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Abstract

We develop a new approach to estimating DSGE models with occasionally binding borrowing con-
straints and apply it to Mexico’s business cycle and financial crisis history. We propose a new
endogenous regime-switching specification of the borrowing constraint, develop a general pertur-
bation method to solve the model, and estimate it using Bayesian methods. The estimated model
fits the data with well-behaved shocks, identifying three crisis episodes of varying duration and
intensity: the early-1980s Debt Crisis, the mid-1990s Tequila Crisis, and the late-2000s Global
Financial Crisis. The estimated crisis episodes are much more persistent and in line with the data
than traditional models.

Keywords: Business Cycles, Bayesian Estimation, Endogenous Regime-Switching, Financial Crises,
Mexico, Occasionally Binding Constraints, Persistence, Sudden Stops.
JEL Codes: G01, E3, F41, C11.

∗We are grateful to Yan Bai, Dario Caldara, Yoosoon Chang, Pablo Guerron-Quintana, Yasuo Hirose,
Giorgio Primiceri, Felipe Saffie, and Frank Schorfheide for helpful comments and discussions. We also thank
participants at the ABFER Annual Meeting, NASMES, the SED, the EABCN-CEPR EUI Conf., the CEF,
the Taipei Conf. on Growth, Trade and Dynamics, the CEPR ESSIM, the NBER Meeting on Methods and
Applications for DSGE Models, the Midwest Macro Meetings, the Norges Bank Workshop on Nonlinear
Models, the NBER Summer Institute, and the NBER IFM Spring Meeting, as well as seminar participants
at Beijing Univ., Central Florida, ECB, Fudan Univ., Indiana, Notre Dame, Texas A&M, KU Leuven, JHU
Carey Business School, Virtual Macroeconomics Seminar, UC Santa Cruz, the Central Bank of Belgium,
the ECB, and the Dallas and San Francisco Feds. Sanha Noh provided outstanding research assistance.
The authors gratefully acknowledge financial support from NSF Grant SES1530707 and the Johns Hopkins
Catalyst Award. The views expressed are solely those of the authors and do not necessarily reflect the views
of the Federal Reserve Banks of New York, San Francisco, or St. Louis, or the Federal Reserve System.

†Federal Reserve Bank of New York and CEPR, Gianluca.Benigno@ny.frb.org
‡Federal Reserve Bank of San Francisco, andrew.foerster@sf.frb.org
§University of Missouri and Federal Reserve Bank of St. Louis, otrokc@missouri.edu
¶Johns Hopkins University, CEPR and NBER, arebucci@jhu.edu

1

mailto:Gianluca.Benigno@ny.frb.org
mailto:andrew.foerster@sf.frb.org
mailto:otrokc@missouri.edu
mailto:arebucci@jhu.edu


1 Introduction

The Global Financial Crisis triggered strong renewed interest in understanding the causes,

consequences, and remedies of financial crises. In this context, dynamic stochastic general

equilibrium (DSGE) models with occasionally binding financial frictions proved successful as

laboratories to study the anatomy of both business cycles and crises, and to explore optimal

policy responses to these dynamics. This success is because occasionally binding financial

frictions are mechanisms that create amplification of regular business cycle dynamics and

can capture the fat tail and skewness of the data. Structural estimation of these models is

important for inference on key parameters governing the financial frictions, counterfactual

analysis, and structural real-time forecasts, yet very challenging.

In this paper, we structurally estimate a model with an occasionally binding borrowing

constraint. The paper’s contribution is threefold. First, we propose a new specification of

the occasionally binding collateral constraint that delivers crisis persistence and dynamics

more in line with the data. Second, we develop a perturbation solution method suitable for

solving models like ours in a way that permits likelihood-based estimation. Third, we focus

on one particular type of crisis, the so-called sudden stop in international capital flows, and

apply the proposed framework to the estimation of a medium-scale DSGE model of such

crises, investigating sources of business cycles and crises in Mexico since 1981.

As a first step, we propose a new formulation of occasionally binding constraint models.

As in the traditional specification of such models, our set up has two states or regimes:

in the first, limited leverage amplifies regular shocks and gives rise to fire sales and non-

linear crisis dynamics; in the second, access to financing is unconstrained and the economy

displays regular business cycles. In our specification, however, the transitions between the

two regimes depend on a range rather than a unique level of leverage, with endogenous

switching probabilities that are a function of the borrowing capacity of the economy and the

multiplier associated with the leverage constraint. This formulation maps the model with

an occasionally binding leverage constraint written as inequality into an endogenous regime-

switching model. The paper focuses on a particular constraint and type of crisis, the so

called sudden stop in capital flows, but the proposed specification has broader applicability

to other types of occasionally binding constraints and frictions.

Next, we develop a perturbation-based solution method for solving the endogenous

regime-switching model. The perturbation method is fast enough to permit likelihood-based

estimation, is scalable to models larger than the one we estimate in this paper, and displays

typical levels of accuracy. We also show analytically that to capture the effects of the en-

dogenous transition probabilities on the policy functions characterizing optimal behavior,
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including precautionary behavior, it is necessary to approximate the model solution at least

to the second-order, and that these effects would be missed by linear approximations or

exogenous regime switching models. Again, the solution method that we develop can be

applied to a wide range of models with endogenous regime-switching.

Finally, we apply our borrowing constraint specification and solution method to the

Bayesian estimation of a small open-economy model that can characterize both financial

crises and business cycles in Mexico. While our application focuses on an emerging market

economy, our framework is general and can be applied to the formulation and estimation of

other model settings with occasionally binding constraints. For example, the approach that

we propose could be applied to the formulation and estimation of models of occasionally

binding credit frictions, housing constraints, banking with asymmetric information, down-

ward wage rigidity, or the zero lower bound.

Figure 1 plots two critical variables in our application to Mexico: the current account

balance as a share of GDP and the quarterly real GDP growth in deviation from the sample

mean. The figure illustrates the regular fluctuations in the data as well as multiple episodes of

large current account reversals and persistent output growth declines. Large current account

reversals and output drops of heterogeneous size and persistence are the two main empirical

features commonly associated with sudden stops in capital flows, not only in Mexico but

also in many other emerging markets exposed to volatile capital flows. In this paper, we

focus on the challenge of fitting a structural model to Mexico’s business cycle and sudden

stop history without imposing ad hoc restrictions on the magnitude or the persistence of the

episodes that we identify in estimation.

Despite the econometric challenges in characterizing data like those displayed in Figure

1, our estimated model fits Mexico’s business cycles and sudden stop episodes well, without

relying on large shocks to explain crises but instead letting the economic structure of the

model explain those events. It produces business cycle statistics that match the second

moments of the data and provides evidence that, contrary to the prevailing view, neither

productivity nor interest rate shocks are the only, or the most important, drivers of Mexico’s

business cycles. Most importantly, our new specification of the collateral constraint identifies

crisis episodes and dynamics of duration and intensity that are more in line with the data

than those generated from models with traditional inequality borrowing constraints, without

any auxiliary empirical restriction imposed on their definition.

In particular, the estimated model identifies three financial crises: the Debt Crisis from

1981:Q3 to 1983:Q2, the Mexican peso crisis commonly referred to as the “Tequila crisis”

from 1994:Q1 to 1996:Q1, and the spillover effect from the Global Financial Crisis from

2008:Q4 to 2009:Q3. Unlike the existing quantitative sudden stop literature, the model
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Figure 1: Current Account and Output in Mexico, 1981-2016

(a) Current Account to Output Ratio
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Note: Panel (a) plots Mexico’s current account balance as a share of GDP. Panel (b) shows Mexico’s quarterly

log-change of real GDP. See Appendix F for data sources. Sample period 1981:Q1-2016:Q4.

identifies these without resorting to imposing any ad hoc restrictions on their definition.

The identified crisis episodes align well with a purely empirical notion of financial crisis

in Mexico (Reinhart and Rogoff, 2009) and display duration about twice as long as the

crisis peaks previously identified as sudden stops (Cerra and Saxena, 2008; Mendoza, 2010).

The model-simulated dynamics of crisis episodes indicate that they are preceded by slowly

unfolding booms and followed by economic stagnation, and are not only driven by a favorable

external environment that suddenly reverses, but also domestic factors such as technology,

demand, and preference shocks. We also show that different shocks matter for different

historical crisis episodes, as well as different phases of a given crisis episode with patterns

that fit narrative approaches to Mexico’s history of financial crisis.

Related Literature Our paper is connected to several strands of literature. The paper

relates to the now large literature on the Bayesian estimation of DSGE models (for example,

Schorfheide, 2000; Otrok, 2001; Smets and Wouters, 2007; Iacoviello and Neri, 2010; Bianchi,

2013). We extend that successful approach to models with occasionally binding collateral

constraints, which have become the benchmark for normative analysis of macro-prudential

optimal policy. Welfare-base analysis of optimal macroprudential policies with occasionally

binding constraints (Bianchi, 2011; Jeanne and Korinek, 2010; Benigno et al., 2013, 2016;

Bianchi and Mendoza, 2018; Devereux et al., 2019; Schmitt-Grohe and Uribe, 2020) critically
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depends on calibration assumptions and the collateral constraint formulation. Structural

estimation of these parameters and likelihood based model validation can discipline model

formulation, which in turn is critical for normative policy recommendations.

In this respect, our paper is closely related to the estimation exercise in Bocola (2016)

that is accomplished while solving the model with global methods. However, this estimation

is made possible by first estimating the model outside the crisis, and then appending an

estimate of the crisis in a second step. While this procedure does not matter for the specific

application in Bocola (2016), it is not necessarily applicable more generally. Our approach

permits joint estimation of the model inside and outside the crises and is potentially scalable

to larger and more complex models, while maintaining a satisfactory level of accuracy relative

to global solution methods.

The paper is also closely related to the literature on likelihood-based estimation of Markov

switching DSGE models initiated by the seminal contribution of Bianchi (2013), and applied

in Bianchi and Ilut (2017) and Bianchi et al. (2018). The filter we use differs in two key

respects. First, our regime-switching transition matrix is endogenous. Second, conditional

on the regime, we solve the model to the second order. So we employ the Sigma Point Filter

to evaluate the likelihood function in place the modified Kalman filter in Bianchi (2013).

In the literature on Markov-switching DSGE models, our paper builds upon the method

developed by Foerster et al. (2016), who developed perturbation methods for the solution of

exogenous regime-switching models. The perturbation approach that we propose allows for

second- and higher-order approximations that go beyond the linear models studied by Davig

and Leeper (2007) and Farmer et al. (2011). In fact, we show that at least a second-order

approximation is necessary in order to capture the effects of the endogenous switching.

The paper is naturally related to the literature that on focuses on endogenous regime-

switching models. Davig and Leeper (2008), Davig et al. (2010), and Alpanda and Ueberfeldt

(2016) all consider endogenous regime-switching but employ global solution methods that

hinder likelihood-based estimation. Lind (2014) develops a regime-switching perturbation

approach for approximating non-linear models, but it requires repeatedly refining the points

of approximation and hence it is not suitable for estimation purposes.

Here, our paper relates closely to Guerrieri and Iacoviello (2015), who develop OccBin, a

set of procedures for the solution of models with occasionally binding constraints. OccBin is

a certainty equivalent solution method that captures non-linearities but not precautionary

effects, which are a critical feature of models with occasionally binding collateral constraints.1

A key feature of our approach is to preserve precautionary saving effects, as agents in the

1Cuba-Borda et al. (2019) study how the solution method and likelihood misspecification interact and
possibly compound each other.
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model adjust their behavior due to the presence of the constraint even when the constraint

does not bind, and vice versa.

The specification of the constraint that we propose and the accompanying perturba-

tion solution method could be easily applied to models with occasionally binding zero-lower

bound on interest rates (for example, Adam and Billi, 2007; Aruoba et al., 2018; Atkin-

son et al., 2018). Existing methods for the estimation of such models may limit scalability

due computational costs (Gust et al., 2017). Moreover, the occasionally binding zero lower

bound is not comparable to the kind of constraints with endogenous collateral value that

we estimate in this paper and is used in the normative literature on macroprudential poli-

cies. Indeed, endogenous collateral valuation features different amplification mechanisms

and entails additional computational complexities.

The application of the methodology that we propose relates to the literature on emerging

market business cycles, which includes Aguiar and Gopinath (2007), Mendoza (2010), Garcia-

Cicco et al. (2010), Fernandez-Villaverde et al. (2011), among others. Encompassing most

shocks previously considered, we include technology, preference, expenditure, interest rate,

and terms of trade shocks in our analysis. Relative to Mendoza (2010), we provide a Bayesian

estimation of the model and consider a wider set of structural shocks, finding that some of

the estimated values of the parameters that are not easily calibrated to the stylized facts

of the data differ substantially. Most importantly, we document that we can identify crisis

episodes of persistence and magnitude more consistent with the data without imposing any

ad hoc restrictions on their amplitude. Relative to Garcia-Cicco et al. (2010), we empirically

evaluate the relative importance of interest rate shocks without resorting to the ad hoc debt

elastic premium calibrated to be a financial friction in a fully non-linear framework, with a

fully articulated specification of the financial frictions driving amplification.

The rest of the paper is organized as follows. Section 2 describes the model and discusses

the proposed formulation of the collateral constraint. Section 3 presents our perturbation

solution method for endogenous regime-switching models. Section 4 describes the Bayesian

estimation procedure and reports results on parameters and model fit. Section 5 presents the

main empirical results on business cycle properties and financial crises. Section 6 concludes.

The Appendices include technical details and additional empirical results.

2 The Model

The framework is a medium scale model for the analysis of business cycles and sudden stop

crises in emerging market economies. The model is a small, open, production economy

with endogenous labor supply, investment, and an occasionally binding collateral constraint.
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The economy is subject to temporary productivity, intertemporal preference, expenditure,

interest rate, and terms of trade shocks. We consider a large set of shocks as in Garcia-

Cicco et al. (2010).2 Preferences and production are as in Mendoza (2010). Due to the

occasionally binding nature of the constraint, this framework can account not only for normal

business cycles, but also for non-linear dynamics and amplifications that are critical aspects

of financial crises in both emerging markets and advanced economies in a way that models

with always binding financial frictions cannot.

While our application focuses on one particular type of crisis, the so called sudden stop

in capital flows, our framework is generally applicable to other macroeconomic models with

occasionally binding frictions and crises (e.g. Kiyotaki and Moore, 1997; Iacoviello, 2005;

Gertler and Karadi, 2011; Jermann and Quadrini, 2012; Liu et al., 2013; Gertler and Kiyotaki,

2015; Bocola, 2016; Schmitt-Grohe and Uribe, 2016; Boissay et al., 2016; Eichenbaum et al.,

2020). The framework that we propose is particularly suitable to deal with the zero lower

bound on interest rates because it takes into account the fact that, in practice, the interest

rates are not bound mechanically at zero but effectively so.3 In the rest of this section, we

discuss the representative household-firm and the borrowing constraint specification that is

the novel feature of our model. The formal definition of the equilibrium and the full set of

equilibrium conditions are reported in Appendix A.

2.1 Preferences, Constraints, and Shock Processes

There is a representative household-firm that maximizes the following utility function

U ≡ E0

∞∑
t=0

{
dtβ

t 1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (1)

where Ct denotes consumption, Ht the supply of labor, and dt an exogenous and stochastic

preference shock specified below. Households choose consumption, labor, capital Kt, im-

ported intermediate inputs Vt given an exogenous stochastic relative price Pt also specified

below, and holdings of real one-period international bonds, Bt. Negative values of Bt indicate

borrowing from abroad.

