ya (1− ρa)κΛaat. (A.12)

The matrix representation of the system solution is:

Xt = AΨt

Ψt = ΞΨt−1 + εt
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where:

Xt =

(
ỹt

πt

)
, A =

(
ψyv −σψn

ya (1− ρa)ψya

ψπv −σψn
ya (1− ρa)ψπa

)
, Ψt =

(
vt

at

)
,

Ξ =

(
ρv 0

0 ρa

)
, and εt =

(
εvt

εat

)
.

Xt = AΨt ⇒ A′Xt−1 = A′AΨt−1 ⇒ Ψt−1 = (A′A)
−1
A′Xt−1

Xt = AΨt = A (ΞΨt−1 + εt) = AΞΨt−1 + Aεt ⇒ Et−1 (Xt) = AΞ (A′A)
−1
A′Xt−1.

A.5 Variance decomposition and OLS bias

Using equation (A.12) and the Taylor rule (equation (A.3)), one can obtain:

plim ϕ̂OLS
π =

cov (it, πt)

var (πt)

=
cov (ϕππt + vt, πt)

var (πt)

= ϕπ +
cov (vt, πt)

var (πt)

= ϕπ +
cov
(
vt,
{
−κΛvvt − σψn

ya (1− ρa)κΛaat
})

var
({

−κΛvvt − σψn
ya (1− ρa)κΛaat

})
= ϕπ −

κΛvvar (vt)

(κΛv)
2 var (vt) +

(
σψn

ya (1− ρa)κΛa

)2
var (at)

.

More compactly, we can express the OLS bias as:

BiasOLS ≡ plim ϕ̂OLS
π − ϕπ = − 1

κΛv

γv, (A.13)

where

γv =
(κΛv)

2 var (vt)

(κΛv)
2 var (vt) +

(
σψn

ya (1− ρa)κΛa

)2
var (at)

is the fraction of the variance of πt due to monetary policy shocks. Λv and Λa are defined in

equations (A.10) and (A.11), respectively.

A.6 OLS bias as a function of policy response to inflation

The simple three-equation model also yields some analytical insights relating the size of the

bias given by equation (A.13) to the strength of the policy response to inflation (ϕπ).
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From equation (A.13), the OLS bias is given by:

BiasOLS = − κΛvvar(vt)

(κΛv)
2 var(vt) +

(
σψn

ya (1− ρa)κΛa

)2
var(at)

≡ −f (ϕπ)

g (ϕπ)
,

with Λv and Λa defined in equations (A.10) and (A.11), respectively.

One can obtain:

∂Λv

∂ϕπ

= − κ

[σ (1− ρv) (1− βρv) + κ (ϕπ − ρv)]
2 = −κΛ2

v

∂Λa

∂ϕπ

= − κ

[σ (1− ρa) (1− βρa) + κ (ϕπ − ρa)]
2 = −κΛ2

a

∂f

∂ϕπ

= κ

(
∂Λv

∂ϕπ

)
var(vt) = − (κΛv)

2 var(vt)

∂g

∂ϕπ

= 2κ2Λvvar(vt)

(
∂Λv

∂ϕπ

)
+ 2

(
σψn

ya (1− ρa)κ
)2

Λavar(at)

(
∂Λa

∂ϕπ

)
= −2 (κΛv)

3 var(vt)− 2
(
σψn

ya (1− ρa)
)2

(κΛa)
3 var(at).

Therefore:

∂BiasOLS

∂ϕπ

= −

N︷ ︸︸ ︷
− (κΛv)

2 var(vt)g (ϕπ) + 2f (ϕπ)
[
(κΛv)

3 var(vt) +
(
σψn

ya (1− ρa)
)2

(κΛa)
3 var(at)

]
g (ϕπ)

2 .

As the denominator of the above expression is always positive, the sign of ∂γv
∂ϕπ

depends solely

on the sign of the numerator (N ), which can be rearranged as follows:

N =

>0︷ ︸︸ ︷
(f (ϕπ) (κΛv))

≷0︷ ︸︸ ︷[
2

(
(κΛv)

2 var(vt) +
(
σψn

ya (1− ρa)κΛa

)2
var(at)

Λa

Λv

)
− g (ϕπ)

]

= (f (ϕπ) (κΛv))

(κΛv)
2 var(vt) +

(
σψn

ya (1− ρa)κΛa

)2
var(at)

[
2

(
Λa

Λv

)
− 1

]
︸ ︷︷ ︸

≷0

 .
This implies two possible results that hinge on whether ρv ≷ ρa.

