
Quarterly Journal of Economics, 118(4), November 2003, forthcoming 
 

 
THE SKILL CONTENT OF RECENT TECHNOLOGICAL CHANGE:  

AN EMPIRICAL EXPLORATION* 
 
 

DAVID H. AUTOR, FRANK LEVY, AND RICHARD J. MURNANE 
 
 

June 2003 
Revised from September 2002 

 
 
 
 
 
 
 
 
 

ABSTRACT 
 

We apply an understanding of what computers do to study how computerization alters job skill 
demands. We argue that computer capital (1) substitutes for workers in performing cognitive and manual 
tasks that can be accomplished by following explicit rules; and (2) complements workers in performing 
nonroutine problem-solving and complex communications tasks. Provided these tasks are imperfect 
substitutes, our model implies measurable changes in the composition of job tasks, which we explore 
using representative data on task input for 1960 to 1998. We find that within industries, occupations and 
education groups, computerization is associated with reduced labor input of routine manual and routine 
cognitive tasks and increased labor input of nonroutine cognitive tasks. Translating task shifts into 
education demand, the model can explain sixty percent of the estimated relative demand shift favoring 
college labor during 1970 to 1998. Task changes within nominally identical occupations account for 
almost half of this impact. 
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INTRODUCTION 
 

A wealth of quantitative and case-study evidence documents a striking correlation between the 

adoption of computer-based technologies and the increased use of college-educated labor within detailed 

industries, within firms, and across plants within industries.1 This robust correlation is frequently 

interpreted as evidence of skill-biased technical change. Yet, as critics point out, this interpretation merely 

labels the correlation without explaining its cause. It fails to answer the question of what it is that 

computers do – or what it is that people do with computers – that causes educated workers to be relatively 

more in demand. 

This paper proposes an answer to this question. We formalize and test a simple theory of how the 

rapid adoption of computer technology – spurred by precipitous real price declines – changes the tasks 

performed by workers at their jobs and ultimately the demand for human skills. Our approach builds on 

an intuitive set of observations offered by organizational theorists, computer scientists, and most recently 

economists about what computers do – that is, the tasks they are best suited to accomplish – and how 

these capabilities complement or substitute for human skills in workplace settings.2 The simple 

observations that undergird our analysis are: (1) that computer capital substitutes for workers in carrying 

out a limited and well-defined set of cognitive and manual activities, those that can be accomplished by 

following explicit rules (what we term “routine tasks”); and (2) that computer capital complements 

workers in carrying out problem-solving and complex communication activities (“nonroutine” tasks). 

(See Table I for examples.) Provided that routine and nonroutine tasks are imperfect substitutes, these 

observations imply measurable changes in the task composition of jobs, which we test below. 

                                                   
1 Berman, Bound and Griliches [1994], Autor, Katz and Krueger [1998], Machin and Van Reenen [1998], Berman, 
Bound and Machin [1998, 2000], and Gera, Gu, and Lin [2001] present evidence on industry level demand shifts 
from the U.S., OECD, Canada and other developed and developing countries. Levy and Murnane [1996], Doms, 
Dunne and Troske [1997], and Bresnahan, Brynjolfsson and Hitt [2002] provide evidence on firm and plant level 
shifts. Katz and Autor [1999] summarize this literature. Card and DiNardo [2002] offer a critique. 
2 Herbert Simon [1960] provides the first treatment of this question with which we are familiar, and his essay 
introduces many of the ideas explored here. Other early works include Drucker [1954] and Nelson and Winter 
[1982]. Adler [1986], Orr [1996] and Zuboff [1988] discuss what computers and related technology do in the 
workplace, but do not consider economic implications. Acemoglu [1998], Goldin and Katz [1998], Bresnahan 



To answer the core questions of our paper, the ideal experiment would provide two identical autarkic 

economies, one facing a dramatic decline in the price of computing power and the other not. By 

contrasting these economies, it would be straightforward to assess how computerization reshapes the task 

composition of work and hence the structure of labor demand. Because this experiment is not available, 

we develop a simple economic model to predict how demand for workplace tasks responds to an 

economy-wide decline in the price of computer capital. The model predicts that industries and 

occupations that are initially intensive in labor input of routine tasks will make relatively larger 

investments in computer capital as its price declines. These industries and occupations will reduce labor 

input of routine tasks, for which computer capital substitutes, and increase demand for nonroutine task 

input, which computer capital complements. In net, these forces will raise relative demand for highly 

educated workers, who hold comparative advantage in nonroutine versus routine tasks.  

To test these predictions, we pair representative data on job task requirements from the Dictionary of 

Occupational titles (DOT) with samples of employed workers from the Census and Current Population 

Survey to form a consistent panel of industry and occupational task input over the four decade period 

from 1960 to 1998. A unique virtue of this database is that it permits us to analyze changes in task input 

within industries, education groups and occupations – phenomena that are normally unobservable. By 

measuring the tasks performed in jobs rather than the educational credentials of workers performing those 

jobs, we believe our study supplies a missing conceptual and empirical link in the economic literature on 

technical change and skill demand. 

Our analysis provides four main pieces of evidence supporting our conceptual model: 

1) Commencing in the 1970s, labor input of routine cognitive and manual tasks in the U.S. economy 
declined and labor input of nonroutine analytic and interactive tasks rose.  

2) Shifts in labor input favoring nonroutine and against routine tasks were concentrated in rapidly 
computerizing industries. These shifts were small and insignificant in the pre-computer decade of 
the 1960s, and accelerated in each subsequent decade. 

3) The substitution away from routine and towards nonroutine labor input was not primarily 
accounted for by educational upgrading; rather, task shifts are pervasive at all educational levels. 

                                                                                                                                                                    
[1999], Bartel, Ichniowski and Shaw [2000], Lindbeck and Snower [2000], Lang [2002] and Bresnahan, 
Brynjolfsson and Hitt [2002] provide economic analyses of why technology and human capital are complementary.  
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4) Paralleling the within-industry task shifts, occupations undergoing rapid computerization reduced 
input of routine cognitive tasks and increased input of nonroutine cognitive tasks.  

We consider a number of economic and purely mechanical alternative explanations for our results. 

Two supply side factors that we study in particular are the rising educational attainment of the workforce 

and the rising human capital and labor force attachment of women – both of which could potentially 

generate shifts in job task composition independent of demand shifts. As we show below, the tasks shifts 

that we document – and their associations with the adoption of computer technology – are as pervasive 

within gender, education and occupation groups as between, indicating that these supply side forces are 

not the primary explanation for our results. 

We begin by presenting our informal “task model” describing how computerization affects the tasks 

that workers and machines perform. We next formalize this model in a production framework to develop 

empirical implications for task demand at the industry and occupation level. Subsequent sections describe 

our data sources and test the model’s main implications. Drawing together the empirical strands, we 

finally assess the extent to which changes in the task composition can account for recent demand shifts 

favoring more educated workers. This exercise shows that estimated task shifts are economically large, 

underscoring the potential of the conceptual model to reconcile key facts.  

I. THE TASK MODEL 

We begin by conceptualizing work from a “machine’s-eye” view as a series of tasks to be performed, 

such as moving an object, performing a calculation, communicating a piece of information or resolving a 

discrepancy. Our model asks: which of these tasks can be performed by a computer? A general answer is 

found by examining what is arguably the first digital computer, the Jacquard Loom of 1801. Jacquard’s 

invention was a machine for weaving fabrics with inlaid patterns specified by a program punched onto 

cards and fed into the loom. Some programs were quite sophisticated; one surviving example uses more 

than 10,000 cards to weave a black and white silk portrait of Jacquard himself.3 Two centuries later, the 

electronic descendents of Jacquard’s loom share with it two intrinsic traits. First, they rapidly and 
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accurately perform repetitive tasks that are deterministically specified by stored instructions (programs) 

that designate unambiguously what actions the machine will perform at each contingency to achieve the 

desired result. Second, computers are “symbolic processors,” acting upon abstract representations of 

information such as binary numbers or, in the loom’s case, punched cards.  

Spurred by a more than trillion-fold decline in the real price of computing power [Nordhaus 2001], 

engineers have become vastly more proficient at applying the loom’s basic capabilities – rapid execution 

of stored instructions – to a panoply of tasks. How does this advance affect the task composition of 

human work? The answer depends both upon how computers substitute for or complement workers in 

carrying out specific tasks, and how these tasks substitute for one another. We illustrate these cases by 

considering the application of computers to routine and nonroutine cognitive and manual tasks. 

In our usage, a task is “routine” if it can be accomplished by machines following explicit programmed 

rules. Many manual tasks that workers used to perform, such as monitoring the temperature of a steel 

finishing line or moving a windshield into place on an assembly line, fit this description. Because these 

tasks require methodical repetition of an unwavering procedure, they can be exhaustively specified with 

programmed instructions and performed by machines.   

A problem that arises with many commonplace manual and cognitive tasks, however, is that the 

procedures for accomplishing them are not well understood. As Polanyi [1966] observed,  

“We can know more than we can tell [p. 4]… The skill of a driver cannot be replaced by a 
thorough schooling in the theory of the motorcar; the knowledge I have of my own body differs 
altogether from the knowledge of its physiology; and the rules of rhyming and prosody do not tell 
me what a poem told me, without any knowledge of its rules [p. 20].” 

We refer to tasks fitting Polanyi’s description as “nonroutine” – that is, tasks for which the rules are not 

sufficiently well understood to be specified in computer code and executed by machines. Navigating a car 

through city traffic or deciphering the scrawled handwriting on a personal check – minor undertakings for 

most adults – are not routine tasks by our definition (see Beamish, Levy and Murnane [1999] and Autor, 

Levy and Murnane [2002] for examples). The reason is that these tasks require visual and motor 

                                                                                                                                                                    
3 The Jacquard loom was also the inspiration for Charles Babbage’s analytical engine and Herman Hollerith’s punch 
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processing capabilities that cannot at present be described in terms of a set of programmable rules [Pinker 

1997].4 

Our conceptual model suggests that, because of its declining cost, computer-controlled machinery 

should have substantially substituted for workers in performing routine manual tasks. This phenomenon is 

not novel. Substitution of machinery for repetitive human labor has been a thrust of technological change 

throughout the Industrial Revolution (Hounshell [1985], Mokyr [1990] and Goldin and Katz [1998]). By 

increasing the feasibility of machine substitution for repetitive human tasks, computerization furthers – 

and perhaps accelerates – this long-prevailing trend.  

The advent of computerization also marks a qualitative enlargement in the set of tasks that machines 

can perform. Because computers can perform symbolic processing – storing, retrieving, and acting upon 

information – they augment or supplant human cognition in a large set of information-processing tasks 

that historically were not amenable to mechanization. Over the last three decades, computers have 

substituted for the calculating, coordinating and communicating functions of bookkeepers, cashiers, 

telephone operators and other handlers of repetitive information-processing tasks [Bresnahan 1999].  

This substitution marks an important reversal. Previous generations of high technology capital sharply 

increased demand for human input of routine information-processing tasks, as seen in the rapid rise of the 

clerking occupation in the nineteenth century [Chandler 1977; Goldin and Katz 1995]. Like these 

technologies, computerization augments demand for clerical and information-processing tasks. But in 

contrast to its nineteenth century predecessors, it permits these tasks to be automated.  

The capability of computers to substitute for workers in carrying out cognitive tasks is limited, 

however. Tasks demanding flexibility, creativity, generalized problem-solving and complex 

communications – what we call nonroutine cognitive tasks – do not (yet) lend themselves to 

computerization [Bresnahan 1999]. At present, the need for explicit programmed instructions appears a 

                                                                                                                                                                    
card reader, used to process the 1910 United States Census. 
4 If a manual task is performed in a well-controlled environment, however, it can often be automated despite the 
seeming need for adaptive visual or manual processing. As Simon [1960] observed, environmental control is a 
substitute for flexibility.  
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binding constraint. There are very few computer-based technologies that can draw inferences from 

models, solve novel problems or form persuasive arguments.5 In the words of computer scientist Patrick 

Winston [1999]: 

“The goal of understanding intelligence, from a computational point of view, remains elusive. 
Reasoning programs still exhibit little or no common sense. Today’s language programs translate 
simple sentences into database queries, but those language programs are derailed by idioms, 
metaphors, convoluted syntax, or ungrammatical expressions.”6  

The implication of our discussion is that because present computer technology is more substitutable 

for workers in carrying out routine tasks than nonroutine tasks, it is a relative complement to workers in 

carrying out nonroutine tasks. From a production function standpoint, outward shifts in the supply of 

routine informational inputs, both in quantity and quality, increase the marginal productivity of workers 

performing nonroutine tasks that demand these inputs. For example, comprehensive bibliographic 

searches increase the quality of legal research and timely market information improves the efficiency of 

managerial decision-making. More tangibly, because repetitive, predictable tasks are readily automated, 

computerization of the workplace raises demand for problem-solving and communications tasks such as 

responding to discrepancies, improving production processes, and coordinating and managing the 

activities of others. This changing allocation of tasks was anticipated by Peter Drucker in the 1950s: 

“The technological changes now occurring will carry [the Industrial Revolution] a big step 
further. They will not make human labor superfluous. On the contrary, they will require 
tremendous numbers of highly skilled and highly trained men – managers to think through and 
plan, highly trained technicians and workers to design the new tools, to produce them, to maintain 
them, to direct them.” [Drucker, 1954, p.22, brackets added] 

Table I provides examples of tasks in each cell of our two-by-two matrix of workplace tasks (routine 

                                                   
5 It is, however, a fallacy to assume that a computer must reproduce all of the functions of a human to perform a task 
traditionally done by workers. For example, Automatic Teller Machines have supplanted many bank teller functions 
although they cannot verify signatures or make polite conversation while tallying change. Closely related, computer 
capital may substitute for the routine components of predominantly nonroutine tasks, e.g., on board computers that 
direct taxi cabs. What is required for our conceptual model is that the routine and nonroutine tasks embodied in a job 
are imperfect substitutes. Consequently, a decline in the price of accomplishing routine tasks does not eliminate 
demand for nonroutine tasks. 
6 Software that recognizes patterns (e.g. neural networks) or solves problems based upon inductive reasoning from 
well-specified models is under development. But these technologies have had little role in the “computer revolution” 
of the last several decades. As one example, current speech recognition software based on pattern recognition can 
recognize words and short phrases but can only process rudimentary conversational speech [Zue and Glass 2000]. 
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versus nonroutine, manual versus information processing) and states our hypothesis about the impact of 

computerization for each cell. The next section formalizes these ideas and derives empirical implications.7 

I. A. The Demand for Routine and Nonroutine Tasks 

The informal task framework above implies three postulates about how computer capital interacts 

with human labor input:  

A1. Computer capital is more substitutable for human labor in carrying out routine tasks than nonroutine 
tasks. 