2We do not consider permanent technology shocks of the type analyzed by Aguiar and Gopinath (2007)
because these long-run components cannot be estimated precisely over samples periods of length comparable
to ours. Moreover, Garcia-Cicco et al. (2010) and Miyamoto and Nguyen (2017) find that the permanent
technology shock is not quantitatively important in frameworks with financial frictions like ours in the case
of Mexico.

3The zero lower bound can be implemented in our framework via a shadow rate model where the nominal
rate either equals the shadow rate or zero, and the switches between regimes occur when the shadow rate
approaches the effective lower bound.
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The household-firm faces the following budget constraint:

Ct + It + Et = Yt − φrt (WtHt + PtVt)−
1

(1 + rt)
Bt +Bt−1, (2)

where Yt is gross domestic product given by

Yt = AtK
η
t−1H

α
t V

1−α−η
t − PtVt. (3)

Here, At denotes the exogenous and stochastic level of technology. Et is an exogenous

and stochastic expenditure process possibly interpreted as a fiscal or net export shock as

in Garcia-Cicco et al. (2010). The term φrt (WtHt + PtVt) describes a working capital con-

straint, stating that a fraction of the wage and intermediate good bill must be paid in advance

of production with borrowed funds. The relative price of labor and capital are given by Wt

and qt, respectively, both of which are endogenous, but taken as given by the individual

household-firm. Gross investment, It, is subject to adjustment costs as a function of net

investment:

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
. (4)

Household-firms can borrow in international markets issuing one-period bonds that pay

a market or country net interest rate rt. The country interest rate between period t and

t+ 1, rt, has an exogenous persistent component given by

r∗t = (1− ρr∗)r̄∗ + ρr∗r
∗
t−1 + σr∗εr∗,t, (5)

and an exogenous transitory component (σrεr,t), with εr∗,t and εr,t i.i.d. N(0, 1), and σr∗ and

σr denoting parameters that control the variance of the two components.4

As in Mendoza (2010), in our model, the household-firm also faces a endogenous ex-

ternal financing premium on debt (EFPD), measured by the difference between the ef-

fective real interest rate, which corresponds to the intertemporal marginal rate of sub-

stitution in consumption, rht = µt/Et[µt+1], and the market interest rate, rt. In fact,

the Euler equation for bt, µt = λt + β (1 + rt)Etµt+1, can be rearranged to show that

EFPD = Et[rht − rt] = λt/βEt[µt+1], where µt is the Lagrange multiplier on the budget

constraint and λt is the multiplier on the collateral constraint to be introduced shortly. In

4To aide the computations, rt also includes a small endogenous component that depends on the level of
debt. As discussed in Section 3, our solution method relies on an approximation around a point between
the steady state associated with the constraint always binding and the steady state for the constraint never
binding. The elastic debt component aids us in determining the latter, but we have verified it does not play
any role in affecting our results.
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addition, we do not impose any correlation between the innovations to the interest rate pro-

cess and the productivity process specified below unlike what typically assumed modelling

emerging market business cycles (e.g., Neumeyer and Perri, 2005).

The remaining exogenous processes for the preference shock dt, the temporary technol-

ogy shock At, the shock to the relative price of intermediate goods Pt, and the domestic

expenditure shock Et, are specified as follows:

log dt = ρd log dt−1 + σdεd,t, (6)

logAt = (1− ρA)A∗ + ρA logAt−1 + σAεA,t, (7)

logPt = (1− ρP )P ∗ + ρP logPt−1 + σP εP,t, (8)

logEt = (1− ρE)E∗ + ρE logEt−1 + σEεE,t, (9)

where the starred variables and the ρ coefficients denote the unconditional mean values and

the persistence parameters of the processes, ε are assumed i.i.d. N(0, 1) innovations, and

the σ parameters control the size of the process variances.5

2.2 The Occasionally Binding Borrowing Constraint: An Endoge-

nous Regime-Switching Specification

As in typical models with occasionally binding inequality constraints, the economy fluctuates

between two states or regimes. In one state, denoted st = 1 and called the binding or

constrained regime, the following constraint on total borrowing binds strictly:

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt, (10)

with λt denoting the corresponding multiplier. Total debt includes borrowing for consump-

tion smoothing plus working capital for the purchase of intermediate inputs and labor for

production. Constraint working capital limits the supply response of the economy to shocks

in the binding regime. In the other state, denoted st = 0 and called the non-binding or

unconstrained regime, the total borrowing limit is slack and λt = 0. Thus lenders finance all

desired borrowing, and the only constraint is the natural debt limit.

Given these two regimes, which represent the occasionally binding nature of the borrow-

ing constraint, we characterize the transition between them stochastically in the sense that,

5The stochastic volatility features of emerging economies data as in Fernandez-Villaverde et al. (2011)
could be allowed for by introducing regime-switching in the the volatilities of the shocks processes. While
possible, we do not allow for regime-switching either in the intercepts or the volatilities of the shocks processes,
as we want the collateral constraint to drive regime-switching, rather than shifts in the stochastic processes.
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for given values of capital, bond holding, and exogenous processes, there is an endogenous

probability of switching between the regimes. This formulation contrasts with the determin-

istic relation between leverage and the regime for given values of endogenous and exogenous

state variables in typical occasionally binding specification. Specifically, we assume that the

probabilities of switching from one regime to the other follow a logistic distribution as in

Bocola (2016), where the economy’s transition between a default and non-default state is

also a logistic function of a restricted subset of the endogenous state variables of the model.6

Define the “borrowing cushion,” B∗t , as the distance of total actual borrowing from the

debt limit:

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt, (11)

so that when the borrowing cushion is small, total borrowing is high relative to the value of

collateral, and leverage also is high. We then assume that the transition from the non-binding

to the binding regime depends on B∗t according to:

Pr (st+1 = 1|st = 0, B∗t ) =
exp (−γ0B

∗
t )

1 + exp (−γ0B∗t )
. (12)

Thus, the likelihood that the constraint binds in the following period depends on the size of

the borrowing cushion in the current period.7 The parameter γ0 controls the steepness of

the logistic function, determining the sensitivity of the probability of switching regime to the

size of the borrowing cushion. When γ0 is positive, as the cushion declines the probability

of switching to the binding regime increases. Note however that, for certain draws from the

logistic function, the borrowing cushion could be negative but the economy could still be in

the non-binding regime.

Similarly, when the constraint binds, the transition probability to the non-binding regime

is a logistic function of the Lagrange multiplier, λt:

Pr (st+1 = 0|st = 1, λt) =
exp (−γ1λt)

1 + exp (−γ1λt)
. (13)

The probability of switching back from the constrained to the unconstrained regime, there-

fore, depends on the shadow value of the economy’s desired borrowing relative to the limit

set by the collateral constraint. As in the case of a switch from the constrained to con-

6Kumhof et al. (2015) also use a logistic function to model the transition to the default regime in the
context of a positive analysis of the relation between financial crises and inequality. Davig, Leeper, and
Walker (2010) and Bi and Traum (2014) use a similar logistic assumption to study the macroeconomic
consequences of fiscal limits.

7As Appendix C shows, this timing difference with respect to models with traditional specifications of
the occasionally borrowing constraint does not affect its positive properties.
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strained regime, the parameter γ1 affects the sensitivity of this probability to the value of

the multiplier. When γ1 is positive, as the multiplier declines, the probability of exiting the

binding regime increases. As in the non-binding regime, for certain draws from the logistic, it

is possible that the desired level of borrowing is less than the level forced upon the economy

by the binding constraint and this will manifest itself with a negative collateral constraint

multiplier.8

Putting equations (12) and (13) together, the regime-switching model has the following

endogenous transition matrix

Pt =

[
1− exp(−γ0B∗t )

1+exp(−γ0B∗t )

exp(−γ0B∗t )

1+exp(−γ0B∗t )
exp(−γ1λt)

1+exp(−γ1λt) 1− exp(−γ1λt)
1+exp(−γ1λt)

]
. (14)

Agents have full information with rational expectations about these transition probabilities

that, in general equilibrium, are affected by all endogenous variables in the model.

2.3 Remarks on the Endogenous Regime-Switching Specification

A few remarks are useful on how our stochastic formulation of the borrowing constraint

works and differs relative to the typical inequality formulation used in the literature.

First, in our setup, agents in the non-binding regime know that higher leverage increases

the probability of switching to the binding regime, and vice-versa. Critically, this knowledge

preserves the interaction in agents’ behavior between regimes and gives rise to precautionary

behavior, distinguishing this class of models from those in which financial frictions are always

binding (Gertler and Karadi, 2011) or are approximated with solution methods that eliminate

the interactions across regimes as in Guerrieri and Iacoviello (2015). One could certainly

consider a wider range of variables governing the regime transition. Our choice, as in Bocola

(2016), reflects both the need to adopt a parsimonious representation and to choose variables

motivated by the sudden stop literature. As we shall see, the specification proposed allows

us to identify all parameters of interest and fit the data well with small, well-behaved shocks.

Second, as we already noted, for certain draws of the regime state from the logistic

distribution, the borrowing cushion and multiplier can take negative values. This feature

has the important implication that the build up to, or the duration of, a financial crisis can

be more persistent than in traditional models. As a consequence, as we will illustrate below,

our model can account for crisis episodes with varying dynamics and durations and provides

8By construction, the transition probabilities equal 0.5 when their arguments are zero. This assumption
can be easily relaxed by introducing a constant into the arguments of equations (12-13). However, preliminary
estimates that allow for such degrees of freedom suggested that these parameters were effectively zero. For
ease of presentation, we omitted them from the beginning of the analysis.
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a more data-consistent account of crisis dynamics without imposing any additional ad-hoc

restrictions on the sudden stop definition. For example, negative values of the borrowing

cushion B∗t in the non-binding regime are possible if the probability of a switch to the binding

regime is elevated, but the switch has not been drawn yet, prolonging the boom phase and

postponing the beginning of the crisis episode. Conversely, the economy can remain in the

binding regime even if the multiplier is no longer positive, but the non-binding regime has

not been drawn yet, prolonging the crisis duration and contributing to a sluggish recovery.9

This important model property is consistent with a growing body of microeconomic

evidence suggesting that a deterministic specification of the switch between regimes in models

with occasionally binding collateral constraints may not accurately capture lending and

borrowing behaviors at the household and firm or bank level. For example, Chodorow-

Reich and Falato (2017) and Greenwald (2019) show that loan covenants are frequently

violated, triggering renegotiation rather than suddenly cutting off borrowers from funding

once activated. Campello et al. (2010) also provide survey information on the behavior of

financially constrained firms, and Ivashina and Scharfstein (2010) examine loan level data,

showing that firms draw down pre-existing credit lines in order to satisfy their liquidity

needs to avoid hitting borrowing limits. In emerging market economies, official reserves play

a similar liquidity role. Thus, in practice, collateral constraints bind for a range of leverage

ratios rather than at any one level as in model with inequality constraints. The aggregate

dynamics in our model are also consistent with the macroeconomic empirical evidence of

Jorda et al. (2013), who show that the exact level of leverage at which a crisis occurs varies

considerably across crisis episodes.10

Third, our stochastic specification nests a deterministic case in which regime switching is

triggered with probability 1 by a unique level of leverage. Moreover, we show in Appendix C

that the numerical solution of our model is practically not distinguishable from its inequality

counterpart, while at the same time offering a dramatically improved trade off between

accuracy in terms of Euler equation errors and speed in terms of solution time.

Fourth and finally, as in other specifications of occasionally binding collateral constraints

in the literature (e.g., Bianchi, 2011; Schmitt-Grohe and Uribe, 2020; Farhi and Werning,

2020), our formulation is not derived as an equilibrium outcome of a fully specified con-

9In other words, as the transition probability are endogenous, they are time-varying. In contrast, the
exogenous Markov-switching setup (Davig and Leeper, 2007; Farmer et al., 2011; Bianchi, 2013; Foerster
et al., 2016) has a constant probability of transitioning between regimes that is independent of the structural
shock realizations and the agent decisions. For this reason, our endogenous-switching framework is capable
of generating long- or short-lived binding-regime episodes depending on the realization of shocks and agents’
decisions.

10The notion of “debt intolerance” discussed by Reinhart and Rogoff (2009) and credit surface of Fostel
and Geanakoplos (2015) also are consistent with our stochastic specification.
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tracting environment. Our specification however could be derived by generalizing existing

contract environments. The traditional inequality formulation of our borrowing constraint,

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) ≥ −κqtKt. (15)

can be derived as an implication of incentive compatibility constraints on borrowers if lim-

ited enforcement prevent lenders from collecting more than a fraction κ of the value of the

assets owned by a defaulting borrower as for instance discussed in Bianchi and Mendoza

(2018). An endogenous transition between the two regimes associated with this constraint

could be derived in a standard costly state verification framework (Bernanke and Gertler,

1989). For example, Matsuyama (2007) shows how borrower net worth causes endogenous

switching between investment projects with different productivity levels, which feeds back

into borrower net worth. Martin (2008) shows that endogenous regime switches in financial

contracts from pooling to separating and vice-versa leads to switching in lending standards

between a “lax” and a “tight” regime.11

3 Solving the Endogenous Switching Model

This Section describes our solution method for endogenous regime-switching models. The

model proposed can in principle be solved using global methods, as for example in Davig

et al. (2010). However, as we discuss in Appendix C, in the case of our application, with

two endogenous and five exogenous state variables, the regime switching indicator, plus six

exogenous shocks, using a global solution method is prohibitive precluding likelihood-based

estimation. Instead, we solve the model using a perturbation approach, which allows for an

accurate approximation fast enough to permit estimation and that is potentially applicable

to larger models.

We first describe how to implement occasionally binding constraints represented as en-

dogenous regime switching, the approximation point, how to define a steady state in this

setup, and the Taylor-series expansions. We then discuss the importance of approximating

at least to a second-order in our framework. The competitive equilibrium of the endogenous

regime-switching model is defined formally in Appendix A. The derivation of the Taylor-series

expansions and other details of the solution method are reported in Appendix B.

11Heterogeneous agent models with financial frictions imposed at the individual level could also be con-
sistent with a stochastic specification of the switching between regimes. For example, Fernandez-Villaverde
et al. (2019) study financial frictions and the wealth distribution, where endogenous aggregate risk generates
an endogenous regime-switching process.
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3.1 The Regime-Switching Slackness Condition

A critical step in applying our perturbation methods to the model above, is to ensure that

the two variables B∗t and λt are zero if the economy is in the relevant regime: λt = 0 in

the non-binding regime, and B∗t = 0 in the binding regime. This step ensures that the

slackness condition B∗t λt = 0 always holds. To implement this condition and be consistent

with regime-switching DSGE models in which the parameters are the model objects that

change state, we define two auxiliary regime-dependent parameters, ϕ (st) and ν (st), such

that ϕ (0) = ν (0) = 0, and ϕ (1) = ν (1) = 1.12 Next, we introduce the following regime-

switching slackness condition:

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) , (16)

where B∗ss and λss are the steady state borrowing cushion and collateral constraint multi-

plier, respectively, defined more precisely below. It is now easy to see from equation (16)

that, as desired, λt = 0 when st = 0, and B∗t = 0 when st = 1, always satisfying the slack-

ness condition B∗t λt = 0 that characterizes the representative household-firm’s optimization

problem. Yet, given a regime st, equation (16) remains continuously differentiable for any

value of B∗t or λt, as no inequality constraint is imposed.

Technically, equation (16) “preserves” information in the perturbation approximation

that we introduce in Section 3.3, since, at first order, both variables B∗t and λt are constant

at zero in the respective regimes. The use of the regime-dependent switching parameters,

ϕ (st) and ν (st), follows from the Partition Principle of Foerster et al. (2016), which separates

parameters based upon whether they affect the steady state or not. Intuitively, ϕ(st) captures

the level of the economy changing across regimes (e.g., the level of capital is lower when the

constraint binds), while ν(st) captures the dynamic responses differing across regimes (e.g.,

the response of investment to shocks changes when the constraint binds).

