
The Term Structure of Real Rates and

Expected Inflation∗

Andrew Ang†

Geert Bekaert‡

Columbia University and NBER

First Version: 9 June, 2003

This Version: 26 September, 2003

∗We especially thank Min Wei for phenomenal research assistance. We thank Kobi Boudoukh,

Qiang Dai, Rob Engle, Martin Evans, Refet Gürkaynak, Monika Piazzesi and Ken Singleton for helpful

discussions and seminar participants at the Washington University-St Louis Federal Reserve conference

on State-Space Models, Regime-Switching and Identification, the 4th Empirical Finance Conference

at the LSE, Columbia University, the Federal Reserve Board of Governors, Indiana University, NYU,

the University of Michigan, the University of Gent and USC. Andrew Ang and Geert Bekaert both

acknowledge funding from the National Science Foundation.
†Columbia Business School, 805 Uris Hall, 3022 Broadway, New York, NY 10027; ph: (212) 854-

9154; fax: (212) 662-8474; email: aa610@columbia.edu; www.columbia.edu/∼aa610.
‡Columbia Business School, 802 Uris Hall, 3022 Broadway, New York, NY 10027; ph: (212) 854-

9156; fax: (212) 662-8474; email: gb241@columbia.edu; www.gsb.columbia.edu/faculty/gbekaert/



Abstract

Changes in nominal interest rates must be due to either movements in real interest rates or

expected inflation, or both. We develop a term structure model with regime switches, time-

varying prices of risk and inflation to identify these components of the nominal yield curve.

We find that the unconditional real rate curve is fairly flat at 1.44%, but slightly humped. In

one regime, the real term structure is steeply downward sloping. Real rates (nominal rates) are

pro-cyclical (counter-cyclical) and inflation is negatively correlated with real rates. An inflation

risk premium that increases with the horizon fully accounts for the generally upward sloping

nominal term structure. We find that expected inflation drives about 80% of the variation of

nominal yields at both short and long maturities, but during normal times, all of the variation of

nominal term spreads is due to expected inflation and inflation risk.



1 Introduction

The real interest rate and expected inflation are two key economic variables; yet, their dynamic

behavior is essentially unobserved. A large empirical literature has yielded surprisingly few

generally accepted stylized facts. For example, whereas theoretical research often assumes

the real interest rate to be constant, empirical estimates for the real interest rate process vary

between constancy (Fama, 1975), mean-reverting behavior (Hamilton, 1985), or a unit root

process (Rose, 1988). There seems to be more consensus on the fact that real rate variation,

if it exists at all, should only affect the short end of the term structure but that the variation

in long-term interest rates is primarily affected by shocks to expected inflation (see, among

others, Mishkin, 1990; Fama, 1990). However, Pennacchi (1991) finds the exact opposite result.

Another phenomenon that has received wide attention is the Mundell (1963) and Tobin (1965)

effect: the correlation between real rates and (expected) inflation appears to be negative (see,

for example, Marshall, 1992).

In this article, we establish a comprehensive set of stylized facts regarding real rates,

expected inflation and inflation risk premiums, and their role in determining the nominal

term structure in the US. To infer the behavior of these variables, we use a model with

three distinguishing features. First, we specify a no-arbitrage term structure model with

both (nominal) bond yields and inflation data to efficiently identify the real and nominal

term structure. Second, our model accommodates regime-switching (RS) behavior but still

produces closed-form solutions for the term structure of interest rates. We go beyond the extant

RS literature by attempting to identify the real and nominal sources of the regime switches.

Third, the model accommodates flexible time-varying risk premiums crucial for matching time-

varying bond premia (see, for example, Dai and Singleton, 2002). These features allow our

model to produce an excellent fit to the dynamics of inflation and nominal interest rates.

This paper is organized as follows. We briefly describe the related literature in Section 2.

Section 3 develops the model, including the derivation of the bond prices implied by the RS term

structure model. In Section 4, we briefly describe how to estimate the model with maximum

likelihood and detail the specification tests we use to select the best model. In Section 5, we

conduct various specification tests and analyze the parameter estimates of the best model. We

find that the best-performing model has separate and independent real and inflation regimes.

Surprisingly, the inflation process only has a regime-dependent drift; we cannot reject that

inflation volatility remains the same across inflation regimes. In contrast, the real factor regimes

feature a low mean and low volatility in one regime, and a high mean and high volatility in the

other regime.
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Section 6 contains the main economic results which can be summarized as follows:

1. Unconditionally, the term structure of real rates assumes a fairly flat shape around 1.44%,

with a slight hump, peaking at a 1-year maturity. However, there are some regimes in

which the real rate curve is downward sloping.

2. Real rates are quite variable at short maturities but smooth and persistent at long

maturities. There is no significant real term spread.

3. The real short rate is negatively correlated with both expected and unexpected inflation,

but the statistical evidence for a Mundell-Tobin effect is weak.

4. The model matches an unconditional upward-sloping nominal yield curve by generating

an inflation risk premium that is increasing in maturity.

5. Nominal interest rates (spreads) do not behave pro-cyclically (counter-cyclically) across

the business cycle but our model-implied real rates do.

6. The decompositions of nominal yields into real yields and expected inflation at various

horizons indicate that variation in inflation compensation (expected inflation and inflation

risk premiums) explains about 80% of the variation in nominal rates at both short and long

maturities.

7. Inflation compensation only explains about 50% of the variation in nominal term spreads

at short horizons, but is the main determinant of nominal interest rate spreads at long

horizons.

Finally, Section 7 concludes.

2 Related Literature

To better appreciate the relative contribution of our article, we link it to three distinct literatures:

(i) the extraction of real rates and expected inflation from nominal yields and realized inflation

or inflation forecasts, (ii) the theoretical term structure literature and equilibrium affine models

in finance and (iii) the empirical regime-switching literature on interest rates and inflation.

Our approach for identifying real rates and expected inflation differs substantially from the

previous literature. First, we develop a no-arbitrage term structure model and use (nominal)

term structure data, with inflation data, to identify the real and expected inflation components

of nominal interest rates. In contrast, an early literature uses neither term structure data, nor
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a pricing model to obtain estimates of real rates and expected inflation. Mishkin (1981) and

Huizinga and Mishkin (1986) simply project ex-post real rates on instrumental variables. This

approach is very sensitive to measurement error and omitted variable bias. The measurement

error may spuriously lead to a Mundell-Tobin effect because expected inflation is computed as

the difference between nominal and real rates.

Other authors, such as Hamilton (1985), Fama and Gibbons (1982) and Burmeister et al.

(1986) use low-order ARIMA models and identify expected inflation and real rates under the

assumption of rational expectations using a Kalman filter. Whereas implicit assumptions on

the time-series process of the forcing variables in the model and rational expectations are still

essential to obtain identification in our model, the use of term structure information with time-

varying risk premiums to identify the unobserved components is likely to significantly increase

efficiency and mitigate peso problems.

Second, our model accommodates regime switches but still produces closed-form solutions

for the term structure of interest rates. The empirical evidence for RS behavior in interest

rates is very strong and confirmed in many articles (see, among many others, Hamilton, 1988;

Gray, 1996; Sola and Driffill, 1994; Bekaert et al., 2001; Ang and Bekaert, 2002a). However,

articles that have used term structure information and a pricing model to obtain estimates of real

rates and expected inflation have so far ignored RS behavior. This includes papers by Pennacchi

(1991), Sun (1992) and Boudoukh (1993) for US data and Barr and Campbell (1997), Remolona

et al. (1998), Evans (1998), Risa (2001), and Buraschi and Jiltsov (2002) for UK data. This

is curious, because the early literature implicitly demonstrated the importance of accounting

for regime or structural changes. For example, the Huizinga-Mishkin (1986) projections are

unstable over the 1979-1982 period, and the slope coefficients of regressions of future inflation

onto term spreads in Mishkin (1990) are substantially different pre- and post-1979 (see also

Goto and Torous, 2002).

Finally, there are a number of articles that have formulated term structure models accom-

modating regime switches (see Naik and Lee, 1994; Hamilton, 1988; Boudoukh et al., 1999;

Bekaert et al., 2001; Bansal and Zhou, 2002; Bansal et al., 2003; Dai et al., 2003). All of these

models are concerned only with nominal interest rate data. Veronesi and Yared (1999) consider

real and nominal yields, but their model is a more restrictive formulation than we propose and

only allows regime-switching in the long-term mean. The tractability of our proposed model

also simplifies estimation in that the likelihood function can be derived and simulation-based

estimation methods are unnecessary.

Evans (2003) is most closely related to our article. He formulates a dynamic pricing model

with regime switches for UK real and nominal yields and inflation. Evans assumes that real
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yields are observable. However, in the US, real bonds (Treasury Income Protection Securities

or TIPS) have traded only post-1997 and so real rates are unobservable over almost the whole

interest rate history of the US.1 The TIPS market also had considerable liquidity problems

during the first few years. Evans (2003) does not separate regimes in real term structure

variables and inflation, or accommodate time-varying prices of risk. The most general model

we estimate has two separate regime variables each having two possible realizations: the first

variable is a factor affecting the real term structure, the second regime variable only affects

inflation. Hence, there are four regimes in total. Earlier work has stressed either inflation

regimes (Evans and Wachtel, 1993; Evans and Lewis, 1995) or real interest rate regimes (Garcia

and Perron, 1996). In this article, we separately identify the contributions of real and nominal

factors to regime changes.

3 The Model

We derive a parsimonious model that accommodates regime-switches and is consistent with

the dynamics of both term structure and inflation data. From the term structure literature (see,

for example, Dai and Singleton, 2000), affine term structure models require three factors to

match term structure dynamics. We start with a 3-factor representation of yields, but, while

most term structure studies use only unobservable factors, we incorporate an observed factor,

inflation, which switches regimes. Ang and Piazzesi (2002) show that incorporating macro

factors improves the ability of standard term structure models to fit the dynamics of yields. A

second factor represents time-variation in the price of risk. Fisher (1998), Dai and Singleton

(2002) and Cochrane and Piazzesi (2002) demonstrate that, in the context of affine models,

time-varying prices of risk succesfully capture the dynamics of term premia. Finally, a third

factor represents a latent RS term structure factor.

In our first model (Section 3.1 and 3.2), we accommodate two possible regimes, as is

customary in the literature on regime switches in nominal short rates (see, for example,

Hamilton, 1988; Gray, 1996; Ang and Bekaert, 2002a). However, we also consider models

with separate regimes for inflation and a real factor (Section 3.3). Sections 3.4 and 3.5 explore

the term structure and inflation risk premium implications of the models.

1 Even for the UK, observable real interest rates are only available post-1982.
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3.1 The Benchmark Regime-Switching Model

Let the state variablesXt = (qt ft πt)
′, whereqt andft are unobserved state variables andπt is

observable inflation, follow the RS process:

Xt+1 = µ(st+1) + ΦXt + Σ(st+1)εt+1, (1)

wherest indicates the regime and:

µ(st) =




µq

µf (st)

µπ(st)


 , Φ =




Φqq 0 0

Φfq Φff 0

Φπq Φπf Φππ


 , Σ(st) =




σq 0 0

0 σf (st) 0

0 0 σπ(st)


 . (2)

While the conditional mean and volatility offt andπt switch regimes, the conditional mean

and volatility of qt does not. The reduced-form process for inflation is quite complex and

involves moving average terms. This is important because the autocorrelogram of inflation

is empirically well approximated by an ARMA process. Note that the mean-reversion of all

variables inΦ is not regime-dependent.

The real short rate is affine in the state variables:

rt = δ0 + δ′1Xt. (3)

Theqt parameter inXt also determines the price of risk (see below). This means that the time-

varying price of risk can directly influence the real rate as it would in any equilibrium model

with growth. The model also allows for arbitrary correlation between the real rate and inflation.

Note that sinceft andπt in Xt change across regimes, the real rate process (3) also inherits the

RS structure of the state variables.

The regime variablest = 1, 2 follows a Markov chain with transition probability matrix:

Π =

[
p11 = Pr(st = 1|st−1 = 1) p12 = 1− p11

p21 = 1− p22 p22 = Pr(st = 2|st−1 = 2)

]
. (4)

We denote the stable probabilities of the Markov chain implied byΠ asπi = Pr(st = i).

Finally, we specify the real pricing kernel to take the form:

m̂t+1 = log M̂t+1 = −rt − 1

2
λt(st+1)

′λt(st+1)− λt(st+1)
′εt+1 (5)

where the prices of riskλt(st) are given by:

λt(st) = (γt λ(st)
′)′

γt = γ0 + γ1qt

= γ0 + γ1e
′
1Xt, (6)
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whereei represents a vector of zero’s with a 1 in theith position andλ(st) = (λf (st) λπ(st))
′. In

this formulation, the prices of risk offt andπt change across regimes. The variableqt controls

the time-variation of the price of risk inγt in (6) and does not switch regimes.2

Our model significantly extends several existing specifications. Naik and Lee (1994) and

Land́en (2000) present models with constant prices of risk and regime switches where bond

prices have affine solutions. Veronesi and Yared (1999) use Liptser and Shiryaev (1979)

filtering techniques to obtain closed-form solutions for bond prices, but they can only handle

switching in the meanµ(st). Bansal and Zhou (2002) and Evans (2003) allow switching in

the mean reversion parameters, covariances and means, but both articles use linearizations to

obtain approximate analytical bond prices. Bansal and Zhou (2002) also use a discrete-time

Cox-Ingersoll-Ross (1985) process with only regime-dependent constant prices of risk, unlike

the more flexible, time-varying price of riskqt our model employs. In Section 3.4, we show

that our specification produces closed-form solutions for bond prices, enabling both efficient

estimation and the ability to fully characterize real and nominal yields at all maturities without

discretization error.

The model has two main caveats. First, Gray (1996), Bekaert et al. (2001) and Ang and

Bekaert (2002a) show that mean-reversion of the short rate is significantly different across

regimes. Second, Ang and Bekaert (2002b) show that only time-varying transition probabilities

(for example, used by Diebold et al., 1994), can reproduce the non-linearities in the short rate

drift and volatility functions estimated by Aı̈t-Sahalia (1996), Stanton (1997) and others. If we

relax both these constraints, closed-form bond prices are no longer available. While these are

important concerns, the numerical difficulties in computing bond prices for these more complex

specifications are formidable and the use of term structure information is critical in identifying

both the inflation and real rate components in interest rates and the RS parameters. Moreover,

our model with a latent term structure factor and a time-varying price of risk, combined with

the RS means and variances, is very rich and cannot be identified from inflation and short rate

series alone.

An alternative formulation of a RS term structure model by Dai, Singleton and Wang

(2003) incorporates regime-dependent mean reversions and state-dependent probabilities under

the real measure. However, for bond pricing under the risk-neutral measure, both the mean

reversion and the transition probabilities must be constants, exactly as in our formulation.

These restrictions must be imposed to obtain closed-form bond prices (see Dai and Singleton,

2003). While it is theoretically possible to allow time-varying transition probabilities under

2 Allowing γt to switch across regimes results in the loss of closed-form solutions for bond prices, which we

detail in Section 3.4.
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the real measure, our full specification (below) allows for separate regimes in both a real

factor and inflation, making state-dependent transition probabilities computationally intractable.