A2. Routine and nonroutine tasks are themselves imperfect substitutes. 

A3. Greater intensity of routine inputs increases the marginal productivity of nonroutine inputs.  

To develop the formal implications of these assumptions, we write a simple, general equilibrium 

production model with two task inputs, routine and nonroutine, that are used to produce output, Q , which 

sells at price one. Because our discussion stresses that computers neither strongly substitute nor strongly 

complement nonroutine manual tasks, we consider this model to pertain primarily to routine cognitive and 

routine manual tasks, and nonroutine analytic and nonroutine interactive tasks.  

We assume for tractability an aggregate, constant returns to scale Cobb-Douglas production function 

of the form: 

(1) ,  )1,0(,)( 1 ∈+= − βββ
NR LCLQ

where  and  are routine and nonroutine labor inputs and C  is computer capital, all measured in 

efficiency units. Computer capital is supplied perfectly elastically at market price 

RL NL

ρ  per efficiency unit, 

where ρ  is falling exogenously with time due to technical advances. The declining price of computer 

                                                   
7 Our focus on task shifts in the process of production within given jobs overlooks two other potentially 
complementary avenues by which technical change impacts job task demands. First, innovations in the organization 
of production reinforce the task-level shifts that we describe above. See Adler [1986], Zuboff [1988], Levy and 
Murnane [1996], Acemoglu [1999], Bresnahan [1999], Bartel, Ichniowski and Shaw [2000], Brynjolfsson and Hitt 
[2000], Lindbeck and Snower [2000], Mobius [2000], Thesmar and Thoenig [2000], Caroli and Van Reenen [2001], 
Fernandez [2001], Autor, Levy and Murnane [2002], and Bresnahan, Brynjolfsson and Hitt [2002] for examples. 
Second, distinct from our focus on process innovations, Xiang [2002] presents evidence that product innovations 
over the past 25 years have also raised skill demands.  
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capital is the causal force in our model.8 

We assume that computer capital and labor are perfect substitutes in carrying out routine tasks. Cobb-

Douglas technology further implies that the elasticity of substitution between routine and nonroutine tasks 

is one, and hence computer capital and nonroutine task inputs are relative complements. While the 

assumption of perfect substitutability between computer capital and routine task input places assumptions 

A1 and A2 in bold relief, the only substantive requirement for our model is that computer capital is more 

substitutable for routine than nonroutine tasks. Observe that routine and nonroutine tasks are q-

complements; the marginal productivity of nonroutine tasks rises with the quantity of routine task input, 

consistent with assumption A3.9 

We assume a large number of income-maximizing workers, each of whom inelastically supplies one 

unit of labor. Workers have heterogeneous productivity endowments in both routine and non routine 

tasks, with  and ],[ iii nrE = inr ii ∀>≥ 0,1 . A given worker can choose to supply  efficiency units of 

routine task input,  efficiency units of nonroutine task input, or any convex combination of the two. 

Hence, 

ir

in

])1(,[ iiiii nrL λλ −=  where 10 ≤≤ iλ . These assumptions imply that workers will choose tasks 

according to comparative advantage as in Roy [1951]. We adopt the Roy framework because it implies 

that relative task supply will respond elastically to relative wage levels. If instead workers were bound to 

given tasks, the implications of our model for task productivity would be unchanged, but technical 

progress, reflected by a decline in ρ , would not generate re-sorting of workers across jobs. 

Two main conditions govern market equilibrium in this model. First, given the perfect substitutability 

of routine tasks and computer capital, the wage per efficiency unit of routine task input is pinned down by 

                                                   
8 Borghans and ter Weel [2002] offer a related model exploring how the declining price of computer capital affects 
the diffusion of computers and the distribution of wages. A key difference is that the tasks performed by computers 
and workers are inseparable in the Borghans-ter Weel model. Accordingly, computerization alters wage levels but 
does not directly change the allocation of human labor input across task types. This latter point is the focus of our 
model and empirical analysis.  
9 Specifically,   0)/()1()(/ 12 >+−=+∂∂∂ − ββββ CLLCLLQ RNRN
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the price of computer capital: 10 

(2) ρ=Rw . 

Second, worker self-selection among occupations – routine versus nonroutine – clears the labor market.  

Define the relative efficiency of individual  at nonroutine versus routine tasks as i iii rn=η . Our 

assumptions above imply that ),0( ∞∈iη . At the labor market equilibrium, the marginal worker with 

relative efficiency units  is indifferent between performing routine and nonroutine tasks when *η

(3) 
N

R

w
w

=*η . 

Individual i  supplies routine labor ( 1=iλ ) if , and supplies nonroutine labor otherwise (*ηη <i 0=iλ ).  

To quantify labor supply, write the functions )(),( ηη hg , which sum population endowments in 

efficiency units of routine and nonroutine tasks respectively at each value of η . Hence, 

 and  where ∑ <⋅=
i

ii Irg ][)( ηηη ∑ ≥⋅=
i

ii Inh ][)( ηηη ][⋅I  is the indicator function. We further assume 

that iη  has non-zero support at all ),0( ∞∈iη , so that that )(ηh  is continuously upward sloping in η , and 

)(ηg  is continuously downward sloping.  

Assuming that the economy operates on the demand curve, productive efficiency requires: 

(4) βθβ −−=
∂
∂

= )1(
R

R L
Qw  and ββθ −=

∂
∂

= 1

N
N L

qw , 

where θ  in this expression is the ratio of routine to nonroutine task input in production: 

(5) )())(( ** ηηθ hgC +≡ . 

These equations provide equilibrium conditions for the model’s five endogenous variables 

( ηθ ,,,, Cww NR ). We use them to analyze how a decline in the price of computer capital affects task input, 

wages and labor supply, beginning with the wage paid to routine task input.  

It is immediate from (2) that a decline in the price of computer capital reduces  one-for-one, Rw

                                                   
10 We implicitly assume that the shadow price of nonroutine tasks absent computer capital exceeds ρ   and hence 
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1)(ln/)(ln =∂∂ ρRw , and hence demand for routine task input rises:  

(6) 
βρ

θ 1
ln
ln

−=
∂
∂ .  

From the perspective of producers, the rise in routine task demand could be met by either an increase 

in C or an increase in  (or both). Only the first of these will occur, however. Because routine and 

nonroutine tasks are productive complements (specifically q-complements), the relative wage paid to 

nonroutine tasks rises as 

RL

ρ  declines: 

(7) 
βρ
1

ln
)/ln(

−=
∂

∂ RN ww  and 
βρ

η 1
ln
ln *

=
∂
∂ . 

Consequently, marginal workers will reallocate their labor input from routine to nonroutine tasks. 

Increased demand for routine tasks must be met entirely by an influx of computer capital.  

Hence, an exogenous decline in the price of computer capital raises the marginal productivity of 

nonroutine tasks, causing workers to reallocate labor supply from routine to nonroutine task input. 

Although routine labor input declines, an inflow of computer capital more than compensates, yielding a 

net increase in the intensity of routine task input in production. 

I. B. Industry Level Implications 

Does this model have testable microeconomic implications? Because the causal force in the model is 

the price of computer capital, in one sense we have only a single macroeconomic time series available. 

However, additional leverage may be gained by considering equation (1) as representing the production 

function of a single industry, with distinct industries  producing outputs  that demand different mixes 

of routine and nonroutine tasks. We write industry  production function as 

j jq

sj'

(8) , )1,0(,1 ∈= −

jjjj
jj nrq βββ

where jβ  is the industry-specific factor share of nonroutine tasks, and  denote the industry’s task 

inputs. All industries use Cobb-Douglas technology, but industries with smaller 

jj nr ,

jβ  are more routine task 

                                                                                                                                                                    
ρ<Rwequation (2) holds with equality. In the pre-computer era, it is likely that . 
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intensive. 

We assume that consumer preferences in this economy may be represented with a Dixit-Stiglitz 

[1977] utility function, 

(9) 
ν

ν
−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

1
1

1
21 ),...,,(

j
jJ qqqqU , 

where 10 <<ν . The elasticity of demand for each good is 
ν
1

− , with the market clearing price inversely 

proportional to the quantity produced, .  ν−∝ jjj qqp )(

Industry profit maximization yields the following first order conditions for wages: 

(10)  and . νββββ νβρ −−− −−= ))(1)(1( 1 jjjj

jjjjj rnrn νββββ νβ −−−− −= ))(1( 111 jjjj

jjjN rnrnw

Rearranging to obtain factor demands gives: 

(11) 
ν

νβ

ν

β
β

ρ
νβν

)1)(1(

1 )1(
))1((

1

−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅−=

−

j

j

jN
jNj

wwn  and 
ν
νβ

νν

β
β

ρ
νβρ

)1(

11 )1(
))1)(1((

−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅−−=

j

j

jN
jj

wr . 

Using these equations, we obtain the following three propositions, which we test empirically below. 

P1. Although all industries face the same price of computer capital, ρ , the degree to which industries 

adopt this capital as its price declines depends upon jβ . For a given price decline, the proportionate 

increase in demand for routine task input is larger in routine task intensive ( jβ  small) industries, as 

may be seen by taking the cross-partial derivative of routine task demand with respect to ρ  and jβ : 

0
1)1(ln
<

−−
=

νρ
νβ

δρ
δ jjr

 and 01ln2

>
−

=
νρ
ν

δρδβ
δ

j

jr
. 

Although we cannot observe jβ , a logical proxy for it is the observed industry level of routine task 

input in the pre-computerization era. We therefore test whether industries that were historically (i.e., 

pre-computer era) intensive in routine tasks adopted computer capital to a greater extent than 

industries that were not.   

P2. Due to the complementarity between routine and nonroutine inputs, a decline in the price of computer 

capital also raises demand for nonroutine task input. This demand increase is proportionately larger in 

routine task intensive industries: 
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0
)1)(1(ln
<

−−
=

νρ
νβ

δρ
δ jjn

, 01ln2

>
−

=
νρ
ν

δρδ
δ

b
n . 

Recall, however, that labor supply to routine tasks declines with ρ . Rising routine task demand must 

therefore be satisfied with computer capital. Hence, sectors that invest relatively more in computer 

capital will show a larger rise in nonroutine labor input and a larger decline in routine labor input.  

P3. The previous propositions refer to industry demands. Analogously, we expect that occupations that 

make relatively larger investments in computer capital will show larger increases in labor input of 

nonroutine tasks and larger decreases in labor input of routine tasks.  

II. EMPIRICAL IMPLEMENTATION 

Our analysis requires measures of tasks performed in particular jobs and their changes over time. We 

draw on information from the Fourth [1977] Edition and Revised Fourth [1991] edition of the U.S. 

Department of Labor’s Dictionary of Occupational Titles (DOT). Many of the details of our data 

construction are provided in the Data Appendix. Here we discuss the most salient features. The U.S. 

Department of Labor released the first edition of the DOT in 1939 to “furnish public employment 

offices… with information and techniques [to] facilitate proper classification and placement of work 

seekers” [U.S. Department of Labor 1939:xi as quoted in Miller et al 1980]. Although the DOT was 

updated four times in the ensuing 60 years [1949, 1965, 1977 and 1991], its structure was little altered. 

Based upon first-hand observations of workplaces, Department of Labor examiners – using guidelines 

supplied by the Handbook for Analyzing Jobs [U.S. Department of Labor 1972] – evaluate more than 

12,000 thousand highly detailed occupations along 44 objective and subjective dimensions, including 

training times, physical demands and required worker aptitudes, temperaments and interests.11  

Our DOT data are based on an aggregation of these detailed occupations into three-digit Census 

Occupation Codes (COC), of which there are approximately 450. We append DOT occupation 

characteristics to the Census Integrated Public Micro Samples [IPUMS, Ruggles and Sobeck 1997] one 

percent extracts for 1960, 1970, 1980 and 1990, and to CPS Merged Outgoing Rotation Group (MORG) 

                                                   
11 The Department of Labor’s recent successor to the DOT, O*NET, provides potentially more up-to-date 
information but is not suitable for time series analysis. 
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files for 1980, 1990 and 1998. We use all observations for non-institutionalized, employed workers, ages 

18 to 64. For the industry analysis, these individual worker observations are aggregated to the level of 140 

consistent Census industries spanning all sectors of the economy in each year of the sample. All analyses 

are performed using full-time equivalent hours (FTEs) of labor supply as weights. The latter is the 

product of the individual Census or CPS sampling weight, times hours of work in the sample reference 

week and, for Census samples, weeks of work in the previous year.  