3.2 Defining the Steady State

Given the regime-switching slackness condition (16), we define a steady state as a state in

which all shocks have ceased and the regime-switching variables that affect the level of the

economy (ϕ(st)) take the ergodic mean values associated with the steady state transition

12In our model, these parameters coincide with the regime-switching indicator variable st, but in more
general settings they may not. The notation provides a general formulation of the modified slackness condi-
tion that is applicable to other setups. See, for example, the discussion of our stochastic specification in the
context of other model settings in Binning and Maih (2017).
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matrix:

Pss =

[
1− exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ1λss)

1+exp(−γ1λss) 1− exp(−γ1λss)
1+exp(−γ1λss)

]
. (17)

Since this matrix depends on the steady state level of the borrowing cushion and the mul-

tiplier, B∗ss and λss, which in turn depend upon the ergodic mean of the regime-switching

parameter ϕ(st), such a steady state is the solution of a fixed point problem that is described

in more detail in Appendix B.

More specifically, consider the model regime-specific parameters defined above and dis-

tinguish between ϕ(st), which affect the level behavior of the economy, and ν(st), which

affect only its dynamics with no effects on the steady state. Then denote with ξ = [ξ0, ξ1]

the ergodic vector of Pss. Next, apply the Partition Principle of Foerster et al. (2016) to

focus only on parameters that affect the level of the economy, and write the ergodic mean

of ϕ(st), denoted ϕ̄, as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) . (18)

Defining the steady state as the state in which the auxiliary parameter ϕ (st) is at its

ergodic mean value ϕ̄ implies that the approximation point constructed is a weighted average

of the steady states of two separate models: one in which only the non-binding regime occurs,

and one in which only the binding regime occurs. How close our approximation point is to

each of these two other steady states, therefore, depends on the frequency of being in each

of the two regimes.13

3.3 The Solution and Its Properties

Equipped with the steady state of the endogenous regime-switching economy, we construct a

second-order approximation to the policy functions by taking derivatives of the equilibrium

conditions. We relegate details of these derivations to the Appendix B, but here we provide

a summary.

13The ergodic mean is a natural candidate as the perturbation point in models with endogenous state
variables and where at least one regime has limited expected duration. These two features imply that the
ergodic mean is in the area of the state space in which the economy operates most frequently. In the specific
case of the model in this paper, debt and capital are slow-moving state variables, and the binding regime
tends to be self-limiting—that is, being in the binding regime causes the economy to reduce leverage and
hence switch back to the non-binding regime. Thus, the economy will rarely reach the area around the
steady state of the “binding regime only.” Alternative methods for finding solutions to endogenous regime-
switching models, such as Maih (2015) and Barthélemy and Marx (2017), propose using regime-dependent
steady states as multiple approximation points. Such a strategy would not be suitable for our purposes
because the binding regime steady state is a poor approximation point given that the regime is infrequent
and usually of shorter duration than normal cycles of expansions and contractions.
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For each regime st, the policy functions of our model take the form

xt = hst (xt−1, εt, χ) , yt = gst (xt−1, εt, χ) , (19)

where xt denotes predetermined variables, yt non-predetermined variables, εt the set of

shocks, and χ a perturbation parameter such that when χ = 1 the fully stochastic model

results and when χ = 0 the model reduces to the non-stochastic steady state defined above.

Using these functional forms, we can express the equilibrium conditions conditional on regime

st as

Fst (xt−1, εt, χ) = 0. (20)

We then stack the regime-dependent conditions for st = 0 and st = 1, denoting the result-

ing system of equations with F (xt−1, εt, χ), and successively differentiate with respect to

(xt−1, εt, χ), evaluating them at the steady state. The systems

Fx (xss,0, 0) = 0, Fε (xss,0, 0) = 0, Fχ (xss,0, 0) = 0 (21)

can then be solved for the unknown coefficients of the first-order Taylor expansion of the

policy functions in equation (19). Note importantly here that since we are only approximat-

ing the decision rules and not the probabilities in equation (14), the probabilities remain

bounded between zero and one.

A second-order approximation of the policy functions in equation (19) can be found by

taking the second derivatives of F (xt−1, εt, χ). In the end, we have two sets of matrices:

H
(1)
st and G

(1)
st , characterizing the first-order coefficients; and H

(2)
st and G

(2)
st characterizing

the second-order coefficients. Therefore, the approximated policy functions are

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (22)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (23)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.

Our perturbation method produces stable approximated policy functions, but does not

guarantee the existence or uniqueness of the solution. As we discuss in Appendix B, this

limitation is shared with global solution methods of models of occasionally binding con-

straints that check convergence of the numerical algorithm without guaranteeing existence

or uniqueness.14

14While in some simpler models with collateral constraints it is possible to impose parametric restrictions
that rule out multiple equilibria (Schmitt-Grohe and Uribe, 2020; Benigno et al., 2016), in the case of our
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Our solution method is fast, and can readily be scaled to handle larger models. In all, we

have 23 equations that characterize the equilibrium, two endogenous and five exogenous state

variables, one regime indicator, and six shocks. Our computational approach is similar to

that in Fernandez-Villaverde et al. (2015). We use Mathematica to take symbolic derivatives

and export these derivatives so that we can use Matlab to solve the model repeatedly for

different parameterizations. The model solves in about a second on a standard laptop.15

As Appendix C discusses in more detail, the proposed solution method is also accurate.

We investigate its accuracy by applying it to the calibrated model in Mendoza and Villalvazo

(2020) and comparing our endogenous regime switching specification solved by perturbation

with the traditional inequality constraint specification solved with global methods. We

compare first and second moments for all model variables and show that our solution method

yields results practically not distinguishable from those obtained from a traditional inequality

specification of the borrowing constraint, except for persistence and volatility of the bond

holding and the trade balance. As we argue above and we show in Appendix C, however,

these differences illustrates the strengths of the specification that we propose. Specifically,

we find Euler equation errors in line with the accuracy of perturbation methods applied

to exogenous regime-switching models (Foerster et al., 2016) and models without regime-

switching (Aruoba et al., 2006). We also document a solution speed more than 800 times

faster than the global method. Indeed, the solution speed gain is what makes our objective

of likelihood-based estimation feasible.

3.4 Approximation Order and Endogenous Switching

Our endogenous regime-switching framework must be solved at least to the second order

to capture the effects of the endogenous probabilities on the policy rules, which include

precautionary effects that vary with the state of the economy. If we were to use only a

first-order approximation, we would not capture the precautionary behavior stemming from

rational expectations about the dependency of the probability of a regime change on the

borrowing cushion and the multiplier. The following Proposition states this result formally.

Proposition 1 (Irrelevance of Endogenous Switching in a First-Order Approxima-

tion). The first-order approximation to the endogenous regime-switching model is identical

to the first-order approximate solution of an exogenous regime-switching model in which the

model, as in Mendoza (2010) and Bianchi and Mendoza (2018), there are no such restrictions and uniqueness
must be verified heuristically. We check the mean-squared stability of the first-order approximation paired
with the steady state transition matrix Pss (Farmer et al., 2011; Foerster et al., 2016), and additionally check
for explosive simulations.

15A general code that applies the solution algorithm is available on the authors’ webpages.
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transition probabilities are given by the steady-state value of the time-varying transition ma-

trix.

Proof. See Appendix B.

The Proposition illustrates that using a second-order approximation to the solution is

necessary to characterize the model properties associated with the endogenous nature of the

regime-switching, including particularly precautionary behavior. This result is analogous to

the one stating that, in models with only one regime, first-order solutions are invariant to

the size of the shocks, second-order solutions captures precautionary behavior, and third-

order solutions are needed to capture the effects of stochastic volatility (Fernandez-Villaverde

et al., 2015). Unfortunately, however, the need to use a second-order approximation along

with regime-switching creates additional challenges for estimation purposes. We now turn

to our strategy to address these issues.

4 Estimating the Endogenous Switching Model

We estimate the model with a full information Bayesian procedure. The posterior distribu-

tion has no analytical solution and we use Markov-Chain Monte Carlo (MCMC) methods to

sample from it. Since the Metroplis-Hastings algorithm that we use for sampling is a stan-

dard tool, we omit a discussion of this step in our procedure. The details of the construction

of the state space representation and the filtering steps for the evaluation of the likelihood

are reported in Appendix D.

A critical challenge in sampling from the posterior is the evaluation of the likelihood func-

tion. We face three difficulties here relative to linear DSGE models (for example, Smets and

Wouters, 2007). The first is the non-linearity due to the presence of multiple regimes. The

second is the need to approximate to the second-order the model solution that governs the

decision rules in each regime. The third is the fact that the transition probabilities are en-

dogenous. Bianchi (2013) develops an algorithm to address the first difficulty. Here we must

deal with the second-order approximation and endogenous probabilities in a tractable man-

ner. One alternative is the Particle Filter (Fernandez-Villaverde and Rubio-Ramirez, 2007).

However, the regime switching leads to discarding a large number of simulated particles,

lowering accuracy for a given number of particles and greatly increasing the computational

cost of obtaining a given level of accuracy (Doucet et al., 2001).

To address these challenges, we use the Unscented Kalman Filter (UKF) with Sigma

Points (Julier and Uhlmann, 1999). The Sigma Point filter has been shown to be an efficient

way to estimate regime switching models (Binning and Maih, 2015). As we show in Section
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4.3, the estimated shocks are well-behaved, providing direct evidence that the model and

associated filter is effective at capturing the nonlinear dynamics of sudden stops while not

relying on exogenous shocks with large outliers.

Given the complexity of our non-linear model, our estimation approach takes four steps.

First, we estimated a version of the model without working capital and the occasionally

binding constraint, which yields an initial estimate of the exogenous processes and the non-

financial parameters. Second, conditional on these initial estimates, we performed a grid

search over the remaining parameters (κ, φ, γ0, and γ1) to find high posterior regions. Third,

from the high posterior regions of the grid search, we used a mode-finding routine to identify

the posterior mode, which forms the basis for our empirical results. Lastly, we sampled

500, 000 times from the posterior with a random-walk Metropolis-Hastings algorithm to

explore the parameter space around the mode and characterize credible sets for the parameter

estimates.16

4.1 Observables, Data, and Measurement Errors

We estimate the model with quarterly data for GDP growth (gross output less intermediate

input payments), consumption growth, investment growth, and intermediate import price

growth, as well as the current account-to-output ratio, and a measure of the country real

interest rate.17

As there are six shocks with six observables, we do not need measurement errors. How-

ever, measurement errors in the observation equation improve performance of the non-linear

filter and accounts for any actual measurement error in the data. We follow Garcia-Cicco

et al. (2010) and limit their variance to 5% of the variance of the observable variables. As a

consequence, our model will fit the data relatively closely on average; thus, how it performs

across cycles and crises and whether it relies on large shocks to fit the data will be important

in assessing model performance.

4.2 Calibrated Parameters and Prior Distributions

Our objective is to provide likelihood-based estimates of parameters governing the model’s

dynamics in both the binding and non-binding regime, on which we have some prior infor-

mation, and those that govern the transitions between regimes, on which we do not have

16For the last MCMC step, we adjusted the scale of the proposal density until we achieved an acceptance
rate of 0.25.

17See Appendix F for details on variable definitions and data sources. The country interest rate is con-
structed following Uribe and Yue (2006) and it is the US 3-Month Treasury Bill minus ex post US CPI
inflation rate plus Mexico’s EMBI Spread.
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Table 1: Calibrated Parameters

Parameter Description Value
β Discount Factor 0.9798
ρ Risk Aversion 2.0000
ω Labor Supply 1.8460
η Capital Share 0.3053
α Labor Share 0.5927
δ Depreciation Rate 0.0228
P ∗ Mean Import Price 1.0280
E∗ Mean Expenditure 0.2002

any prior information. To improve estimation of these parameters of interest, we calibrate a

set of parameters listed in Table 1 on which we have strong prior information. In particular,

we set these parameters largely following Mendoza (2010), who calibrated them based on

the stylized facts from Mexico’s National Accounts, adapting the calibration to our model

specification and the quarterly data frequency.18

We set two types of priors on the parameters to be estimated. The first type of prior is

set on the parameters. These priors are shown in Table 2. We use relatively diffuse priors to

reflect our lack of a priori information on their values, using them to impose sign restrictions

and place lower prior probability on parameter values that generate implausible moments

in model simulations. The second type of prior is on a model-implied object: the steady

state transition probability of switching from the binding to to the non-binding regime,

given by the steady state value of equation (12), Pr(st+1 = 1|st = 0, B∗ss). This prior is

a Beta distribution with mean 0.25 and variance of 0.25. It puts lower probability mass

on combinations of parameters that either generate extremely infrequent transitions to the

binding regime, or that imply the economy exits the binding regime almost immediately.19

4.3 Estimated Parameters and Model’s Fit

We now discuss the estimated parameters and the model’s fit to the data. Table 2 reports

the mode, the median, the 5th, and the 95th percentile of the posterior distribution of the

estimated structural parameters of interest. The estimated mean interest rate, slightly below

1.75% per quarter, is close to the value estimated by Mendoza (2010). The posterior coverage

interval for this variable is fairly diffuse, indicating some uncertainty about its true value.

The remaining parameters have tightly estimated posteriors, so we will focus the discus-

18See Appendix E for more details on the calibration and the targeted data moments.
19Priors on model-implied objects have been used by, for example, Otrok (2001) and Del Negro and

Schorfheide (2008).
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Table 2: Estimated Parameters

Par. Description Prior Posterior
Mode 5% 50% 95%

ι Capital Adj. N(10,5) 12.703 12.649 12.701 12.724
φ Working Cap. U(0,1) 0.7113 0.7102 0.7153 0.7207
r∗ Mean Int. Rate N(0.0177,0.01) 0.0172 0.0115 0.0165 0.0216
κ Leverage U(0,1) 0.1727 0.1592 0.1756 0.1989

ρa Autocor. TFP B(0.6,0.2) 0.9796 0.9653 0.9793 0.9881
ρe Autocor. Exp B(0.6,0.2) 0.9111 0.9066 0.9132 0.9237
ρp Autocor. Imp Price B(0.6,0.2) 0.9711 0.9609 0.9754 0.9549
ρd Autocor. Pref. B(0.6,0.2) 0.9810 0.9753 0.9810 0.9843
ρr∗ Autocor. Persist. Int. Rate B(0.6,0.2) 0.8929 0.8782 0.8896 0.8995

σa SD TFP IG(0.01,0.01) 0.0083 0.0066 0.0081 0.0098
σe SD Exp. IG(0.1,0.1) 0.1806 0.1672 0.1816 0.1892
σp SD Imp. Price IG(0.1,0.1) 0.0471 0.0382 0.0452 0.0524
σd SD Pref. IG(0.1,0.1) 0.1123 0.0998 0.1123 0.1194
σr SD Trans. Int. Rate IG(0.01,0.01) 0.0028 0.0013 0.0025 0.0044
σr∗ SD, Persist Int. Rate IG(0.01,0.01) 0.0047 0.0037 0.0047 0.0059

γ0 Logistic, Enter Binding U(0,150) 13.552 10.903 13.712 18.014
γ1 Logistic, Exit Binding U(0,150) 17.798 15.784 17.800 19.806

Notes: Estimated parameters, with prior distribution and posterior moments. Priors are Normal,

Uniform, Beta, or Inverse Gamma; prior distributions show mean and variance, except for uniform

where lower and upper bounds are shown. Posterior distribution shows mode, along with 5-th, 50-th,

and 95-th percentiles from the MCMC posterior draws.

sion on posterior modes. The model provides precise estimates of the investment adjustment

cost, working capital, and leverage parameters, and the parameters of the logistic function.