If ρv ≤ ρa,
Λa

Λv
≥ 1, and hence, ∂BiasOLS

∂ϕπ
≤ 0. In this case, the OLS bias increases in

magnitude – i.e., becomes more negative – as ϕπ increases.

If ρv > ρa,
[
2
(

Λa

Λv

)
− 1
]
can be either positive or negative, depending on the relative
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magnitude of the shocks’ variances. Note that, in this case, if we further assume that

i.

(
Λa

Λv

)
<

1

2
, and (A.14)

ii.
var(vt)

var(at)
<

(
σψn

ya (1− ρa)
)2(Λa

Λv

)2 [
1− 2

(
Λa

Λa

)]
, (A.15)

then ∂BiasOLS

∂ϕπ
> 0.

In sum, when ρv > ρa and conditions (A.14) and (A.15) hold, ∂BiasOLS

∂ϕπ
> 0. Under the more

plausible case in which ρv ≤ ρa,
∂BiasOLS

∂ϕπ
≤ 0.

A.7 Model parameterization for results in Section 2.2

For the numerical simulations in Section 2.2, we set the model’s structural parameters to stan-

dard values used in the literature. In particular, we set β = 0.99, σ = 1, α = 1/3, ε = 6, φ = 1,

θ = 2/3, and ϕπ = 1.5. The relative scales of nonpolicy (technology and cost-push) shocks do

not affect the OLS bias, and hence we fix them at arbitrary values (σa = σu = 0.1).

To calibrate the scale of monetary policy shocks, it is useful to rewrite the OLS bias as

follows:

BiasOLS = −κΛv
σ2
v

σ2
π

= −κΛv
σv
σπ︸ ︷︷ ︸

corr(vt,πt)

σv
σπ
,

where σv and σπ are the standard deviations of monetary policy shocks (vt) and equilibrium

inflation (πt), respectively. We then pick σv so that its ratio to σπ, in equilibrium, matches the

estimates from the Smets and Wouters (2007) model (i.e., σv

σπ
= 0.45).
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B Additional results

Figure A1: Mean OLS and GMM point estimates for varying monetary shock volatility, Smets
and Wouters (2007) model with sample size T = 150 quarters.

Note: OLS estimates in red (solid) line, GMM estimates in blue (dashed) line. Vertical dotted black lines
correspond to the calibrated standard deviation of the monetary shock, while horizontal dotted black line
reports the “true” Taylor rule parameters. Simulations are based on the Smets and Wouters (2007) model
with all other parameters set at their posterior modes. Mean point estimates obtained from 50,000 Monte
Carlo simulations of the model with sample size T = 150.
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Figure A2: OLS and GMM estimate distributions in a medium-scale DSGE model with
sample size T = 150 quarters.

Note: OLS distributions in red solid lines, GMM distributions in blue dashed lines. Vertical black dotted
lines correspond to the true parameter values. Simulations are based on the Smets and Wouters (2007) model
with parameters set at their posterior modes. Distributions obtained from 50,000 Monte Carlo simulations
of the model with sample size T = 150.
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OLS GMM

Figure A3: Output and inflation responses to monetary shock in Smets and Wouters (2007)
model for different Taylor rule parameters with sample size T = 150 quarters.

Note: Black lines are IRFs implied by the Smets and Wouters (2007) model with parameters set at their
posterior modes. Red and blue lines are IRFs implied by mean OLS and GMM estimates of the Taylor
rule parameters, respectively. Shaded areas correspond to the 5th and 95th percentiles of the distribution
of IRFs implied by OLS and GMM. Estimates obtained from 50,000 Monte Carlo simulations of the model
with sample size T = 150.