We exploit two sources of variation for measuring changing job task requirements. The first consists 

of changes over time in the occupational distribution of employment, holding constant task content within 

occupations at the DOT 1977 level. We refer to cross-occupation employment changes as “extensive” 

margin shifts, which we can measure consistently over the period 1960 to 1998. This variation does not, 

however, account for changes in task content within occupations [Levy and Murnane 1996], which we 

label the “intensive” margin. To measure intensive margin shifts, we analyze changes in task content 

measures within occupations over the period 1977 to 1991, using occupations matched between the 

Fourth Edition and Revised Fourth Edition of the DOT.  

Although the DOT contains the best time-series on job task requirements for detailed occupations in 

the U.S., it also has well-known limitations [Miller et al 1980]. These include limited sampling of 

occupations (particularly in the service sector) imprecise definitions of measured constructs and omission 

of important job skills. These shortcomings are likely to reduce the precision of our analysis.12 

II. A. Selecting Measures of Routine and Nonroutine Tasks 

To identify variables that best approximate our task constructs, we reduced the DOT variables to a 

relevant subset using DOT textual definitions, means of DOT measures by occupation from 1970, and 

detailed examples of DOT evaluations from the Handbook for Analyzing Jobs. We selected two variables 

to measure nonroutine cognitive tasks, one to capture interactive, communication and managerial skills 

                                                   
12 Researchers who have used the DOT to analyze changing job skill requirements include Rumberger [1981], 
Spenner [1983 and 1990], Howell and Wolff [1991], Wolff [1996, 2002], Handel [2000], and Ingram and Neumann 
[2000]. What is unique to our work is the focus on routine and nonroutine tasks, and the joint analyses of the effect 
of computerization on task changes between and within occupations.  
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and the other to capture analytic reasoning skills. The first codes the extent to which occupations involve 

Direction, Control, and Planning of activities (DCP). It takes on consistently high values in occupations 

requiring managerial and interpersonal tasks. The second variable, GED-MATH, measures quantitative 

reasoning requirements. For routine cognitive tasks, we employ the variable STS, which measures 

adaptability to work requiring Set limits, Tolerances, or Standards. As a measure of routine manual 

activity, we selected the variable FINGDEX, an abbreviation for Finger Dexterity. To measure nonroutine 

manual task requirements, we employ the variable EYEHAND, an abbreviation for Eye-Hand-Foot 

coordination. Definitions and example tasks from the Handbook for Analyzing Jobs are provided in 

Appendix 1.  

A limitation of the DOT variables is that they do not have a natural scale and, moreover, cannot 

confidently be treated as cardinal. To address this limitation, we transformed the DOT measures into 

percentile values corresponding to their rank in the 1960 distribution of task input. We choose 1960 as the 

base period for this standardization because it should primarily reflect the distribution of tasks prior to the 

computer era. Consequently, all of our outcome measures may be interpreted as levels or changes in task 

input relative to the 1960 task distribution, measured in “centiles.”13  

II. B. A Predictive Test 

As an initial check on our data and conceptual framework, we test the first proposition of our 

theoretical model: industries historically intensive in routine tasks should have adopted computer capital 

relatively rapidly as its price fell. To operationalize this test, we form an index of industry-level routine 

task intensity during the pre-computer era. Using the 1960 Census data paired to our selected DOT task 

measures, we calculate the percentage share of routine task input in industry  total task input as, sj'

)/(100ShareTask  Routine 1960,1960,1960,,1960 jjjj nrr +×= , where all task measures are standardized with equal 

mean and variance. The numerator of this index is the sum of industry routine cognitive and routine 

manual task inputs, while the denominator is the sum of all 5 task inputs: routine cognitive and manual; 
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nonroutine analytic, interactive and manual. This index, which has mean 40.0 and standard deviation 5.0, 

should roughly corresponding to )1( jβ−  in our model.  

To proxy computer adoption after 1960, we use the Current Population Survey to calculate industries’ 

percentile rank of computer use in 1997. Although we do not have a measure of industry computer use in 

1960, this was likely close to zero in all cases. Consequently, the 1997 measure should closely reflect 

post-1960 computer adoption.  

We fit the following equation: 

(12) Computer adoptionj,1960-1997 = –24.56 + 1.85 x Routine Task Sharej,1960 
 (19.18)  (0.48)    (n=140, R2=0.10) 

 
The point estimate of 1.85 (standard error 0.48) for the routine task share variable confirms that an 

industry’s routine task intensity in 1960 is strongly predictive of its subsequent computer adoption. 

Comparing two industries that in 1960 were 10 percentage points (2 standard deviations) apart in routine 

task input, the model predicts that by 1997, these industries would be 19 percentage points apart in the 

distribution of computer adoption – approximately 13 percentage points apart in on-the-job computer use.  

We have estimated many variations of this basic model to verify its robustness, including: specifying 

the dependent variable as the level or percentile rank of industry computer use in 1984, 1997 or the 

average of both; scaling the routine task share measure in percentiles of the 1960 task distribution; 

calculating the routine task share index using task percentiles rather than task levels; and replacing the 

routine task index with its logarithm. These many tests provide robust support for the first proposition of 

our theoretical model: demand for computer capital is greatest in industries that were historically routine 

task intensive.  

III. TRENDS IN JOB TASK INPUT, 1960–1998 

Our model implies that the rapidly declining price of computer capital should have reduced aggregate 

demand for labor input of routine tasks and increased demand for labor input of nonroutine cognitive 

                                                                                                                                                                    
13 An earlier version of this paper [Autor, Levy and Murnane 2001] employed raw DOT scores rather than the 
percentile measures used here. Results were qualitatively identical. 
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tasks. This section analyzes the evidence for such shifts. 

III. A. Aggregate Trends 

Figure I illustrates the extent to which changes in the occupational distribution over the period 1960 

to 1998 resulted in changes in the tasks performed by the U.S. labor force. This figure is constructed by 

pairing the selected DOT 1977 task measures with Census and CPS employment data for each decade. By 

construction, each task variable has a mean of 50 centiles in 1960. Subsequent points depict the 

employment-weighted mean of each assigned percentile over each decade.14  

As is evident in the figure, the share of the labor force employed in occupations that made intensive 

use of nonroutine analytic and nonroutine interactive tasks increased substantially during the last four 

decades. Although both of these measures of nonroutine tasks increased in the 1960s – that is, during the 

pre-computer era – the upward trend in each accelerated thereafter. By 1998, nonroutine analytic task 

input averaged 6.8 centiles above its 1970 level and nonroutine interactive input averaged 11.5 centiles 

above its 1970 level.  

By contrast, the share of the labor force employed in occupations intensive in routine cognitive and 

routine manual tasks declined substantially. Between 1970 and 1998, routine cognitive tasks declined 8.7 

centiles and routine manual tasks declined by 4.3 centiles. Notably, these declines reversed an upward 

trend in both forms of routine task input during the 1960s. For routine cognitive tasks, this trend reversed 

in the 1970s, and for routine manual tasks, the trend halted in the 1970s and reversed in the 1980s. 

Finally, the share of the labor force employed in occupations intensive in nonroutine manual tasks 

showed a secular decline across all decades. This decline was most rapid in the 1960s, and slowed 

considerably in subsequent decades. 

Panel A of Table II provides the corresponding means of task input by decade, both in aggregate and 

by gender. For both males and females, there are pronounced shifts against routine cognitive, routine 

                                                   
14 We do not impose an adding up constraint across task measures – whereby total task allocation must sum to one 
within jobs or time periods – since this structure is not intrinsic to the DOT. It is therefore possible for the economy-
wide average of total task input to either rise or fall. This over-time variation is modest in practice. The mean of all 
five task measures, equal to 50 by construction in 1960, rose slightly to 52.5 in 1980, and fell to 51.2 in 1998. 
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manual, and nonroutine manual task inputs, and pronounced shifts favoring nonroutine analytic and 

interactive inputs. These shifts are, however, numerically larger for females. Given the rapid entry of 

women into the labor force in recent decades, it appears plausible that demand shifts for workplace tasks 

would impact the stock of job tasks more rapidly for females than males (Goldin [1990], Weinberg 

[2000], Blau, Ferber and Winkler [2002, Chapter 4]). To assess the importance of these gender 

differences, we estimated all of our main results separately for males and females. Because we found 

quite similar results for both genders, we focus below on the pooled gender samples.  

To complete the picture provided by the decadal means, Figure II depicts smoothed changes in the 

density of the two routine and two nonroutine cognitive task measures between 1960 and subsequent 

decades. Three series are plotted for each task measure. Two depict extensive margin task shifts at 

approximately twenty year intervals. These are measured using the 1977 DOT task measures paired to the 

1960, 1980 and 1998 employment data. The third series adds intensive margin task shifts by pairing the 

1991 DOT task measures with the 1998 employment data. By construction, task input is uniformly 

distributed across all percentiles in 1960. Hence, the height of each line in the figure represents the 

difference in the share of overall employment in 1960, 1980 or 1998 at each centile of 1960 task input.15 

To conserve space, we do not provide a plot of the nonroutine manual measure, since it is not the subject 

of subsequent analysis. 

As shown in panels A and B of the figure, the distribution of nonroutine analytic and nonroutine 

interactive task input shifted markedly rightward after 1960. In particular, there was substantial growth in 

the share of employment requiring nonroutine task input above the 1960 median and a corresponding 

decline below the 1960 median. These shifts are visible from 1960 to 1980 and become even more 

pronounced by 1998. Adding variation along the intensive margin augments the rightward shift, 

particularly for the nonroutine interactive measure.  

Panels C and D of Figure II plot the corresponding densities for routine cognitive and routine manual 

                                                   
15 We apply an Epanechnikov kernel with bandwidth  where  is the number of observations and 5/190.0 −= nh σ n σ  is 
the standard deviation. For our samples, this yields bandwidths between 5 and 7 centiles. 
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task input. Consistent with the theoretical model, the distribution of labor input of both routine cognitive 

and routine manual tasks shifted sharply leftward after 1960 – opposite to the case for nonroutine tasks. 

The shift is particularly pronounced for the routine cognitive task measure, and becomes even more 

apparent when the intensive margin is added. As suggested by Figure I, the decline in the input of routine 

manual tasks is less dramatic, though still visible.  

In sum, the evidence in Figures I and II supports our model’s primary macroeconomic implications. 

Between 1970 and 1998, there were secular declines in labor input of routine cognitive and routine 

manual tasks and corresponding increases in labor input of nonroutine analytic and interactive tasks. We 

next analyze the sources of these task shifts at the industry level. 

III. B. Task Changes Within and Between Industries 

The changes in economy-wide labor input of routine and nonroutine tasks documented in Figure I and 

Table II could stem from substitution of computer capital for routine labor inputs within detailed 

industries, as our model suggests. Alternatively, they could stem from changes in the composition of final 

demand. Since much of our detailed analysis focuses on changes in task input at the industry level, we 

explore briefly the extent to which changes in job content are due to within-industry task shifts.  

Panel B of Table II presents a standard decomposition of task changes into within- and between-

industry components.16 This decomposition shows quite consistent patterns of task change. Both the 

nonroutine analytic and nonroutine interactive task measures show strong within-industry growth in each 

decade following the 1960s. Moreover, the rate of within-industry growth of each input increases in each 

subsequent decade. Although, as noted above, nonroutine analytic input also increased during the 1960s, 

                                                   
16 We decompose the use of task  in aggregate employment between years t  and  (k ktkk TTT −=∆ τττ ) into a term 
reflecting the reallocation of employment across sectors and a term reflecting changes in task  input within 
industries using the equation 
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Table II shows that this was primarily a cross-industry phenomenon – i.e., due to sectoral shifts. After the 

1960s, by contrast, the growth in nonroutine task input was dominated by within-industry task shifts.   

Trends in both routine cognitive and routine manual tasks show a similarly striking pattern. Both 

types of routine task input increased during the 1960s, due to a combination of between- and within-

industry shifts. In the decades following, however, input of both routine cognitive and routine manual 

tasks sharply declined, and the bulk of these declines was due to within-industry shifts. Moreover, the rate 

of within-industry decline increased in each subsequent decade. 

As distinct from the other four task measures, we observe steady within and between industry shifts 

against nonroutine manual tasks for the entire four decades of our sample. Since our conceptual 

framework indicates that nonroutine manual tasks are largely orthogonal to computerization, we view this 

pattern as neither supportive nor at odds with our model.  

In summary, the trends against routine cognitive and manual tasks and favoring nonroutine cognitive 

tasks that we seek to analyze are dominated by within-industry shifts, particularly from the 1970s 

forward. We next analyze whether computerization can explain these task shifts.17 Because our model 

makes no prediction for how computerizing industries will adjust demand for nonroutine manual tasks, 

we do not include this variable in our industry-level analysis below (see Autor, Levy and Murnane [2001] 

for detailed analysis).  

IV.  COMPUTERIZATION AND TASK CHANGE: INDUSTRY LEVEL RELATIONSHIPS 
 

As industries adopt computer technology, our model predicts that they will simultaneously reduce 

labor input of routine cognitive and manual tasks and increase labor input of nonroutine cognitive tasks. 

We test these hypotheses below.  