These parameters cannot be directly calibrated from the stylized facts of the data—unlike,

for example, capital or labor shares—but are nonetheless critical for the model dynamics

and properties. In particular, the estimated investment adjustment cost parameter (ι) is

12.7. This parameter is model dependent and its magnitude has no interpretation outside

of a particular model. The estimate for the working capital constraint parameter indicates

that 71% of the wage and intermediate good bill needs to be paid in advance with borrowed

funds. This estimate is substantially higher than the 25.79% value set by Mendoza (2010)

and much lower than the 100% used by Neumeyer and Perri (2005) or the 125% used by

Uribe and Yue (2006). The estimate is close to the 60% estimated by Ates and Saffie (2016)

who use interest payments and production costs from Chilean microeconomic data. The

estimated value of the leverage parameter in the borrowing constraint (κ) is 0.17, indicating

less than a fifth of the value of capital serves as collateral. The estimate is slightly tighter

than the benchmark value of 0.20 chosen by Mendoza (2010), and on the low end of the 0.15
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Figure 2: Logistic Functions and Distributions of Their Arguments

(a) Borrowing Cushion and Transition Probability in Non-Binding Regime
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(b) Multiplier and Transition Probability in Binding Regime
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Note: The top panel shows the model-implied distribution of the borrowing cushion B∗ in the non-binding

regime, and the logistic transition function to the binding regime as in equation (12) implied by our estimates.

The bottom panel shows the model-implied distribution of the multiplier λ in the binding regime, and the

transition function to the non-binding regime as in equation (13) implied by our estimates.

to 0.30 range of alternative values considered in that calibration.

The posterior modes of the logistic parameters in equations (12) and (13) are 13.6 and

17.8, respectively, estimated in a tight range relative to the very loose prior. These estimates

are significantly different from zero, thus providing strong evidence that the data reject a

model specification in which the transition probabilities are exogenous, which is allowed for

under the prior distribution.

Figure 2 plots the implied probabilities from equation (12) and (13), evaluated at the

posterior mode value of γ0 and γ1, together with the estimated ergodic distributions of their

arguments, the borrowing cushion, B∗ and the the constraint multiplier, λ. The figure shows

that the ergodic distribution of the borrowing cushion is centered on a positive value, as the

economy spends most of its time in the non-binding regime, above the borrowing limit. As

the borrowing cushion falls, the probability of switching to the binding regime increases,

and gradually reaches 1 for small negative values, with very little probability mass on large
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Figure 3: Data and Model Estimates

(a) Output Growth
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Note: The figure plots observable variables used in estimation (solid black lines) and fitted values (i.e., model

implied smoothed estimated series based upon the full sample, dashed blue lines). Gray areas indicate model-

identified periods of crisis defined in Section 5.2.

negative realizations of the borrowing cushion.

On the other hand, once the economy is in the binding regime, the ergodic distribution
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of the multiplier is centered on small negative values, with more probability mass on the

right tail than the left tail. As λ approaches 0 from the positive side of the support, the

probability of switching to the non-binding regime increases and quickly reaches 1, with a

mode on a small negative value. Nonetheless, there is a significant probability mass for larger

negative values. As we explained earlier, negative values of λ reflect instances in which had

the economy been in the non-binding regime, the borrowing cushion would be positive, but

a switch to the non-binding regime at has not been drawn yet.20

The observables used in estimation are shown in Figure 3, along with the model estimates.

The Figure also includes the model-identified crises (gray regions), which we define and

discuss in Section 5.2. As we have already noted (Figure 1), during the sample period

there are both regular cycles and crisis episodes, with rather substantial declines in output,

consumption, and investment growth, and reversals in the current account to output ratio.

In between crisis episodes, their fluctuations are more limited. Since we have assumed

measurement error with a variance of 5% of the observables, the model tracks the data

closely. The tracking is consistent throughout the sample, during both regular business

cycle and crisis periods.21 For example, around the 1995 “Tequila Crisis,” the data show

large drops and rebounds in output, consumption, and investment growth, and a very sharp

reversal in the current account to output ratio. If, by contrast, one were to observe a loss

of fit during crisis episodes, it would suggest that our estimated model finds it difficult to

match the data dynamics during these episodes of critical interest in the empirical analysis.

A key feature of the likelihood based estimation that we perform is that we can recover

the historical shock series that drive our observables. This is not possible in calibrated

models and in turn allows us to analyze, in Section 4.3, the relative importance of different

shocks in different phases of the different crises historically realized. In other words, we

can empirically—rather than theoretically—assess which shocks drove crises and cycles in

Mexico’s history.

Figure 4 plots the estimated model implied shocks in standard deviation units, together

with a two-standard deviations band. Since the model tracks the observed series closely and

evenly over time, the recovered structural shocks are informative on the model’s mechanisms

ability to drive the outsize movements in the data seen during crises. If only normal shocks

are needed, then the model’s internal propagation must be accounting for the abnormal

fluctuations in the data; alternatively, reliance on large, low probability shocks would cast

doubt on the model’s ability at capturing the crisis dynamics. Well-behaved realized shocks

20Sufficiently negative values of λ, approximately below −0.2, produce a nearly deterministic switch back
to the binding regime. The ergodic distribution of λ in the binding regime (Figure 2b) implies that the
probability of exiting that regime exceeds 99% about a quarter of the time.

21See Appendix G for additional details.
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Figure 4: Model Estimated Shocks

(a) TFP Shock
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Notes: The figure plots the estimated model implied shocks, in standard deviation units, together with a

two-standard deviations band (black dashed lines). Gray areas indicate model-identified periods of crisis

defined in in Section 5.2.
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also provide evidence supporting our choice of using the Sigma Point filter. As we can see

in Figure 4, the estimated model fits the data without relying on large or skewed shocks,

including particularly during crisis times. Instead, it explains crisis dynamics using the

model’s internal propagation mechanisms that amplify the effects of normally sized shocks.

Shocks slightly outside the two-standard deviations band are estimated only right before the

1982 debt crisis, possibly do to the limited number of observations before the peak of that

crisis episode. TFP, expenditure, and preference shocks, however, are all well within the

band during the that event. Moreover, the few shock realizations outside the two-standard

deviation band are both positive and negative. The largest shocks occur for the import

price shock, which is directly implied from the observable data on import prices. The shock

processes thus provide evidence that the skewness that is evident in the raw data is picked

up by the regime switching and the propagation mechanism of the model rather than the

estimated shocks. Indeed, Appendix G shows that the realized errors are approximately

normal distributed, thus validating the assumption needed to apply the UKF.

5 The Anatomy of Mexico’s Business Cycles and Fi-

nancial Crises

In this Section, we study Mexico’s history of business cycles and sudden stop crises through

the lens of the estimated model. We first compare moments in the model and the data and

assess the relative importance of different shocks by means of a variance decomposition. We

then focus on sudden stop crises: how the model allows us to identify them, the historical

drivers of the episodes identified, and the model’s dynamics before, during, and after these

episodes.

5.1 Business Cycles

Table 3 compares data and simulated model second moments, reporting results for three

variables used in estimation (output growth, consumption growth, investment growth, and

the country interest rate), and one critical variable, the trade balance ratio, not used in esti-

mation.22 The model matches the business cycle data moments well, fitting both the relative

volatilities and the correlations with output. Consumption is significantly more volatile than

22 All business cycle and crisis statistics rely on simulated data based on the posterior mode estimates. We
generate 100,000 samples of 144 quarters length (the same as our data sample), after a burn-in period of 1,000
quarters. We then compute median values across these 10,000 runs. We use a pruning method (Andreasen
et al., 2018) to avoid explosive simulation paths. All reported simulated moments are unconditional, rather
than conditional on a particular regime.
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Table 3: Simulated Second Moments: Data and Model

Relative Std. Dev. Correlations
Data Series Data Model Data Model
Output Growth 1.00 1.00 1.00 1.00
Consumption Growth 1.25 1.92 0.73 0.98
Investment Growth 5.37 5.75 0.53 0.90
Trade Balance to Output Ratio 1.24 0.80 -0.20 -0.21
Country Interest Rate 1.36 0.15 -0.11 -0.03

Notes: The table compares second moments of the data, relative to the same mo-

ments simulated from the model.

output, which is a robust stylized fact of emerging market business cycles. The model un-

derestimates the relative volatility or the trade balance ratio and, particularly, the country

interest rate. The model implied comovements of all variables match the data counterparts

remarkably well, again with the exception of the country interest rate, whose correlation is

not estimated precisely in the model. The trade balance, in particular, is counter-cyclical as

in the data, with a model-implied autocorrelation coefficient (not reported) well below one

without resorting to using the debt elasticity parameters as in Garcia-Cicco et al. (2010).

Table 4 reports variance decompositions. The table illustrates that all shocks play an

important role, even though different shocks matter more for different variables. Output and

consumption are predominantly driven by productivity, preference, expenditure, and terms

of trade shocks, respectively. Investment is significantly affected by expenditure, preference,

productivity, terms of trade, and persistent interest rate shocks. Expenditure and persistent

interest rate shocks are the most important drivers of the trade balance, while the country

interest rate is mostly driven by persistent interest rate shocks, and to a lesser extent by

the temporary interest rate shock. Expenditure and preference and both interest rate shocks

play a more important role than productivity and terms of trade shocks for financial variables

and the collateral multiplier.

The estimated variance shares are not directly comparable with those in the literature.

The results suggest that both real and financial shocks matter for Mexico business cycles.

We find a lower share for productivity and interest rate shocks than Fernandez and Gulan

(2015), although we also consider terms of trade and demand shocks. We also find a variance

share explained by terms of trade shocks that is very close to the structural VAR model

estimated by Schmitt-Grohe and Uribe (2018). The variance share explained by interest

rate shocks is smaller than in Garcia-Cicco et al. (2010), who use an ad-hoc specification

of the financial friction as a debt elastic country premium, without amplification from the

financial accelerator (Fernandez and Gulan, 2015), or the working capital (Neumeyer and
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Table 4: Estimated Unconditional Variance Decomposition

Import Temp. Pers.
Variables / Shocks TFP Expend. Prices Pref. Int. Rate Int. Rate
Output 33.2 17.2 15.7 25.4 2.5 6.0
Consumption 30.3 23.4 14.3 20.6 3.8 7.6
Investment 19.2 29.8 10.3 25.6 4.6 10.5
Trade Bal/Output 9.5 35.2 8.8 17.2 9.2 20.1
Interest Rate 0.0 0.0 0.0 0.0 21.1 78.9
Borrowing Cush. 10.6 32.3 9.9 21.3 9.9 16.0
Debt/Output 15.2 25.5 7.6 40.9 1.4 9.5
Multiplier 9.5 40.5 9.5 18.1 9.6 12.8

Note: The variance decomposition is normalized to sums to 100 by row, but estimates may not add

up to 100 exactly due to rounding. The decomposition is computed by setting each shock to zero to

compute its marginal impact on each variable.

Perri, 2005; Mendoza, 2010; Ates and Saffie, 2016).

5.2 Financial Crises

The defining feature of our model is its ability to identify shocks and characterize dynamics

not only over regular business cycles, but also during periods of a particular type of crisis,

the so-called sudden stop in capital flows. So we now turn to the model-implied reading of

Mexico’s history of financial crises. We start by defining financial crises episodes in a model

consistent manner. Next, we investigate the drivers of the three historical episodes of sudden

stop that the estimated model identifies in the data: the Debt Crisis of the 1980s, the 1995

‘Tequila’ Crisis, and the spillover of the Global Financial Crisis (GFC) in 2008-2009. Finally,

we investigate the model’s dynamics before, during and after crisis episodes.

5.2.1 Defining and Identifying Sudden Stop Episodes

The estimated model allows us to make inference on whether the economy is in the binding

regime, and hence identify periods of sudden stop crisis in a model-consistent manner. In

the model, the household-firm knows the regime, but the estimation procedure does not

and the regime must be inferred based on the information in the data. The estimation

results, therefore, provide a time-varying estimate of the smoothed probability of being in

each regime that is based upon the full sample information. The estimation procedure

also provides an estimate of the time-varying transition probability in equations (12)-(13),

showing that an exogenous regime-switching specification would be strongly rejected by the

data. These probabilities are reported in Appendix G.
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Figure 5: Mexico’s Model-identified Crisis Episodes

(a) Probability of Binding Regime and Reinhart-Rogoff Tally Index
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Notes: Black line shows the model implied smoothed probability of being in the binding regime. The dark

gray regions in panel (a) indicates Reinhart and Rogoff (2009) tally index of financial crisis, normalized so

that it takes values between 0 (no crisis) and 6 (most severe). Light gray regions in panel (b) indicate OECD

recession dates for Mexico. Red bars indicate crisis periods identified as in calibrated models with traditional

inequality constraints, vertical blacked dash lines indicate the beginning and the end of the estimated crisis

episodes; see text for details.

Figure 5 plots this model-based estimate of the probability of being in each regime (solid

black line). Using this estimate, we define a crisis quarter as one in which the economy is in

the binding regime with probability higher than 90% probability.23 A crisis episode can then

be defined as a sequence of such periods. Figure 5 shows that our estimated model identifies

three crisis episodes whose start and end quarters are marked by the vertical dashed lines.

The first is the Debt Crisis, occurring from 1981:Q3 to 1983:Q2, with its peak in 1983:Q1.

The second episode is the Tequila Crisis, during 1994:Q1-1996:Q1, with its peak in 1995:Q1-

Q2. The last one is the the Global Financial Crisis that in Mexico led to sudden stop during

2008:Q4-2009:Q3, peaking in 2009:Q1-Q2.

Figure 5 also reports a purely empirical definition of financial crisis (dark grey shaded

areas in Panel a) and the OECD dating of the business cycle of Mexico (light grey shaded

areas in Panel b). The empirical notion of financial crisis reported is a normalized version

of the crisis tally index of Reinhart and Rogoff (2009) (RR).24 Figure 5 clearly illustrates

that our estimated probability of being in a binding regime, which is our model-consistent

23Such a threshold is intuitive and justifiable but somewhat arbitrary. The duration of the identified
sudden stop episode, however, is robust to using a wider range of values.

24The RR tally index ranges from 0 to 6, depending on whether a country-year observation is deemed
to be in one or more of the following 6 varieties of crisis, assigning the value of one if a variety is present:
Currency, Inflation, Stock Market, Sovereign Domestic or External Debt, and Banking Crisis. See Chapter
1 of Reinhart and Rogoff (2009) for more details. We follow their methodology to extend the index to cover
our full sample. In Figure 5, the index is normalized to range between 0 and 1.
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definition of a crisis, aligns quite well with the RR tally index. The crisis episodes that

our model identifies track the RR tally index very well in the case of the Tequila and GFC

episodes, and are much more persistent than the crisis typically identified in the sudden

stop literature in calibrated models with traditional inequality constraints (red bars). Our

model’s crisis signal is less persistent than the tally index in the aftermath of the Debt crisis.

This result is to be expected, however, as our model economy is not designed to capture debt

overhang or financial intermediation disruptions that drive the classification of RR between

1983 and 1989 and in the mid-1990s.

Importantly, our model estimates of these three sudden stop episodes do not mistake

ordinary recessions, not associated with spikes in the tally index, for crisis periods. Mexico’s

OECD recessions are illustrated by the light dark shaded areas in Figure 5 Panel (b). The

estimated probability of a binding regime is close to 0 during the OECD recessions before

the Tequila crisis, during the US recession in 2001, and the Argentine crisis in 2000-2001.

The estimated probability of a binding regime also does not register stress during the 1998

Russian default and US Long-Term Capital Management debacle that affected only the

currency and stock market, without triggering a sudden stop in Mexico.