35



Table A1: OLS and GMM estimates of ϕπ in the three-equation NK model

ρv = 0

True values OLS OLS bias GMM GMM bias Relative bias Relative MSE

ϕπ 1.5 1.4758 -0.0242 1.4990 -0.0010 -0.0154 1.5684

ρv = 0.8

True values OLS OLS bias GMM GMM bias Relative bias Relative MSE

ϕπ 1.5 1.3031 -0.1969 1.3028 -0.1972 0.0002 1.2786

Note: For a given parameter β, relative bias is given by |β̂GMM−β|−|β̂OLS−β|
β , and relative mean squared

error (MSE) equals MSE(β̂GMM )

MSE(β̂OLS)
. A negative relative bias indicates that GMM outperforms OLS in terms

of mean point estimates. A relative MSE below unit indicates GMM is more precise than OLS.

Table A2: OLS and GMM estimates of ρi and (1 − ρi)ϕπ in the three-equation NK model,
with i.i.d. monetary shocks

True values OLS OLS bias GMM GMM bias Relative bias Relative MSE

ρi 0.8 0.8189 0.0189 0.7934 -0.0066 -0.0082 0.5715

(1− ρi)ϕπ 0.30 0.1093 -0.1907 0.3069 0.0069 -1.3785 0.2962

Note: For a given parameter β, relative bias is given by |β̂GMM−β|−|β̂OLS−β|
β , and relative mean squared

error (MSE) equals MSE(β̂GMM )

MSE(β̂OLS)
. A negative relative bias indicates that GMM outperforms OLS in terms

of mean point estimates. A relative MSE below unit indicates GMM is more precise than OLS.
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Table A3: OLS and GMM estimates in Smets and Wouters (2007) model

T = 80

True values OLS OLS bias GMM GMM bias Relative bias Relative MSE

ρ 0.81 0.7883 -0.0217 0.7624 -0.0476 0.0319 5.9847

ϕπ 2.03 1.5394 -0.4906 1.8447 -0.1853 -0.1504 2.0831

ry 0.08 0.0609 -0.0191 0.0928 0.0128 -0.0795 6.4231

r∆ 0.22 0.0922 -0.1278 0.1316 -0.0884 -0.1792 0.9876

T = 150

True values OLS OLS bias GMM GMM bias Relative bias Relative MSE

ρ 0.81 0.8031 -0.0069 0.7812 -0.0288 0.0270 9.8193

ϕπ 2.03 1.5485 -0.4815 1.9884 -0.0416 -0.2167 2.8368

ry 0.08 0.0551 -0.0249 0.1000 0.0200 -0.0606 11.1449

r∆ 0.22 0.0953 -0.1247 0.1471 -0.0729 -0.2355 0.6803

Note: For a given parameter β, relative bias is given by |β̂GMM−β|−|β̂OLS−β|
β , and relative mean squared

error (MSE) equals MSE(β̂GMM )

MSE(β̂OLS)
. A negative relative bias indicates that GMM outperforms OLS in terms

of mean point estimates. A relative MSE below unit indicates GMM is more precise than OLS.

Table A4: Real-time data vintages

Pre-Volcker Volcker-Greenspan Greenspan-Bernanke Post-Volcker

1960Q1 – 1979Q2 1979Q3 – 2005Q4 1987Q3 – 2007Q4 1979Q3 – 2007Q4

Fed funds rate 12/9/1996 01/03/2006 12/31/2007 12/31/2007

Core PCE 10/30/1999 01/27/2006 01/30/2008 01/30/2008

(Index 1992=100) (Index 2000=100) (Index 2000=100) (Index 2000=100)

Core CPI 12/12/1996 01/18/2006 01/16/2008 01/16/2008

(Index 1984=100) (Index 1984=100) (Index 1984=100) (Index 1984=100)

Real GDP 01/29/1992 01/27/2006 01/30/2008 01/30/2008

(Chained 1987 dollars) (Chained 2000 dollars) (Chained 2000 dollars) (Chained 2000 dollars)

Potential GDP 01/22/1992 08/31/2005 08/23/2007 08/23/2007

(Chained 1987 dollars) (Chained 2000 dollars) (Chained 2000 dollars) (Chained 2000 dollars)

Money Stock (M2) 02/08/1980 01/12/2006 01/10/2008 01/10/2008

Note: Data pulled from Archival FRED on April 25, 2019.
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