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ABSTRACT. We discuss the results of fitting a 6-variable structural VAR in which we allow
for certain types of parameter variation over time. Allowing structural equation variances
to change over time is extremely important in improving fit. Allowing the coefficients that
define the model’s dynamics to change is less important to improving fit, though models
with changing parameters are consistent with the data. We pay special attention to a version
of the model that allows the monetary policy rule, but not other parts of the model, to show
changing coefficients. Results from this model fit some aspects of conventional wisdom
about changes in monetary policy over time, but imply that the changes in policy have
been more subtle than dramatic. We construct counterfactual histories for the early 1980’s,
suppressing the “Volcker regime” in monetary policy. We find a steadier decline in inflation
and a smaller recession earlier in the period, but slower growth later, than actually occurred.

1. INTRODUCTION

This paper aims to contribute to a recently active line of research that analyzes the evo-
lution of monetary policy behavior and its potential effects on the economy. Some writers
(Cogley and Sargent, 2001; Clarida, Galí, and Gertler, 2000, e.g.), and this may reflect a
majority view, believe that the systematic component of US monetary policy has changed
substantially since 1950, and that it is this change that explains the rise and subsequent
decline in US inflation over the last 4 decades. However much of the most careful statis-
tical analysis in this area (Hanson, 2001; Leeper and Zha, 2001a; Sims, 1999) has found
little clear evidence of changed policy. InHanson(2001) andLeeper and Zha(2001a) it
has been found to be important to use a multiple-equation framework in studying these
issues. There is some evidence of shift between interest-smoothing and short-run monetary
aggregate targeting, at least during the early 1980’s, and single-equation “reaction func-
tion” studies, even those that use instrumental variables, cannot allow for the simultaneity
with money demand that arises in this case. On the other hand,Sims(1999) argues that
time-varying residual variances are the most important instability in the US interest rate
time series, to the extent that inference that ignores heteroskedasticity is likely to be quite
misleading. Previous research with multiple equation methods has not allowed for time
varying variances.
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There is of course a reason that previous research has not combined time varying vari-
ances with structural multiple-equation modeling. The resulting models are complex, and
push the limits of what our computers and analytical capacity can handle. The results we re-
port in this draft of the paper are still incomplete in some respects, because of the extended
computing times required by some of our analysis. Additional work on the programs can
probably speed them up substantially.

Our model allows the economy to switch among a finite number of states. In a version
of the model that fits reasonably well, the variances of all equation disturbances change
between states, but the coefficients change only in the monetary policy reaction function.
We find that 3 states do a good job of picking up the time variation in policy. One of the
states occurs mainly during 1980-82, a period when the stated policy of the Federal Reserve
system, under Paul Volcker’s chairmanship, was to focus on controlling reserves, not on
smoothing interest rates. The estimates suggest that this was indeed a period in which
policy targeted monetary aggregates, not interest rates. However this regime is estimated
to be almost entirely confined to the 80-82 period. It does not represent a permanent shift
to a new type of behavior. A second regime is estimated to prevail during most of the
rest of the period we study, but is more completely dominant in the post-1982 sub-period.
However, estimated differences among regimes are modest. None of the policy regimes are
unstable, in the sense of moving interest rates less than 1-for-1 with inflation in the long
run.

2. THE MODEL

Our model is described by nonlinear stochastic dynamic simultaneous equations of the
general form:

y′tA0(st) = x′tA+(st)+ ε ′t , t = 1, . . . ,T, (1)

Pr(st = i | st−1 = k) = pik, i,k = 1, . . . ,h, (2)

wheres is an unobserved state,y is ann×1 vector of endogenous variables,x is anm×1
vector of exogenous and lagged endogenous variables,A0 is ann×n matrix of parameters,
A+ is anm×n matrix of parameters,T is a sample size, andh is the total number of states.
The transition matrixP = [pik] is assumed to be irreducible and ergodic. This class of non-
linear models was introduced by Hamilton1989; what is new here is our application to a
simultaneous equation framework. We treat as given the initial lagged values of endoge-
nous variablesY0 = {y1−`, . . . ,y0} where` is the lag length in (1) and we do not introduce
additional notation for these variables in the following analysis. Fort = 1, . . . ,T, denote

Yt = {y1, . . . ,yt}.
Structural disturbances are assumed to have the distribution:

εt |Yt−1∼ N

(
0, I

n×n

)
,

whereN(a,b) refers to the normal distribution with meana and covariance matrixb.
The reduced-form parameter matrix, denoted byB(st), is:

B(st) = A+(st)A−1
0 (st). (3)
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Because bothA0(st) andA+(st) vary with states, the reduced form of (1) has both time-
varying parameters and heteroscedastic disturbances.

If we did not allow simultaneity (i.e.,A0(st) is assumed to be recursive) and let all pa-
rameters vary across states, estimation of the model would be relatively straightforward,
becauseA0 andA+ in each given state can be estimated independent of the parameters in
other states. But with such an unrestricted form for the time variation, if the system of
equations is large or the lag length is long, the number of free parameters in the model
becomes impractically large. For a typical monthly model with 13 lags on 6 endogenous
variables, for example, the number of parameters inA+(st) is of order 468. But given the
post-war macroeconomic data, it is not uncommon to have some states lasting for only a
few years and thus the number of associated observations is far less than 468. It is therefore
essential to simplify the model by postulating restricted forms for the time variation in its
parameters.