For comparison, Figure 5 also reports crisis episodes as typically defined based on cal-

ibrated models with occasionally binding constraints (red bars). In this view, crises are

sequences of periods in which (i) the borrowing constraint multiplier is positive and (ii)

the model generated output growth is negative by more than a certain threshold, while the

current account balance reversal meet another empirical condition (for example, Mendoza,

2010; Benigno et al., 2013, among many others).25 This second set of auxiliary conditions

is necessary in that setting because fully model-consistent definitions of a sudden stop as

instances in which the borrowing constraint multiplier is positive are counterfactual and

cannot match the frequency and the severity of actual sudden stops episodes as seen in the

data. Thus, calibrated models with traditional inequality constraints need additional empir-

ical assumptions to identify a sudden stop in the model simulations. In sharp contrast, our

estimated model provides a fully model-consistent definition of a sudden stop.

Overall, Figure 5 shows that our model provides an accurate data-driven signal of when

the economy is likely to have experienced a crisis, without mistaking regular recessions or

large currency and stock market movements for financial crisis episodes. Most importantly,

25For comparison purposes, the red bars in Figure 5 are defined as sequences of quarters in which, in
addition to the criterion met by the back solid line, the model estimate of output growth (reported in Panel
a of Figure 3) is negative by more than one standard deviation, and the model estimate of the current
account ratio (reported in Panel e of Figure 3) increases by more than one standard deviation. Thus, here,
we replaced the first criterion with our model-consistent definition of crisis period, namely that the smoothed
estimate of the probability of being in the binding regime is at least 90%.
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these crisis episodes are identified by relying on a purely model-consistent definition of sudden

stop, which is the smoothed probability on being in the binding regime.

5.2.2 Drivers of Mexico’s Sudden Stop Episodes

We now turn to which shocks drove the three identified episodes in Mexico’s history. As

we saw earlier, our estimated model fits Mexican data well (Figure 3), including during the

crisis episodes identified in Figure 5, without relaying on large shocks. We now examine the

sudden stop episodes identified, evaluating the relative importance of different shocks driving

the economy before, during and after the Debt Crisis of the early 1980s, the Tequila Crisis of

1994-1995, and the spillover on Mexico from the GFC that originated in the United States

in 2008-09. This exercise is possible because we have a likelihood-based estimation of the

model that produces sequences of shocks, shown in Figure 4, allowing for the construction

of such historical counterfactuals.

While many counterfactuals are possible, there is no standard benchmark for this class

of models, and here we present results from one possible approach. The multiple sources of

non-linearity in the model, the endogenous regime-switching and the second-order approx-

imation pose a challenge for computing historical counterfactuals. The task is complicated

by the fact that shocks not only have non-linear effects on the endogenous variables, but

also on the realization of the regimes in subsequent periods. To address these issues, rather

than decomposing the change in individual endogenous variables, we compute a summary

measure, namely the importance of each shock in terms of contribution to the likelihood.

Specifically, we counterfactually recalculate the model likelihood, evaluated at the posterior

mode, turning one shock off at the time, while leaving all other shocks at their estimated

values, over a particular sub-sample and repeat the calculation for all six shocks. The de-

tails of these calculations are in Appendix G, but in summary, the measure is the average

importance of a shock in a given period relative to all shocks in the model, relative to their

average importance over the full sample.

Figure 6 reports this likelihood-based measure of shock relative importance. For each

of the three crisis episodes, we consider the crisis episodes themselves as defined above, as

well as two years before and two years after the episode. Positive (negative) numbers denote

relatively more (less) important shocks in a given sub period. For example, a value of +1

means that the shock is relatively more important in that period relative to its average

importance over the full sample. By definition, the percentages in Figure 6 sum to zero for

each bar of the same color in each panel.

Each shock plays some role in explaining different crises or different phases of a particular
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Figure 6: Estimated Relative Importance of Shocks in Mexico’s Crises

(a) Debt Crisis (81:Q3-83:Q2)
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(c) Global Financial Crisis (08:Q4-09:Q3)
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Notes: The figure plots a likelihood-based measure of the importance of each shock relative to all shocks in

the model, during different sub-sample periods, compared to their average relative importance over the full

sample, in percentage point differences. For example, a value of +1 indicates that the shock has an average

1 percentage point greater relative importance in the sub-sample relative to its average importance over the

full sample See Appendix G for details. The prior period before the 1983 Debt Crisis is limited by the data

sample length.

crisis, highlighted by the fact that no individual shock has a disproportionate importance

in any particular period. Consider first the Debt Crisis. Since this episode starts right at

the beginning of the sample period, we can only look at the two quarters before its start.
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The counterfactual suggests that, in the immediate run up, the most important shocks

were imported intermediate input prices and both temporary and persistent interest rate

shocks, consistent with the drop in oil prices starting in 1981 and the Volcker disinflation

in the United States. The crisis episode itself and its aftermath appears driven by the

expenditure and technology shocks, possibly reflecting the import and fiscal contraction

typically associated with a sudden stop and its aftermath, and the loss of efficiency associated

with sudden adjustment of expenditure plans due to tighter financial frictions.

Next, consider the Tequila Crisis. According to our counterfactual, in the run up to this

crisis episode, the most important drivers were the preference shock and the imported input

price shock. The preference shock possibly captures the political developments (the uprising

in Chiapas and the assassination of a leading presidential candidate) that are well known

to have contributed to crisis’s precipitation. The terms of trade shock likely captures the

persistent decline in the oil price that fell persistently during the three years prior to the

crisis, after a sustained recovery after the 1986 crash.26

The importance of these two shocks increases during the crisis episode, even though the

shock to the persistent component of the interest rate also becomes much more important,

reflecting the sudden increase in US interest rates during this period. The likelihood weight

of the preference and interest rate shocks declines after the crisis, while the weight in the

likelihood of the technology shocks increases during this phase in relative terms. In the post-

crisis period, the preference shock continues to play a role, while the importance of shocks

to both components of the interest rate decline markedly.

Overall, therefore, according to our estimation results, the main drivers of the Tequila

crisis are the preference, the persistent interest rate, and the terms of trade shocks. This

is notwithstanding the fact that the model also allows for temporary exogenous changes in

the country specific component of the interest rate and a amplification mechanism from the

occasionally binding borrowing constraint. In contrast, in calibrated sudden stop models

with occasionally binding constraints, or estimated models with a debt elastic interest rate

premium, sudden stops are driven by technology and interest rate shocks. Our estimation

results, therefore, suggest that these models, which rely on auxiliary empirical assumptions

for the identification of sudden stops, or ad-hoc specifications of the risk premium shock

appended to interest rates, might be misspecified from an empirical standpoint.

Lastly, consider the GFC episode. The counterfactual likelihood analysis suggests that,

before the crisis, expenditure and to a lesser extent a shock to the persistent component of

the interest rate were the most important drivers. This is consistent with the lax interna-

26Oil is the most important driver of Mexico’s fiscal and current account during this period as clearly
documented in the IMF adjustment programs of that period.
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tional financial conditions, strong external demand, and loose Mexican fiscal policy stance

prevailing before the GFC. However, all other shocks become more important during the

crisis episode itself, consistent with the collapse of the oil price in during the fall of 2008 and

spike in emerging market spreads. In the aftermath of the episode, the likelihood weight of

the import price shock and temporary interest rate shock diminishes, while that of the pref-

erence and persistent interest shocks increases, confirming the importance of international

financial conditions during this episode.

5.2.3 Simulated Sudden Stops: Duration, Frequency, and Dynamics

We saw earlier that our model-consistent definition of a sudden stop crisis aligns well with the

RR tally index, which is based on a narrative approach to identification of crisis episodes.

This important result stems from the stochastic specification of the borrowing constraint

that is also a more realistic characterization of how lending limits applies to individual

households and firms in the micro data. In contrast, as we also argued before, sudden stops

identified using calibrated models with traditional inequality occasionally binding constraints

have a much shorter and counterfactual duration, even after imposing empirically motivated

additional ad hoc restrictions. In this section, we provide more details on the properties of

our model generated crises, studying their frequency, duration, and severity.27

Figure 7 reports duration and frequency statistics of simulated sudden stops as defined

by the economy being in the binding regime. Note in fact that in the simulations in this

section, the household-firm always knows in which regime the economy is. Therefore, there

is no sampling uncertainty about being in the binding regime, in contrast to the econome-

trician’s perspective reported in Figure 5. The figure shows that the estimated model can

generate substantial heterogeneity in crisis episode duration and frequency. This highlights

the importance of combining prior information on the structural parameters of the model

with the likelihood of the data to identify data-consistent historical sudden stop episodes as

proposed in the paper.

Panel (a) is a histogram of simulated crisis episodes. The shortest of the three crisis

episode identified in our data (the GFC) lasted four quarters, and hence here we consider

episodes in which the economy is in the binding regime for at least four consecutive quarters.

The average conditional duration is 4.95 consecutive quarters. Some of the simulated episodes

last up to 22 consecutive quarters though, but they are very rare events, as they make up

less than a half-percent of all simulated episodes. Our model, therefore, can account for a

wide range of crisis durations when estimated with data for other countries.

27See footnote 22 for simulation details.
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Figure 7: Model-Simulated Crisis Duration and Frequency

(a) Crisis Episodes of at least Four Consecutive Quarters

(b) Frequency of Crisis Episodes of Any Duration per Sample

(c) Number of Quarters in Binding Regime per Sample

Note: Histograms of the model-implied (a) conditional crisis duration, (b) frequency of distinct episodes

of any duration in 144 quarter-long samples, and (c) number of quarters in the binding regime in 144

quarter-long samples. Crisis period and crisis episodes defined as in Section 5.2.1.

Panel (b) plots a histogram of crisis episodes of at least four quarters per sample period

of 144 quarters length. The most common occurrence is four distinct crisis episodes, which is

close to our estimation results with three distinct events in Mexico’s history, two of which last

about eight quarters. Nonetheless, again, there is significant heterogeneity, as some samples

contain no crisis episodes at all, while others experience as many as eight-ten shorter-lived

crisis events per sample.

Building on Panels (a) and (b), Panel (c) counts the total number of quarters in crisis

episodes out of 144. The model-implied mean is 21.5 quarters, again consistent with our

estimates in Figure 5 that implies that Mexico spent 21 quarters in a crisis state over the

sample period. The standard deviation is about 10 quarters, with a long right-tail and a
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maximum of 62 quarters in the constrained regime.

Figure 8 turns to model-simulated crisis dynamics. As the more severe historical episodes

of sudden stop identified in Figure 5 in the early 1980s and mid-1990s lasted about 8 quarters,

the Figure plots the model dynamics during crisis episodes of eight consecutive quarters

(starting at t = 0 and ending at t = 7, vertical dashed lines), as well as 5 years (20 quarters)

before the beginning of the episode and 5 years (20 quarters) after the end of the event.

Variables are in log-levels, normalized to zero at the beginning of the pre-crisis period, which

is time t = −20. The lower part of the figure also reports the average value of the observable

variables used in estimation across the three identified crisis episodes (red lines).

The top part of Figure 8 (panels a to f) shows the distinctive combinations of shocks that

drive the economy before, during and after the crisis episode. Crisis episodes are preceded by

a long-lasting “boom” phase, driven by improving technology and a favorable international

environment, with improving terms of trade and a decline in the persistent component of

the interest rate. These three forces drive the expansion gradually, with increasing output,

consumption and investment, in a manner consistent with the empirical characterizations of

the boom phases of financial crises (Boissay et al., 2016).

The economy enters the crisis episode at t = 0, after a final acceleration, driven by an

increase in expenditures and a fall in patience. The crisis episode is precipitated by a small

negative technology shock and a sudden reversal of the favorable external environment that

drove the boom phase. During the crisis episode, the terms of trade deteriorate and the cost

of funding increases; the effective cost of borrowing spikes, driven by the external finance

premium on debt (EFPD). Technology stagnates and patience increases sharply during the

crisis. The constraint on borrowing curtails consumption smoothing and limits the supply

side of the economy through the working capital constraint, causing output, consumption

and investment to drop sharply. The autonomous component of expenditure continues to

increase during the crisis period, which is consistent with the import compression typically

associated with sudden stops.

Looking at the magnitude and persistence of the dislocation caused by the crisis episode,

we see again that the model does a remarkably good job at tracking the data without

imposing additional ad hoc restrictions on the amplitude of the episodes identified. The

output drop from peak to through is eight percentage points, only slightly more than the

average of the three crisis episodes identified in our sample period and with a speed of decline

that is comparable to the data. Similarly, both simulated consumption and investment

dynamics track the data very closely.

When the crisis occurs, the current account and the trade balance suddenly revert, after

a sharp deterioration right before the beginning of the crisis event, by about six percentage
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Figure 8: Dynamics of Crisis Episodes
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Notes: The figure plot model-simulated dynamics during crisis episodes of eight quarters, five years (20

quarters) before the crisis, and five years after the crisis. The economy is in the binding regime from period

t = 0 to period t = 7 (vertical dashed lines). The plotted dynamics in all panels are medians across all

crisis episodes identified, in log-levels, setting t− 20 = 0. The red lines indicate the means of the observable

variables used in estimation across the three identified crisis episodes. The read lines start at t = −2 due to

proximity of 1982 debt crisis to the beginning of our sample. The crisis period and crisis episodes, denoted

by the vertical dashed lines denote the beginning and the end of the episode of eight consecutive quarters in

the binding regime.

points as a share of output from trough to peak. This swing is only slightly less than in the

data, but occurs significantly faster. The EFPD premium, which is driven by the borrowing

constraint multiplier in the binding regime, displays pattern similar to the external balances,

although it declines more in line with the persistence in the data after the crisis event.

Note here that the adjustment would be even faster, typically completed within one year

or 4 quarters, in calibrated models with occasionally binding constraints (see, for example,

Mendoza, 2010). Thus, as we also see in our estimates in Figure 5 and illustrate in more
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details in Figure C.3 in Appendix C, the current account and trade balance reversal in our

model is twice as persistent that in the traditional models.28 We also note that in traditional

models with occasionally binding constraints, data consistency in terms of magnitude of the

reversal is achieved by imposing additional auxiliary restriction on the sudden stop definition.

Without those ad hoc restrictions, those models cannot generate sudden stops of magnitude

comparable to the data. In sharp contrast, the dynamics reported in Figure 8 are based on

a purely model-based definition of sudden stops.

The economy rebounds quickly from these crisis episodes, but only partially–about half

of the ground lost during the crisis, or about 4 percentage points at the end of the crisis

episode. After the initial rebound, a combination of persistently adverse external and internal

shocks coalesces to produce a protracted output decline. The international cost of borrowing

as captured by the persistent interest rate shock remains elevated. The terms of trade are

depressed for an extended period of time after the crisis episode, and the productivity decline

is very long lasting. Expenditure and patience also do not recover to pre-crisis levels even

five years after the end of the episode.

Consistent with the data, and also in line with empirical evidence on the long-term con-

sequences of financial crises in other emerging markets in (Cerra and Saxena, 2008), during

the post-crisis period, investment stagnates below its pre-crisis level. As a result, output

resumes to decline, not aided by the persistent contraction in the exogenous component

of expenditure, and despite a declining persistent component of the interest rate. Again,

while in the data the recovery phase is slower and more anemic than in our model simulated

episodes, traditional models of sudden stops with occasionally binding constraints do not

generate sluggish recoveries as at all as in Figure C.3 in Appendix C clearly illustrates.

6 Conclusions

In this paper we propose a new approach to specifying and solving DSGE models with

occasionally binding constraints that is suitable for structural estimation using full infor-

mation methods. We can then obtain estimates of critical model parameters and conduct

likelihood-based inference and counterfactual experiments. The critical step in our approach

is to specify the occasionally binding nature of the borrowing constraint stochastically, so

that the formulation can be mapped into an endogenous regime-switching model.