                                                   
17 Our model also implies that the expenditure shares of routine task-intensive industries should have increased as ρ  
declined. By contrast, the prediction for the employment share of routine task-intensive industries is ambiguous 
since these industries should have differentially substituted computer capital for labor input. Because our data 
measure employment, not expenditures, we are unable to test the implication for expenditure shares. Closely related, 
computer-intensive industries should have experienced relatively larger gains in labor productivity as ρ  declined. 
Stiroh [2002] presents evidence that this occurred in the 1990s.  
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IV. A. Industry Computerization and Task Trends over Four Decades 

We begin by estimating a model for the within-industry relationship between computer adoption and 

task change over four decades. Specifically, we fit the equation 

(13) ττ εφα jkjjk CT +∆+=∆ , 

where  is the change in industry  input of task  between years jktjkjk TTT −=∆ ττ sj' k t  and τ  and jC∆  is 

the annual change in the percentage of industry workers using a computer at their jobs between 1984 and 

1997 (estimated from the October Current Population Survey supplements). While our model predicts 

that computer adoption should be highly correlated with industry task change during the computer era, we 

would not anticipate a similar relationship for the pre-computer era of the 1960s. Accordingly, we 

estimate equation (13) separately for each of the four decades in our sample. This allows us to confirm 

that the relationship between computerization and industry task change in the 1970s-1990s does not 

reflect trends that predate the computer era.18 

Estimates of equation (13) for each of the four task measures are given in Table III. The first two 

panels show that during the 1970s, 1980s and 1990s, rapidly computerizing industries raised their input of 

nonroutine analytic and interactive tasks significantly more than others. For example, the point estimate 

of 12.04 (standard error of 4.74) in column 1 of panel A indicates that between 1990 and 1998, a 10 

percentage point increase in computer use was associated with a 1.2 centile annualized increase in labor 

input of nonroutine analytic tasks. To evaluate the magnitude of this relationship, note that the mean 

annualized industry level rise in nonroutine analytic task input during 1990-1998, tabulated immediately 

below the regression estimate, was 2.5 percentiles. By comparison, the intercept of the bivariate 

regression for this period is 0.1. Hence, almost the entirety of the observed within-industry change in 

nonroutine analytic input is “explained” by the computerization measure. Similar comparisons confirm 

that the relationship between industry computerization and rising input of nonroutine interactive and 

analytic tasks is economically large and statistically significant at conventional levels in each of the three 
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most recent decades.  

Panels C and D of the table provide analogous estimates for the two routine task measures. As 

predicted by the conceptual model, the relationships between industry computerization and changes in 

routine task input are uniformly negative in the 1970s, 1980s, and 1990s. These relationships are also 

economically large and in most cases statistically significant. For example, the computerization measure 

explains the entirety of the within-industry decline in routine task input during the 1990s, and more than 

explains this decline in the 1980s and 1970s.  

A notable pattern for all four task measures is that the relationship between computerization and 

industry task change tends to become larger in absolute magnitude with each passing decade. This 

suggests a secularly rising relationship between computerization and task change. The final column of 

Table III tests for this rise by estimating equation (13) for the 1960s, a decade during which 

computerization is unlikely to have strongly influenced task demands. Reassuringly, there are no 

significant relationships between computerization and task change in this decade. And in one case, the 

coefficient is of the opposite sign as in later decades. Hence, these estimates suggest that the relationship 

between industry task shifts and computer adoption either commenced or substantially accelerated during 

the computer era, and not before.19 

IV. B. Using Composite DOT Variables 

Though we view the selected task measures as the most appropriate available from the DOT, we are 

sensitive to the concern that the choice of variables could be viewed as arbitrary. One way to test their 

appropriateness is to use alternative composite variables. We used principal components analyses (PCA) 

to pool variation from each selected DOT task measure with several other plausible alternatives and 

                                                                                                                                                                    
18 As noted by Autor, Katz and Krueger [1998] and Bresnahan [1999], the era of rapid computer investment began in 
the 1970s. Desktop computing became widespread in the 1980s and 1990s. 
19 We also estimated the models in Table III separately by gender and for manufacturing and nonmanufacturing 
sectors. The pattern of results is similar in all cases. For both genders, computer investment is a significant predictor 
of reductions in routine labor input of cognitive and manual tasks and increases in nonroutine analytic input. For 
females, the relationship between computerization and nonroutine interactive tasks is positive but insignificant. The 
magnitude of the relationship between computerization and nonroutine tasks is somewhat larger in manufacturing 
than non-manufacturing, and the reverse is true for routine tasks. Further details are available from the authors. 
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estimated equation (13) using these composites.20 The details of our compositing exercise are provided in 

the Data Appendix and the results of the composite estimation are found in Appendix 2. A limitation of 

this exercise is that the variables used in the composites do not in our view correspond as closely to the 

intended construct as our primary measures. 

As visible in the table, the qualitative trends in the composite relationships are comparable to those 

using our preferred measures in Table III. In particular, industry computerization is associated with sharp 

declines in routine cognitive and manual labor inputs and growth in nonroutine analytic and interactive 

labor inputs. Moreover, these relationships typically become stronger in successive decades. Contrary to 

expectations, however, the composite measure for routine cognitive input is only significant in the most 

recent decade and the composite measure for nonroutine interactive input is statistically significant in the 

1960s. Thus, while our results are generally robust to variable choice, this exercise underscores that 

variable choice does matter. A data source specifically designed to measure changes in workplace input of 

routine and nonroutine cognitive tasks over a long time horizon would clearly provide a more complete 

test of the model. Given the absence of such a data source for the U.S., we view the evidence provided by 

the DOT as uniquely informative.21 

IV. C. Employing Contemporaneous Measures of Computer and Capital Investment 

A limitation of the CPS computer measure used so far is that it is only available for the 1980s and 

1990s. To provide more comprehensive measures of computer and capital investment available for the 

entire 1959–1998 period, we draw on the National Income and Product Accounts (NIPA), which provides 

detailed data on capital stocks across 42 major industries excluding government [U.S. Department of 

Commerce 2002a, 2002b]. As a measure of industry computerization, we calculated the log of real 

                                                   
20 The PCA extracts eigenvectors that maximize common variation among selected measures, each of which is 
standardized with mean zero and variance one, subject to the constraint that the sum of squared weights in the 
eigenvector equals one. It can be shown that if measurement error in the selected variables is classical (i.e., white 
noise), the PCA extracts maximal non-error variation.  
21 Spitz [2003] studies the predictions of our task model using German data from 1979–1999, which contains far 
more detailed and precise information on workplace tasks than is available from the DOT. Consistent with the 
predictions of the model, Spitz reports that computer capital substitutes for repetitive manual and repetitive 
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investment in computer hardware, software and peripherals per full-time equivalent employee (FTE) over 

the course of each decade. To distinguish the relationship between task change and computerization from 

overall capital-skill complementarity [Griliches 1969], we construct two variables to control for capital 

deepening: the log of capital investment flow per worker and the log capital to labor ratio.  

Using these data, we fit stacked first-difference industry task shift models of the form  

(14) ττττ εθϕδδδα jkjjjk KICIT ++++++=∆ −−− 989090808070 , 

where  is industry  real log investment in computer capital per FTE over the contemporaneous 

decade in industry,  is the analogous measure for real capital investment, the 

τjCI sj '

τjKI s'δ  are time dummies 

equal to one in each of the decades post-1960 corresponding to their subscripts, and α  is a common 

intercept. In this equation, the s'δ  measure the trend change in industry task input in the 1970s, 1980s 

and 1990s relative to the base period of the 1960s.  

Estimates of equation (14) are found in Table IV. Two sets of Huber-White standard errors are 

tabulated for each model. Those in parentheses account for the fact that the NIPA capital measures are 

observed at a more aggregate level than the dependent variables measured from the CPS and Census (42 

sectors versus 123 sectors for this exercise). The standard errors in brackets additionally account for 

potential serial correlation in industry task changes over succeeding decades (cf. Bertrand, Duflo, and 

Mullainathan [2004, forthcoming]). 

As is visible in the table, the NIPA measure of computer investment consistently predicts relative 

declines in industry input of both routine cognitive and manual tasks and growth in input of nonroutine 

analytic and interactive tasks. How large are these relationships? We can gauge the model’s explanatory 

power by comparing the magnitude of the estimated s'δ  conditional on computer investment to the 

unconditional within-industry trends in task input observed for each decade. To facilitate this comparison, 

the bottom panel of Table IV tabulates the unconditional decadal trends. As with the Table III estimates, 

we find that industries making relatively greater investments in computer capital are responsible for the 

                                                                                                                                                                    
cognitive skills and complements analytical and interactive skills. See also Bartel, Ichniowski and Shaw [2000] and 
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bulk of the observed substitution away from routine cognitive and manual tasks and towards nonroutine 

analytic and interactive tasks. Holding computer investment constant, we can explain more than 100 

percent of the overall trend increase in nonroutine cognitive/analytic task input, a substantial part of the 

trend increase in nonroutine cognitive/interactive input and substantial parts of the trend decreases in 

routine cognitive and routine manual inputs.  

A notable pattern in Table IV is that the coefficients on the capital investment and capital intensity 

variables are economically small and in most cases insignificant. This indicates that aggregate capital 

deepening – apart from computer investment – explains little of the observed change in task input.22 We 

have also explored a large number of variations of these models including: estimating separate models for 

manufacturing and nonmanufacturing industries and for male and female task input; subdividing capital 

investment into equipment and structures investment; subdividing computer investment into hardware and 

software investment; and controlling for industries’ log output, capital-output ratios, and import and 

export penetration. These tests confirm the overall robustness of our results.  

V. TASK CHANGE WITHIN EDUCATION GROUPS AND OCCUPATIONS 
 

The analyses above establish that industries undergoing rapid computerization reduced labor input of 

routine cognitive and manual tasks and increased labor input of nonroutine interactive and analytic tasks. 

Since better educated workers are likely to hold a comparative advantage in nonroutine versus routine 

tasks, one interpretation of these results is that they confirm the established pattern of increasing relative 

educational intensity in computerizing industries over the past several decades. While we do not disagree 

with this interpretation, our task framework makes a broader claim, namely that changes in the demand 

for workplace tasks, stemming from technological change, are an underlying cause – not merely a 

reflection – of relative demand shifts favoring educated labor. To test this broader implication, we exploit 

the unique features of the DOT to analyze two novel margins of task change: changes within education 

                                                                                                                                                                    
Ichniowski and Shaw [2003] for quantitative and case study evidence. 
22 This pattern echoes the findings of Berman, Bound and Griliches [1994], Autor, Katz and Krueger [1998] and 
Bresnahan, Brynjolfsson and Hitt [2002] for skill upgrading. 
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groups and changes within occupations 

V. A. Within-Industry Task Shifts by Education Group: 1980–1998 

We showed in Tables III and IV that increased industry computerization predicts increased 

nonroutine cognitive activity and reduced routine cognitive and manual activities. Why does this occur? 

One possibility is that as industries purchase computer capital, they hire better educated workers who 

specialize in these tasks. Alternatively, industries may change the task assignments of workers with given 

educational attainments, reducing their allocation to routine tasks and raising it to nonroutine tasks. We 

explore the relative importance of these two channels by estimating a variant of equation (13) for within-

industry task upgrading by education group. Specifically, we estimate the model 

(15) ττ εφα ijkjiiijk CT +∆+=∆ ,  

where the dependent variable is the within-industry change in the mean of each DOT task, measured in 

centiles of the 1960 distribution, among workers of the same educational attainment. In this equation, i  

indexes each of four education groups – high school dropouts, high school graduates, some-college 

completers and college graduates – and subscripts and kj, τ  refer to industries, tasks and time periods as 

above. We estimate this model using industry task data for 1980–1998 to exploit the (almost) 

contemporaneous industry computer use data for 1984–1997. 

To establish a baseline for comparison, we initially estimate equation (15) for aggregate within-

industry task changes over 1980–1998 (i.e., incorporating both between- and within-education group task 

shifts). Consistent with earlier findings, these estimates in panel A of Table V show striking correlations 

between industry computerization, rising labor input of routine cognitive and manual tasks, and declining 

labor input of nonroutine interactive and analytic tasks. 

Panels B through E of Table V present analogous models estimated separately for the four education 

groups. Here, measured changes in task input stem solely from within-education group shifts in 

occupational distributions within industries. These estimates reveal that industry-level computerization is 

strongly predictive of shifts towards nonroutine and against routine tasks within essentially all education 
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groups. For the two groups at the middle of the education distribution – high school graduates and those 

with some college – changing employment patterns within rapidly computerizing sectors entirely account 

for observed task shifts. More precisely, holding computer adoption fixed, our estimates would not 

predict any significant within-industry task change for either education group.  

For the education groups at the bottom and top of the distribution – college graduates and high school 

dropouts – similar patterns prevail but they are less precisely estimated. In all cases, the estimates are of 

the expected sign but none is statistically significant. For college graduates, this is likely to reflect 

“topping out,” since this education group was already at the extreme of the distribution for all tasks. We 

are less certain why the relationships are weaker for high school dropouts, but one possibility is that this 

group has insufficient human capital to be effectively redeployed to alternative job tasks.  

To assess whether these within-education group shifts are a quantitatively important component of the 

overall change in industry task content, panel F of Table V presents a decomposition of industry task 

changes into within and between education group components. This exercise shows that in every case, 

within-education group task upgrading explains a substantial share, 24 to 111 percent, of total task 

upgrading over these two decades. For example, the annual within-industry change in nonroutine 

interactive tasks over the period 1980–1998 is 4.4 centiles per decade, of which 3.1 centiles (71 percent) 

is accounted for by contemporaneous industry computerization. Within-education group task changes 

explain the bulk of these shifts: 78 percent of the explained component and 55 percent of the total. 

Subdividing the explained within-education group component further, 59 percent is due to changes in task 

assignment among high school graduates and those with some college, and the rest is equally accounted 

for by task shifts among college graduates and high school dropouts.  