(Dai, Singleton and Wang allow for only two regimes.) Furthermore, in their specification,

the evolution of the factors in (1) depends onst rather thanst+1 and they parameterize the

factor prices of risk in the pricing kernel in (5) to also depend onst, rather thanst+1. In

our model, by specifying the dependence onst+1, the conditional variance of our factors

embeds a jump term reflecting the difference in conditional means in the two regimes (see

Gray, 1996). In the Dai-Singleton-Wang parameterization, the differences in means across the

regimes of the factors in (1) do not enter the conditional variances of the factors. Our results

(below) show that the conditional means of inflation significantly differ across regimes, while

the conditional variances do not, making the regime-dependent means an important source of

inflation heteroskedasticity.

In an extension, detailed in Appendix A, we also consider an alternative RS model with an

additional unobserved factor representing expected inflation, which generalizes classic ARMA-

models of real rates and expected inflation. To gauge the actual contribution of regime switches,

we also estimate single-regime counterparts to the benchmark and stochastic expected inflation

models.

3.2 Identification

In a single-regime setting, Dai and Singleton (2000) show that many term structure models with

unobserved state variables result in observationally equivalent systems. Hence, restrictions must

be imposed on the parameters for identification. In a single-regime Gaussian model, Dai and

Singleton show that identification can be accomplished by setting the conditional covariance to

be a diagonal matrix and letting the correlations enter through the feedback matrix (Φ), which

is parameterized to be lower triangular, which we do here. Note that the process for inflation is

influenced by both past inflation, time-varying prices of risk (throughqt) and the term-structure

(throughft).

Sinceqt and ft are latent variables, they can be arbitrarily scaled. Hence, we setδ1 =

(δq δf δπ)′ = (1 1 δπ)′ in (3). Settingδq andδf to be constants allowsσq andσf to be estimated.

Becauseqt is an unobserved variable, estimatingµq in (2) is equivalent to allowingγ0 in (6) or

δ0 in (3) to be non-zero. Hence,qt must have zero mean for identification. Therefore, we set

µq = 0, sinceqt does not switch regimes. Similarly, because we estimateλf (st), we constrain

ft to have zero mean.

Because we only have nominal bonds, it is impossible to identify the instantaneous inflation
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risk premium in our model. Articles focusing on US data that attempt to identify the

instantaneous inflation risk premium, such as Veronesi and Yared (1999) and Buraschi and

Jiltsov (2002), obtain identification through the restrictions imposed by economic models.

Therefore, we follow the literature and setλπ(st) = 0, so that the instantaneous inflation risk

premium is zero. However, because inflation and real rates are correlated, long-term bond yields

may still embed inflation risk, as we show below.3

The resulting model is theoretically identified from the data but we impose two additional

restrictions on the benchmark model. First, we setΦ12 = 0 in (2). With this restriction, there

are, in addition to inflation factors, two separate and easily identifiable sources of variation

in interest rates: a regime-switching factor and a time-varying price of risk. Identifying their

relative contribution to interest rate dynamics becomes easy with this restriction and it is not

immediately clear how a non-zeroΦ12 would help enrich the model. Second, we setγ0 = 0

in (6) and instead estimate the RS price of riskλf (st). Theoretically, affine models allow the

identification ofN − 1 prices of risk with the use ofN zero-coupon bonds, but empirically,

it is very difficult to accurately pin down more than one constant price of risk (see Dai and

Singleton, 2000).

To obtain some intuition on identification, consider a two period real bond. The 2-period

term spread in an affine model is given by:

ŷ2
t − rt =

1

2
(Et(rt+1)− rt)− 1

4
vart (rt+1) +

1

2
covt (m̂t+1, rt+1) . (7)

The first term(Et(rt+1) − rt) is an Expectations Hypothesis (EH) term, the second term

vart (rt+1) is a Jensen’s inequality term and the last term, covt(m̂t+1, rt+1), is the risk premium.

In the single-regime affine setting equivalent to our model, this term is given by:

covt(−m̂t+1, rt+1) = γ0σq + λfσf + γ1σqqt, (8)

which shows that the effects ofγ0 andλf are indistinguishable as they both act as constant

terms.

The RS model has a considerably more complex expression for the 2-period real term

3 The literature using UK indexed gilts often attempts to estimate the instantaneous inflation risk premium.

While we cannot directly estimate the instantaneous inflation risk premium due to the lack of indexed bonds in the

US, we did estimate models with (fixed) slightly negativeλπ(st) parameters. These models simply yield lower

real rates and higher inflation premiums than the results we report.
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spread:

ŷ2
t (i)− rt =

1

2
(Et(rt+1|st = i)− rt)− 1

2
(γ0σq + γ1σqqt)

− 1

2
log

K∑
j=1

pij exp
[
−δ′1

(
µ(j)− E [µ(st+1)|st = i]

)

+
1

2
δ′1Σ(j)Σ(j)′δ1 + λf (j)σf (j)

]
, (9)

for K regimes. First, the term spread now switches across regimes, explicitly shown by the

dependence of the yield̂y2
t (i) on regimest = i. The EH term(Et(rt+1|st = i) − rt) also

switches regimes. The time-varying price of risk term,−1
2
(γ0σq + γ1σqqt), is the same as in

(8) because the process forqt does not switch regimes. The remaining terms in (9) are non-

linear, as they involve the log of the sum of an exponential function of regime-dependent terms,

weighted by transition probabilities. Within the non-linear expression, the term1
2
δ′1Σ(j)Σ(j)′δ1

represents a Jensen’s inequality term, which is regime-dependent, andλf (j)σf (j) represents

a RS price of risk term. A new term in (9) that does not have a counterpart in (8) is

−δ′1(µ(j) − E [µ (st+1) |st = i]). This is a jump term involving the difference of drifts across

regimes. Hence, it is unlikely that adding another constant,γ0, adds much flexibility to the

model.

Finally, we impose one restriction not necessary for identification, but for efficiency gains.

The mean level of the real short rate in (3) is determined by the mean level of inflation multiplied

by δπ and the constant termδ0. We setδ0 to match the mean of the nominal short rate in the

data, improving the fit of the model.

3.3 Incorporating Different Real and Inflation Regimes

The two regime specification in (4) restricts the real rate and inflation to share the same regimes.

To incorporate the possibility of different real and inflation regimes, we introduce two different

regime variablessr
t ∈ {1, 2} for theft process andsπ

t ∈ {1, 2} for the inflation process. Because

ft is a real factor, we refer tosr
t as the real regime variable. Nevertheless, the reduced form

model for the real rate incorporates both the inflation and real regimes, since inflation is one

of the factors entering the real short rate (3). Theδπ parameter controls how a switch in the

inflation regime impacts the real rate. For example, a monetary authority actively following a

Taylor rule implies that high inflation brings about high real rates. Moreover, becauseft enters

the conditional mean of inflation, the inflation process is affected by the real regime as well. For

example, monetary-policy induced increases in real rates could ward off higher inflation next

period through a negativeΦπf coefficient.
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To incorporate the effects ofsπ
t and sr

t , we define an aggregate regime variablest ∈
{1, 2, 3, 4} to account for all possible combinations of{sr

t , s
π
t } = {(1, 1) , (1, 2) , (2, 1) , (2, 2)},

following Hamilton (1994). The full transition probability matrix is of dimension4× 4 and has

10 additional parameters relative to the benchmark model. To reduce the number of parameters,

we investigate three restricted cases: independent regimes and two cases of correlated regimes.

We briefly outline the correlated cases, but provide full details in Appendix B. In Case A,

we specify the current real regime to depend on the contemporaneous realization of the inflation

regime and on the past real regime. This is consistent with monetary policy changing real rates

in response to inflation shocks, as is the case in a Taylor rule. One short-coming of the Case A

specification is that it cannot capture periods when monetary policy has successfully used real

rate increases to stave off a regime of high inflation. In constrast, in Case B, future inflation

regimes depend on the stance of the monetary authority’s real regime as well as the current

inflation environment.

3.4 Bond Prices

Real Bond Prices

In our model, the real zero coupon bond price of maturityn conditional on regimest = i,

P̂ n
t (st = i), is given by:

P̂ n
t (i) = exp(Ân(i) + B̂nXt), (10)

whereÂn(i) is dependent on regimest = i, B̂n is a1 × N vector andN is the total number

of factors in the model, including inflation. The expressions forÂn(i) and B̂n are given in

Appendix C. Since the real bond prices are given by (10), it follows that the real yieldsŷn
t (i)

are affine functions ofXt, conditional on regimei:

ŷn
t (i) = − log(P̂ n

t )

n
= − 1

n
(Ân(i) + B̂nXt). (11)

The technical innovation in deriving (10) is to recognize that theB̂n parameter does not

switch for two reasons. First,Φ remains constant across regimes. Second, the time-varying

price of risk parameterγ1 also does not switch across regimes. If these parameters become

regime-dependent, closed-form bond solutions are no longer possible.

The pricing implications of (11), together with the assumed dynamics ofXt in (1) imply

that the autoregressive dynamics of both inflation and bond yields are assumed constant over

time but the drifts vary through time and the shocks are heteroskedastic. This puts our model in

the middle of a recent debate between Cogley and Sargent (2001 and 2002) and Sims (1999 and
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2001) regarding the dynamics of inflation, short rates and other macro-variables. Cogley and

Sargent argue that the conduct of monetary policy has changed through time, whereas Sims finds

little evidence of movements in the parameter values and instead stresses the heteroskedasticity

of the shocks. The economic content of our pricing equations (11) is that although we do

not allow for systematic changes in monetary policy following Bernanke and Mihov (1998)

and Sims (1999), we do allow for a changing drift in the policy equation, and heteroskedastic

shocks.

While the expressions for̂An(i) andB̂n are complex, some intuition can be gained on how

the prices of risk affect each term. The constant price of riskγ0 enters only the constant term in

the yieldsÂn(st), but affects the term in all regimes. A more negativeγ0 causes long maturity

yields to be, on average, higher than short maturity yields, as is true in an affine model. The

regime-dependent prices of riskλ(st) also only affect thêAn(st) terms. Unlike theγ0 term, the

λ(st) term enters non-linearly, still affecting the unconditional average shape of the real yield

curve. In addition, since theλ(st) terms differ across regimes,λ(st) also controls the regime-

dependent level of the yield curve away from the unconditional shape of the yield curve. Thus,

the model can accommodate an upward sloping yield curve in one regime but a downward

sloping yield curve in another regime, thereby capturing the switching signs of term premiums

documented by Boudoukh et al. (1999). The prices of risk affect the time-variation in the yields

through the parameterγ1. This term only enters thêBn(st) terms. A more negativeγ1 means

that long-term yields are higher, and respond more to shocks in the price of risk factorqt.

Nominal Bond Prices

To compute nominal bond prices and yields, we formulate the nominal pricing kernel in the

standard way asMt+1 = M̂t+1Pt+1/Pt:

mt+1 = log Mt+1 = −rt − 1

2
λt(st+1)

′λt(st+1)− λt(st+1)
′εt+1 − e′NXt+1, (12)

whereeN is a vector of zeros with a 1 in the last position, pullingπt from theN × 1 vectorXt.

This allows nominal bond prices to be written as:

P n
t (i) = exp(An(i) + BnXt), (13)

where the scalarAn(i) is dependent on regimest = i andBn is an1×N vector. Since nominal

bond prices are given by (13), it follows that the nominal yieldsyn
t (i) are affine functions ofXt,

conditional on regimei:

yn
t (i) = − log(P n

t )

n
= − 1

n
(An(i) + BnXt). (14)
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Appendix D shows that the only difference between theÂn(i) andB̂n terms for real bond

prices and theAn(i) andBn terms for nominal bond prices are due to terms that select inflation

from Xt. Positive inflation shocks decrease nominal bond prices.

3.5 Expected Inflation and Inflation Risk

The difference in the pricing of nominal and real bonds is at the core of this article and we

now discuss the relationship between the two at length. We call the difference between the

nominal and real yield the “inflation compensation.” The inflation compensation differs from

actual expected inflation through three channels: (i) a Jensen’s inequality term, (ii) a convexity

bias and (iii) an inflation risk premium. The first two effects are present in nominal bonds of

all maturities but are of second order importance. We discuss them first in the context of a

one period nominal bond. The third effect is not present in a one period bond because we set

λπ(st) = 0. However, the model allows for arbitrary correlation between real and inflation

factors and this leads to inflation risk premiums in long-term bonds. As we show below, the

same parameters that are critically important in driving a potential Mundell-Tobin effect are

also important in determining the magnitude and sign of the inflation risk premium.

The Components of the Short Rate

We break the nominal yield into the real rate plus expected inflation implied from bond yields

by taking the difference between (14) and (11):

y1
t = rt + πe

t,1,

where expected inflation implied from the nominal bond price,πe
t,1, over the next period is given

by:4

πe
t,1(i) = − log

[
K∑

j=1

pij exp

(
−µπ(j) +

1

2
σ2

π(j) + σπ(j)λπ(j)

)]
+ e′NΦXt. (15)

The last term in the exponential represents the instantaneous inflation risk premium, which is

zero by assumption in our model. The1
2
σ2

π(j) term is the standard Jensen’s inequality term,

while−µπ(st) represents the non-linear, regime-dependent part of expected inflation. The last

terme′NΦXt represents the time-varying part of expected inflation, which does not switch across

regimes.

4 For a single-regime affine model,πe
t,1 is given by

(
µπ − 1

2σ2
π − σπλπ

)
+ e′NΦXt.
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We can compareπe
t,1 in (15) with the corresponding expression forEt(πt+1), the actual

expected inflation implied from the assumed factor dynamics (1):

Et(πt+1|st = i) = e′NE[µ(st+1)|st = i] + e′NΦXt

=

(
K∑

j=1

pijµπ(j)

)
+ e′NΦXt. (16)

The constant terms in (15) forπe
t,1 and (16) forEt(πt,1) are different. The bond-price implied

inflation term (πe
t,1) reflects both a Jensen’s inequality term1

2
σ2

π(st) and a non-linear term,

driven by taking the log of a sum, weighted by transition probabilities. Becauseexp(.) is a

convex function, Veronesi and Yared (1999) call this non-linearity effect through the regime-

dependent means of inflationµπ(st) a “convexity bias.” Like the Jensen’s term, this also makes

πe
t,1 < Et(πt+1). Note thatπe

t,1 in (15) andEt(πt+1) in (16) have the same time-varying

inflation forecast component,e′NΦXt. Hence, to investigate how expected inflation covaries

with different variables, for example, real rates, we can look at eitherπe
t,1 or Et(πt+1) for a

1-quarter horizon.5

The Correlation between Real Rates and Inflation

The model allows for arbitrary correlation between real rates and unexpected and expected

inflation. To gain some intuition, let us focus on conditional covariances and derive them for

an affine model. First,δπ primarily drives the correlation between real rates and unexpected

inflation. That is, covt(rt+1, πt+1) = δπσ2
π. The Mundell-Tobin effect concerns the (negative)

correlation between real rates and expected inflation, which is given by:

covt(rt+1, Et+1(πt+2)) = Φπqσ
2
q + Φπfσ

2
f + δπΦππσ2

π.

Note thatδπ < 0 is not a sufficient condition to obtain a Mundell-Tobin effect. In our RS model,

covt(rt+1, Et+1(πt+2)) switches across regimes because the variances are regime-dependent. In

addition, the correlation between real rates and expected inflation also depends on the regime-

dependent means, similar to Gray (1996).

In recent macro-economic studies, the presence or absence of a Mundell-Tobin effect is

linked to the central bank’s reaction function (see, for example, Clarida, Gali and Gertler, 2000).