We apply this new approach to a workhorse medium-scale model of a particular type of

financial crises, the so-called sudden stops in capital flows, and estimate it with Bayesian

28See Appendix C for a more the comparison between our endogenous-switching and a traditional occa-
sionally binding sudden stop model dynamics at annual frequency.
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methods on quarterly data for Mexico since 1981. We find that the estimated model fits

Mexico’s business cycle and crisis episodes well without relying on large or skewed shocks,

that critical parameter estimates differ from values previously used in the literature, and

that different shocks matter for different variables and phases of financial crisis dynamics in

a way that was hitherto not possible to document. In particular, we show that the model can

generate heterogeneous crisis episodes of varying duration, frequency, and intensity. Specific

combinations of shocks typically drive the economy before, during, and after crisis episodes.

Finally, we document that our estimated model identifies sudden stops that are significantly

longer lasting and more in line with narratives of Mexico’s history of financial crises than

those typically simulated with traditional inequality specifications of the collateral constraint,

without imposing ad hoc restrictions on their amplitude.

We regard the estimation of larger models—including those with nominal or labor market

frictions, those with permanent and temporary productivity shocks over longer sample pe-

riods, or those with financial intermediation or equilibrium default, and models with a zero

lower bound constraint—as important areas of future research. Such models would be useful

lenses to understand episodes like the Great Depression and the Global Financial Crisis. An-

other important area of future research is also to study contracting environments in which

the economy switches endogenously but stochastically between lending regimes, consistent

with growing microeconomic evidence of covenant contract violations and financing cut off

periods of varying duration as we assumed.
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Appendix A Model and Equilibrium Definition

This Appendix derives the model’s equilibrium conditions and defines a competitive equilib-

rium.

A.1 Derivation of Equilibrium Conditions

The household-firm maximizes the utility function

U ≡ E0

∞∑
t=0

{
dtβ

t 1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (A.1)

subject to

Ct + It = AtK
η
t−1H

α
t V

1−α−η
t − PtVt − φrt (WtHt + PtVt)− Et −

1

(1 + rt)
Bt +Bt−1 (A.2)

where gross investment follows

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
. (A.3)

In the binding regime, the collateral constraint is given by

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt (A.4)

with the corresponding multiplier denoted λt. In the non-binding regime, the collateral

constraint equation drops out, and the multipler is λt = 0. The first-order conditions of this

problem are the following:

dt

(
Ct −

Hω
t

ω

)−ρ
= µt; (A.5)

(1− α− η)AtK
η
t−1H

α
t V
−α−η
t = Pt

(
1 + φrt +

λt
µt
φ (1 + rt)

)
; (A.6)

αAtK
η
t−1H

α−1
t V 1−α−η

t = φWt

(
rt +

λt
µt

(1 + rt)

)
+Hω−1

t ; (A.7)

µt = λt + β (1 + rt)Etµt+1; (A.8)
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Etµt+1β

 1− δ +

(
ι
2

(
Kt+1

Kt

)2

− ι
2

)
+ηAt+1K

η−1
t Hα

t+1V
1−η−α
t+1 ;

 = µt

(
1− ι+ ι

(
Kt

Kt−1

))
− λtκqt. (A.9)

Market prices for capital and labor satisfy the following two conditions:

qt = 1 + ι

(
Kt −Kt−1

Kt−1

)
; (A.10)

Wt = Hω−1
t . (A.11)

Defining the borrowing cushion, B∗t , as the difference between the amount of borrowing and

the debt limit

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt, (A.12)

the regime-switching slackness condition is given by

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) (A.13)

where ϕ (st) and ν (st) are regime-switching parameters controlling the level and the dy-

namics of the economy, respectively, and B∗ss and λss are the regime-switching steady-state

values of B∗t and λt.

As we discussed in the text, the country interest rate and the exogenous processes are

given by

rt = r∗t + σrεr,t + ψr

(
eB̄−Bt − 1

)
(A.14)

where

r∗t = (1− ρr∗) r̄∗ + ρr∗r
∗
t−1 + σr∗εr∗,t (A.15)

logAt = ρA logAt−1 + σAεA,t (A.16)

logEt = (1− ρE) logE∗ + ρE logEt−1 + σEεE,t (A.17)

logPt = (1− ρP ) logP ∗ + ρP logPt−1 + σP εP,t (A.18)

log dt = ρd log dt−1 + σdεd,t, (A.19)
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where the errors terms ε·,t are i.i.d N(0, 1), and ψr is set to an arbitrarily small value so that

it does not affect any of the model properties.

In the paper, we also use a number of auxiliary variables defined as as

GDP: Yt = AtK
η
t−1H

α
t V

1−α−η
t − PtVt (A.20)

Debt-to-GDP Ratio: Φb
t =

Bt

Yt
(A.21)

Current Account-to-GDP Ratio: Φca
t =

Bt −Bt−1

Yt
(A.22)

Trade Balance-to-GDP Ratio: Φtb
t =

Yt − Et − Ct − It
Yt

(A.23)

External Financing Premium on Debt: EFPDt =
λt

βEtµt+1

. (A.24)

A.2 Regime-Switching Equilibrium Definition

A competitive equilibrium of our economy is a sequence of quantities {Kt, Bt, Ct, Ht, Vt,

It, At, Et, B
∗
t } and prices {Pt, r∗t , rt, qt, wt, µt, λt} that, given the 5 exogenous processes

(A.16)-(A.15), satisfy the first-order conditions for the representative household-firm (A.5)-

(A.9), the market price equations (A.10)-(A.11), the market clearing conditions (A.2)-(A.3),

the debt cushion definition (A.12), regime-switching slackness condition (A.13), and the

equation for the interest rate (A.14).

Appendix B Perturbation Solution Method

This Appendix provides details about two aspects of the solution method: (1) the definition

of, and solution for, the steady state of the endogenous regime-switching economy; and (2)

the perturbation method that generates second order Taylor expansions to the solution of

the economy around the steady state.

B.1 Regime Switching Equilibrium

Write the 23 equilibrium conditions above as

Etf (yt+1,yt,xt,xt−1, χεt+1, εt, θt+1, θt) = 0. (B.1)
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Here yt denotes the non-predetermined variables, xt predetermined variables, εt the exoge-

nous shocks, θt the regime-switching parameters, and χ the perturbation parameter. There

are 7 predetermined variables

xt−1 =
[
Kt−1, Bt−1, At−1, Pt−1, Et−1, dt−1, r

∗
t−1

]
(B.2)

and 16 non-predetermined variables

yt =
[
Ct, Ht, Vt, It, kt, rt, qt,Wt, µt, λt, B

∗
t , Yt,Φ

b
t ,Φ

ca
t ,Φ

tb
t , EFPDt

]
, (B.3)

with 6 exogenous shocks

εt = [εA,t, εE,t, εP,t, εd,t, εr,t, εr∗,t] , (B.4)

and 2 regime-switching parameters

θt = [ϕ (st) , ν (st)] . (B.5)

In general, the regime-switching parameters are partitioned into those that affect the steady

state, θ1,t, and those that do not, θ2,t. In the case of our specific application, the partition

is

θ1,t = [ϕ (st)] θ2,t = [ν (st)] . (B.6)

In order to solve the model, we assume the functional forms

θ1,t+1 = θ̄1 + χθ̂1 (st+1) , θ1,t = θ̄1 + χθ̂1 (st) (B.7)

θ2,t+1 = θ2 (st+1) , θ2,t = θ2 (st) (B.8)

xt = hst (xt−1, εt, χ) (B.9)

yt = gst (xt−1, εt, χ) , yt+1 = gst+1 (xt, χεt+1, χ) (B.10)

and

Pst,st+1,t = πst,st+1 (yt) . (B.11)

Now, substituting these functional forms in the 23 equilibrium conditions and being more
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explicit about the expectation operator, given (xt−1, εt, χ) and st, we have:

Fst (xt−1, εt, χ) =

∫ 1∑
s′=0

πst,s′ (gst (xt−1, εt, χ)) f


gst+1 (hst (xt−1, εt, χ) , χε′, χ) ,

gst (xt−1, εt, χ) ,

hst (xt−1, εt, χ) ,

xt−1, χε
′, εt,

θ̄ + χθ̂ (s′) , θ̄ + χθ̂ (st)

 dµε′.

(B.12)

where dµε′ denotes the joint pdf of the shocks.

Finally, stacking all conditions by regime yields:

F (xt−1, εt, χ) =

[
Fst=0 (xt−1, εt, χ)

Fst=1 (xt−1, εt, χ)

]
= 0. (B.13)

B.2 Steady State Definition and Solution

The model has two features that make defining a steady state challenging. First, as it is

common in a regime-switching framework, some structural parameters may be switching. In

the case of our application, there is only one switching parameter that affects the steady state,

ϕ (st). Nonetheless, in principle, one could allow for regime switching also in the parameters

of the exogenous processes, a∗ (st) and p∗ (st), or the structural parameter κ∗ (st), which

would affect the level of the economy and the steady state calculations.29 Following Foerster

et al. (2016), we define the steady state in terms of the ergodic means of these parameters

across regimes. To define the steady state, we set εt = 0 and χ = 0, which implies that the

steady state is given by

f
(
yss,yss,xss,xss, 0, 0, θ̄1, θ2(s′), θ̄1, θ2(s)

)
= 0 (B.14)

for all s′, s.

In our case, the transition matrix evaluated at steady state Pss is endogenous, since it

depends on variables that in turn depend on the steady state value of the transition matrix.

To find a solution for the steady state, we proceed in two steps. First, we assume the steady

state transition matrix is known and solve for all the steady state prices and quantities.

Second, we use the steady state values of the borrowing cushion B∗ss and multiplier λss from

29As it is well known, over finite periods of time, unit root processes and processes with structural break or
regime changes are observationally equivalent from a statistical standpoint. Allowing for regime changes in
the process for At, therefore, would be a way to accommodate permanent productivity shocks as in Aguiar
and Gopinath (2007). Similarly, stochastic volatility could be allowed for by introducing regime switching
in the some or all of the shock variances.
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Step 1 to update the steady state transition matrix. We then iterate to convergence.

Step 1: Solve steady state using a given steady state transition matrix. First,

assume that the steady state transition matrix at iteration i, P(i)
ss , is known. Next, let

ξ = [ξ0, ξ1] denote the ergodic vector of P(i)
ss . Then, as noted in the paper, define the ergodic

means of the switching parameters as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) .

The steady state of the regime-switching economy depends on these ergodic means, and we

can now solve for the steady states of all variables. First, we can partially solve for some of

the steady state directly

Ass = 1, dss = 1, Ess = E∗, Pss = P ∗, qss = 1, r∗ss = r̄∗ (B.15)

Suppose now that we knew rss. Then, we can obtain:

Ωv ≡
AssK

η
ssH

α
ssV

1−α−η
ss

PssVss
=

1 + φrss + φ (1 + rss) (1− β (1 + rss))

1− α− η
(B.16)

Ωh ≡
AssK

η
ssH

α
ssV

1−α−η
ss

WssHss

=
1 + φ (rss + (1 + rss) (1− β (1 + rss)))

α
(B.17)

Ωk ≡
AssK

η
ssH

α
ssV

1−α−η
ss

Kss

=
1

η

(
1− κ (1− β (1 + rss))

β
− 1 + δ

)
(B.18)

Hss =

(
Ass

Ωη
kΩ

α
h (PssΩv)

1−α−η

) 1
α(ω−1)

(B.19)

Vss ≡
Ωh

PssΩv

Hω
ss (B.20)

Kss =
Ωh

Ωk

Hω
ss (B.21)

Yss = ΩhH
ω
ss − PssVss (B.22)

Wss = Hω−1
ss (B.23)
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Iss = δKss (B.24)

kss = Kss (B.25)

Bss = B̄ − log

(
1 +

rss − r∗

ψr

)
(B.26)

Css = Yss − φrss (WssHss + PssVss)− Ess +Bss

(
1− 1

(1 + rss)

)
− Iss (B.27)

µss =

(
Css −

Hω
ss

ω

)−ρ
(B.28)

λss = (1− β (1 + rss))µss (B.29)

B∗ss =
1

(1 + rss)
Bss − φ (1 + rss) (WssHss + PssVss) + κKss (B.30)

Φb
ss =

Bss

Yss
(B.31)

Φca
ss = 0 (B.32)

Φtb
ss =

Yss − Ess − Css − Iss
Yss

(B.33)

EFPDss =
λss
βµss

. (B.34)

The variable rss can then be derived as the solution of

ϕ̄B∗ss = (1− ϕ̄)λss. (B.35)

Step 2: Updating the transition matrix. Step 1 yields the variables B∗ss and λss, and

hence provides a new value of the transition matrix for iteration i+ 1:

P (i+1)
ss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

[
1− exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ1λss)

1+exp(−γ1λss) 1− exp(−γ1λss)
1+exp(−γ1λss)

]
, (B.36)
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which can be checked against the guess in Step 1. We then iterate to convergence until

∥∥P (i+1)
ss − P (i)

ss

∥∥ < tolerance,

where in our application we use a tolerance of 10−10.

B.3 Generating Approximations

To compute a second order approximation to the endogenous regime-switching model solu-

tion, we largely follow Foerster et al. (2016), adapting to the case with endogenous proba-

bilities.

We take the stacked equilibrium conditions F (xt−1, εt, χ), and differentiate with respect

to (xt−1, εt, χ). The first-order derivative with respect to xt−1 produces a polynomial system

denoted

Fx (xss,0, 0) = 0. (B.37)

In Foerster et al. (2016), when the transition probabilities are exogenous and fixed, this

system needs to be solved via Gröbner bases, which finds all possible solutions in order

to check them for stability. The relevant stability concept is mean square stability (MSS),

which requires the expectation of first and second moments to be finite (see Costa et al.,

2005). In our case with endogenous probabilities, the check for MSS is not applicable,

so we focus on finding a single solution and ignore the possibility of multiple solutions or

indeterminacy, a common simplification in the regime-switching literature with and without

endogenous switching (e.g. Farmer et al., 2011; Foerster, 2015; Maih, 2015; Lind, 2014). This

simplification is also common to global solution methods of models with occasionally binding

constraints, where numerical methods converge to a given solution but do not guarantee

uniqueness of that solution. Instead, the focus typically is on checking robustness of the

solution to initial conditions. While in some simpler models with collateral constraints it is

possible to impose parametric restrictions that rule out multiple equilibria (Schmitt-Grohe

and Uribe, 2020; Benigno et al., 2016), in the case of our model, as in Mendoza (2010) and

Bianchi and Mendoza (2018), there are no such restrictions and uniqueness must be verified

numerically.

To find a model solution, we guess a set of policy functions for regime st = 1, which

reduces the equilibrium conditions Fx (xss,0, 0; st = 0) to a fixed-regime eigenvalue problem,

and solve for the policy functions for st = 0. Then, using this initial solution as a guess, we

solve for regime st = 0 under the fixed-regime eigenvalue problem, and iterate to convergence.
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After solving the iterative eigenvalue problem, the remaining systems to solve are

Fε (xss,0, 0) = 0 (B.38)

Fχ (xss,0, 0) = 0, (B.39)

and the second order systems of the form

Fi,j (xss,0, 0) = 0, i, j ∈{x, ε,χ} . (B.40)

Recalling now that the decision rules have the form

xt = hst (xt−1, εt, χ) (B.41)

yt = gst (xt−1, εt, χ) , (B.42)

the second-order approximation are

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (B.43)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (B.44)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
, with xss denoting the value of the steady-state vari-

ables.