This exercise demonstrates that within-education group shifts in task content are the primary channel 

through which the structure of workplace tasks has shifted over the past two decades. Furthermore, a large 

portion of the within-education group changes are accounted for by cross-industry patterns of computer 

adoption. This suggests to us that task change is antecedent to educational upgrading, rather than merely a 

reflection of it.  
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V. B. Task Shifts within Occupations 

The analyses above exploit shifts in occupational composition – the extensive margin – to quantify 

changes in task input. This approach is imperfect since it assumes that the tasks performed within 

occupations are static, which is unlikely to be accurate over long time intervals. Moreover, our task 

framework implies that this assumption should be violated in a specific manner: occupations undergoing 

rapid computerization should differentially reduce labor input of routine cognitive and manual tasks and 

increase labor input of nonroutine cognitive tasks. To provide one example, the 1976 edition of the 

Department of Labor’s Occupation Outlook Handbook described the job of Secretary as:   

“…Secretaries relieve their employers of routine duties so they can work on more important matters.  
Although most secretaries type, take shorthand, and deal with callers, the time spent on these duties varies 
in different types of organizations.” [U.S. Department of Labor 1976, p. 94] 

In 2000, the entry for Secretary reads: 

“As technology continues to expand in offices across the Nation, the role of the secretary has greatly 
evolved. Office automation and organizational restructuring have led secretaries to assume a wide range of 
new responsibilities once reserved for managerial and professional staff. Many secretaries now provide 
training and orientation to new staff, conduct research on the Internet, and learn to operate new office 
technologies.” [U.S. Department of Labor 2000, p.324] 

To test whether this example captures a pervasive phenomenon, we match occupations from the 1977 

and 1991 revisions of the DOT to estimate the following equation: 

(16) ττ εξα mkmmk CT +∆+=∆ . 

Here,  is the change in occupational input of task  between 1977 and 1991 in 3-digit COC 

occupation m , and  is the change in occupational computer penetration measured by the CPS. To 

provide a clean test, our data set is constructed using only the subset of occupations appearing in the 1977 

DOT, which was used to create our original occupation crosswalk. Accordingly, the variation used to 

estimate equation (16) stems exclusively from DOT examiners’ reevaluation of the task content of 

individual occupations between 1977 and 1991.23 

τmkT∆ k

mC∆

                                                   
23 The weighted fraction of employment reevaluated between 1978 and 1990 in our data is 73 percent. Occupations 
were chosen for reevaluation by DOT examiners partly on the expectation that their content had changed. Hence, 
this is not a random sample. We assume that occupations that were not revised between the 1977 and 1991 DOT 
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Table VI presents three estimates for each task measure. The first column of each panel presents a 

bivariate regression of the within-occupation change in task content on occupational computerization and 

a constant. These estimates provide striking confirmation of the predicted relationships between 

computerization and task change. Occupations making relatively large increases in computer use saw 

relatively greater increases in labor input of nonroutine cognitive analytic and interactive tasks and larger 

declines in labor input of routine cognitive skills. Each of these relationships is significant at the 10 

percent level or greater, and is of sizable magnitude: for all three cognitive task measures, the 

computerization variable more than fully accounts for the observed change in occupational task input. 

Only in the case of routine manual tasks, where the point estimate is close to zero, do we fail to find the 

expected relationship.  

To examine whether intra-occupational task changes are implicitly captured by shifts in the 

educational and gender distribution of employees within an occupation, we add controls for the 

contemporaneous change in the percentage of workers in an occupation who are college graduates, high 

school graduates and females. 24 As is visible in specifications 2 and 3, the relationship between 

computerization and within-occupation task change is surprisingly insensitive to these controls. In fact, 

standard measures of educational and gender composition are poor proxies for changes in job tasks 

observed by DOT examiners. In net, these findings demonstrate that shifts in job content away from 

routine tasks and toward nonroutine cognitive tasks are a pervasive feature of the data and are 

concentrated in industries and occupations that adopted computer technology most rapidly. 

VI.  QUANTIFYING THE MAGNITUDE OF TASK STRUCTURE CHANGES 
 

What is the economic significance of the change in the tasks performed by the U.S. labor force during 

the last three decades? The answer is not immediately apparent since units of task input do not have a 

                                                                                                                                                                    
experienced no task change. Provided that these occupations did not experience offsetting shifts, our approach will 
provide a lower bound on the extent of task change.  
24 For consistency of measurement, we employ CPS computerization, education and gender means by occupation for 
1984 to 1997. We cannot perform an analogous exercise using the NIPA investment measures since they are not 
available for occupations. 
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familiar scale. To quantify task shifts in concrete economic terms, we draw together task changes within 

industries, education groups, and occupations to calculate their potential contribution to the demand for 

college educated labor during 1970 to 1998. This analysis proceeds in three steps.  

We begin by estimating a “fixed coefficients” model of education requirements in industries and 

occupations as a function of their task inputs:  

(17) . j
k
j

k
k T επα +⋅+= ∑

=

4

1
jShare College

In this equation,  is the college-equivalent share of employment (in FTEs) in industry or 

occupation  at the midpoint of our samples, and the  measure industry or occupation task input in 

centiles during the same period.25 The coefficients, 

jShare College

j sT k
j '

kπ̂ , obtained from (17) provide an estimate of college-

equivalent labor demand as a function of industry or occupation task inputs. We estimate this model 

separately for industry and occupation task demands, using employment data from our CPS samples from 

1980 and 1984 paired to the 1977 DOT job task measures.26  

We refer to equation (17) as a fixed coefficients model because it neglects the impact of task prices 

on task demands – or equivalently, assumes that the elasticity of substitution between college and non-

college equivalent workers is zero. This is an imperfect approximation: if the market price of nonroutine 

relative to routine tasks has risen, this calculation will understate demand shifts favoring nonroutine tasks 

and, by implication, college graduate employment. 

The second step of our methodology is to translate task shifts into predicted changes in college 

employment. We first assemble changes in our four key task measures over 1970 to 1998, . We 

then apply these task shift measures to the “fixed coefficients” estimated from equation (17) to calculate 

kT 19981970−∆

                                                   
25 We follow Autor, Katz and Krueger [1998] and Murphy, Romer and Riddell [1998] in defining college equivalent 
workers as all those with a college degree or greater plus half of those with some college. Results using exclusively 
college graduates are quite similar. 
26 The industry task demand model is estimated using the 1980 MORG employment data, which is at the mid-point 
of our sample. The occupation task demand model is estimated using the 1984 CPS sample, which is at the mid-
point of our occupation sample. For completeness, estimates of equation (17) also control for input of nonroutine 
manual tasks. Inclusion or exclusion of this covariate has no substantive impact.  
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(18) . k

k
k T 19981970

4

1
19981970

~Share College~
−

=
− ∆⋅=∆ ∑π

Here,  is the change in the college share of aggregate employment predicted by task 

shifts over 1970–1998. The intuition for this calculation is that industries and occupations that are high in 

nonroutine cognitive task input, and low in routine manual and routine cognitive task input, employ 

college graduates relatively intensively. Consequently, secular increase in nonroutine cognitive task input 

and declines in nonroutine cognitive and manual task input over 1970–1998 will cause equation (18) to 

predict corresponding growth in the college graduate share of aggregate employment. 

19981970Share College~
−∆

Table VII summarizes the changes in job task input due to cross-occupation (extensive margin) and 

within-occupation (intensive margin) shifts documented by our earlier analyses. Panel A presents 

observed economy-wide shifts in task input during the period 1970 to 1998. Panel B presents analogous 

numbers where in place of observed task changes, we tabulate changes in task input predicted by 

computerization. Specifically, we use estimates of equations (14)–(16), corresponding to the models in 

Tables IV–VI, to calculate the predicted mean change in each task measure due to contemporaneous 

industry or occupation computerization. A limitation of this approach is that it treats computerization as 

an exogenous determinant of industry and occupation task change. Since, as stressed above, we view 

computer adoption and task change as simultaneously determined, we view this exercise as primarily 

illustrative. 

We implement these calculations in panels C and D. Panel C uses equation (18) to estimate the extent 

to which rising input of nonroutine tasks and declining input of routine tasks raised the college share of 

aggregate employment over 1970–1998. As seen in columns 1–4, observed cross-occupation (extensive 

margin) task changes raised college employment by 2.1 percentage points per decade between 1970 and 

1998. Three-quarters of this contribution (1.5 percentage points) is due to shifts favoring nonroutine 

cognitive tasks. The remainder is explained by shifts against routine cognitive and manual tasks.  

Columns 5–7 of perform analogous calculations for 1980 to 1998. Here we add within-occupation 

(intensive) margin task change for 1977 to 1991. In net, shifts favoring nonroutine over routine tasks 
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contributed 2.5 percentage points growth per decade to college-equivalent employment over these 18 

years.27  

We next estimate the contribution of task changes attributable to computerization to growth in college 

graduate employment. These estimates, shown in panel D, implement equation (18) using the within-

industry and within-occupation task shifts predicted by computerization (panel B). The estimates of the 

“computer-induced” changes in college employment are comparable in magnitude to, and in some cases 

larger than, the analogous estimates based on observed task inputs. We find, for example, that computer-

induced task changes along the extensive margin contributed 1.2 percentage points per decade to growth 

in college employment during 1970 to 1998, and 2.2 percentage points during 1980 to 1998. Adding 

intensive margin task changes raises this estimate considerably. In net, we estimate that task shifts 

attributable to computerization increased college employment by 3.7 percentage points per decade from 

1980 to 1998.  

The final step of our estimation is to benchmark employment changes induced by shifting task 

demands against conventional estimates of demand for college labor calculated for the same period. For 

this benchmarking exercise, we use the familiar constant elasticity of substitution (CES) framework with 

two factors of production – college equivalent and high school equivalent labor – to estimate log relative 

demand shifts favoring college labor during 1970 to 1998. Under the assumptions that the economy 

operates on the demand curve and that factors are paid their marginal products, the CES model calculates 

the implied shift in college/noncollege relative demand consistent with observed shifts in relative 

employment and earnings of college versus noncollege workers.28 This procedure also requires us to 

                                                   
27 Observed intensive margin shifts did not contribute to this demand growth, however, due to the offsetting effects 
of routine cognitive and nonroutine analytic tasks. This stands in contrast to within-occupation task changes 
predicted by computerization, where intensive margin shifts are economically large. 
28 The demand model is ρρρ αα 1

t ]))(1()([Q htttcttt NbNa −+=  where Q  is aggregate output,  are quantities of 
employed college and high school equivalent labor,  are factor-augmenting technological parameters, 

htct NN ,

tt ba , α  is an 
index of the share of work activities allocated to college versus high school labor, and the elasticity of substitution is 
given by )1/(1 ρσ −= . The demand index is )/ln()1(])1/[ln( ttttt baD −+−= σασ α . Katz and Murphy 
[1992], Johnson [1997], Murphy, Romer and Riddell [1999] and Acemoglu [2002] implement similar models. Our 
estimates are based on Table II of Autor, Katz and Krueger [1998] and updated to 1998 (from 1996) for this 
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assume an elasticity of substitution, σ , between college and high school equivalent workers. Following a 

large literature, we use values of σ , ranging from 0 to 2, with a consensus estimate of  4.1=σ . 

Panel E of the table presents the benchmark CES estimates for the period 1970 to 1998. We calculate 

that relative demand for college-educated labor grew rapidly between 1970 and 1998. Using the 

consensus value of 4.1=σ , we estimate that demand for college labor rose by 3.9 log points annually. If 

we instead assume that 0=σ , we obtain a smaller – though still quite rapid – demand shift of 3.3 log 

points annually.29  

In the bottom of panel E, we finally compare our task-based demand estimates to the CES-based 

numbers. To facilitate comparison, we convert predicted changes in the college employment level (panels 

C and D) into changes in log relative college-equivalent/non-college employment. As noted above, this 

task-based calculation ignores wage changes and hence corresponds to an elasticity of substitution of  

0=σ . It is therefore useful to compare the task-based demand estimates to the corresponding CES 

numbers using both the consensus elasticity of 4.1=σ  and the more comparable, albeit less realistic, 

value of 0=σ .  

As is visible in panel E, the task model explains a sizable share – 25 to 65 percent – of the estimated 

growth in college-equivalent/non-college-equivalent demand in each decade. Consistent with the 

accelerating rate of task change shown in Figure I, the smallest share of the overall demand shift is 

explained by task shifts in the 1970s and the largest share in the 1990s.  

Comparing task changes potentially attributable to computerization to the CES demand index for 

these three decades, we find that these extensive margin task changes explain 20 to 25 percent of the 

estimated demand shift for college versus non-college labor during 1970 to 1998. If we focus on only the 

two most recent decades and include both intensive and extensive margin changes, the task model can 

explain a large fraction – 60 to 90 percent – of the estimated increase in relative demand for college 

                                                                                                                                                                    
analysis. Unlike these authors, we also include estimates for σ=0 since our fixed coefficients model incorporates this 
assumption. 
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employment. Notably, almost 40 percent of the computer contribution to rising educational demand in the 

last two decades is due to shifts in task composition within nominally unchanging occupations. 

In net, these illustrative calculations demonstrate that changes in task demands accompanying 

workplace computerization are economically large and – with caveats noted – could have contributed 

substantially to relative demand shifts favoring educated labor in the United States since 1970. 

VII. CONCLUSION 
 

What is it that computers do – or what is it that people do with computers – that appears to increase 

demand for educated workers? This paper formalizes and tests an intuitive answer to this question that has 

been informally articulated by scholars in a number of disciplines over several decades. Computer 

technology substitutes for workers in performing routine tasks that can be readily described with 

programmed rules, while complementing workers in executing nonroutine tasks demanding flexibility, 

creativity, generalized problem-solving capabilities and complex communications. As the price of 

computer capital fell precipitously in recent decades, these two mechanisms – substitution and 

complementarity – have raised relative demand for workers who hold a comparative advantage in 

nonroutine tasks, typically college-educated workers.  