An aggressive or activist central bank should induce a positive correlation between real rates and

expected inflation, and vice versa. From this perspective, the (controversial) evidence in favor

of time-varying monetary policy behavior (see Cogley and Sargent, 2002; Goto and Torous,

5 For longer horizons,n > 1, the time-varying components forπe
t,n andEt(πt+n,n) differ.
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2002; Cho and Moreno, 2002) can only be accommodated by the RS model, but not by an

affine model.

It is tempting to conclude that if a Mundell-Tobin effect exists, nominal bonds should be less

risky than real bonds. After all, it implies that, when a bad shock is experienced (an increase in

real rates), the holders of nominal bonds experience a countervailing effect, namely a decrease

in expected inflation increasing bond prices. This intuition is not correct as we now discuss.

The Inflation Risk Premium

The dynamics of the factors in (1) allow us to compute the actual expected inflationEt(πt+n,n)

overn periods, where:

Et(πt+n,n) =
1

n
Et(πt+1 + · · ·+ πt+n),

andπt+n,n ≡ (πt+1 + · · · + πt+n)/n andEt(πt+1,1) ≡ Et(πt+1). Long-horizon forecasts of

inflation from (1) are given by implied long-horizon forecasts from a RS-VAR. Hence, we refer

to Et(πt+n,n) as the RS-VAR implied inflation forecast.

The RS-VAR expected inflationEt(πt+n,n) is different from the inflation compensation,

πe
t+n. We can now decompose nominal yields as real yields plus the inflation compensation,

and decomposeπe
t+n into actual expected inflation and a remainder term:

yn
t = ŷn

t + πe
t,n

= ŷn
t + Et(πt+n,n) + ϕt,n (17)

Theϕt,n term reflects an inflation risk premium and the two non-linear Jensen’s and convexity

bias terms.

To obtain intuition on the determinants of the inflation risk premium in our model, we

investigate the inflation risk premium embedded in a two period bond in a simple affine model.

The real bond yield embeds an EH term and a risk premium due to the conditional covariance

between the real kernel and the real rate. For a nominal bond, it is the covariance between the

nominal kernel and inflation that matters: if inflation is high (purchasing power is low) when the

pricing kernel realization (marginal utility in an equilibrium model) is high, nominal bonds are

risky. The two period pricing kernel depends on real rates both through its conditional mean and

through the innovations. Interestingly, the effects are likely opposite. High real rates are likely

to decrease the conditional mean of the pricing kernel but, if the price of risk is negative, positive

shocks to the real rate should increase marginal utility. By splitting inflation into unexpected

and expected inflation, we can decomposeϕt,2 into four components (ignoring the Jensen’s
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inequality term):

ϕt,2 =
1

2
[−covt(rt+1, Et+1(πt+2))− covt(rt+1, πt+1)

+covt(m̂t+1, Et+1(πt+2)) + covt(m̂t+1, πt+1)] (18)

Our previous intuition was wrong in that the first two terms reveal that a negative correlation

between real rates and both expected and unexpected inflation contributes to a positive risk

premium. Nevertheless, a Mundell-Tobin effect does not necessarily imply a positive inflation

risk premium because of the two last terms working through the innovations of the pricing

kernel. In our model, the last term is zero by assumption, but the third term is not and may

swamp the others. In particular, for the affine specification:

ϕt,2 = −1

2
[δπσ2

π(1 + Φππ) + Φπq(σ
2
q + γ1σqqt) + Φπf (σ

2
f + λfσf )]. (19)

Hence the time-variation in the inflation risk premium depends onqt, and the mean premium

depends on the same parameters that drive the correlation between real rates and inflation. In

particular, if the correlation between real rates and inflation is zero (requiringδπ = Φπ,q =

Φπ,f = 0), the inflation risk premium is also zero. Nevertheless, the price of riskλf plays a

role in determining the inflation risk premium whereas it does not play a role in determining

the correlation between real rates and expected inflation. Naturally, the RS model has a richer

expression for the inflation risk premium as the variances andλf (st) switch across regimes.

The RS inflation premium also depends on regime-dependent means.

Variance Decompositions

To assess the relative importance of real rates and the inflation compensation , we compute

the population variances for real rates and priced expected inflation and look at the relative

contribution of each component to the variance of the nominal yield (see also Risa, 2001):

τŷn
t

=
cov(yn

t , ŷn
t )

var(yn
t )

=
var(ŷn

t ) + cov
(
ŷn

t , πe
t,n

)

var(yn
t )

τπe
t,n

=
cov

(
yn

t , πe
t,n

)

var(yn
t )

=
var

(
πe

t,n

)
+ cov

(
ŷn

t , πe
t,n

)

var(yn
t )

. (20)

We provide an analogous decomposition to (20) for nominal term spreads.

4 Econometrics

To estimate the RS term structure model, we follow standard practice and specify a set of

yields that are measured without error to extract the unobserved factors (see Chen and Scott,
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1993). The other yields are specified to be measured with error and provide over-identifying

restrictions for the term structure model. We use 4-, 12- and 20-quarter maturity zero-coupon

yield data from CRSP and the 1-quarter rate from the CRSP Fama risk-free rate file as our

yields. Our inflation data is constructed using the Consumer Price Index – All Urban Consumers

(CPI-U, seasonally adjusted, 1982-84=100), from the Bureau of Labor Statistics. All data are

sampled at the quarterly frequency over the period 1952:Q2 to 2000:Q4. The disadvantages

in using monthly inflation data motivates the use of quarterly data. Monthly CPI figures are

very seasonal and create a timing problem because prices are collected over the course of the

month. The use of a quarterly frequency mitigates both problems. For the benchmark model,

we specify the 1-quarter and 20-quarter yields to be measured without error. For the RS model

where inflation has a stochastic mean, we additionally specify the 4-quarter yield to be measured

without error.

We detail how to compute the likelihood function in Appendix E. The likelihood is not

simply the likelihood of the yields measured without error multiplied by the likelihood of the

measurement errors, which would be the case in a standard affine model estimation. Since

we have regime variables, these must be integrated out of the likelihood function. Our model

implies a RS-VAR for inflation and yields with complex cross-equation restrictions resulting

from the no-arbitrage assumptions.

Because RS models may yield several local optima, an extensive parameter search was

conducted, including using randomized starting values around the local maxima. The global

optimum for the benchmark model is very stable to such starting value perturbations.

We report two specification tests of the models, an in-sample serial correlation test for

first and second moments in scaled residuals, and an unconditional moment test. The latter is

particularly important because we want to decompose the variation of nominal yields of various

horizons into real and expected inflation components. A well-specified model should imply

unconditional means, variances and autocorrelograms of term spreads, yields and inflation close

to the sample moments. These tests are outlined in Appendix F.

5 Estimation Results

5.1 Specification Tests

Panel A of Table 1 reports the specification tests for the residuals for six models. Model I

is the single regime counterpart of the benchmark RS model, described in Section 3.1, while

Model II is the single regime counterpart to the RS model with stochastic inflation. Model III
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represents the benchmark RS model with two regimes, whereas Model IV is the model with two

independent real and inflation regime variables. We do not report the tests for the models with

correlated regime variables, as the test statistics look almost identical to those for Model IV.

Model V (VI) is the stochastic inflation RS model with one regime variable (two independent

regime variables). We use this nomenclature throughout the remainder of the paper.

The residuals of the yields and spreads are well behaved for all models. In stark contrast,

only two of the six models pass the specification tests for the inflation residuals: Models IV

and VI. Both these models have two separate regime variables for a real factor and inflation.

Panel B reports goodness-of-fit tests of four sets of moments: the mean and variance of the

spread and the long rate (recall that all models fit the mean of the short rate by construction in

the estimation procedure), the mean and variance of inflation, and the autocorrelogram of the

spread and the autocorrelogram of inflation. Model IV is the only model that passes all of the

specification tests. This is important, because we need to accurately match the sample moments

of yields and inflation in the data in order to make reliable inferences about unobserved real

rates and expected inflation.

It is informative to consider how good the fit is by examining the reported moments in

Panel C. Model IV has a phenomenal fit: of the 13 moments reported, Model IV comes within

1 standard error of 9 data moments, and is comfortably within two standard errors of the

remaining 4. All the other models produce some moments that lie outside 2 standard error

bounds of the data estimate. In particular, the inflation autocorrelogram is perhaps the most

difficult to match. Inflation features a relatively low first order autocorrelation coefficient with

very slowly decaying higher-order autocorrelations. All our models feature complex reduced-

form inflation models with MA components that can theoretically match this pattern. However,

only Model IV produces a good fit.

5.2 Parameter Estimates

To conserve space, we report the parameter estimates for all the models in the Appendix. Here

we focus on Model IV, the benchmark RS inflation model with independent real and inflation

regimes, which is the best performing model.

Table 2 reports the relative contributions of the different factors driving the short rate,

long yield, and term spread and inflation dynamics in the model. The price of risk factorqt

is relatively highly correlated with both inflation and the nominal short rate, but shows little

correlation with the nominal spread. In other words,qt is a level factor. The RS term structure

factorft is most highly correlated with the nominal spread, in absolute value, soft is a slope
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factor. The factorft is also less variable and less persistent thanqt. Hence,ft does not play a

large role in the dynamics of the real rate, only accounting for 7% of its variation. The most

variable factor is inflation and it accounts for 47% of the variation of the real rate. Inflation is

negatively correlated with the real short rate, at -39% andqt is positively correlated with the

real short rate (42%). The model produces a 68% (-41%) correlation between inflation and the

nominal short rate (nominal 5-year spread), which matches the data correlation of 70% (-37%)

almost perfectly.

TheΦ parameters link the term structure factors directly to the conditional mean of inflation

and hence to expected inflation. In our model, the equation governingπt is:

πt+1 = µπ(sπ
t ) + 0.50qt + 0.85ft + 0.59πt + σπ(sπ

t )επ
t+1. (21)

Hence, expected inflation moves positively withqt, and so moves positively with the real short

rate, but expected inflation moves negatively with the term spread sinceft enters positively. The

effect of past inflation is positive. These numbers cannot be compared with the data because

theqt andft factors are unobserved. However, we can project inflation onto the short rate, the

spread and past inflation both in the data and in the model, and we report the results on the

last two lines of Table 2. When the short rate increases by 1%, the model signals an increase

in expected inflation of 34 basis points. A 1% increase in the spread predicts a 13 basis point

decrease in expected inflation. These patterns are consistent with what is observed in the data,

but the response to an increase in the spread is slightly stronger in the data. Past inflation has a

coefficient of 0.57 and the data coefficient is 0.56, and is hence almost exactly matched by the

model.

Inflation enters the real short rate equation (3) with a negative coefficient,δπ = −0.54,

with a standard error of 0.05, inducing a negative covariance between inflation and real rates.

However, the large and positive feedback parameters ofΦ in the inflation equation (21) may

offset the negativeδπ coefficient in driving a potential Mundell-Tobin effect. We discuss this

further in Section 6.1.

Table 3 reports some parameter estimates for Models III and IV that illustrate the importance

of regimes and at the same time characterize what differentiates one regime from another. Panel

A reports Model III, where real rates and inflation have the same two regimes. The first real

rate regime is characterized by a lowft mean and low standard deviation. However, only the

standard deviations are significantly different across regimes. For the inflation process, both the

mean and standard deviations differ across the two regimes at the 5% level. The first regime has

a higher drift of inflation but lower volatility of innovations in inflation. The prices of risk for

theft factor are border-line significantly different across the two regimes.
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In Panel B of Table 3, we estimate separate independent real and inflation regimes. For the

ft factor, the inference is the same as in Panel A. However, for the inflation process, there is

no significant difference across regimes in the innovation variances. This does not mean that

inflation is homoskedastic in this model. The significantly different regime-dependent means of

ft affect the conditional variance, so that there is heteroskedastic inflation across real regimes.

The first inflation regime is a high inflation regime while the second inflation regime is a low

inflation regime, and the difference in drift is significant at the 1% level. Finally, the prices of

risk for theft factor do not differ significantly across the two regimes, but both are significantly

different from zero. Hence, the addition of the separate regimes for real rates and inflation has

important consequences for the behavior of real rates and expected inflation that are not picked

up by restricting the estimation to only one regime variable.

We next examine the smoothed regime probabilities over the sample period. We start with

the benchmark one regime variable-two regimes model (Model III) in Figure 1, because this

model has been the main focus of the RS literature, applied to nominal interest rates. The

second regime is a regime of a high mean-high variabilityft factor, but low mean inflation

factor. The high variability regime occurs from 1973-1975, in 1979-1982 and briefly after the

oil shock in the recession of 1975. This is consistent with other studies. For example, Garcia

and Perron (1996) find that a high inflation regime prevails during 1973-1982 and that the real

rate switches to a more volatile regime after 1973 to the end of their sample in 1986. The

second regime also aligns exactly with the monetary targeting period from 1979-1982 found by

RS studies on the nominal rate (see, for example, Gray, 1996; Ang and Bekaert, 2002a).

In Figure 2, we plot the smoothed regime probabilities for Model IV, for the two separate and

independent regime variables. The top panel graphs the probability of the real regime variable

being in the high variability-high mean regime. The 1979-1982 period is still associated with

this regime, but it starts a bit later and there is a relapse into this regime around 1985. The

period just prior to the 1960 recession, the 4 years before the 1970 recession, and the two years

before the 1975 recession and the 1975 recession itself are also classified as being in the high

real rate regime. This regime briefly reappears in 1995. Overall the real regime variable spends

around 21% of the sample period in the high mean-high variability regime.

The inflation regimes look very different, indicating the potential importance of separating

the real and inflation regime variables. Over the sample, we spend most of the time in inflation

regime 1, the high inflation regime. Some exceptions include the period after the 1955 and

1970 recessions, a brief period between the 1980 and 1982 recessions and a more extensive

period in the mid-1980’s and finally the early 1990’s. Some previous attempts at identifying

inflation regimes include Evans and Wachtel (1993) and Evans and Lewis (1995). However,
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these models are not directly comparable as they feature a random walk component in one

regime (with no drift) and an AR(1) model in the other. The random walk regime has the

most variable innovations and dominates the 1968-1983 period. During this time, their regime

variable makes a few dips that coincide rather well with the dips in our regime probability of

being in the high inflation regime. However, we classify 1955-1968 as a high inflation regime

and Evans and Lewis classify this period as a low inflation variability regime. It is perhaps better

to characterize the high inflation regime as a “normal regime” and the low inflation regime as a

“deflation regime”. The model accommodates rapid decreases in inflation by a transition to the

second regime.

In Model IV, the two regime variables are independent. The models with correlated real and

inflation regimes (Cases A and B) have similar qualitative properties of the transition probability

matrices. Given the similarities between Model IV and Cases A and B, it is no surprise that a

likelihood ratio test fails to reject independence of the two regime variables from both Cases A

and B at the 10% level. Consequently, we focus our attention on Model IV.

6 The Term Structure of Real Rates and Expected Inflation

We summarize the behavior of real short rates, 1-quarter ahead expected inflation and nominal

short rates in Table 4 before examining the term structure of each component in detail. The first

regime is a low real rate-high inflation regime, where we spend 77% of the time in population.

In this regime, both real rates and inflation are not very volatile. The second regime has a high

mean real short rate (2.20%), combined with low expected inflation (bothπe
t,1 andEt(πt+1) are

2.48%). This is similar to regime 4, except both real rates and expected inflation are much more

volatile in regime 4. Regime 3 has slightly higher real rates than regime 1, but is still a low

real rate regime. However, both real rate and inflation volatility are high. Regime 3 also has the

highest expected inflation mean and volatility. Note that the moments ofπe
t,1 are near-identical

to Et(πt+1) (and so are not reported), indicating that the Jensen’s inequality and convexity bias

discussed in Section 3.4 are economically not important.