B.4 Proof of Proposition 1: Irrelevance of Endogenous Switching

in the First-Order Solution

To prove Proposition 1, take the first-order derivatives of (B.13) with respect to its argu-

ments, evaluated at the steady state. This yields:

Fx,st (xss,0, 0) =
∑
s′

πst,s′,y (yss) gx,stfss (s′, st) (B.45)

+
∑
s′

πst,s′ (yss)

[
fyt+1 (s′, st) gx,s′hx,st + fyt (s′, st) gx,st

+fxt (s′, st)hx,st + fxt−1 (s′, st)

]
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Fε,st (xss,0, 0) =
∑
s′

πst,s′,y (yss) gε,stfss (s′, st) (B.46)

+
∑
s′

πst,s′ (yss)

[
fyt+1 (s′, st) gx,s′hε,st + fyt (s′, st) gε,st

+fxt (s′, st)hε,st + fεt (s′, st)

]

and

Fχ,st (xss,0, 0) =
∑
s′

πst,s′,y (yss) gχ,stfss (s′, st) (B.47)

+
∑
s′

πst,s′ (yss)

 fyt+1 (s′, st) gx,s′hχ,st + fyt (s′, st) gχ,st

+fxt (s′, st)hχ,st

+fθt+1 (s′, st) θ̂ (st+1) + fθt (s′, st) θ̂ (st)


Note now that, by definition of a steady state, fss (s′, st) = 0, and so the first term of each

of these expressions equals zero. Hence, we are left with the expressions for the exogenous

transition probabilities as in Foerster et al. (2016), given by Pss = πst,s′ (yss). QED.

Appendix C Solution Accuracy and Comparison with

Traditional Inequality Specification

Table C.1: Accuracy and Solution Speed

FiPIt Mendoza (2010) End. Switch.
Euler Equation Errors (log10 units)

Bond - Mean -6.27 na -2.92
Bond - Max -1.56 na -1.61
Capital - Mean -7.04 na -3.61
Capital - Max -6.68 na -2.41

Computing Time (seconds) 810 na 1.00

In order to gauge the accuracy and speed of our solution method and to evaluate the

endogenous regime switching specification of the borrowing constraint relative to the tradi-

tional inequality one, we compare a suitably modified and calibrated version of our model to

Mendoza (2010) solved with the FiPIt method of Mendoza and Villalvazo (2020).30 Specifi-

cally, we compare our endogenous regime switching model solved with perturbation methods

to the original Mendoza (2010) and a slightly different version solved with FiPIt in Mendoza

30See Binning and Maih (2017) for an analysis of the properties of our solution method applied to other
structural models, such as the zero lower bound, in which they found a high degree of accuracy.
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Table C.2: Model and Solution Comparison

FiPIt Mendoza (2010) End. Switch.
Means

gdp 393.619 388.339 393.471
c 274.123 267.857 268.844
inv 67.481 65.802 67.199
nx/gdp (%) 1.5 2.4 3.1
k 765.171 747.709 764.403
b/gdp (%) 1.3 -10.4 -18.4
q 1 1 1
lev (%) -10.3 -15.9 -19.6
v 42.617 41.949 42.620
wc 76.658 75.455 76.641

Standard Deviations (%)
gdp 3.94 3.85 3.81
c 4.03 3.69 3.63
inv 13.33 13.45 10.76
nx/gdp 2.94 2.58 1.60
k 4.49 4.31 4.16
b/gdp 19.62 8.9 1.86
q 3.2 3.23 2.54
lev 9.22 4.07 0.70
v 5.89 5.84 5.87
wc 4.35 4.26 4.21

Correlations with with gdp
gdp 1 1 1
c 0.842 0.931 0.987
inv 0.641 0.641 0.777
nx/gdp -0.117 -0.184 -0.378
k 0.761 0.744 0.851
b/gdp -0.12 -0.298 -0.206
q 0.387 0.406 0.509
lev -0.111 0.258 -0.116
v 0.832 0.823 0.829
wc 0.994 0.987 0.994

Autocorrelations
gdp 0.825 0.815 0.81
c 0.83 0.766 0.79
inv 0.501 0.483 0.43
nx/gdp 0.601 0.447 0.20
k 0.962 0.963 0.98
b/gdp 0.99 0.087 0.78
q 0.447 0.428 0.34
lev 0.992 0.04 0.89
v 0.777 0.764 0.76
wc 0.801 0.777 0.77

Sudden Stop Statistics (%)
Prob. Positive Multiplier 2.6 na 1.38
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and Villalvazo (2020). To do so, we calibrate our model at the annual frequency, retaining

only the three shocks that are in Mendoza (2010) and Mendoza and Villalvazo (2020)—the

interest rate, productivity, and intermediate input price shocks—shutting down the expen-

diture and preference shocks and the temporary interest rate shock. We then compare Euler

equation errors and solution speed, simulated model moments, ergodic distributions and

decision rules for bond holding and capital, and sudden stop dynamics.

In the endogenous regime switch model, we calibrate all common model parameters as in

Mendoza and Villalvazo (2020). The parameters that are not common are the logistic func-

tion parameters, which we set to γ0 = γ1 = 1. In principle, we could introduce a difference

between the two logistic parameters but for simplicity we focus on a symmetric calibration

that roughly matches the probability of a positive multiplier on the total borrowing con-

straint. Both Mendoza (2010) and Mendoza and Villalvazo (2020) use finite state Markov

processes that restrict the range of possible outcomes, while we use discrete time autoregres-

sive processes over a continuous support. We set our parameters so that the unconditional

moments of the two set of processes coincide. However, this difference in shock process

specification may introduce some discrepancy between the two methods that we cannot fully

control.

Table C.1 reports the statistics on the Euler equation errors and the computing time.

The table shows that there is a clear trade off between speed and accuracy. Our method

is about 800 times faster than the FiPIt, with log-10 absolute Euler equation errors that

are 1-3 times larger than FiPIt. Moreover, the size of our method’s Euler equation errors

are in line with the values typically found solving exogenous regime switching models with

perturbation methods (Foerster et al., 2016) and models without regime switching (Aruoba

et al., 2006). To put these numbers in perspective, the implied accuracy differences represent

only around a dollar error per 1,000 dollars of consumption, which is very small in absolute

terms by the standards in the literature.

Table C.2 compare first and second moments and the probability of a positive multiplier

across the three models. Unfortunately, this comparison is more problematic. First, as

we explained above, the shock processes and structural parameters cannot be equalized

exactly across models. Second, as we discuss in the text, the economics of our specification

of the borrowing constraint is different than the other two models, as it implies that the

collateral constraint binds for a range of leverage values rather than a specific level, given

the endogenous and the exogenous states. One should therefore expect some differences in

terms of second moments, and especially volatility and persistence of current account or

the trade balance. Third and finally, the FiPIt surprisingly departs in important ways from

Mendoza (2010) in terms of simulated moments, as bold font highlights in the table clearly
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Figure C.1: Endogenous Switching Model Ergodic Distributions

(a) Bonds
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Notes: The figure plots the simulated ergodic distribution of the bonds and capital of our endogenous

switching model calibrated as discussed discussed above.

show. In particular, the FiPIt (and all its variations in Mendoza and Villalvazo (2020))

generate a counterfactually positive net foreign asset position and a puzzling positive net

export to GDP ratio. Recalling that none of these three different model specifications target

these moments explicitly in the calibration, small differences are not surprising. However, the

FiPIt also significantly departs from Mendoza (2010) in terms of net foreign assets volatility

and persistence. It is therefore not obvious what the benchmark should be here.

Comparing first moments across the three models, we can see that both the FiPIt and

our endogenous regime switching model are very close to the original Mendoza (2010), with

the exception of the net foreign asset position to GDP (b/GDP ) and the net export to GDP

ratio (nx/GDP ). Surprisingly, the ergodic mean of b/GDP in the FiPIt model is positive,

which is the opposite sign than in Mendoza (2010), while it has the correct sign in our model.

Note also that the ergodic level of nx/GDP in the FipIt is also positive, while it should be
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Figure C.2: Endogenous Switching Model Ergodic Decision Rules

(a) Capital: Non-binding Regime (b) Capital: Binding Regime

(c) Bonds: Non-binding Regime (d) Bonds: Binding Regime

Notes: The figure plots the bond and capital decision rules in our endogenous switching model calibrated

as discussed above, by regime, evaluated at the steady state values of the technology, interest rate, and

intermediate input price processes.

negative in the ergodic distribution if the bond position is positive. While explaining these

major deviations of the FiPIt from Mendoza (2010) is beyond the scope of this paper, we

note that the values generated by our model are significantly closer to the data than both the

FiPIt model and the Mendoza (2010) model. Indeed, a large body of literature on emerging

market business cycles and sudden stop crises target a negative and sizable negative net

foreign asset position, consistent with the data.31 We also note here that Mexico’s NFA

position, from 1970 to 2015, averaged -37% of GDP and was never positive. Our model

31See, for instance, Bianchi (2011) that targets and NFA position equal to -29% and Bianchi and Mendoza
(2018) that targets a -25% level.
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characterization of the data, therefore, is more accurate given a comparable parametrization

to the FiPIt.

Consistently with the mechanics of our specification of the borrowing constraint, the

standard deviation of these two variables is smaller in our model than in both the FiPIt

and the original model. But again, we note that the volatility of b/GDP is much higher

in the FiPIt than in Mendoza (2010). Similar differences between these three models can

be detected in terms of persistence and correlations with GDP. Recalling that all models

are ultimately wrong, the comparison for all moments along a large number of variables

illustrates that our specification of the occasionally binding borrowing constraint provides

a vary accurate characterization of the economy second moment with differences that are

within the margin of error in the literature, as for instance represented by the gaps between

the FiPIt and Mendoza (2010). Indeed, as we can see from Figure C.1, the shape of the bond

distribution and the sudden stop statistics are very similar to those in Figure 1 in Mendoza

and Villalvazo (2020).

Figure C.2 plots the bond and capital decision rules in the binding and the non-binding

regimes of our model, evaluated at the steady state values of the technology, interest rate,

and intermediate input price processes. In in traditional models with occasioanally binding

constraints, the magnitude, dynamics, and frequency of financial crises depends critically on

the behavior of these decision rules near, and at, the constraint. The decision rules of our

endogenous switching model display marked non-linear behaviour along two dimensions: the

curvature in the non-binding regime, and the difference in slope, for the same value of the

state variable, in the binding and non-binding regime. The curvature in the non-binding

regime reflects how likely and how severely the credit constraint may be expected to bind

at t+ 1 when it does not bind at time t. These policy functions illustrate the ability of our

model and its solution to capture the occasionally binding nature of the borrowing constraint

consistent with Proposition 1, which is the critical feature of the model.

Finally, Figure C.3 compares crisis dynamics at annual frequency generated from the

estimated endogenous regime switching model (solid black lines), the FiPIt model (thin

blue line with circles), and selected observable variables that we used in estimation (red,

thin liens with stars) aggregated at the annual frequency. Again, the comparison illustrates

how a traditional specification of the occasionally binding borrowing constraints lacks the

persistence necessary to match the data, despite assuming persistent shock processes and

imposing auxiliary ad hoc restrictions on the sudden stop definition to match the depth of

the crisis episode.
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Figure C.3: Comparing Crisis Dynamics across Models

(a) Output
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Notes: The Figure reports crisis dynamics for the estimated endogenous regime switching model (solid black

lines) and the observable variable used in estimation (red, thin starred liens), but at an annual frequency,

in addition to the annual dynamics in the FiPIt model of Mendoza and Villalvazo (2020). The crisis occurs

at t = 0, and all series are normalized to zero at t = −1 for ease of comparison. Model and data are on the

same scale (left), while FiPIt is on a smaller scale (right). See Figure 8 in the text for additional details.
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Appendix D Bayesian Estimation Procedure

D.1 State Space

For likelihood estimation, the state space representation is

Xt = Hst (Xt−1, εt) (D.1)

Yt = Gst (Xt,Ut) , (D.2)

where Xt denotes the state, Yt denotes the observation, εt denotes the structural shocks, and

Ut denotes the observation errors.

Recall the second-order approximation takes the form

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (D.3)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) , (D.4)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
. Therefore, we can define the state variables as

Xt =
[

x′t x′t−1 y′t y′t−1 εt

]′
. (D.5)

The nonlinear transition equations,

Xt = Hst (Xt−1, εt) (D.6)

can be represented as
xt

xt−1

yt

yt−1

εt

 =


xss +H

(1)
st St + 1

2
H

(2)
st (St ⊗ St)

xt−1

yss +G
(1)
st St + 1

2
G

(2)
st (St ⊗ St)

yt−1

εt

 . (D.7)

The observation equation

Yt = Gst (Xt,Ut) (D.8)
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is given by 

∆yt

∆ct

∆it

rt

∆Bt/Yt

∆Pt


= D


xt

xt−1

yt

yt−1

εt

+ Ut (D.9)

where D denotes a selection matrix of the form

∆yt

∆ct

∆it

rt

∆Bt/Yt

∆Pt


=



0 0 1[yt] −1[yt] 0

0 0 1[ct] −1[ct] 0

0 0 1[it] −1[it] 0

0 0 1[rt] 0 0

0 0 1[Φcat ] 0 0

1[Pt] −1[Pt] 0 0 0




xt

xt−1

yt

yt−1

εt

+ Ut. (D.10)

D.2 Filtering

To filter the likelihood, we use the Unscented Kalman Filter (UKF) (Julier and Uhlmann,

1999). The UKF calculates the state mean and covariance by propagating deterministically

chosen sigma-points through the nonlinear functions. The transformed points are then used

to calculate the mean and covariance matrix. As Julier and Uhlmann (1999) note, the critical

assumption to apply the UKF is that the prediction density and the filtering density are both

Gaussian. The filtering and smoothing procedure largely follow Binning and Maih (2015),

so here we just outline the procedure.

The filter starts by combining the state vector and exogenous disturbances into a single

vector, Xa
t−1 = [Xt−1, εt]

′, with the following mean and covariance matrix conditional on

Y1:t−1 and regime st−1:

Xa
t−1(st−1) =

[
Xt−1|t−1(st−1)

0ε

]
(D.11)

P a
t−1(st−1) =

[
P x
t−1|t−1(st−1) 0

0 I

]
. (D.12)

The sigma-points Xa
i,t−1(st−1) that consist of the sigma-points for state variables
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Xx
i,t−1(st−1) and the sigma-points for exogenous shocks Xε

i,t−1(st−1) are chosen as follows:

Xa
0,t−1(st−1) = Xa

t−1(st−1) (D.13)

Xa
0,t−1(st−1) = Xa

t−1(st−1) (D.14)

Xa
i,t−1(st−1) = Xa

t−1(st−1) + (h
√
P a
t−1(st−1))i for i = 1 . . . L (D.15)

Xa
i,t−1(st−1) = Xa

t−1(st−1)− (h
√
P a
t−1(st−1))i−L for i = L+ 1 . . . 2L, (D.16)

where h =
√

3 and L denotes the number of state variables and exogenous shocks. The

weights for the sigma-points are given by:

w0 =
h− L

2h
(D.17)

wi =
1

2h
for i = 1 . . . 2L (D.18)

The sigma-points and the assigned weights are then used to calculate the expected

mean and covariance by propagating sigma-points through transition equations and taking

weighted average:

Xi,t|t−1(st−1, st) = Hst(X
x
i,t−1(st−1),Xε

i,t−1(st−1)) (D.19)

Xt|t−1(st−1, st) =
2L∑
i=0

wiXi,t|t−1(st−1, st) (D.20)

P x
t|t−1(st−1, st) =

2L∑
i=0

wiX̃iX̃
T
i (D.21)

Yt|t−1(st−1, st) = DXt|t−1(st−1, st) (D.22)

where X̃i = Xi,t|t−1(st−1, st) − Xt|t−1(st−1, st). From these conditions, we get the Gaussian

approximation predictive density p(Xt|Y1:t−1, st−1, st) = N(Xt|t−1(st−1, st), P
x
t|t−1(st−1, st)).