Our task framework emphasizes that the causal force by which advancing computer technology 

affects skill demand is the declining price of computer capital – an economy-wide phenomenon. We 

developed a simple model to explore how this price decline alters task demand within industries and 

occupations. This model predicts that industries that were intensive in labor input of routine tasks in the 

pre-computer era would make relatively larger investments in computer capital. Simultaneously, they 

would reduce labor input of routine tasks, for which computer capital substitutes, and increase demand for 

nonroutine task input, which computer capital complements.  

Employing consistent, representative, time series observations on the task composition of jobs from 

the Dictionary of Occupational Titles, we affirm these predictions across several margins of task change 

                                                                                                                                                                    
29 The estimated demand shift is smaller in the latter calculation because a higher value of σ  places greater weight 
on relative wage changes, and the relative earnings of college graduates rose rapidly after 1980. 
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and estimate that they may have contributed substantially to demand shifts favoring educated labor over 

the past three decades. We also considered several alternative explanations for our findings, most 

significantly the rising human capital and labor force attachment of women. We find that the documented 

tasks shifts, and their associations with the adoption of computer technology, are as evident within 

gender, education and occupation groups as between them. The pervasiveness of these shifts suggests to 

us that changes in job task content – spurred by technological change – may plausibly be viewed as an 

underlying factor contributing to recent demand shifts favoring educated labor.  

[Appendix Tables should precede Data Appendix] 
 

DATA APPENDIX 
 
A.1. Samples used from Current Population Survey and Census of Populations 

To calculate occupational and educational distributions economy-wide and within industries for 1960 
to 1998, we used observations on all non-institutionalized, employed workers ages 18 – 64 from the 
Census PUMS one percent samples for 1960, 1970, 1980, and 1990 [Ruggles and Sobek, 1997] and the 
Merged Outgoing Rotation Groups of the Current Population Survey for the years 1980, 1990, and 1998. 
All individual and industry level analyses are performed using as weights full-time equivalent hours of 
labor supply, which is the product of the individual Census or CPS sampling weight times hours of work 
in the sample reference week divided by 35 and, for Census samples, weeks of work in the previous year. 
Because hours are not reported for the self-employed in the CPS prior to 1994, we assigned self-
employed workers in all CPS samples the average labor hours in their industry-education-year cell. In 
cases where industry hours supplied by education category were unavailable (due to an empty industry-
education-year cell), we assigned weekly hours as the mean of workers’ education-year cells.  

To attain comparable educational categories across the redefinition of Census Bureau’s education 
variable introduced in 1990 in the Census and in 1992 in the CPS, we use the method proposed by Jaeger 
[1997]. In data coded with the pre-1992 education question (Census PUMS 1960, 1970, and 1980, and 
CPS MORG files 1980 and 1990), we defined high school dropouts as those with fewer than 12 years of 
completed schooling; high school graduates as those having 12 years of completed schooling; some 
college attendees as those with any schooling beyond 12 years (completed or not) and fewer than 16 
completed years; and college plus graduates as those with 16 or more years of completed schooling.  In 
data coded with the revised education question (1990 Census PUMS and 1998 CPS MORG file), we 
define high school dropouts as those with fewer than 12 years of completed schooling; high school 
graduates as those with either 12 completed years of schooling and/or a high school diploma or G.E.D.; 
some college as those with some college or holding an Associate’s Degree; and college plus as those with 
a B.A. or higher.  

A.2. Computing DOT Task Means for Census Occupation Categories (COCs) 

To compute DOT Task Means for 1970 CIC Occupations, we used the April 1971 CPS Monthly File 
issued by the National Academy of Sciences [1981] in which experts assigned individual DOT occupation 
codes and associated DOT measures to each of 60,441 workers. Because Census occupation categories 
are significantly coarser than DOT occupation categories, the 411 1970 census occupation codes 
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represented in the 1971 CPS were assigned a total of 3,886 unique 1977 DOT occupations. We used the 
CPS sampling weights to calculate means of each DOT task measure by occupation. Because the gender 
distribution of DOT occupations differs substantially within COC occupation cells, we performed this 
exercise separately by gender. In cases where a COC cell contained exclusively males or females, we 
assigned the cell mean to both genders. This provided a set of 822 DOT occupation means by 1970 COC 
and gender. 

To generate DOT means for 1960 occupations, we developed a crosswalk from the 1970 to 1960 
COC occupational classification schemes using information in Priebe and Greene [1972]. Our crosswalk 
(available on request) provides a set of 211 consistent 1960 – 1970 occupations representing the lowest 
common level of aggregation needed to obtain a consistent series. We applied the 1970 COC means to 
our 1970 Census sample by occupation and gender and calculated weighted gender-occupation means 
across the 211 consistent 1960 – 1970 occupational categories.  

It was not possible to develop a bridging crosswalk between 1970 and 1980 COC occupations due to 
the substantial differences between these classifications. Instead, we employed a Census sample prepared 
for the Committee on Occupational Classification and Analysis chaired by Donald Treiman and provided 
to us by Michael Handel. This file contains 122,141 observations from the 1980 Census that are 
individually dual coded with both 1970 and 1980 COC occupation codes based on occupational and other 
demographic information supplied by Census respondents. To calculate DOT means by 1980 occupation, 
we merged the 1970 COC-DOT means (above) to the Treiman file by gender and 1970 COC occupation, 
achieving a 97 percent match rate. We appended to the Treiman file consistent occupation codes for the 
years 1980 to 1998 developed by Autor, Katz and Krueger [1998], and calculated weighted means of each 
DOT measure within occupation-gender categories. This yielded DOT means by gender for each of 485 
DOT occupations.  

A.3. Computing DOT Task Means by Consistent 1960 - 1998 Industry 

To compute DOT task means overall, by industry, and by industry-education cell for 1960 – 1998, we 
assigned the consistent DOT occupational task means for 1960 – 1998 by gender and occupation to each 
observation in our Census and CPS samples for 1960 – 1998. Using labor supply in FTEs as weights, we 
calculated means of each DOT measure for each occupation-industry-education-year cell. These means 
provide the primary outcome measures for our analysis. To attain compatibility between changing Census 
Industry Codes for 1960 – 1998, we use a crosswalk developed by Autor, Katz, and Krueger [1998] 
providing140 consistent CIC industries spanning all sectors of the economy. This crosswalk includes all 
CIC industries and attains consistency by aggregating where necessary to the lowest common level of 
consistent industry definition among 1970, 1980 and 1990 CIC standards. 

A.4. Composite Task Indicators from the DOT 

To verify that our results are robust to plausible alternative selections of DOT variables, we formed 
composite indicators of our intended constructs using Principal Components Analysis. We chose a short 
list of alternative DOT variables that appeared relevant to each of our conceptual categories. These 
choices are: Non-Routine Analytic Tasks: GED-MATH, GED-REASON, NUMBER, MVC; Non-
Routine Interactive Tasks: DCP, GED-LANGUAGE, DEPL, VARCH; Routine Cognitive Tasks: STS, 
COLORDIS, REPCON, AND VOCPREP; Routine Manual Tasks: FINGDEX, MOTOR, FORM, 
MANUAL. Definitions and representative examples of these variables are found in U.S. Department of 
Labor [1972]. Using 1980 employment as weights, we performed principle components analysis for each 
set of variables to identify the linear combinations that maximized common variation subject to the 
constraint that the sum of squared vector weights is equal to one. In each case, we used the first principal 
component.  
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A.5. Calculating DOT Quantiles 

To convert DOT measures into percentiles of the 1960 task distribution, we used DOT 1977 task 
measures paired to the 1960 Census to form an employment weighted empirical cumulative distribution 
function of task input for each task measure across 1,120 industry-education-gender cells: 140 industries, 
2 gender, and four education levels (high school dropout, high school graduate, some college, and college 
graduate). We applied a small amount of interpolation to remove flat spots in the distribution. We 
inverted this empirical distribution and applied it to all DOT task measures in subsequent years by 
industry-education-gender and year. These centile values are the unit of measure for all later analyses. A 
limitation of this methodology is that DOT values after 1960 may potentially lie outside the support of the 
1960 distribution, leading to truncation. In practice, this issue affects at most 4 percent of the distribution 
of each task in any year. An earlier version of this paper [Autor, Levy and Murnane, 2001] employed raw 
DOT scores rather than the percentile measures used here. Results were qualitatively identical. 

A.6. Calculating Within-Occupation Changes in DOT Task Measures: 1977 – 1991 

To measure within-occupation changes in task content, we employed the 1991 Revised Fourth 
Edition of the Dictionary of Occupational Titles, available in electronic form from the National Academy 
of Sciences [1981]. Based on a study of select industries to determine which jobs had undergone the most 
significant occupational changes since the 1977 publication of the DOT 4th edition, DOT analysts 
introduced, revised, and eliminated occupational definitions for occupations that were observed to have 
most substantively changed between 1977 and 1991. A total of 2,452 occupations were reviewed, 
updated, or added; 646 nominal titles were revised; 136 titles were combined; and 75 were deleted. To 
provide a conservative measure of total task change, we assume that any occupation that was not revised 
in the 1991 DOT experienced no task change. 

We used documentation from the North Carolina Employment Security Commission [1992a, 1992b] 
to construct a crosswalk between the 1991 DOT and 1977 DOT occupation codes. With this crosswalk, 
we applied DOT 1991 task variables to our 1971 CPS file, yielding a match rate of 99.9 percent. Of these 
matched occupations, 73 percent (weighted by employment) had been updated between 1977 and 1991 by 
DOT examiners. We then calculated DOT means by 1970 and 1980 COC occupations and gender using a 
procedure identical to that described in A.3, to obtain 1991 DOT task means for the 1977 occupations. 
The within-occupation variation that we exploit over 1977 – 1991 stems exclusively from re-evaluation of 
occupational content by DOT examiners, rather than from changes in the relative size of DOT sub-
occupations within CIC occupations.  

We assigned the 1977 DOT and 1991 DOT task measures to 470 consistent COC occupations in the 
1984 and 1998 CPS samples (corresponding to the years of our CPS computer measure). As with the 
industry data, we transformed the DOT task measures into percentiles of the base year distribution, in this 
case using occupational employment shares from 1984 to form employment weights.  

A.7. Computer Usage Data from the Current Population Survey 

Industry computer use frequencies were calculated from the October 1984 and 1997 School 
Enrollment Supplements to the Current Population Survey (CPS) as the weighted fraction of currently 
employed workers ages 18 - 65 who answered yes to the question, “Do you use a computer directly at 
work?” within consistent CIC industries. A computer is defined as a desktop terminal or PC with 
keyboard and monitor and does not include an electronic cash register or a hand held data device. To 
calculate these frequencies in 1984 and 1997, 61,712 and 56,247 observations were used, respectively. 

A.8. Computer and Capital Investment Measures from the National Income and Products Accounts 
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We used data on industry capital stocks and flows of equipment, structures, and computers from the 
National Income and Product Accounts [U.S. Department of Commerce, 2002a, 2002b] for the years 
1950 – 1998. All NIPA stock and investment variables are measured in real 1996 dollars. Investment 
variables measure cumulated real investment in the relevant asset over the prior 10 years, except in 1998 
where we use 1.25 times cumulated investment over the previous 8 years. Deflation of NIPA measures is 
performed by the Bureau of Economic Analysis using primarily Producer Price Indexes (PPI’s). PPI’s for 
computer investment are based on quality adjustment, price linking, and hedonic regression methods. As 
denominators for capital/FTE and computer investment/FTE variables, we used Census and CPS samples 
to calculate FTEs by industry by year. Computer investment is calculated as the sum of investment in 
mainframe computers, personal computers, packaged and custom software, printers, terminals, storage 
devices, and other integrated devices. Structures and equipment variables are defined in the NIPA. 

To match CPS and Census data to the NIPA, we used a crosswalk developed by Autor, Katz and 
Krueger [1998] and revised for this analysis to accommodate small changes in the NIPA sector scheme 
made during the recent NIPA revision. The resulting aggregation of NIPA and CIC data contains 47 
consistent industries covering all industrial sectors excluding Government and Private Households, 
spanning 1960 – 1998. Of these 47, we exclude from our analysis agriculture and government dominated 
services (5 NIPA industries).  
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Figure I. 
Trends in Routine and Nonroutine Task Input, 1960 to 1998. 

Figure is constructed using Dictionary of Occupational Titles 1977 task measures by gender and occupation 
paired to employment data for 1960 and 1970 Census and 1980, 1990 and 1998 Current Population Survey (CPS) 
samples. Data are aggregated to 1,120 industry-gender-education cells by year and each cell is assigned a value 
corresponding to its rank in the 1960 distribution of task input (calculated across the 1,120, 1960 task cells). 
Plotted values depict the employment-weighted mean of each assigned percentile in the indicated year. See Table 
I and Appendix Table I for definitions and examples of task variables.
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Figure II. 
Smoothed Differences between the Density of Nonroutine Task Input in 1960 and Subsequent Years

Figure is constructed using Dictionary of Occupational Titles (DOT) task measures by gender and occupation 
paired to employment data from 1960, 1980, and 1998 Census and Current Population Survey samples. Plots 
depict the change in the share of employment between 1960 and the indicated year at each 1960 percentile of 
task input. All series use DOT 1977 data paired to employment data for the indicated year except for series 
marked "1991 task measures," which use task data from 1991 DOT. See Table I and Appendix Table I for 
definitions and examples of task variables. 
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Figure II Continued 
Smoothed Differences between the Density of Routine Task Input in 1960 and Subsequent Years
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· Record-keeping · Forming/testing hypotheses
· Calculation · Medical diagnosis.
· Repetitive customer service · Legal writing.