Hence, we can summarize our regime characteristics as:

Real Rates Inflation % Time

st = 1 sr
t = 1, sπ

t = 1 Low and Stable High and Stable 77%

st = 2 sr
t = 1, sπ

t = 2 High and Stable Low and Stable 10%

st = 3 sr
t = 2, sπ

t = 1 Low and Volatile High and Volatile 11%

st = 4 sr
t = 2, sπ

t = 2 High and Volatile Low and Volatile 2%

All the levels (low or high) and variability (stable or volatile) are relative statements, so caution
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must be taken in the interpretation. Because of the dependence of the real rate on inflation,

the terminology “high and low real rate regime” based on the regimes inft is misleading. The

means of real rates are driven mostly by the inflation regime, while the volatility of both real

rates and inflation is driven by the real regime. The negative covariance between inflation and

real rates (for example, in regimes 2 and 4, inflation is high but real rates are low) is due to the

negativeδπ coefficient in the real short rate equation (3).

6.1 The Behavior of Real Yields

The Real Rate Term Structure

We examine the real term structure in Figure 3. To facilitate comparison with the previous

literature, the top panel of Figure 3 graphs the regime-dependent real term structure for the

two-regime benchmark model (Model III). Every point on the curve for regimei represents

the expected real zero coupon bond yield conditional on regimei, (E[ŷn
t (i)|st = i]).6 The

normal regime has a fairly flat, but slightly humped real term structure with a peak at a maturity

around 6 quarters. The second regime has a strongly downward-sloping real yield curve, with

a real short rate of 2.7%. Hence, the behavior uncovered by previous RS models seems to be

primarily driven by real rate variation. Unconditionally, the term structure is also fairly flat,

but is slightly hump-shaped, starting at a rate of about 1.7%, increasing to just over 1.8% at

4-quarters and then declining to around 1.7% at 20-quarters. Our RS term structure model is

very flexible and can easily produce a variety of shapes of the real yield curve, including flat,

inverse-humped, upward-sloping or downward-sloping yield curves. Hence, the estimated flat,

but slightly humped, shape of the real term structure is not due to any restrictions imposed by

the model.

In the bottom panel of Figure 3, we show the real term structure of Model IV. In this model,

regime 1 corresponds to the normal low real rate-high inflation regime. Like Model III in the top

panel, the real term structure is also fairly flat with a slight hump-shape peaking at 4-quarters.

Both regimes 2 and 4, which are the low inflation regimes, have downward sloping real yield

curves but they are not as steep as regime 1 for Model III. These regimes may reflect periods

where an activist monetary policy achieved disinflation through high real rates. Finally, regime

3, a low real rate-high inflation and volatile regime, has a very humped, non-linear, real term

structure. Unconditionally, the real rate curve does not look very different from that obtained

6 It is also possible to compute the more extreme caseE[ŷn
t (i)|st = i, ∀t], that is, assuming that the process

never leaves regimei. These curves have similar shapes to the ones shown in the figures but lie at different levels.

Appendix G details the computation of these conditional moments.
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in the two-regime benchmark model but real rates are, on average, 20 to 30 basis points lower.

Figure 3 uncovers our first stylized fact:

Stylized Fact 1 Unconditionally, the term structure of real rates assumes a fairly flat shape

around 1.44%, with a slight hump, peaking at a 1-year maturity. However, there are some

regimes in which the real rate curve is downward sloping.

Characteristics of Real Rates

From the top panel of Figure 4, we see that the real short rate exhibits considerable short-

term variation, sometimes decreasing and increasing sharply. Some of this variation may have

genuine economic causes, for example the action of monetary policy. Note, for example, the

sharp decreases of real rates in the 1958 and 1975 recessions and the sharp increases after the

two oil shocks. In fact, standard error bands arising from parameter uncertainty (not shown)

are very tight. It is also striking that, consistent with the older literature, real rates are generally

low from the 1950’s until 1980. The sharp increase in the early 1980’s up to almost 8% was

temporary, but it took until the 1990’s before real rates reached the low levels of a little below

2%. This is still slightly higher than the level of the real rate before 1980. In the bottom panel

of Figure 4, we graph the 5-year real yield. Not surprisingly, the 5-year real rate shows much

less time-variation, but the same secular effects that drive the variation of the short real rate are

visible. Given these patterns, it is not surprising that the Garcia-Perron (1996) model, which

allowed for a finite number of possible ex-ante real rates, provided a reasonable fit to the data

(up until the end of their sample in 1986), although it is clear that it misses some important

variation and would have a hard time generating the gradual decrease of real rates since the

1980’s.

Table 5 reports a number of unconditional characteristics of real yields. The unconditional

standard deviation of the real short rate (20-quarter real yield) is 1.60% (0.61%). These

moments solidly reject the hypothesis that the real short rate is constant, but at long horizons

real yields are much more stable and persistent. This is clearly shown by the autocorrelations

of the real short rate and 20-quarter real rate, which are 61% and 94%, respectively. Hence:

Stylized Fact 2 Real rates are quite variable at short maturities but smooth and persistent at

long maturities. There is no significant real term spread.

The mean of the 20-quarter real term spread is only 2 basis points. The standard error is only

27 basis points, so that the real term structure cannot account for the 93 basis points nominal

term spread in the data.
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The Correlation of Real Rates and Inflation

There has been much interest in the correlation between real rates and expected inflation

(the Mundell-Tobin effect). Older empirical studies such as Huizinga and Mishkin (1986) and

Fama and Gibbons (1982) report negative correlations, but their analysis suffers from potential

measurement error bias and implicitly assumes a zero inflation risk premium. Hence, their

instrumented real rates may partially embed inflation risk premiums. Pennachi (1991), using a

two factor affine model of real rates and expected inflation, finds that the conditional correlation

between the two is negative. However, the evidence is less uniform than this discussion

suggests. Barr and Campbell (1997) use UK interest rates and find that the unconditional

correlation between real rates and inflation is small but positive, whereas the correlation

between the change in the real rate and changes in expected inflation is strongly negative.

Using an empirical RS model, Goto and Torous (2002) claim that the negative relation between

expected inflation and real rates in the US has switched signs since 1981.

Table 5, Panel B reports conditional and unconditional correlations of real rates and

unexpected and expected inflation. At the one quarter horizon, the conditional correlation of

real rates with both inflation and expected inflation is negative in all regimes and hence also

unconditionally. As expected, the effect is more negative for actual inflation than for expected

inflation. The differences across regimes are not large in economic terms and the correlations

are overall not significantly different from zero. Consequently, we do not find strong statistical

evidence for a Mundell-Tobin effect:

Stylized Fact 3 The real short rate is negatively correlated with both expected and unexpected

inflation, but the statistical evidence for a Mundell-Tobin effect is weak.

These results may have the following monetary policy interpretation. On average, positive

inflation shocks lead to lower real rates, which smooths the behavior of nominal interest rates.

However, the weak relation with expected inflation suggests that, in some instances, monetary

policy may have been activist, raising real rates in response to expected inflation shocks. The

fact that the correlation between expected inflation and real rates is least negative in the volatile

real rate regimes 3 and 4 is consistent with this interpretation. The correlations of longer horizon

real rates robustly turn positive, although they are again not very precisely estimated. The

positive signs at long horizons result from the positive effect of theΦ coefficients dominating

the negative effect of theδπ coefficient.
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6.2 The Behavior of Expected Inflation

The Term Structure of Expected Inflation

Table 6 reports some characteristics of expected inflation (πe
t,n andEt(πt+n,n)), differentiat-

ing the moments across regimes.7 We focus first on the inflation compensation estimatesπe
t,n.

The first inflation regime,sπ
t = 1 is a high inflation regime with a mean of 4.22% as opposed

to 2.54% in the second inflation regime. If we look at expected inflation across the real rate

regimes, the first real rate regimesr
t = 1 (where the real rate is stable), is associated with lower

expected inflation, 3.96%, than the second real rate regime (where the real rate is volatile) at

4.42%.

Perhaps the most striking feature in Table 6 is the upward sloping term structure ofπe
t,n in all

regimes. In particular, the inflation compensation is 91 basis points in the first inflation regime

and 146 basis points in the second inflation regime. Of course, ifπe
t,n truly reflects expected

inflation, this could not occur. Hence, we uncover the next important stylized fact:

Stylized Fact 4 The model matches an unconditional upward-sloping nominal yield curve by

generating an inflation risk premium that is increasing in maturity.

The bottom half of Table 6 reports expected inflation from the RS-VAR,Et(πt+n,n). For

this measure of expected inflation, we always approach the unconditional mean of inflation as

n increases, in all regimes. Recall that there are three sources of differences betweenπe
t,n and

Et(πt+n,n) in our model. Our estimates reveal that the first two sources, the usual Jensen’s term

and a convexity bias, are trivially small in magnitude (at most a few basis points) and so cannot

account for the large spread inπe
t,n. Instead the upward slope in the term structure of inflation

compensation is due to an inflation risk premium.

The Inflation Risk Premium

The third panel of Table 6 reports statistics on the inflation risk premiumϕt,n. The one-

quarter inflation premiums are slightly negative because of the Jensen’s term and the convexity

bias.8 The inflation risk premium is higher in the variable real rate regime 2, reaching 1.14%

at the 20-quarter horizon, but the differences between the two real regimes are small. There is

7 The 1-quarter ahead forecasts of expected inflation produced by the RS-VAR,Et(πt+1) rarely exceed 2% in

absolute value and are on average -2 basis points, so the model produces unbiased forecast errors. We defer a more

detailed analysis of the inflation forecasting performance of our model to future work.
8 If λπ(st) were negative, a positive one-quarter ahead expected risk premium would result, but with only

nominal yields, this parameter cannot be identified. We feel that it is unlikely that there is a large inflation risk

premium at the one quarter horizon, because it would imply that real rates are even lower than our current estimates.
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stronger regime-dependence when we investigate the inflation regimes. In the high-expected

inflation regime 1, the inflation risk premium is also high (1.04% at the 20-quarter horizon),

whereas the deflation regime has a lower inflation risk premium (0.47% at the 20-quarter

horizon). Unconditionally, the inflation risk premium is 97 basis points at the 20-quarter

horizon, which is statistically significantly different from zero. The variability of the risk

premium (not reported) also increases with horizon, reaching 34 basis points at the 20-quarter

horizon.

Figure 5 provides some intuition on which parameters have the largest effect on the

unconditional 20-quarter inflation risk premium. The risk premium is not very sensitive toδπ

or Φπq. However, increasing the persistence of the inflation process either throughΦππ or Φπf

considerably increasesϕt,n. Increasing these parameters would also turn the slightly negative

correlation between expected inflation and real rates into a positive correlation. The effect of

persistence is also stronger than the effect of the price of riskλf (s
r
t ). Making the price of risk

more negative naturally increases the inflation risk premium, but this would cause the model to

grossly over-estimate the nominal term spread.

Figure 6 graphs the 20-quarter inflation risk premium over time. The inflation risk premium

has decreased in every recession, except for the 1981-83 recession, coinciding with monetary

targeting. After the 1953-54 recession, the inflation risk premium was almost zero. The general

trend is that the premium steadily rose from the 1950’s throughout the 1960’s and 1970’s before

entering a very volatile period during the monetary targeting period from 1979 to the early

1980’s. It is then that the premium reached a peak of 2.1%. Whereas the trend since then has

been downward, there have been large swings in the premium. From a temporary low of 60

basis points in the mid-eighties it shot up to 1.3%, coinciding with the halting of the large dollar

appreciation of the early 1980’s, and then dropped to around 40 basis points in 1993. In 1995

the premium shot up to 1.3% at the same time the Fed started to raise interest rates. During the

late 1990’s bull market inflation risk premiums were fairly stable and averaged around 80 basis

points.

6.3 Nominal Term Structure

In their two regime model, Bansal and Zhou (2002) show that one regime displays the normal

situation of an upward sloping nominal yield curve and the other regime displays a fairly flat

nominal yield curve. The top panel of Figure 7 confirms this pattern for Model III, which

features only two regimes. However, the much better performing Model IV, shown in the bottom

panel of Figure 7, with four regimes, does not produce a downward-sloping or flat nominal yield

25



curve in any regime. Recall that in some regimes the real rate curve is downward sloping, but the

upward sloping term structure of priced expected inflation completely counteracts this effect.

For Model IV, the first regime (low real rate-high inflation regime) displays a nominal yield

curve that is nicely upward sloping, with the slope flattening out for longer maturities, matching

the unconditional term structure and the data almost exactly. In the second regime, where the

inflation drift is lower, the yield curve is steeply upward sloping but rates are lower than in

the first regime because of lower expected inflation. In the third regime, the term structure is

steeply upward sloping at the short end but then becomes flat and slightly downward sloping

for maturities extending beyond 6 quarters. Nominal interest rates are the highest in this regime

because expected inflation is high in this regime, as the level of real rates is about the same in

this regime as in regime 1. In the 4th regime, the term structure is J-shaped with rates below the

unconditional curve. This is a regime where the real interest rate curve is downward sloping, but

at a high level. Inflation compensation, however, is low in this regime (making nominal yields

low), and is upward sloping, which starts to counteract the downward real slope at maturities

longer than 1 year, causing the slight dip between 1 and 4-quarters.

Interest rates are often associated with the business cycle. According to the conventional

wisdom, interest rates are pro-cyclical and spreads counter-cyclical (see, for example, Fama,

1990). Table 7 shows that this is incorrect. In fact, interest rates are overall larger during

recessions. However, when we focus on real rates, the conventional story is right:

Stylized Fact 5 Nominal interest rates (spreads) do not behave pro-cyclically (counter-cyclically)

across the business cycle but our model-implied real rates do.

This can only be the case if expected inflation is counter-cyclical. The table shows that this is

indeed the case, with expected inflation being strongly counter-cyclically, reaching 5.05% in

recessions but only 3.66% in expansions. Veronesi and Yared (1999) also find that real rates are

pro-cyclical.

One interesting fact that Table 7 illustrates is that recessions are characterized by more

uncertainty, in the sense that all interest rates, spreads and inflation are more volatile in

recessions than they are in expansions. Whereas these are simply empirical facts, our model

shows that this is also the case for real rates, real rate spreads and expected inflation spreads.

The bottom part of the table lists the proportions of each regime realized through the whole

sample, compared with the proportions of each regime realized in expansions and recessions.

The normal regime 1 occurs much more during expansions. In comparison, the volatile real rate

and inflation regimes 3 and 4 occur much more often during recessions.
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6.4 Variance Decompositions

Table 8 reports the population variance decomposition (20) of the nominal yield into real

and priced expected inflation variation produced by Model IV. We also report the variance

decompositions conditional on each regime.9 The results are striking:

Stylized Fact 6 The decompositions of nominal yields into real yields and expected inflation

at various horizons indicate that variation in inflation compensation (expected inflation and

inflation risk premiums) explains about 80% of the variation in nominal rates at both short and

long maturities.

This is at odds with the folklore wisdom that expected inflation primarily affects long-term

bonds (see, among others, Fama, 1975; Mishkin, 1981). However, this result is consistent with

Pennacchi (1991), who identifies expected inflation from survey data. The decomposition shows

little variation across regimes. Expected inflation is slightly less important at short horizons, but

the long-horizon decomposition is essentially unchanged.