The predictive density is then updated using the standard Kalman filter rule:

P y
t|t−1(st−1, st) = DP x

t|t−1(st−1, st)D
T +R (D.23)

P xy
t|t−1(st−1, st) = P x

t|t−1(st−1, st)D
T (D.24)

Kt(st−1, st) = P xy
t|t−1(st−1, st)(P

y
t|t−1(st−1, st))

−1 (D.25)

63



Xt|t(st−1, st) = Xt|t−1(st−1, st) +Kt(st−1, st)(Yt − Yt|t−1(st−1, st)) (D.26)

P x
t|t(st−1, st) = P x

t|t−1(st−1, st)−Kt(st−1, st)P
y
t|t−1(st−1, st)K

T
t (st−1, st) (D.27)

This updating step gives p(Xt|Y1:t, st−1, st) = N(Xt|t(st−1, st), P
x
t|t(st−1, st)). As a by-product

of the filter, we can get the density of Yt conditional on Y1:t−1, st, and st−1

p(Yt|Y1:t−1, st−1, st; θ) = N(Yt|t−1(st−1, st), P
y
t|t−1(st−1, st)) (D.28)

Since the UKF with regime switches creates a large number of nodes at each iteration

where the filtered mean and covariance matrix need to be evaluated, we implement the

following collapsing procedure suggested by Kim and Nelson (1999):

Xt|t(st = j) =
1

Pr(st = j|Y1:t)

{ M∑
i=1

Pr(st−1 = i, st = j|Y1:t)Xt|t(st−1 = i, st = j)
}

(D.29)

P x
t|t(st = j) =

1

Pr(st = j|Y1:t)

{ M∑
i=1

Pr(st−1 = i, st = j|Y1:t)[P
x
t|t(st−1 = i, st = j) (D.30)

+(Xt|t(st = j)− Xt|t(st−1 = i, st = j))(Xt|t(st = j)− Xt|t(st−1 = i, st = j))T ]
}

where Pr(st, st−1|Y1:t) and Pr(st|Y1:t) are obtained from the following Hamilton filter

Pr(st, st−1|Y1:t−1) = Pr(st|st−1) Pr(st−1|Y1:t−1) (D.31)

Pr(st, st−1|Y1:t) =
p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1)∑

st

∑
st−1

p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1)
(D.32)

Pr(st|Y1:t) =
∑
st−1

Pr(st, st−1|Y1:t). (D.33)

The resulting conditional marginal likelihood is

p(Yt|Y1:t−1; θ) =
∑
st

∑
st−1

p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1). (D.34)

D.3 Smoothing

Once we evaluated the likelihood of the data with the UKF, performed the filtering using

the UKF for t = 1, . . . , T , we can also obtain
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Pr(st, st+1|Y1:T ), Pr(st|Y1:T ), xt|T (st, sT ), and P x
t|T (st, sT ):

Pr(st, st+1|Y1:T ) =
Pr(st+1|Y1:T ) Pr(st|Y1:t) Pr(st+1|st)

Pr(st+1|Y1:t)
(D.35)

Pr(st|Y1:T ) =
∑
st+1

Pr(st, st+1|Y1:T ) (D.36)

Xt|T (st, st+1) = Xt|t(st) + K̃t(st, st+1)(Xt+1|T (st+1)− Xt+1|t(st, st+1)) (D.37)

P x
t|T (st, st+1) = P x

t|t(st)− K̃t(st, st+1)(P x
t+1|T (st+1)− P x

t+1|T (st, st+1))K̃t(st, st+1)T .

Given the above smoothing algorithm, we implement another collapsing procedure similar

to that in the filtering step:

Xt|T (st = j) =
1

Pr(st = j|Y1:T )

{ M∑
j=1

Pr(st = i, st+1 = j|Y1:T )Xt|T (st = i, st+1 = j)
}
, (D.38)

P x
t|T (st = j) =

1

Pr(st = j|Y1:T )

{ M∑
j=1

Pr(st = i, st+1 = j|Y1:T )[P x
t|T (st = i, st+1 = j)

+(Xt|T (st = j)− Xt|T (st = i, st+1 = j))(Xt|T (st = j)− Xt|T (st = i, st+1 = j))T ]
}
.(D.39)

Appendix E Calibrated Parameters

To calibrate the parameters that we do not estimate, we largely follow Mendoza (2010),

targeting the same moments, but adapting the computations to our model specification.

We start by calibrating certain parameters based on the steady state of the model without

working capital and the borrowing constraint—i.e., with φ = 0 and ϕ̄ = 0, which implies

λss = 0. In addition, we set

β (1 + rss) = 1, (E.1)

and

Ωv =
1

1− α− η
, Ωh =

1

α
, Ωk =

1

η

(
1

β
− 1 + δ

)
. (E.2)

The implied factor payment ratios are

PssVss
Yss + PssVss

=
1

Ωv

= 1− α− η (E.3)
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WssHss

Yss
=

1

Ωh

(
1− 1

Ωv

) =
α

α + η
(E.4)

(
1
β
− 1 + δ

)
Kss

Yss
=

1
β
− 1 + δ

Ωk

(
1− 1

Ωv

) =
η

α + η
. (E.5)

Using the shares in Mendoza (2010) that are based on National Accounts data, we obtain[
1− α− η = 0.102

α
α+η

= 0.66

]
=⇒

[
α = 0.59268

η = 0.30532

]
. (E.6)

We then set the depreciation rate to an annual value of 8.8 percent, so that

(1− δ)4 = 1− 0.088 =⇒ δ = 0.022766. (E.7)

The capital-to-(gross annual) output ratio is 1.758, so the capital-to-(gross quarterly) output

ratio, Ω−1
k , implies

Ω−1
k =

(
1

η

(
1

β
− 1 + δ

))−1

= 4 ∗ 1.758 =⇒ β = 0.97977. (E.8)

In turn, this yields an annualized real interest rate of

(1 + rss)
4 =

(
1

β

)4

= 1.0852, (E.9)

which is very close to the value used in Mendoza (2010), but it is obtained under different

discounting assumptions. From the resource constraint,

Css
Yss

+
Iss
Yss

+
Ess
Yss

= 1 +

(
1− 1

1 + rss

)
Bss

Yss
, (E.10)

we obtain

0.65 + 0.172 + 0.11 = 1 + (1− β)
Bss

Yss
=⇒ Bss

Yss
= −3.3605. (E.11)

This implies
Bss

4Yss
= −0.840127, (E.12)
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from which we have

Yss =
α + η

α

 1

P 1−α−η
ss

(
1
η

(
1
β
− 1 + δ

))η (
1
α

)α ( 1
1−α−η

)1−α−η


ω

α(ω−1)

= 1.8202, (E.13)

and

E∗ =
Ess
Yss

Yss = 0.11 ∗ 1.8202 = 0.20022, (E.14)

as well as

Bss = −0.840127 ∗ 4 ∗ 1.8202 = −6.11685. (E.15)

Finally, conditional on r∗ and ψr, B̄ is pinned down via

B̄ = log

(
1 +

rss − r∗

ψr

)
+Bss. (E.16)

Appendix F Data Appendix

National accounts are from the National Statistic Office. The data series used in the analysis

merge two sets of official statistics by updating the level of the accounts based on 1993

constant prices with the quarterly rate of growth of the accounts based on 2008 constant

prices. The merging is necessary as the deflators to splice the accounts in levels were not

available at the time of last download of the data (May 2017). The two sets of national

accounts overlap from 1993:Q1 to 2006:Q4. Over this period, the difference in annual rate

of growth is less than 0.01 percent in absolute value for GDP, less than 0.05 percent for

consumption, less than 2 percent for investment, and less than 1 and 3 percent for imports

and exports, respectively. The correlations between the series are more than 0.9 for all

series except investment that is 0.84, pointing to possibly larger measurement errors in this

variable. The differences are smaller the closer to the end of the sample. For this reason, we

choose to update the 1993 accounts rather than backdate the 2008 ones.

The specific sources of the data are as follows:

• 1980:Q1-2006:Q4 (Labeled 1993 accounts)—Supply and demand of goods and services.

Original Series (not seasonally adjusted). Constant prices, annual 1993 = 100. We

obtained these from the Central Bank of Mexico (Gabriel, 2008).

• 2006:Q1-2016:Q4 (Labeled 2008 accounts)—Supply and demand of goods and services.

Original series (not seasonally adjusted). Constant prices, annual 2008 = 100 (Oferta y
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demanda de bienes y servicios. Series originales. A precios constantes 2008). Available

from http://www3.inegi.org.mx/sistemas/tabuladosbasicos/tabdirecto.aspx.

The data are not seasonally adjusted and show a strong seasonal pattern. To seasonally

adjust all series (assumed to be I(1) processes), we adjust the log-difference using the X-12

procedure with the additive option in Eviews. We then use the log of the first observation of

the raw series (not seasonally adjusted) and cumulate the seasonally adjusted log-difference.

The net exports to GDP series, used to validate the model externally but not as an observable

variable in estimation, is calculated as real exports minus real imports divided by real GDP.

The current account as a percentage of GDP is from the balance of payment statistics,

obtained from the OECD Economic Outlook Database (Series MEX.CBGDPR.Q, OECD-

EO-MEX-CBGDPR-Q).

As a proxy for the relative price of intermediate goods, entered as observable in esti-

mation, we use a measure of Mexico’s terms of trade obtained from Banco de México (PPI

Producer and International Trade Price Indexes, series SP12753).

Mexico’s country interest rate is calculated following Uribe and Yue (2006) as

rt = r∗t + spreadt (F.1)

where r∗ is the US real interest rate, and spread is a proxy for Mexico’s country risk or

sovereign spread. We compute r∗ as 3-month Treasury Constant Maturity Rate adjusted for

ex post CPI (annualized) quarterly inflation, using period average data. The source of these

data is FRED. For the country spread, as customary, we use the Mexico’s component of the

JP Morgan EMBI.

Unfortunately, the EMBI spread is available only starting from 1993. In order to esti-

mate the country spread before 1993, we rely on empirical modeling of the relation between

domestic real interest rates and country risk at the Banco de Mexico (Aportela Rodriguez

et al., 2001) that estimates a close and stable relation between a measure of the domestic

real interest rate and the EMBI spread over the period over which both these variables are

available. The only quarterly interest series available we are aware off going back to 1980 is

a three-month nominal short-term rate obtained from Banco de Mexico (Average monthly

yield on 90-days Cetes, series SF3338).32 So we estimate a relationship between this nom-

inal interest rate, it, and the EMBI during the period over which the EMBI is observable,

adjusting for inflation, πt, which was an important source of nominal interest rate variation

32There are three missing monthly observations in this series: August and September 1986 and November
1988. We fill these gaps using July 1986 for 1986Q3 and the average of October and December 1988 for
1988:Q4.
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in the 1980s, and then invert it. Specifically, we posit the following simplified version of the

model that (Aportela Rodriguez et al., 2001) estimate:

it = α0 + α1πt + α2EMBIt. (F.2)

We then solve the fitted equation for the country risk component of the domestic real

interest rate, which we denote as ˆEMBIt. The estimated regression is (t-statistics in paren-

theses and R2 = 0.883):

ît = −0.00346
(−0.42)

+ 0.397
(4.46)

πt + 2.770
(7.37)

ˆEMBIt. (F.3)

Appendix G Additional Estimation Results

In this appendix we report additional empirical results.

G.1 Estimated Shocks and Transition Probabilities

Figure F.1 plots the implied measurement error from Figure 3, in standard deviation units.

It shows that there are only three realizations outside the two-standard deviation bands

during the Debt crisis. All other realizations, for all variables, all periods, including crisis

and non crisis periods, are within the bands.

Figure F.2 shows a histogram of the estimated structural shocks plotted in Figure 4,

in standard deviation units. The figure shows that the TFP, import price, and transitory

interest rate shock are well behaved consistent with the fact that the null hypothesis of

normality cannot be rejected by the data. We can also see that the expenditure and the

persistent interest rate shocks distribution has some left skewness, picked up by the formal

test of normality, even though the rejection is not strong. The preference shock histogram

is the only one that sows some sign of fat left tail, as we can also see from Figure 4 in the

text. This excess skewness reflects in part a small trend in the exogenous processes required

to match the data that in principle could be accounted for by specifying a stochastic process

with time-varying mean.

Figure G.1 plots the pseudo-real-time (i.e. filtered) estimated transition probabilities.

Panel (a) plots the probability of switching from the non-binding to the binding regime, while

Panel (b) plots the probability of switching from the binding to the non-binding regime. In

other words, they plot the estimated counterpart of the transition probabilities in equations

(11-12) together with the model identified crisis periods. These probabilities provide the

probability of switching from one regime to the other as the model travels through the
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Figure F.1: Estimated Measurement Errors

(a) Output Growth
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(b) Consumption Growth
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(d) Interest Rate
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(e) Current Account to Output Ratio
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(f) Import Price Growth
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Note: The figure plots realized measurement errors (i.e., observabl minus model estimate) for all variables.

The gray areas indicate model-identified periods of crisis as defined in Section 5.2.1.
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Figure F.2: Histogram of Estimated Shocks

(a) TFP Shock

(b) Expenditure Shock

(c) Import Price Shock

(d) Preference Shock

(e) Transitory Interest Rate Shock

(f) Persistent Interest Rate Shock

Notes: The figure plots histograms of the model implied shocks, in standard deviation units
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Figure G.1: Transition Probabilities

(a) Transition Probability of Binding Given Non-Binding
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(b) Transition Probability of Non-Binding Given Binding
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Notes: The top panel shows the model-implied filtered probability of transitioning into the binding regime

in the subsequent period, conditional on being in the non-binding regime in the current period. The bottom

panel shows the filtered probability of transitioning to the non-binding regime, conditional on being in the

binding regime. The shaded areas indicate model-identified crisis periods as defined in Section 5.2.1.

sample. Their behavior is driven by the estimated parameters γ0 and γ1 and the estimated

values of B∗ and λ. Both probabilities are time-varying and thus clearly indicate that a

model with exogenous and constant switching probabilities would be misspecified.

G.2 Assessing the Relative Importance of Shocks

To study the importance of shocks before, after, and during financial crises episodes we con-

struct a likelihood-based indicator of the relative importance of each shock. Let LL denote

the maximized log-likelihood over the full sample, and let CLLi,t denote the counterfactual

full-sample log likelihood when shock i is set to zero in quarter t (i.e. εi,t = 0). The loss of

fit in terms of likelihood points,

∆i,t = LL− CLLi,t, (G.1)

can be interpreted as an measure of the importance of εi,t i period t.

Figure G.2 shows how this measure evolves. There is an obvious shortcoming to this

approach: since we are computing the difference in the likelihood over the full sample,

earlier observations tend to have larger values of ∆i,t due to the fact that they impact all

subsequent quarters.33 For this reason, we compute a measure of relative importance. The

33The figure, however, shows that period shocks that have unusual weight in the likelihood do not realize
during the identified crisis periods.
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Figure G.2: Historical Importance of Shocks, Log Points
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Notes: For each quarter, shows the likelihood contribution (in log points) for each shock, computed by

setting the given shock to zero in the given quarter.

importance of εi,t relative to other shocks at time t can be assessed as

Λi,t =
∆i,t∑
j ∆j,t

, (G.2)

where the denominator of this expression is the sum of the likelihood losses across all shocks

in period t. In the paper, we report this measure of average relative importance in a given

subsample period of T quarters, (t + T ) − (t), compared to the full sample averages, Λ̄i.

Thus, the subsample measure reported in the main text can be computed by

t1∑
t=t0

Λi,t − Λ̄i. (G.3)
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