 (e.g., bank teller) · Persuading/selling.
· Managing others.

Computer impact · Substantial substitution. · Strong complementarities.

· Picking or sorting · Janitorial services
· Repetitive assembly · Truck driving

Computer impact · Substantial substitution · Limited opportunities for 
substitution or complementarity.

Examples

Examples

Table I
Predictions of Task Model for the Impact of Computerization

on Four Categories of Workplace Tasks

Manual tasks

Nonroutine tasksRoutine tasks

Analytic and interactive tasks



All Male Fem All Male Fem All Male Fem All Male Fem All Male Fem

1960 (Census) 50.0 54.6 37.0 50.0 58.4 26.4 50.0 48.6 53.8 50.0 43.2 69.2 50.0 56.5 31.6
1970 (Census) 52.5 57.5 41.5 51.1 61.7 27.5 52.2 49.8 57.5 54.0 44.9 74.4 46.9 54.1 30.8
1970 (Census) 51.9 56.4 41.8 50.7 60.8 28.1 53.1 50.8 58.2 53.5 44.7 73.3 46.2 53.2 30.7
1980 (Census) 54.9 58.2 49.2 55.4 63.3 41.8 52.9 50.0 58.0 55.1 44.6 73.3 44.0 53.2 28.1
1980 (CPS) 53.2 56.6 47.9 53.3 61.4 40.4 51.8 50.0 54.8 53.8 43.3 70.4 44.4 55.0 27.5
1990 (CPS) 56.2 57.4 54.6 58.6 62.7 53.0 48.3 48.1 48.6 52.3 42.8 65.5 41.8 53.1 26.3
1998 (CPS) 58.7 59.3 58.0 62.2 63.9 59.9 44.4 46.6 41.6 49.2 41.5 59.3 41.3 52.6 26.5

Total Btwn Wthn Total Btwn Wthn Total Btwn Wthn Total Btwn Wthn Total Btwn Wthn

1960 - 1970 2.57 1.74 0.83 1.15 -0.34 1.49 2.20 1.14 1.06 4.01 2.39 1.62 -3.03 -2.28 -0.74
1970 - 1980 3.02 1.54 1.48 4.68 0.26 4.42 -0.14 0.33 -0.47 1.63 0.79 0.84 -2.25 -1.00 -1.25
1980 - 1990 2.97 0.92 2.05 5.31 0.52 4.79 -3.48 -1.42 -2.07 -1.47 -0.16 -1.31 -2.58 -1.27 -1.31
1990 - 1998 3.12 0.67 2.45 4.48 0.54 3.94 -4.88 -1.31 -3.57 -3.88 -0.38 -3.50 -0.63 -0.31 -0.31

A. Weighted means of economy wide task input by decade
(percentiles of 1960 task distribution)

4. Routine manual

Table II
Means of Task Input by Decade and Decomposition into Within and Between Industry Components, 1960 - 

1998

B. Decomposition of task shifts into between and within industry components for combined genders
(10 x annual changes in mean task percentile)

1. Nonroutine 
analytic

2. Nonroutine 
interactive 3. Routine cognitive

5. Nonroutine 
manual

     Sources: Dictionary of Occupational Titles 1977, and all employed workers ages 18 - 64, Census IPUMS 1960, 1970, 1980, 
CPS MORG 1980, 1990, and 1998. Samples used for decadal changes in panel B are: 1960-70, 1960 and 1970 Census; 1970-
80, 1970 and 1980 Census; 1980-90, 1980 and 1990 CPS MORG; 1990-98, 1990 and 1998 CPS MORG. Two Census 1970 
samples are used in panels A and B, one coded for consistency with the 1960 Census occupation codes and a second coded for 
consistency with the 1980 Census occupation codes. Data are aggregated to 1,120 industry-gender-education cells by year and 
each cell is assigned a value corresponding to its rank in the 1960 distribution of task input (calculated across the 1,120, 1960 
task cells). Panel A contains the employment-weighted mean of each assigned percentile in the indicated year. Panel B presents 
a decomposition of the aggregate change in task input over the indicated years into within and between industry components for 
140 consistent Census Industry Code (CIC) industries (59 in manufacturing, 81 in nonmanufacturing). See Table I and Appendix 
Table I for definitions and examples of task variables. 



1. 1990-98 2. 1980-90 3. 1970-80 4. 1960-70

∆ Computer use 12.04 14.02 9.11 7.49
1984 - 1997 (4.74) (4.97) (4.17) (5.28)

Intercept 0.07 -0.66 -0.26 -0.55
(1.00) (1.03) (0.86) (1.05)

R2 0.04 0.05 0.03 0.01
Weighted mean ∆ 2.45 2.05 1.48 0.83

∆ Computer use 14.78 17.21 10.81 7.55
1984 - 1997 (5.48) (6.32) (5.71) (6.64)

Intercept 1.02 1.46 2.35 0.10
(1.15) (1.31) (1.17) (1.32)

R2 0.05 0.05 0.03 0.01
Weighted mean ∆ 3.94 4.79 4.42 1.49

∆ Computer use -17.57 -13.94 -11.00 -3.90
1984 - 1997 (5.54) (5.72) (5.40) (4.48)

Intercept -0.11 0.63 1.63 1.78
(1.17) (1.19) (1.11) (0.89)

R2 0.07 0.04 0.03 0.01
Weighted mean ∆ -3.57 -2.07 -0.47 1.06

∆ Computer use -24.72 -5.94 -6.56 4.15
1984 - 1997 (5.77) (5.64) (4.84) (3.50)

Intercept 1.38 -0.16 2.09 0.85
(1.22) (1.17) (0.99) (0.70)

R2 0.12 0.01 0.01 0.01
Weighted mean ∆ -3.50 -1.31 0.84 1.62

     n  is 140 consistent CIC industries. Standard errors are in parentheses. Each column of panels 
A - D presents a separate OLS regression of ten times the annual change in industry-level task 
input between the endpoints of the indicated time interval (measured in centiles of the 1960 task 
distribution) on the annual percentage point change in industry computer use during 1984 - 1997 
(mean 0.193) and a constant. Computer use is the fraction of industry workers using a computer 
at their jobs, estimated from the October 1984 and 1997 CPS samples. Estimates are weighted 
by mean industry share of total employment in FTEs over the endpoints of the years used to form 
the dependent variable. Samples used are Census 1960, 1970, and 1980 and CPS MORG 1980, 
1990, and 1998. See Table I and Appendix Table I for definitions and examples of task variables. 

Table III
Computerization and Industry Task Input, 1960 - 1998,

Dependent Variable: 10 x Annual Within-Industry Change in Task Input, Measured 
in Percentiles of 1960 Task Distribution

D. ∆ Routine manual

A. ∆ Nonroutine 
analytic

B. ∆ Nonroutine 
interactive

C. ∆ Routine 
cognitive



(1) (2) (1) (2) (1) (2) (1) (2)

Log (CI/L) 6.65 6.76 11.59 10.03 -8.27 -8.30 -9.11 -8.20
(4.13) (3.97) (3.21) (3.31) (3.63) (3.26) (2.57) (2.29)
[6.36] [5.90] [3.97] [4.50] [4.74] [3.76] [3.27] [2.86]

Log (KI/L) 1.22 -3.41 -2.93 -2.42
(4.36) (4.58) (4.76) (3.95)
[6.36] [4.45] [7.31] [5.87]

∆ Log(K/L) 0.24 3.01 -1.32 -3.89
(2.35) (2.24) (2.12) (1.92)
[2.36] [2.19] [2.18] [2.38]

1970-80 dummy -0.64 -0.54 1.38 2.49 -0.32 -0.84 0.68 -0.80
(1.08) (1.29) (1.50) (1.62) (1.31) (1.58) (0.96) (1.17)
[1.02] [1.23] [2.07] [2.12] [1.13] [0.93] [0.94] [1.03]

1980-90 dummy -0.34 -0.25 0.58 1.83 -1.62 -2.14 -1.32 -2.90
(1.57) (1.60) (1.81) (1.70) (1.56) (1.86) (1.11) (1.38)
[1.43] [1.67] [1.58] [1.46] [1.33] [1.35] [0.86] [1.07]

1990-98 dummy -1.19 -1.13 -1.91 -0.90 -1.33 -1.71 -1.15 -2.36
(1.55) (1.62) (1.83) (1.70) (1.66) (1.64) (1.32) (1.47)
[1.77] [1.93] [1.85] [1.88] [1.93] [1.63] [0.95] [1.13]

Intercept 8.89 8.23 12.40 11.30 -9.29 -7.09 -9.62 -5.55
(4.08) (4.42) (4.25) (3.59) (4.12) (3.63) (3.14) (2.67)
[5.45] [6.38] [4.76] [4.80] [4.48] [4.36] [3.75] [3.30]

R2 0.06 0.06 0.11 0.12 0.14 0.14 0.20 0.21

1960-70
1970-80
1980-90
1990-98

1.63
0.98
-1.74
-2.82

1.30
-0.20
-2.05
-3.03

1.74
4.59
4.69
3.76

Weighted mean of dependent variable

1.16
1.23
2.07
2.15

Table IV
Computer Investment, Capital Intensity, and Task Input in Three-Digit Industries 1960 - 

1998: Stacked First-Difference Estimates,
Dependent Variable: 10 x Annual Change in Quantiles of Task Measure, Measured in 

Percentiles of 1960 Task Distribution

A. ∆ Nonroutine 
analytic

B. ∆ Nonroutine 
interactive

C. ∆ Routine 
cognitive

D. ∆ Routine
manual

     n =492. Robust standard errors in parentheses are heteroskedasticity consistent and account for 
clustering of errors within 42 consistent NIPA sectors in each decade (168 clusters). Standard errors in 
brackets additionally account for potential serial correlation within sectors (42 clusters). Each column 
presents a separate OLS regression of 10 times annual industry changes in task input on the indicated 
covariates. Sample is 123 consistent CIC industries, with 4 observations per industry. 1960-70 and 1970-
80 changes use Census IPUMS samples, and 1980-90 and 1990-98 use CPS MORG samples. 
Estimates are weighted by mean industry share of total employment (in FTEs) over the endpoints of the 
years used to form the dependent variable. All capital measures are in millions of real 1996 dollars. 
     Log(CI/L) and Log(KI/L) are, respectively, one tenth the log of annual computer investment per FTE 
and total capital investment per FTE between the two end years used to form the dependent variable. 
Means of Log(CI/L)  are -1.08, -0.95, -0.87, and -0.73 in 1960-70, 70-80, 80-90, and 90-98 respectively.  
Means of Log(KI/L) are -0.57, -0.54, -0.54, and -0.52 in the corresponding years. 
    ∆ Log(K/L) is ten times the annual change in log capital/FTE over the two end years used to form the 
dependent variable. Means are 0.43, 0.10, 0.10, and 0.24 in the corresponding years.



12.95 15.97 -15.84 -14.32
(3.68) (4.32) (4.73) (4.73)

Intercept -0.33 1.27 0.38 0.54
(0.77) (0.90) (0.99) (0.99)

Weighted mean task ∆ 2.20 4.39 -2.71 -2.25

4.64 11.92 -2.64 -8.85
(6.07) (8.73) (7.95) (6.76)

Intercept -2.51 -4.39 0.02 1.11
(1.26) (1.82) (1.66) (1.41)

Weighted mean task ∆ -1.61 -2.07 -0.49 -0.62

0.04 13.49 -28.18 -25.50
(4.17) (5.40) (6.13) (6.05)

Intercept -1.49 1.07 1.55 0.48
(0.87) (1.13) (1.28) (1.26)

Weighted mean task ∆ -1.48 3.70 -3.95 -4.49

7.95 18.14 -15.68 -17.77
(5.03) (5.54) (5.27) (5.61)

Intercept -1.88 -0.58 0.35 1.39
(1.05) (1.15) (1.10) (1.17)

Mean task ∆ -0.33 2.96 -2.71 -2.08

1.61 5.57 -0.78 -4.46
(3.42) (3.35) (4.85) (5.70)

Intercept 0.25 0.10 -0.96 -0.12
(0.71) (0.70) (1.01) (1.19)

Weighted mean task ∆ 0.57 2.22 -1.48 -1.98

Explained task ∆ 2.52 3.11 -3.09 -2.79

  Within educ groups (%) 23.7 77.9 91.7 111.1
Between educ groups (%) 76.3 22.1 8.3 -11.1

     n in panels A-E is 140, 139, 140, 140, and 139 consistent CIC industries. Standard errors are in 
parentheses. Each column of panels A - E presents a separate OLS regression of ten times the annual 
change in industry-level task input for the relevant education group (measured in centiles of the 1960 task 
distribution) during 1980 - 1998 on the annual percentage point change in industry computer use during 1984 - 
1997 (weighted mean 0.198) and a constant. Estimates are weighted by mean industry share of total 
employment (in FTEs) in 1980 and 1988. Industries with no employment in the relevant educational category 
in either 1980 or 1998 are excluded. Data sources are CPS MORG 1980 and 1998 and DOT 77 job task 
measures. The 'explained' component in Panel F is the within-industry change in the task measure predicted 
by computerization in regression models in Panel A. See Table I and Appendix Table I for definitions and 
examples of task variables. 