Looking at the variance decomposition of nominal term spreads, Table 8 shows that,

unconditionally, inflation accounts for 52% of the 4-quarter term spread and 83% of the 20-

quarter term spread. For term spread changes, inflation shocks dominate at the long-end of

the yield curve. In the normal regime 1, inflation shocks account for almost all (99%) of the

movements of the long term spread. In regimes 3 and 4, inflation accounts for relatively little of

movements in term spreads. In these regimes, real rates are very volatile, and expected inflation

accounts for only 11% of the variation in the 4-quarter term spread, increasing to 60% for the

20-quarter term spread. Hence, the conventional wisdom that inflation is more important for

the long end of the yield curve holds, not for the level of yields, but for term spreads. The later

work of Mishkin (1990 and 1992) finds evidence consistent with our findings as his regressions

use inflation changes and term spreads, rather than yield levels. Hence, we have our last stylized

fact:

Stylized Fact 7 Inflation compensation only explains about 50% of the variation in nominal

term spreads at short horizons, but is the main determinant of nominal interest rate spreads at

long horizons.

Finally, we have also split up the contribution of inflation compensation into its expected

inflation and inflation risk premium components, but do not report the results for brevity.

9 We do not split up priced expected inflation further into actual expected inflation and the inflation risk premium

because for all of our decompositions, the bulk of the variation in the inflation compensation comes from actual

expected inflation rather than risk premiums.
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Expected inflation is the dominant component, suggesting that shocks to expected inflation

die out very slowly. This result is consistent with the findings of Gürkaynak, Sack and Swanson

(2003), who find strong sensitivity of long-term US forward rates to macroeconomic and

monetary policy news releases. They can replicate such behavior in a model where private

agents adjust their expectations of long-run inflation rate to macro and policy surprises, and

inflation follows a reduced-form ARMA process, as in our model.

7 Conclusion

In this article, we develop a term structure model that embeds regime switches in both real and

nominal factors, and which incorporates time-varying price of risks. The model that provides

the best fit with data has independent real and inflation regimes. This four-regime model is

substantially different in its implications for the term structure than the standard two-regime

model. While the regimes for a real factor and inflation are independent, real rates and both

expected and unexpected inflation are negatively correlated.

We find that the real rate curve is fairly flat but slightly humped, with an average real

rate of 1.44% and a 20-quarter spread of not even 2 basis points. The real short rate has a

variability of 1.60% and has an autocorrelation of 61%. In some regimes, the real rate curve

is steeply downward sloping. The yield curve of expected inflation implied by bond yields

is steeply upward sloping. This is due to an upward sloping inflation risk premium, which is

unconditionally 97 basis points on average.

The standard view that interest rates are pro-cyclical and spreads counter-cyclical is

typically based on real economic effects. However, in the data, nominal interest rates are

counter-cyclical. Our model generates real rates that are entirely consistent with the standard

view. Although lower, real rates are substantially more variable in recessions. We find

that expected inflation accounts for 80% of the variation in nominal yields at both short and

long maturities. However, nominal term spreads are primarily driven by changes in expected

inflation, particularly during normal times.

We extract unobservable real rates from nominal yields and inflation. Observable real rates

would increase our confidence about our results. Unfortunately, the US Treasury only started

issuing Treasury Inflation Protection Securities (TIPS) from January 1997 onwards, and the

market was very illiquid during its first few years. Roll (2003) provides a detailed analysis of

the TIPS, stressing some institutional features that might make TIPS imperfect indicators of

true real rates. Nevertheless, it is interesting to note that our results are qualitatively consistent
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with Roll’s findings, over the very short sample period since TIPS began trading. Roll finds

that the nominal yield curve is more steeply sloped than the real curve, which is also mostly

fairly flat over our over-lapping sample periods. Roll also shows direct evidence of an inflation

premium that increases with maturity.

Our work here is only the beginning of a research agenda. First, our model uses term

structure information in an efficient way to generate expected inflation. Hence, it is likely

that we have constructed an attractive inflation-forecasting model. Simple approaches that

use term structure information without no-arbitrage restrictions to forecast inflation have not

proved successful (see Stock and Watson, 1999). Second, our model would allow us to link

the often discussed deviations from the Expectations Hypothesis (Campbell and Shiller, 1991,

for example) to deviations from the Fisher hypothesis (Mishkin, 1992). Finally, although we

have made one step in the direction of identifying the economic sources of regime switches

in interest rates, more could be done. In particular, a more explicit examination of the role of

business cycle variation and changes in monetary policy as sources of the regime switches is an

interesting topic for further research.
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Appendix

A A Regime-Switching Model with Stochastic Expected In-
flation

In a final extension, motivated by the ARMA-model literature (see Fama and Gibbons, 1982; Hamilton, 1985), we
allow inflation to be composed of a stochastic expected inflation term plus a random shock:

πt+1 = wt + σπεπ
t+1,

wherewt = Et [πt+1] is the one-period-ahead expectation of future inflation. This can be accomplished in our
framework by expanding the state variables toXt = (qt ft wt πt)′ which follow the dynamics of equation (1),
except now:

µ(st) =




µq

µf (st)
µw(st)

0


 , Φ =




Φqq 0 0 0
Φfq Φff 0 0
Φwq Φwf Φww Φwπ

0 0 1 0


 , (A-1)

and Σ(st) is a diagonal matrix with(σq σf (st)σw(st)σπ(st))′ on the diagonal. Note that both the variance
of inflation and the process of expected inflation are regime-dependent. Moreover, past inflation affects current
expected inflation throughΦwπ.

The real short rate and the regime transition probabilities are the same as in the benchmark model (4). The
real pricing kernel also takes the same form as (5) with one difference. The regime-dependent part of the prices of
risk in equation (6) is now given by:

λ(i) = (λf (i) λw(i) λπ(i))′,
but we setλw(i) = 0 so that there is no correlation between the real pricing kernel and any inflation shocks.

B Modelling Separate Real and Inflation Regimes
We detail the independent and correlated real rate and inflation regime specifications (Cases A and B) of Section
3.3. Table A-4 reproduces the4× 4 transition probability matrices implied by the independent model and Cases A
and B.

Independent Regimes
In the first case, we impose the restriction that the inflation and the real regimes evolve independently. In other
words:

Pr
[
sr

t+1 = j, sπ
t+1 = k|sr

t = m, sπ
t = n

]
=

Pr
[
sr

t+1 = j|sr
t = m

]× Pr
[
sπ

t+1 = k|sπ
t = n

]
. (B-1)

Equation (B-1) gives rise to a restricted transition probability matrixΠ0:

[st+1 = 1] [st+1 = 2] [st+1 = 3] [st+1 = 4]
[st = 1] prpπ pr (1− pπ) (1− pr) pπ (1− pr) (1− pπ)
[st = 2] pr (1− qπ) prqπ (1− pr) (1− qπ) (1− pr) qπ

[st = 3] (1− qr) pπ (1− qr) (1− pπ) qrpπ qr (1− pπ)
[st = 4] (1− qr) (1− qπ) (1− qr) qπ qr (1− qπ) qrqπ

(B-2)

The independent case is very parsimonious, adding only two parameters to the benchmark model.

Correlated Regimes Case A
In this case, we decompose the joint transition probability of real rates and inflation regimes as:

Pr
[
sr

t+1 = j, sπ
t+1 = k|sr

t = m, sπ
t = n

]

= Pr
[
sr

t+1 = j|sπ
t+1 = k, sr

t = m, sπ
t = n

]× Pr
[
sπ

t+1 = k|sr
t = m, sπ

t = n
]

= Pr
[
sr

t+1 = j|sπ
t+1 = k, sr

t = m
]× Pr

[
sπ

t+1 = k|sπ
t = n

]
(B-3)
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In the last line, we assume that the past inflation regime does not determine the contemporaneous correlation of
the real rate and inflation regime. Mathematically, we assume thatPr

[
sr

t+1 = j|sπ
t+1 = k, sr

t = m, sπ
t = n

]
=

Pr
[
sr

t+1 = j|sπ
t+1 = k, sr

t = m
]
. We also assume thatPr

[
sπ

t+1 = k|sπ
t = n, sr

t = m
]

= Pr
[
sπ

t+1 = k|sπ
t = n

]
,

or that past real rates do not influence future inflation regime realizations.
In (B-3), we parameterizePr

[
sr

t+1 = j|sπ
t+1 = k, sr

t = m
]

asp“j”,“m”, where:

j =
{

A if sr
t+1 = sπ

t+1 = 1
B if sr

t+1 = sπ
t+1 = 2

m =
{

A if sr
t = 1

B if sr
t = 2.

The “j”-component captures (potentially positive) correlation between inflation and real rate regimes. The “m”-
component captures persistence in real rate regimes.

With this notation, the transition probability matrixΠ1 assumes the form:

[st+1 = 1] [st+1 = 2] [st+1 = 3] [st+1 = 4]
[st = 1] pAApπ

(
1− pBA

)
(1− pπ)

(
1− pAA

)
pπ pBA (1− pπ)

[st = 2] pAA (1− qπ)
(
1− pBA

)
qπ

(
1− pAA

)
(1− qπ) pBAqπ

[st = 3] pABpπ
(
1− pBB

)
(1− pπ)

(
1− pAB

)
pπ pBB (1− pπ)

[st = 4] pAB (1− qπ)
(
1− pBB

)
qπ

(
1− pAB

)
(1− qπ) pBBqπ

(B-4)

This model has four additional parameters relative to the benchmark model. We can test the null of independent
real rate and inflation regimes versus correlated regimes by:

H0 : pBA = 1− pAA andpBB = 1− pAB .

Correlated Regimes Case B

In Case B, we conditionPr
[
sr

t+1 = j, sπ
t+1 = k|sr

t = m, sπ
t = n

]
as:

Pr
[
sr

t+1 = j, sπ
t+1 = k|sr

t = m, sπ
t = n

]

= Pr
[
sr

t+1 = j|sπ
t+1 = k, sr

t = m, sπ
t = n

]× Pr
[
sπ

t+1 = k|sr
t = m, sπ

t = n
]

= Pr
[
sr

t+1 = j|sr
t = m

]× Pr
[
sπ

t+1 = k|sr
t = m, sπ

t = n
]
. (B-5)

Here, we assume thatPr
[
sr

t+1 = j|sπ
t+1 = k, sr

t = m, sπ
t = n

]
= Pr

[
sr

t+1 = j|sr
t = m

]
. Economically, future

real regimes depend only on current real regimes, while future inflation regimes depend on both the stance of the
monetary authority’s real regime as well as the current inflation environment.

In (B-5), we parameterizePr
[
sπ

t+1 = k|sr
t = m, sπ

t = n
]

asp“j”,“m”, where:

j =
{

A if sπ
t+1 = sr

t = 1
B if sπ

t+1 = sr
t = 2

m =
{

A if sπ
t = 1

B if sπ
t = 2.

Then the transition probability matrixΠ2 assumes the form:

[st+1 = 1] [st+1 = 2] [st+1 = 3] [st+1 = 4]
[st = 1] prpAA pr

(
1− pAA

)
(1− pr)

(
1− pBA

)
(1− pr) pBA

[st = 2] prpAB pr
(
1− pAB

)
(1− pr)

(
1− pBB

)
(1− pr) pBB

[st = 3] (1− qr) pAA (1− qr)
(
1− pAA

)
qr

(
1− pBA

)
qrpBA

[st = 4] (1− qr) pAB (1− qr)
(
1− pAB

)
qr

(
1− pBB

)
qrpBB

(B-6)

We refer to this parameterization as the partially-correlated regimes Case B. We can test Case B against the null of
the independent model by:

H0 : pBA = 1− pAA andpBB = 1− pAB .
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C Real Bond Prices
Let N1 be the number of unobserved state variables in the model (N1 = 3 for the stochastic inflation model,
N1 = 2 otherwise) andN = N1 + 1 be the total number of factors including inflation. The following proposition
describes how our model implies closed-form real bond prices.

Proposition C.1 Let Xt = (qt ft πt)′ or Xt = (qt ft wt πt)′ follow (1), with the real short rate (3) and real
pricing kernel (5) with prices of risk (6). The regimesst follow a Markov chain with transition probability matrix
Π = {pij}. Then the real zero coupon bond price for periodn conditional on regimei, P̂n

t (st = i), is given by:

P̂n
t (i) = exp(Ân(i) + B̂nXt). (C-1)

The scalarÂn(i) is dependent on regimest = i andB̂n is a1×N vector that is partitioned aŝBn = [B̂nq B̂nx],
whereB̂nq corresponds to theq variable andB̂nx corresponds to the other variables inXt. The coefficientŝAn(i)
andB̂n are given by:

Ân+1 (i) =−
(
δ0 + B̂′

nqσqγ0

)
+ log

∑

j

πij exp
(

Ân (j) + B̂nµ (j)

− B̂nxΣx (j)λ (j) +
1
2
B̂nΣ(j)Σ (j)′ B̂′

n

)

B̂n+1 =− δ′1 + B̂nΦ− B̂nqσqγ1e
′
1, (C-2)

whereei denotes a vector of zero’s with a 1 in theith place andΣx(i) refers to the lowerN1 × N1 matrix of of
Σ(i) corresponding to the non-qt variables inXt. The starting values for̂An(i) andB̂n are:

Â1 (i) = −δ0

B̂1 = −δ′1. (C-3)

Proof:

We first derive the initial values in (C-3):

P 1
t (i) =

∑

j

pijEt

[
M̂t+1|St+1 = j

]

=
∑

j

pij exp
(
−rt − 1

2
λt (j)′ λt (j)− λt (j)′ εt+1

)

= exp (−δ0 − δ′1Xt) (C-4)

Hence:
P̂ 1

t (i) = exp(Â1(i) + B̂1Xt),

whereA1(i) andB1 take the form in (C-3).
We prove the recursion (C-2) by induction. We assume that (C-1) holds for maturityn and examinêPn+1

t (i):

P̂n+1
t (i) =

∑

j

pijEt exp
[
−rt − 1

2
λt (j)′ λt (j)− λt (j)′ εt+1 + Ân (j) + B̂nXt+1

]
,

=
∑

j

pijEt exp
[
−δ0 − δ′1Xt − 1

2
λt (j)′ λt (j)− λt (j)′ εt+1 + Ân (j)

+B̂n (µ (j) + ΦXt + Σ(j) εt+1)
]

(C-5)
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Evaluating the expectation, we have:

P̂n+1
t (i) =

∑

j

pij exp
[
−δ0 − δ′1Xt − 1

2
λt (j)′ λt (j) + Ân (j) + B̂nµ (j)

+B̂nΦXt +
1
2

(
B̂nΣ (j)− λt (j)′

)(
B̂nΣ(j)− λt (j)′

)′]

=exp
[
−δ0 +

(
B̂nΦ− δ′1

)
Xt

]

×
∑

j

pij exp
[
Ân (j) + B̂nµ (j)− B̂nΣ(j)λt (j) +

1
2
B̂nΣ(j)Σ (j) B̂′

n

]
(C-6)

But we can write:

B̂nΣ (j) λt (j) = [B̂nq B̂nx]
[

σq (γ0 + γ1e
′
1Xt)

Σx (j) λ (j)

]

= B̂nqσq (γ0 + γ1e
′
1Xt) + B̂nxΣx (j)λ (j) . (C-7)

Expanding and collecting terms, we can write:

P̂n
t (i) = exp(Ân(i) + B̂nXt),

whereÂn(i) andB̂n take the form of (C-2).¥

D Nominal Bond Prices
Following the notation of Appendix C, letN1 be the number of unobserved state variables in the model (N1 = 3
for the stochastic inflation model,N1 = 2 otherwise) andN = N1 + 1 be the total number of factors including
inflation. The following proposition describes how our model implies closed-form nominal bond prices.

Proposition D.1 Let Xt = (qt ft πt)′ or Xt = (qt ft wt πt)′ follow (1), with the real short rate (3) and real
pricing kernel (5) with prices of risk (6). The regimesst follow a Markov chain with transition probability matrix
Π = {pij}. Then the nominal zero coupon bond price for periodn conditional on regimei, Pn

t (st = i), is given
by:

Pn
t (i) = exp(An(i) + BnXt), (D-1)

where the scalarAn(i) is dependent on regimest = i andBn is anN × 1 vector:

An+1(i) =− (
δ0 + B′

nqσqγ0

)
+ log

∑

j

πij exp
(

An (j) + (Bn − e′N )µ (j)

− (
Bnx − e′N1

)
Σx (j)λ (j) +

1
2

(Bn − e′N )Σ (j)Σ (j) (Bn − e′N )′
)

Bn+1 =− δ′1 + (Bn − e′N )Φ−Bnqσqγ1e
′
1, (D-2)

whereei denotes a vector of zero’s with a 1 in theith place,A(i) is a scalar dependent on regimest = i, Bn is a
row vector, which is partitioned asBn = [Bnq Bnx], whereBnq corresponds to theq variable andΣx(i) refers to
the lowerN1 × N1 matrix of ofΣ(i) corresponding to the non-qt variables inXt. The starting values forAn(i)
andBn are:

A1 (i) = −δ0 + log
∑

j

πij exp
(
−e′Nµ (j) +

1
2
e′NΣ(j)Σ (j)′ eN + e′N1

Σx (j)λ (j)
)

B1 = − (δ′1 + e′NΦ) . (D-3)
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Proof:

We first derive the initial values (D-3) by directly evaluating:

P 1
t (i) =

∑

j

pijEt

[
M̂t+1|St+1 = j

]

=
∑

j

pij exp
(
−rt − 1

2
λt (j)′ λt (j)− λt (j)′ εt+1 − e′N (µ (j) + ΦXt + Σ(j) εt+1)

)

= exp (−δ0 − δ′1Xt − e′NΦXt)

×
∑

j

pij exp
(
−e′Nµ (j)− e′NΣ(j) εt+1 − 1

2
λt (j)′ λt (j)− λt (j)′ εt+1

)

= exp (−δ0 − δ′1Xt − e′NΦXt)

×
∑

j

pij exp
(
−e′Nµ (j) +

1
2
e′NΣ(j)Σ (j)′ eN + e′NΣ(j)λt (j)

)
. (D-4)

Note thate′NΣ(j)λt(j) = e′N1
Σx(j)λ(j). Hence:

P 1
t (i) = exp (A1 (i) + B1Xt)

whereA1(i) andB1 are given by (D-3).
To prove the general recursion we use proof by induction:

Pn+1
t (i) =

∑

j

pijEt

[
exp

(
−rt − 1

2
λt (j)′ λt (j)− λt (j)′ εt+1 − e′NXt+1

)

exp (An (j) + BnXt+1)
]

=
∑

j

pijEt

[
exp

(
−δ0 − δ′1Xt − 1

2
λt (j)′ λt (j)− λt (j)′ εt+1 + An (j)

+ (Bn − e′N ) (µ (j) + ΦXt + Σ (j) εt+1)
)]

=
∑

j

pij exp
(
−δ0 − δ′1Xt − 1

2
λt (j)′ λt (j) + An (j) + (Bn − e′N )µ (j)

+ (Bn − e′N )ΦXt +
1
2

(
(Bn − e′N )Σ (j)− λt (j)′

) (
(Bn − e′N )Σ (j)− λt (j)′

)′)

=exp (−δ0 + ((Bn − e′N )Φ− δ′1)Xt)
∑

j

pij exp
(

An (j) + (Bn − e′N ) µ (j)

− (Bn − e′N )Σ (j) λt (j) +
1
2

(Bn − e′N )Σ (j)Σ (j) (Bn − e′N )′
)

(D-5)

Now note that:

(Bn − e′N )Σ (j) λt (j) = (Bn − e′N )
[

σq (γ0 + γ1e
′
1Xt)

Σx (j) λ(j)

]

=
[

Bnq

Bnx − e′N1

] [
σq (γ0 + γ1e

′
1Xt)

Σx (j)λ(j)

]

= Bnqσq (γ0 + γ1e
′
1Xt) +

(
Bnx − e′N1

)
Σx (j) λ(j) (D-6)

whereBn = [Bnq Bnx].
Hence, collecting terms and substituting (D-6) into (D-5), we have:

Pn+1
t (i) = exp [An+1 (i) + Bn+1Xt] ,
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where:An(i) andBn are given by (D-2).
Note that theAn(i) term allows for an inflation premium, captured throughΣx(st) andλ(st), but this is zero

under our formulation.¥

E Likelihood Function
We specify the set of nominal yields without measurement error asY1t (N1 × 1) and the remaining yields asY2t

(N2 × 1). There are as many yields measured without error as there are latent factors inXt. The complete set of
yields are denoted asYt = (Y ′

1t Y ′
2t)

′ with dimensionM × 1, whereM = N1 + N2. Note that the total number of
factors inXt is N = N1 + 1, since the last factor, inflation, is observable.

Given the expression for nominal yields in (13), the yields observed without error and inflation,Zt = (Y ′
1t πt)′,

take the form:
Zt = A1(st) + B1Xt, (E-1)

where:

A1(st) =
[An(st)

0

]
B1 =

[Bn

e′N

]
, (E-2)

whereAn(st) is theN1 × 1 vector stacking the−An(st)/n terms for theN1 yields observed without error, and
Bn is aN1 × N matrix which stacks the−Bn/n vectors for the two yields observed without error. Then we can
invert for the unobservable factors:

Xt = B−1(Zt −A1(st)) (E-3)

Substituting this into (E-1) and using the dynamics ofXt in (1), we can write:

Zt = c(st, st−1) + ΨZt−1 + Ω(st)εt, (E-4)

where:

c(st, st−1) = A1(st) + B1µ(st)− B1ΦB−1
1 A1(st−1)

Ψ = B1ΦB−1
1

Ω(st) = B1Σ(st)

Note that our model implies a RS-VAR for the observable variables with complex cross-equation restrictions.
The yieldsY2t observed with error have the form:

Y2t = A2(st) + B2Xt + ut, (E-5)

whereA2 andB2(st) follow from Proposition D.1 andu is the measurement error,ut ∼ N(0, V ), whereV is a
diagonal matrix. We can solve forut in equation (E-5) using the inverted factor process (E-3). We assume thatut

is uncorrelated with the errorsεt in (1).
Following Hamilton (1994), we redefine the statess∗t to count all combinations ofst and st−1, with the

corresponding re-defined transition probabilitiesp∗ij = p(s∗t+1 = i|s∗t = j). We re-write (E-4) and (E-5) as:

Zt = c(s∗t ) + ΨZt−1 + Ω(s∗t )εt, (E-6)
Y2t = A2(s∗t ) + B2Xt + ut.

Now the standard Hamilton (1989 and 1994) and Gray (1996) algorithms can be used to estimate the likelihood
function. Since (E-6) gives us the conditional distributionf(πt, Y

1
t |s∗t = i, It−1), we can write the likelihood as:

L =
∏

t

∑

s∗t

f(πt, Y1t, Y2t|s∗t , It−1)Pr(s∗t |It−1)

=
∏

t

∑

s∗t

f(Zt|s∗t , It−1)f(Y2t|πt, Y1t, s
∗
t , It−1)Pr(s∗t |It−1) (E-7)

where:

f(Zt|s∗t , It−1) = (2π)−(N1+1)/2|Ω(s∗t )Ω(s∗t )
′|−1/2

exp
(
−1

2
(Zt − c(s∗t )−ΨZt−1)′[Ω(s∗t )Ω(s∗t )

′]−1(Y2t − c(s∗t )−ΨZt−1)
)
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is the probability density function ofZt conditional ons∗t and

f(Y2t|πt, Y1t, s
∗
t , It−1) =

(2π)−N2/2|V |−1/2 exp
(
−1

2
(Y2t −A2(s∗t )− B2Xt)′V −1(Y2t −A2(s∗t )− B2Xt

)

is the probability density function of the measurement errors conditional ons∗t .
The ex-ante probabilityPr(s∗t = i|It−1) is given by:

Pr(s∗t = i|It−1) =
∑

j

p∗jiPr(s∗t−1 = j|It−1), (E-8)

which is updated using:

Pr(s∗t = j|It) =
f(Zt, s

∗
t = j|It−1)

f(Zt|It−1)

=
f(Zt|s∗t = j, It−1)Pr(s∗t = j|It−1)∑
k f(Zt|s∗t = k, It−1)Pr(s∗t = k|It−1)

An alternative way to derive the likelihood function is to substitute (E-3) into (E-5). We then obtain a RS-VAR
with complex cross-equation restrictions for all variables in the system(Z ′t Y ′

2t)
′.

F Specification Tests
Residual Tests

We report two tests on in-sample scaled residualsεt of yields and inflation. The scaled residualsεt are not the
same as the shocksεt in (1). For a variablext, the scaled residual is given byεt = (xt−Et−1(xt))/

√
vart−1(xt),

wherext are yields or inflation. The conditional moments are computed using our RS model and involve ex-ante
probabilitiesp(st = i|It−1). Following Bekaert and Harvey (1997), we use a GMM test for serial correlation in
scaled residualsεt:

E[εt εt−1] = 0. (F-1)

We also test for serial correlation in the second moments of the scaled residuals:

E[((εt)2 − 1) ((εt−1)2 − 1)] = 0. (F-2)

Moment Tests

To enable comparison across several non-nested models of how the moments implied from various models compare
to the data, we introduce the point statistic:

H = (h− h̄)′Σ−1
h (h− h̄), (F-3)

whereh̄ are sample estimates of unconditional moments,h are the unconditional moments from the estimated
model, andΣh is the covariance matrix of the sample estimates of the unconditional moments, estimated by GMM
(Newey-West, 1987). In this comparison, the moments implied by various models are compared to the data, with
the data sampling errorΣh held constant across the models. The moments we consider are the first and second
moments of term spreads and long yields; the first and second moments of inflation; the autocorrelogram of term
spreads; and the autocorrelogram of inflation.

Equation (F-3) ignores the sampling error of the moments of the model, implied by the uncertainty in the
parameter estimates, making our moment test informal. However, this allows the same weighting matrix, computed
from the data, to be used across different models, similar to Hansen and Jagannathan (1997). If parameter
uncertainty is also taken into account, we might fail to reject, not because the model accurately pins down the
moments, but because of the large uncertainty in estimating the model parameters.
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G Computing Moments of the Regime-Switching Model
The formulae given here assume that there areK regimesst = 1, . . . K. Timmermann (2000) provides explicit
formulae for a similar formulation of (1), except that the conditional mean ofXt+1 depends onµ(st+1)+Φ(Xt−
µ(st)) rather than onµ(st+1) + ΦXt. In Timmermann’s set-up,E(Xt|st) is trivially µ(st), whereas in our model
the computation is more complex.

Conditional First Moments E(Xt|st)

Starting from (1), and taking expectations conditional onst+1, we have:

E(Xt+1|st+1) = E(µ(st+1)|st+1) + ΦE(Xt|st+1) (G-1)

To evaluateE(Xt|st+1) we use Bayes Rule:

E(Xt|st+1 = i) =
K∑

j=1

E(Xt|st = j)Pr(st = j|st+1 = i). (G-2)

The probabilityPr(st = j|st+1 = i) is the transition probability of the ‘time-reversed’ Markov chain that moves
backward in time. These backward transition probabilities are given by:

Pr(st = j|st+1 = i) , bij = pji

(
πj

πi

)
,

wherepji = Pr(st+1 = i|st = j) are the forward transition probabilities in (4) andπi = Pr(st = i) is the stable
probability of regimei. Denote the backward transition probability matrix asB = {bij}

Using the backward transition probabilities, (G-1) can be rewritten:

E(Xt+1|st+1 = i) = µ(i) + Φ
K∑

j=1

E(Xt|st = j)bji. (G-3)

Assuming stationarity, that isE(Xt+1|st+1 = i) = E(Xt|st = i), and defining theK × 1 vectors:

~E(Xt|st) =




E(Xt|st = 1)
...

E(Xt|st = K)


 and ~µ(st) =




µ(1)
...

µ(K)


 ,

we can write:
~E(Xt|st) = ~µ(st) + Φ~E(Xt|st)B′.

Hence, we can solve for~E(Xt|st) as:

~E(Xt|st) = (I −B ⊗ Φ)−1~µ(st) (G-4)

Conditional Second MomentsE(XtX
′
t|st)

Starting from (1), we can write:

Xt+1X
′
t+1 = (µ(st+1) + ΦXt + Σ(st+1)εt+1)(µ(st+1) + ΦXt + Σ(st+1)εt+1)′, (G-5)

and taking expectations conditional onst+1, we have:

E(Xt+1X
′
t+1|st+1) = µ(st+1)µ(st+1)′ + Σ(st+1)Σ(st+1)′

+ µ(st+1)(ΦE(Xt|st+1)′ + ΦE(Xt|st+1)µ(st+1)′ + ΦE(XtXt|st+1)Φ′. (G-6)
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We can evaluate the termE(Xt|st+1) from (G-2). Hence, we can define anN ×N matrixG(i):

G(i) = µ(i)µ(i)′ + Σ(i)Σ(i)′ + µ(i)(ΦE(Xt|st+1 = i)′ + ΦE(Xt|st+1 = i)µ(i)′. (G-7)

Substituting (G-7) into (G-6) and using Bayes’ Rule, we have:

E(Xt+1X
′
t+1|st+1 = i) = G(i) +

K∑

j=1

Φ[E(XtX
′
t|st = j)Pr(st = j|st+1 = i)]Φ′

= G(i) +
K∑

j=1

bijΦE(XtX
′
t|st = j)Φ′

Taking vec’s of both sides, we obtain:

vec(E(Xt+1X
′
t+1|st+1 = i)) = G(i) + (Φ⊗ Φ)

K∑

j=1

vec(E(Xt+1X
′
t+1|st+1 = i))bij (G-8)

If we define theKN2 × 1 vectors:

~E(XtX
′
t|st) =




vec(E(Xt+1X
′
t+1|st+1 = 1))
...

vec(E(Xt+1X
′
t+1|st+1 = K))


 and ~G =




vec(G(1))
...

vec(G(K))




we can write (G-8) as:
~E(XtX

′
t|st) = ~G + (Φ⊗ Φ)~E(XtX

′
t|st)B′.