C. Within industry: High school graduates

F. Decomposition into within and between education group components

∆ Computer 
use 1984-1997

∆ Computer 
use 1984-1997

∆ Computer 
use 1984-1997

E. Within industry: College graduates

D. Within industry: Some College

∆ Computer 
use 1984-1997

Table V
Computerization and Industry Task Input 1980 - 1998: Overall and by Education Group,

Dependent variable: 10 x Annual Change in Quantiles of Task Measure, Measured in 
Percentiles of 1960 Task Distribution

1.∆ Nonroutine 
analytic

2.∆ Nonroutine 
interactive

3.∆ Routine 
cognitive

4.∆ Routine 
manual

A. Aggregate within-industry change

∆ Computer 
use 1984-1997

B. Within industry: High school dropouts



(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

∆ Computer 2.94 3.57 4.02 5.70 5.86 7.08 -18.18 -16.56 -18.48 1.74 0.83 0.37
use 84-97 (1.84) (1.92) (2.06) (1.88) (1.97) (2.11) (3.29) (3.41) (3.65) (2.89) (3.01) (3.23)

∆ College grad -4.79 -4.83 -4.47 -4.58 22.59 22.76 -16.07 -16.03
emp. 84-97 (5.54) (5.54) (5.68) (5.67) (9.86) (9.85) (8.70) (8.71)

∆ HS grad 2.83 3.09 -0.19 0.52 16.97 15.86 -10.42 -10.70
emp. 84-97 (3.78) (3.81) (3.88) (3.90) (6.73) (6.77) (5.94) (5.99)

∆ Female -2.37 -6.47 10.14 2.47
emp. 84-97 (3.94) (4.03) (6.99) (6.19)

Intercept -0.92 -0.91 -0.95 -0.46 -0.42 -0.52 0.56 0.14 0.30 0.42 0.70 0.74
(0.40) (0.41) (0.41) (0.41) (0.42) (0.42) (0.71) (0.72) (0.73) (0.63) (0.64) (0.64)

R2 0.01 0.01 0.01 0.02 0.02 0.03 0.06 0.08 0.08 0.00 0.01 0.01

Weighted
mean ∆

-2.76 0.74

     n  is 470 consistent 3-digit Census Occupation Code (COC) occupations. Standard errors are in parentheses. Each 
column presents a separate OLS regression of ten times the annual change in the occupational task measure (measured
in centiles of the 1984 distribution) between the 1977 and 1991 DOT revisions. Computer use, college graduate, high 
school graduate, and female employment shares are measured as ten times the annual change in the relevant measure 
from the 1984 and 1997 CPS. Weighted means are 0.183,  0.017, -0.015, and 0.017 respectively. Omitted education 
categories are some college and high school dropout. Estimates are weighted by the average occupational share of U.S. 
employment in 1984 and 1997. See Table I and Appendix Table I for definitions and examples of task variables. 

-0.39 0.58

Table VI
Computerization and Changes in Job Task Content Within Occupations 1977 - 1991,

Dependent Variable: 10 x Annual Within-Occupation Change in Quantile of Task Measure, Measured 
in Percentiles of 1984 Task Distribution

A. ∆ Nonroutine 
analytic

B. ∆ Nonroutine
interactive C. ∆ Routine cognitive D. ∆ Routine manual



Nonroutine analytic 3.02 2.97 3.12 3.04 3.05 -0.39 2.67
Nonroutine interactive 4.68 5.31 4.48 4.84 4.85 0.58 5.43

Routine cognitive -0.14 -3.48 -4.88 -3.03 -4.26 -2.76 -7.02
Routine manual 1.63 -1.47 -3.88 -1.44 -2.81 0.74 -2.07

Nonroutine analytic 0.84 1.35 2.30 1.55 2.56 0.54 3.10
Nonroutine interactive 1.47 2.36 4.01 2.70 3.16 1.04 4.20

Routine cognitive -1.05 -1.68 -2.86 -1.92 -3.14 -3.32 -6.46
Routine manual -1.15 -1.86 -3.15 -2.12 -2.84 0.32 -2.52

Nonroutine tasks 1.53 1.40 1.63 1.51 1.53 -0.36 0.83
Routine tasks -0.20 0.66 1.17 0.50 0.97 0.27 0.87

All tasks 1.33 2.06 2.80 2.01 2.49 -0.09 2.40

Non routine tasks 0.40 0.65 1.10 0.69 1.41 0.40 1.81
Routine tasks 0.29 0.48 0.81 0.51 0.80 1.04 1.84

All tasks 0.70 1.12 1.91 1.19 2.21 1.44 3.65

σ = 0.0 4.99 2.53 2.25 3.33 2.41
σ = 1.4 3.95 4.65 2.76 3.86 3.81
σ = 2.0 3.50 5.56 2.98 4.09 4.41

Total task ∆ (panel C) 1.23 1.29 1.43 1.31 1.56 -0.06 1.51
Predicted by compu- 0.64 0.70 0.98 0.76 1.39 0.91 2.29

terization (panel D)

Table VII
Shifts in College-Equivalent Labor Demand Implied by Changes in Job Tasks, 1970 - 1998

1. 1970 - 80
extensive

margin

2. 1980 - 90
extensive

margin

3. 1990 - 98
extensive

margin

4. 1970 - 98
extensive

margin

5. 1980 - 98
extensive

margin

6. 1980 - 98
intensive
margin

A. 10 x observed annual changes in DOT task measures 
(percentile changes relative to 1960 task distribution)

NIPA Computer Input Measure CPS Computer Use Measure

D. 10 x annual changes in college-equivalent share of employment in percentage points, 
predicted by impact of computerization on task input (panel B)

Using constant-elasticity of substitution model to estimate changes in college demand

Using task model to predict changes in college demand

NIPA computer investment measure CPS computer use measure

7. 1980 - 98
extensive + 

intensive

B. 10 x Predicted annual changes in DOT task measures
(percentile changes relative to 1960 task distribution)

C. 10 x predicted annual changes in college-equivalent share of employment in percentage 
points, due to observed task shifts (panel A)

E. Estimated log demand shifts for college-equivalent/non-college-equivalent labor 1970 - 1998 
(100 x annual log changes)



Notes to Table VII:

Panel A: 

       Observed extensive margin task shifts are defined as the change in economy-wide input of each 
task (in percentiles of the 1960 task distribution) estimated using DOT 1977 occupational task 
measures applied to Census and CPS samples for 1970 to 1998 and summarized in Table II. 
Intensive margin shifts are measured as change in mean of DOT occupational task input 
(measured in centiles of the 1977 task distribution) between 1977 and 1991 DOT revisions, using 
the 1980 and 1998 occupational distributions of employment from the CPS MORG samples. See 
Table I and Appendix Table I for definitions and examples of task variables. 

Panel B: 

       Predicted task changes are calculated as the weighted mean of the NIPA computer investment 
measure or CPS computer use measure (as noted) multiplied by the coefficient from a regression 
of changes in industry or occupation task input on the relevant computer measure. NIPA 
coefficient estimates correspond to specification (1) of Table IV. CPS extensive margin computer 
task estimates correspond to Panel A of Table V. CPS intensive margin computer task estimates 
correspond to specification (1) of Table VI. (A negligible interaction term is ignored.) 

Panels C and D:

       Implied employment share changes for college-equivalent labor (in percentage points) are 
calculated as the inner product of observed or predicted changes in task input from Panels A and 
B and the coefficient vector from a fixed coefficient model of educational input. For extensive 
margin task shifts, this coefficient vector is estimated from a regression of college equivalent 
employment (in FTEs) in 140 consistent CIC industries on the five DOT measures of industry task 
input (in centiles) and a constant using the 1980 MORG sample. For intensive margin task shifts, 
the coefficient vector is estimated from a regression of college equivalent employment in 470 COC 
occupations on the five DOT measures of occupational task input (in centiles) and a constant 
using the 1984 CPS sample. College-equivalents labor is defined as all workers with college or 
greater education plus half of those with some college. 

Panel E:

       Fixed coefficients log relative demand shifts are calculated as the change in the log ratio of 
college-equivalent/non-college-equivalent employment using the initial (1970, 1980 or 1990) 
college-equivalent equivalent employment share in full-time equivalents and the implied 
percentage point change in this share from Panel D.

       Constant Elasticity of Substitution (CES) Implied relative demand shifts for college-equivalent 
labor are calculated following Autor, Katz, and Krueger [1998] using a CES aggregate production 
function with two inputs, college and high school equivalents, and an elasticity of substitution 
denoted by σ. See Table 2 of Autor, Katz, Krueger for details.



Variable

1. GED Math (MATH)

Mixes and bakes ingredients according to recipes; Sews fasteners and 
decorative trimmings to articles; Feeds tungsten filament wire coils into 
machine that mounts them to stems in electric light bulbs; Operates 
tabulating machine that processes data from tabulating cards into printed 
records; Packs agricultural produce such as bulbs, fruits, nuts, eggs, and 
vegetables for storage or shipment; Attaches hands to faces of watches.

     Source: U.S. Department of Labor, Manpower Administration, Handbook for Analyzing Jobs , Washington DC, 1972.

Measure of routine 
manual tasks.

Appendix 1
Definitions of Task Measures from the 1977 Dictionary of Occupational Titles

Operates a billing machine to transcribe from office records data; Calculates 
degrees, minutes, and second of latitude and longitude, using standard 
navigation aids; Measures dimensions of bottle, using gauges and 
micrometers to verify that setup of bottle-making conforms to manufacturing 
specifications; Prepares and verifies voter lists from official registration 
records.

Lowest level: Adds and subtracts 2-digit numbers; performs operations with 
units such as cup, pint, and quart. Mid-level: Computes discount, interest, 
profit, and loss; Inspects flat glass and compiles defect data based on 
samples to determine variances from acceptable quality limits. Highest level: 
Conducts and oversee analyses of aerodynamic and thermodynamic 
systems... to determine suitability of design for aircraft and missiles. 

Measure of nonroutine 
interactive tasks.

Measure of nonroutine 
analytic tasks.

Measure of routine 
cognitive tasks.

Task interpretation Example tasks from Handbook for Analyzing Jobs

Plans and designs private residences, office buildings, factories, and other 
structures; Applies principles of accounting to install and maintain operation 
of general accounting system; Conducts prosecution in court 
proceedings…Gathers and analyzes evidence, reviews pertinent 
decisions...Appears against accused in court of law; Commands fishing 
vessel crew engaged in catching fish and other marine life.

2. Set Limits, 
Tolerances, or 
Standards (STS)

4. Finger Dexterity 
(FINGDEX)

2. Direction, Control,  
Planning (DCP)

DOT definition

Adaptability to situations 
requiring the precise 
attainment of set limits, 
tolerances, or standards.

General educational 
development, mathematics.

Adaptability to accepting 
responsibility for the 
direction, control, or 
planning of an activity.

Ability to move fingers, and 
manipulate small objects 
with fingers, rapidly or 
accurately.

5. Eye Hand Foot 
Coordination 
(EYEHAND)

Ability to move the hand 
and foot coordinately with 
each other in accordance 
with visual stimuli.

Measure of nonroutine 
manual tasks.

Lowest level: Tends machine that crimps eyelets, grommets; Next level: 
Attends to beef cattle on stock ranch; Drives bus to transport passengers; 
Next level: Pilots airplane to transport passengers; Prunes and treats 
ornamental and shade trees; Highest level: Performs gymnastic feats of skill 
and balance.



1. 1990-98 2. 1980-90 3. 1970-80 4. 1960-70

∆ Computer use 8.21 12.09 6.50 8.57
1984 - 1997 (4.55) (4.55) (4.21) (5.74)

Intercept 0.64 -0.67 0.07 -0.07
(0.96) (0.94) (0.86) (1.14)

R2 0.02 0.05 0.02 0.02
Weighted mean ∆ 2.26 1.67 1.32 1.51

∆ Computer use 9.83 9.93 5.67 10.45
1984 - 1997 (4.39) (4.74) (3.47) (5.00)

Intercept 0.54 0.53 1.42 0.00
(0.92) (0.98) (0.71) (1.00)

R2 0.04 0.03 0.02 0.03
Weighted mean ∆ 2.48 2.45 2.51 1.93

∆ Computer use -13.40 -4.59 -4.76 -7.02
1984 - 1997 (4.44) (5.58) (3.70) (4.75)

Intercept 0.23 -0.39 0.56 -0.05
(0.94) (1.16) (0.76) (0.95)

R2 0.06 0.00 0.01 0.02
Weighted mean ∆ -2.41 -1.28 -0.35 -1.35

∆ Computer use -23.17 -15.27 -13.25 3.98
1984 - 1997 (6.99) (6.86) (5.34) (4.13)

Intercept -0.52 -0.80 1.97 1.35
(1.47) (1.42) (1.09) (0.82)

R2 0.07 0.03 0.04 0.01
Weighted mean ∆ -5.09 -3.76 -0.56 2.09

     n  is 140 consistent CIC industries. Standard errors are in parentheses. Each column of panels A - D 
presents a separate OLS regression of ten times the annual change in industry-level task input between the 
endpoints of the indicated time interval (measured in centiles of the 1960 task distribution) on the annual 
percentage point change in industry computer use during 1984 - 1997 (mean 0.193) and a constant. 
Computer use is the fraction of industry workers using a computer at their jobs, estimated from the 
October 1984 and 1997 CPS samples. Estimates are weighted by mean industry share of total 
employment in FTEs over the endpoints of the years used to form the dependent variable. Samples used 
are Census 1960, 1970, and 1980 and CPS MORG 1980, 1990, and 1998. See the Data Appendix for 
details on construction of the composite task variables. See Table I for definitions and examples of task 
variables. 

Appendix 2
Computerization and Industry Task Input, 1960 - 1998: Using Composite Task Measures,

Dependent Variable: 10 x Annual Within-Industry Change in Task Input, Measured in 
Percentiles of 1960 Task Distribution

D. ∆ Routine manual

A. ∆ Nonroutine analytic

B. ∆ Nonroutine 
interactive

C. ∆ Routine cognitive
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