Hence, we can solve for~E(XtX
′
t|st) as:

~E(XtX
′
t|st) = (IKN2 −B ⊗ (Φ⊗ Φ))−1 ~G. (G-9)

Unconditional Moments

The first unconditional momentE(Xt) is solved simply by taking unconditional expectations of (1), giving

E(Xt) = (I − Φ)−1
K∑

i=1

πiµ(i). (G-10)

To solve the second unconditional moment var(Xt), we use:

var(Xt) = E(XtX
′
t)− E(Xt)E(Xt)′

= E(E(XtX
′
t|st))− E(Xt)E(Xt)′

=
K∑

i=1

{var(Xt|st = i) + E(Xt|st = i)E(Xt|st = i)′}πi − E(Xt)E(Xt)′ (G-11)

Moments of Yields

Bond yields are affine functions ofXt, from Propositions C.1 and D.1. Hence, they can be written asYt = A+BXt

for some choice ofA andB. Then, moments ofYt are given by:

E(Yt|st) = A + BE(Xt|st)

var(Yt|st) = Bvar(Xt|st)B′ (G-12)

E(Yt) = A + BE(Xt)

var(Yt) = Bvar(Xt)B′ (G-13)
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Table 1: Residual and Moment Tests

Panel A: Residual Tests

Models
I II III IV V VI

1-qtr yield Serial Correlation 0.30 0.70 0.35 0.05 0.60 0.24
Heteroskedasticity 0.26 0.15 0.07 0.08 0.07 0.09

5-year spread Serial Correlation 0.20 0.30 0.05 0.62 0.83 0.14
Heteroskedasticity 0.21 0.28 0.14 0.09 0.18 0.06

Inflation Serial Correlation 0.00** 0.03* 0.02* 0.28 0.00** 0.41
Heteroskedasticity 0.14 0.11 0.55 0.28 0.59 0.26

Panel B:χ2 Tests on Moments (p-values)

Models
I II III IV V VI

Mean/var spread and long rate 0.43 0.00** 0.03* 0.86 0.00** 0.00**
Mean/var inflation 0.00** 0.19 0.54 0.71 0.52 0.00**
1,5,10 autocorrelations spread 0.25 0.33 0.03* 0.37 0.34 0.18
1,5,10 autocorrelations inflation 0.04* 0.00** 0.04* 0.16 0.00** 0.00**

Panel C: Model-Implied and Sample Moments

Models Data
I II III IV V VI Moment SE

stdevy1
t 3.15 3.30† 2.93 3.10 3.32 5.07† 2.86 0.15

meany20
t 6.46 6.59 6.25 6.46 5.80† 4.71† 6.39 0.20

stdevy20
t 2.60 2.54 2.28† 2.66 2.68 3.62† 2.74 0.14

meany20
t − y1

t 1.00 1.13† 0.78† 1.00 0.34 -0.75† 0.93 0.07
stdevy20

t − y1
t 1.27† 1.48† 1.52† 1.09 1.55† 2.83† 1.03 0.05

meanπt 3.68 4.02 3.74 4.03 4.21 5.30 3.88 0.23
stdevπt 4.87† 3.72† 3.38 3.47 3.37 5.22† 3.19 0.16
Spread Autocorrelations ρ(1) 0.81 0.76 0.87† 0.79 0.77 0.79 0.73 0.05

ρ(5) 0.36 0.36 0.47 0.29 0.29 0.43 0.32 0.12
ρ(10) 0.14 0.16 0.22 0.09 0.10 0.18 -0.04 0.12

Inflation Autocorrelations ρ(1) 0.90† 0.49† 0.73 0.78 0.37† 0.61† 0.79 0.06
ρ(5) 0.57 0.27† 0.31† 0.46 0.17† 0.32† 0.59 0.10
ρ(10) 0.34 0.18 0.18 0.33 0.10† 0.20 0.36 0.09

Panel A reports p-values of scaled residual tests in (F-1) and (F-2). The first entry reports the p-value of a
GMM-based test ofE(εtεt−1) = 0 and the second row reports the p-value of a GMM-based test ofE[(ε2t −
1)(ε2t−1 − 1)] = 0. Panel B reports p-values of goodness-of-fitχ2 tests (equation (F-3)) for various moments
implied by different models. The long rate refers to the 20-quarter nominal ratey20

t and the spread refers to
y20

t − y5
t . For each line, the moments specified in the first column are used in theH point-statistic. Panel

C reports moments of 5-year spreads and inflationπt implied by various models, compared with the sample
estimates in data and standard errors in the last two columns, computed using GMM with 4 Newey-West
(1987) lags. We denote theith correlation asρ(i) at a quarterly frequency. Means and standard deviations
are in percent. In Panels A and B, p-values less than 0.05 (0.01) are denoted by * (**). In Panel C, moments
outside plus or minus two standard errors of the data moment are denoted by†. Models I and II are the
single-regime equivalents of the inflation and expected inflation models in Sections 3.1 and A, respectively.
Model III denotes the benchmark RS model with two regimes. Model IV denotes the benchmark RS model
with separate and independent real and inflation regimes. The results of the inflation model allowing for
correlated real and inflation regimes (Case I and II) are almost identical to Model IV and so are omitted.
Model V denotes the RS expected inflation model with two regimes. Model VI denotes the RS expected
inflation model with separate and independent real and inflation regimes.
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Table 2: Factor Behavior

Correlation with Various Variables
Contribution Nominal Real
to Real Rate Short Nominal Short Real

Stdev Auto Variance Inflation Rate Spread Rate Spread

q 1.78 0.98 0.47 0.59 0.89 -0.12 0.42 -0.08
(0.62) (0.01) (0.35) (0.12) (0.06) (0.05) (0.22) (0.01)

f 0.72 0.93 0.07 0.25 0.44 -0.98 0.16 -0.26
(0.21) (0.06) (0.09) (0.08) (0.12) (0.01) (0.18) (0.15)

π 3.47 0.80 0.46 1.00 0.68 -0.41 -0.39 0.64
(0.43) (0.06) (0.36) – (0.09) (0.06) (0.29) (0.11)

Dataπ 3.19 0.77 0.70 -0.37

Projection of Inflation on Lagged Instruments

Nominal
Short Nominal

Inflation Rate Spread
Model 0.57 0.34 -0.13

(0.06) (0.07) (0.17)
Data 0.56 0.26 -0.40

(0.06) (0.07) (0.15)

The table reports various unconditional moments of the three factors: the time-varying price of risk factor
qt, the regime-switching factorft and inflationπt, from the benchmark model with independent real and
inflation regimes (Model IV). The short rate refers to the 1-quarter nominal yield and the spread refers to
the 20-quarter nominal term spread. The row labelled ‘Dataπ’ refers to actual inflation data. The numbers
between parentheses are standard errors reflecting parameter uncertainty from the estimation, computed using
the delta-method. The variance decomposition of the real rate is computed as cov(rt, zt)/var(rt), with zt

respectivelyqt, ft and δππt. The last row reports multivariate projection coefficients of inflation on the
lagged short rate, spread and inflation implied by the model.
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Table 3: Selected Regime-Switching Parameters

P-value
Regime 1 Regime 2 Test of Equality

Panel A: Model III

µf (st)× 100 -0.016 0.096 0.09
(0.015) (0.088)

σf (st)× 100 0.077 0.258 0.00**
(0.020) (0.099)

µπ(st)× 100 0.453 0.199 0.00**
(0.078) (0.120)

σπ(st)× 100 0.400 0.973 0.03*
(0.018) (0.381)

λf -0.482 -0.005 0.05*
(0.104) (0.353)

Panel B: Model IV

µf (sr
t )× 100 -0.006 0.039 0.10

(0.004) (0.023)
σf (sr

t )× 100 0.078 0.246 0.00**
(0.020) (0.020)

µπ(sπ
t )× 100 0.435 0.219 0.00**

(0.079) (0.095)
σπ(sπ

t )× 100 0.479 0.471 0.88
(0.027) (0.052)

λf -0.523 0.335 0.23
(0.100) (0.157)

We report selected parameters from the benchmark model with two regimes (Panel A, Model III) and
independent real and inflation regimes (Panel B, Model IV). All parameters are unscaled and not annualized.
The p-values relate to Waldχ2 tests of parameter equality across regimes. P-values less than 0.05 (0.01) are
denoted by * (**).
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Table 4: Real Rates, Expected Inflation, Nominal Rates Across Regimes

Regime
st = 1 st = 2 st = 3 st = 4

Real Short Rates Mean 1.31 2.20 1.50 2.39
(0.43) (0.53) (0.40) (0.50)

Std Dev 1.54 1.53 1.82 1.81
(0.23) (0.27) (0.28) (1.03)

Inflation Compensationπe
t,1 Mean 4.16 2.48 4.62 2.94

(0.42) (0.65) (0.48) (0.71)
Std Dev 2.78 2.78 3.17 3.17

(0.52) (0.52) (0.54) (0.54)

Nominal Short rate Mean 5.47 4.68 6.12 5.32
(0.06) (0.24) (0.26) (0.35)

Std Dev 2.99 2.99 3.72 3.72
(0.80) (0.80) (0.69) (0.69)

We report means and standard deviations for real short rates, 1-quarter expected inflation and nominal short
rates implied by the benchmark model with independent real and inflation regimes (Model IV), across each
of the four regimes. The regimest = 1 corresponds to(sr

t = 1, sπ
t = 1), st = 2 to (sr

t = 1, sπ
t = 2), st = 3

to (sr
t = 2, sπ

t = 1) andst = 4 to (sr
t = 2, sπ

t = 2). Standard errors reported in parentheses are computed
using the delta-method.
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Table 5: Characteristics of Real Rates

Panel A: Unconditional Moments

Maturity
Qtrs Mean Stdev Auto

1 1.44 1.60 0.61
(0.42) (0.23) (0.08)

4 1.59 1.00 0.73
(0.43) (0.26) (0.13)

12 1.52 0.67 0.89
(0.42) (0.34) (0.10)

20 1.46 0.61 0.94
(0.43) (0.36) (0.06)

Spread 20-1 0.02 1.29 0.57
(0.27) (0.18) (0.06)

Panel B: Conditional Correlations with Actual and Expected Inflation

Maturity Regimest = 1 Regimest = 2 Regimest = 3 Regimest = 4 Unconditional
Qtrs Actual Expected Actual Expected Actual Expected Actual Expected Actual Expected

1 -0.40 -0.11 -0.41 -0.13 -0.41 -0.01 -0.39 -0.04 -0.40 -0.13
(0.31) (0.27) (0.29) (0.26) (0.35) (0.28) (0.30) (0.26) (0.29) (0.31)

4 -0.21 0.03 -0.24 -0.01 -0.29 0.03 -0.29 -0.01 -0.23 0.00
(0.44) (0.37) (0.42) (0.37) (0.56) (0.50) (0.49) (0.45) (0.43) (0.45)

12 0.17 0.30 0.11 0.24 0.14 0.29 0.08 0.21 0.12 0.30
(0.42) (0.35) (0.42) (0.36) (0.56) (0.53) (0.53) (0.51) (0.43) (0.45)

20 0.33 0.42 0.27 0.36 0.35 0.45 0.27 0.36 0.28 0.45
(0.32) (0.27) (0.33) (0.29) (0.44) (0.41) (0.43) (0.41) (0.35) (0.36)

The table reports various moments of the real rate, implied from the benchmark model IV with
independent real rate and inflation regimes. Panel A reports the unconditional mean, standard deviation
and autocorrelation of real yields of various maturity in quarters. Panel B reports the correlation of real yields
with actual and unexpected inflation implied from the model. We report the conditional correlation of real
yields with actual inflation corr(ŷn

t+1, πt+1,n|st), and the conditional correlation of real yields with expected
inflation corr(ŷn

t+1, Et+1(πt+1+n,n)|st). The regimest = 1 corresponds to(sr
t = 1, sπ

t = 1), st = 2 to
(sr

t = 1, sπ
t = 2), st = 3 to (sr

t = 2, sπ
t = 1) andst = 4 to (sr

t = 2, sπ
t = 2). Standard errors reported in

parentheses are computed using the delta-method.
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Table 6: Regime-Dependent Means of Inflation Compensation

Real Rate Regimes Inflation Regimes Uncondi-
Qtrs sr

t = 1 sr
t = 2 sπ

t = 1 sπ
t = 2 tional

Inflation Compensationπe
t,n

1 3.96 4.42 4.22 2.54 4.02
(0.42) (0.49) (0.42) (0.42) (0.74)

4 4.17 4.96 4.49 2.67 4.27
(0.39) (0.50) (0.39) (0.61) (0.40)

12 4.71 5.43 4.99 3.42 4.80
(0.39) (0.47) (0.39) (0.49) (0.39)

20 4.94 5.42 5.13 4.00 5.00
(0.41) (0.47) (0.42) (0.44) (0.41)

RS-VAR Expected InflationEt(πt+n,n)

1 3.97 4.42 4.22 2.54 4.03
(0.42) (0.49) (0.42) (0.66) (0.42)

4 3.95 4.53 4.20 2.75 4.03
(0.42) (0.52) (0.42) (0.64) (0.42)

12 3.97 4.41 4.13 3.27 4.03
(0.42) (0.48) (0.42) (0.54) (0.42)

20 3.99 4.28 4.09 3.54 4.03
(0.42) (0.45) (0.42) (0.48) (0.42)

Expected Inflation Risk Premiumϕt,n

1 -0.00 -0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

4 0.22 0.42 0.29 -0.08 0.24
(0.08) (0.16) (0.10) (0.06) (0.09)

12 0.74 1.01 0.86 0.15 0.77
(0.26) (0.37) (0.29) (0.17) (0.27)

20 0.95 1.14 1.04 0.47 0.97
(0.35) (0.42) (0.37) (0.26) (0.35)

The table reports means and standard deviations of expected inflation and inflation risk premiums (inflation
compensation), conditional on the real regime (sr

t ) or inflation regime (sπ
t ), implied from the benchmark

model IV with independent real and inflation regimes. Moments computed conditional on the real regime
variablesr

t (inflation regimesπ
t ) integrate out the effect ofsπ

t (sr
t ). Standard errors reported in parentheses

are computed using the delta-method.
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Table 7: Conditional Moments Across Business Cycles

Maturity Mean Std Dev
(Qtrs) Expansion Recession Expansion Recession

Real Rateŝyn
t 1 1.64 1.25 1.32 2.33

(0.20) (0.20) (0.05) (0.08)
20 1.47 1.59 0.71 0.95

(0.41) (0.39) (0.21) (0.28)
Real Spread̂y20

t − ŷ1
t -0.17 0.34 0.95 1.65

(0.28) (0.29) (0.07) (0.15)
Nominal Ratesyn

t 1 5.30 6.29 2.47 4.15
(0.05) (0.11) (0.22) (0.37)

20 6.26 7.12 2.42 3.83
(0.20) (0.21) (0.23) (0.35)

Nominal Spready20
t − y1

t 0.96 0.83 1.00 1.14
(0.19) (0.19) (0.26) (0.26)

Inflation Compensationπe
t,n 1 3.66 5.05 2.26 3.70

(0.18) (0.16) (0.15) (0.25)
20 4.79 5.53 1.81 3.02

(0.39) (0.39) (0.38) (0.58)
Inflation Compensation Spreadπe

t,20 − πe
t,1 1.13 0.48 1.36 2.19

(0.31) (0.31) (0.10) (0.14)

Actual Inflation 3.54 5.43 2.76 4.40
Ex-post Real Rate 1.74 0.86 1.99 3.61
Ex-post Real Spread 2.70 1.69 2.32 4.01

Regime Realizations Across Business Cycles

st = 1 st = 2 st = 3 st = 4
Whole Sample 0.66 0.16 0.12 0.06
Expansions 0.70 0.15 0.10 0.05
Recessions 0.51 0.17 0.20 0.11

The table reports various sample moments of real rates, nominal rates and expected inflation implied from
yield-curve forecasts (πe

t,n) from Model IV, conditional on expansions and recessions, as defined by the
NBER. Standard errors reported in parentheses are computed using the delta-method on sample moments.
The ex-post real rate (spread) is the nominal rate (spread) minus actual inflation over the sample. The second
part of the table reports the proportions of each regime (the number of periods assigned to be in regimest = i
divided by the total number of observations) across the whole sample, and conditional on NBER expansions
and recessions. The regime classification uses smoothedPr(st = i|IT ) probabilities.
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Table 8: Variance Decomposition of Nominal Yields and Spreads

Regime 1 Regime 2 Regime 3 Regime 4 Unconditional
n Real Infl Real Infl Real Infl Real Infl Real Infl

Variance Decomposition of Nominal Yields

1 0.20 0.80 0.20 0.80 0.26 0.74 0.26 0.74 0.21 0.79
(0.11) (0.11) (0.11) (0.11) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

20 0.21 0.79 0.21 0.79 0.20 0.80 0.20 0.80 0.21 0.79
(0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

Variance Decomposition of Nominal Yield Spreads

4 0.21 0.79 0.21 0.79 0.89 0.11 0.89 0.11 0.48 0.52
(0.19) (0.19) (0.19) (0.20) (0.12) (0.11) (0.12) (0.11) (0.16) (0.16)

20 0.01 0.99 0.01 0.99 0.40 0.60 0.40 0.60 0.17 0.83
(0.22) (0.21) (0.22) (0.22) (0.16) (0.16) (0.16) (0.16) (0.19) (0.19)

The table reports variance decompositions of nominal yields and nominal yield spreads into real rate (τŷn
t

),
denoted by ‘Real,’ and inflation compensation (τπe

t,n
), denoted by ‘Infl,’ components, defined in equation

(20) using the inflation compensationπe
t,n. The regimest = 1 corresponds to(sr

t = 1, sπ
t = 1), st = 2 to

(sr
t = 1, sπ

t = 2), st = 3 to (sr
t = 2, sπ

t = 1) andst = 4 to (sr
t = 2, sπ

t = 2). Standard errors reported in
parentheses are computed using the delta-method on population moments.
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Figure 1: Smoothed Regime Probabilities: Benchmark Model III
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The bottom graph shows the smoothed probabilities of the second regime,Pr(st = 2|IT ), of the benchmark
model using information over the whole sample, along with short (1-quarter), long (20-quarter) yields and
inflation shown in the top panel. NBER recessions are indicated by shaded bars.
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Figure 2: Smoothed Regime Probabilities: Independent Real Rate and Inflation Regimes
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The figure displays smoothed probabilities, using information over the whole sample, from the benchmark
model with separate and independent real rate and inflation regimes (Model IV). The top panel shows the
smoothed probabilities of the second real rate regime,Pr(sr

t = 2|IT ), along with short (1-quarter) and long
(20-quarter) yields. In the bottom panel, the smoothed probabilities of the first inflation regimePr(sπ

t =
1|IT ) are shown, together with realized quarterly inflation. NBER recessions are indicated by shaded bars.
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Figure 3: Real Term Structure

Two-Regime Benchmark Model III
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The figure graphs the real yield curve, conditional on each regime and the unconditional real yield curve.
The top panel displays the benchmark model with two regimes (Model III) and the bottom panel displays the
benchmark model with separate and independent real rate and inflation regimes (Model IV). For Model IV,
the regimest = 1 corresponds to(sr

t = 1, sπ
t = 1), st = 2 to (sr

t = 1, sπ
t = 2), st = 3 to (sr

t = 2, sπ
t = 1)

andst = 4 to (sr
t = 2, sπ

t = 2). Thex-axis displays maturities in quarters of a year.
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Figure 4: Time-Series of Real versus Nominal Yields

Real versus Nominal 1-Quarter Yields
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The figure graphs the time-series of real and nominal 1-quarter yields (top panel) and real and nominal 20-
quarter yields (bottom panel) from the benchmark model with independent real rate and inflation regimes
(Model IV). NBER recessions are indicated by shaded bars.
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Figure 5: Comparative Statics of 20-Quarter Inflation Risk Premiums
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In each plot, we show the unconditional 20-quarter inflation risk premium as a function of various parameters
of Model IV. The units on they-axis are in percentage terms, and we alter the value of each parameter on the
x-axis by up to±4 standard errors of the estimates of each parameter. The circle represents the baseline case
at the estimated parameter values, of 97 basis points.
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Figure 6: Time-Series of 20-Quarter Inflation Risk Premiums
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The figure graphs the time-series of the 20-quarter inflation risk premium, with 2 SE bounds. NBER
recessions are indicated by shaded bars.

55



Figure 7: Nominal Term Structure

Two-Regime Benchmark Model III
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The figure graphs the nominal yield curve, conditional on each regime and the unconditional nominal yield
curve. The top panel displays the benchmark model with two regimes (Model III) and the bottom panel
displays the benchmark model with separate and independent real rate and inflation regimes (Model IV). For
Model IV, the regimest = 1 corresponds to(sr

t = 1, sπ
t = 1), st = 2 to (sr

t = 1, sπ
t = 2), st = 3 to

(sr
t = 2, sπ

t = 1) andst = 4 to (sr
t = 2, sπ

t = 2). Thex-axis displays maturities in quarters of a year.
Average yields from data are represented by ’x’, with 95% confidence intervals represented by vertical bars.

56



Appendix Tables

Table A-1: Single Regime Models

Inflation Model I Expected Inflation Model II

q f π q f w π
µ′ × 100 0.000 0.000 0.158 0.000 0.000 0.579 0.000

(0.045) (0.089)

q f π q f w π
Φ q 0.962 0.000 0.000 q 0.971 0.000 0.000 0.000

(0.017) (0.015)
f 0.000 0.669 0.000 f 0.000 0.841 0.000 0.000

(0.032) (0.012)
π 0.262 1.381 0.828 w 0.452 0.920 0.490 -0.065

(0.066) (0.655) (0.019) (0.081) (0.116) (0.083) (0.049)
π 0.000 0.000 1.000 0.000

q f π q f w π
σ × 100 0.116 0.095 0.493 0.119 0.165 0.371 0.577

(0.011) (0.027) (0.026) (0.008) (0.011) (0.027) (0.033)

δ0 0.010 0.010
(0.001) (0.006)

q f π q f w π
δ′1 1.000 1.000 -0.607 1.000 1.000 -0.496 -0.101

(0.028) (0.023)

q f π q f w π
λ′ -0.314 0.000 -0.265 0.000 0.000

(0.000) (0.074)
γ1 -26.8 -19.6

(15.1) (13.15)

Std Dev×100 of Measurement Errors
y4

t 0.079 -
(0.005)

y12
t 0.039 0.028

(0.002) (0.001)

The left (right)-hand columns report parameter estimates for the single-regime equivalents of the Inflation
and Expected Inflation Models, outlined in Sections 3.1 and A, respectively.
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Table A-2: Benchmark Model III
Regime 1 Regime 2

q f π q f π
µ(st)′ × 100 0.000 -0.016 0.453 0.000 0.096 0.199

(0.015) (0.078) (0.088) (0.120)

q f π
Φ q 0.962 0.000 0.000

(0.020)
f 0.000 0.784 0.000

(0.010)
π 0.459 1.034 0.555

(0.143) (0.522) (0.061)

q f π q f π
σ(st)× 100 0.100 0.077 0.400 0.100 0.258 0.973

(0.011) (0.020) (0.018) (0.011) (0.099) (0.381)

δ0 0.009
(0.001)

q f π
δ′1 1.000 1.000 -0.516

(0.059)

q f π q f π
λ(st)′ -0.482 0.000 -0.005 0.000

(0.104) (0.353)

γ1 -42.2
(21.2)

st+1 = 1 st+1 = 2
Π st = 1 0.979 0.021

(0.006) (0.006)
st = 2 0.121 0.879

(0.032) (0.032)

Std Dev×100 of Measurement Errors
y4

t 0.076
(0.005)

y12
t 0.039

(0.003)

The table reports estimates of the Benchmark Regime-Switching Inflation Model, where real rates and
inflations have the same regimes. The stable probabilities of regime 1 and 2 are 0.853 and 0.146, respectively.
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Table A-3: Benchmark Model with Independent Real Rate and Inflation Regimes IV

Regime 1 Regime 2

µf (sr
t )× 100 -0.006 0.039

(0.004) (0.023)
µπ(sπ

t )× 100 0.435 0.219
(0.079) (0.095)

q f π
Φ q 0.976 0.000 0.000

(0.015)
f 0.000 0.759 0.000

(0.012)
π 0.499 0.851 0.593

(0.135) (0.479) (0.058)

σq × 100 0.096
(0.010)

σf (sr
t )× 100 0.078 0.246

(0.020) (0.020)
σπ(sπ

t )× 100 0.479 0.471
(0.027) (0.052)

δ0 0.009
(0.001)

q f π
δ′1 1.000 1.000 -0.536

(0.052)

λf (st) -0.523 0.335
(0.100) (0.157)

γ1 -19.0
(16.2)

st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4
Π st = 1 0.930 0.022 0.047 0.001

(0.019) (0.008) (0.015) (0.001)
st = 2 0.162 0.790 0.008 0.040

(0.038) (0.037) (0.003) (0.013)
st = 3 0.319 0.007 0.659 0.015

(0.072) (0.003) (0.070) (0.006)
st = 4 0.056 0.271 0.115 0.559

(0.019) (0.061) (0.028) (0.068)

Std Dev×100 of Measurement Errors
y4

t 0.053
(0.003)

y12
t 0.026

(0.001)

The table reports estimates of the Regime-Switching Inflation Model with independent regimes in real rates
and inflation. The regimest = 1 corresponds to(sr

t = 1, sπ
t = 1), st = 2 to (sr

t = 1, sπ
t = 2), st = 3 to

(sr
t = 2, sπ

t = 1) andst = 4 to (sr
t = 2, sπ

t = 2). The stable probabilities of regime 1 to 4 are 0.769, 0.103,
0.113 and 0.015.
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Table A-4: Testing Independent versus Correlated Real Rate and Inflation Regimes

Panel A: Transition Probabilities from Independent Real Rate and Inflation Regimes (Model IV)

st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4
st = 1 0.930 0.022 0.047 0.001

(0.019) (0.008) (0.015) (0.001)
st = 2 0.162 0.790 0.008 0.040

(0.038) (0.037) (0.003) (0.013)
st = 3 0.319 0.007 0.659 0.015

(0.072) (0.003) (0.070) (0.006)
st = 4 0.056 0.271 0.115 0.559

(0.019) (0.061) (0.028) (0.068)

Panel B: Transition Probabilities from Correlated Real Rate and Inflation Regimes Case A

st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4
st = 1 0.927 0.023 0.050 0.000

(0.021) (0.008) (0.017) (0.003)
st = 2 0.166 0.825 0.009 0.000

(0.039) (0.107) (0.004) (0.118)
st = 3 0.342 0.004 0.635 0.019

(0.077) (0.005) (0.075) (0.007)
st = 4 0.061 0.145 0.114 0.679

(0.021) (0.152) (0.028) (0.158)

Panel C: Transition Probabilities from Correlated Real Rate and Inflation Regimes Case B

st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4
st = 1 0.946 0.017 0.032 0.005

(0.018) (0.009) (0.013) (0.003)
st = 2 0.180 0.782 0.008 0.028

(0.043) (0.041) (0.005) (0.011)
st = 3 0.252 0.005 0.640 0.103

(0.081) (0.003) (0.069) (0.043)
st = 4 0.048 0.208 0.167 0.577

(0.020) (0.067) (0.067) (0.101)

Likelihood ratio test for independent versus Case A p-value = 0.251
Likelihood ratio test for independent versus Case B p-value = 0.125

The table reports parameter estimates of the transition probability matrix of the Benchmark Model with
independent real rate and inflation regimes (Model IV) in Panel A (equation (B-2)) and correlated real rate
and inflation regimes Case A (Panel B) using the formulation (B-4). In Panel C, we report the correlated
real rate and inflation regimes Case B using the formulation (B-6). The regimest = 1 corresponds to
(sr

t = 1, sπ
t = 1), st = 2 to (sr

t = 1, sπ
t = 2), st = 3 to (sr

t = 2, sπ
t = 1) andst = 4 to (sr

t = 2, sπ
t = 2).

Standard errors reported in parenthesis are computed using the delta-method.
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Table A-5: Regime-Switching Expected Inflation Model V

Regime 1 Regime 2

q f w π q f w π
µ(st)′ × 100 0.000 0.009 0.477 0.000 0.000 -0.092 1.396 0.000

(0.009) (0.056) (0.008) (0.178)

q f w π
Φ q 0.968 0.000 0.000 0.000

(0.014)
f 0.000 0.850 0.000 0.000

(0.012)
w 0.390 0.756 0.518 -0.134

(0.064) (0.133) (0.075) (0.032)
π 0.000 0.000 1.000 0.000

q f w π q f w π
σ(st)× 100 0.116 0.110 0.176 0.551 0.116 0.302 0.650 0.551

(0.009) (0.010) (0.022) (0.034) (0.009) (0.034) (0.121) (0.034)

δ0 0.009
(0.001)

q f w π
δ′1 1.000 1.000 -0.377 -0.113

(0.068) (0.021)

q f w π q f w π
λ(st)′ -0.195 0.000 0.000 -0.414 0.000 0.000

(0.099) (0.323)

γ1 -24.1
(12.7)

st+1 = 1 st+1 = 2
Π st = 1 0.984 0.016

(0.014) (0.014)
st = 2 0.171 0.829

(0.104) (0.104)

Std Dev×100 of Measurement Errors
y4

t 0.028
(0.001)

The table reports estimates of the Regime-Switching Expected Inflation Model, where real rates and inflations
have the same regimes. The stable probabilities of regime 1 and 2 are 0.913 and 0.087, respectively.
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Table A-6: Expected Inflation Model with Independent Real Rate and Inflation Regimes VI

Regime 1 Regime 2

µf (sr
t )× 100 -0.029 0.059

(0.010) (0.020)
µπ(sπ

t )× 100 0.518 1.557
(0.063) (0.211)

q f w π
Φ q 0.987 0.000 0.000 0.000

(0.012)
f 0.000 0.834 0.000 0.000

(0.016)
w 0.429 1.141 0.499 -0.015

(0.094) (0.161) (0.047) (0.021)
π 0.000 0.000 1.000 0.000

σq × 100 0.086
(0.008)

σπ × 100 0.576
(0.031)

σf (sr
t )× 100 0.077 0.288

(0.009) (0.057)
σw(sπ

t )× 100 0.147 0.576
(0.015) (0.031)

δ0 0.005
(0.001)

q f w π
δ′1 1.000 1.000 -0.326 -0.039

(0.063) (0.015)

λf (st) 0.081 0.283
(0.116) (0.393)

γ1 -19.1
(14.4)

st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4
Π st = 1 0.863 0.098 0.035 0.004

(0.023) (0.017) (0.010) (0.002)
st = 2 0.517 0.444 0.021 0.018

(0.070) (0.067) (0.006) (0.007)
st = 3 0.072 0.008 0.826 0.093

(0.020) (0.003) (0.026) (0.017)
st = 4 0.043 0.037 0.495 0.425

(0.013) (0.012) (0.067) (0.066)

Std Dev×100 of Measurement Errors
y12

t 0.025
(0.001)

The table reports estimates of the Regime-Switching Expected Inflation Model with independent regimes in
real rates and inflation. The regimest = 1 corresponds to(sr

t = 1, sπ
t = 1), st = 2 to (sr

t = 1, sπ
t = 2),

st = 3 to (sr
t = 2, sπ

t = 1) andst = 4 to (sr
t = 2, sπ

t = 2). The stable probabilities of regime 1 to 4 are
0.567, 0.107, 0.274 and 0.052.

62