Our approach is to begin by rewritingA+ as

A+(st)
m×n

= D(st)
m×n

+ S
m×n

A0(st)
n×n

. (4)

where

S=




I
n×n
0

(m−n)×n


 .

Then by specifying a prior and model forDt that makes its mean zero, we keep this prior
centered on the same random walk model for the reduced form that has worked well as a
prior mean in previous Bayesian VAR models. The approach of specifying a prior in terms
of this A0 andD matches the approach of Sims and Zha1998a. Note also that, as can
be seen from (3) and (4), this form of prior tends to imply that greater persistence (in the
sense of tighter concentration of the prior on the random walk) is associated with smaller
disturbance variances. This is reasonable, as it is consistent with the idea that beliefs about
the unconditional variance of the data arenothighly correlated with beliefs about the degree
of persistence in the data.

The class of models we consider includes three types ofrestricted time variations for
bothA0(st) andD(st). Each column of these matrices (i.e., the coefficients of each equation
in the system) can be either constant, changing by a scale factor over time, or changing
freely over time. When the change over time is “free”, in fact some individual coefficients
may be constrained to be zero. More specifically, in this paper we consider these three
cases:

A0, j(st),Dt =





Ā0, j , D̄ j Case I

Ā0, jλ j(st), D̄ jλ j(st) Case II

A0, j(st), D̄ jλ j(st) Case III

, (5)

where the subscriptj denotes thej th column (equation) of the corresponding matrix.
The specific models we discuss are

Nothing: Case I for all equations;
Variances only: Case II for all equations;
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Monetary policy: Case II for all equations, except Case III for the monetary policy
reaction function; and

Everything: Case III for all equations.1

We use monthly US data from 1959:1–2001:6. The model has 13 lags and includes con-
stant terms and 6 commonly-used endogenous variables: a commodity price index (Pcom),
M2 (M), the federal funds rate (R), interpolated monthly real GDP (y), the consumer price
index (P), and the unemployment rate (U). All variables are expressed in natural logs ex-
cept for the federal funds rate and the unemployment rate which are expressed in percent.
The identification of monetary policy, followingLeeper and Zha(2001b), is described in
Table1.

The X’s in Table1 indicate the unrestricted parameters inA0(st) and the blank spaces in-
dicate the parameters that are restricted to be zero. The “Fed” column in Table1 represents
the Federal Reserve contemporaneous behavior; the “Inf” column describes the informa-
tion sector (the commodity market); the “MD” represents the money demand equation;
and the block consisting of the last three columns represents the production sector, whose
variables are arbitrarily ordered in an upper triangular form.2

There are two major factors that make the estimation and inference of our model a diffi-
cult task. One factor is possible simultaneous relationships in the structural matrixA0(st).
The other factor is the types of restricted time variations specified in (5). Appendix sections
detail a Bayesian estimation method used for our structural model.

3. RESULTS

Our most detailed discussion concerns estimates of the “Monetary policy” model, which
is the one in which all equations other than the monetary policy reaction function have
constant coefficients and time-varying disturbance variances, while for the monetary policy
equation both a scale factorλt onD j and all the coefficients inA0 j are allowed to vary over
time.

Tables2-4 show the variation inA0 across states in this model. The changes between
states for the monetary policy equation are nontrivial. If the policy equation were normal-
ized on the interest rateR as is conventionally done, the standard deviation of the residual
would be 28 times bigger in state 3 than in state 1 and 9 times bigger in state 3 than state
1. But this is not a simple rescaling of the equation; as theR coefficient goes down, theM
coefficient goes up, consistent with short-run reserves targeting, which is what the Fed said
it was doing during 1979 – 1982.

Figure1 displays the probabilities of the states for our model, plotted against a back-
ground showing the time path of the Federal Funds rate. Clearly state 3 shows up in
rare circumstances, mainly in the 1979-82 reserve-targeting period, but also during a high-
interest-rate period in the early 70’s. State 2 differs from state 1 in having lower precision
(higher disturbance variance) in the interest rate. It was more common before 1987 than

1Our software can handle other combinations of the cases as well.
2While we provide no discussion here of why delays in reaction of the private sector to financial variables

might be plausible, explanations of inertia, and examination of its effects, are common in the recent literature
(Christiano, Eichenbaum, and Evans, 2001; Edge, 2000; Sims, 2001a, 1998, e.g.).
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Figure 1 Federal Funds Rate and Probabilities of States 1 and 3
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FIGURE 1. Probabilities of states

it has been since, though it seems to be coming back in the last few months of the sample
(early 2001). One might argue that this is a “regime shift”, but the changes between these
two states seem modest, and the shift does not seem to have been permanent.

The .90 probability intervals for short run (contemporaneous) coefficients of the mone-
tary policy equation are reported in Table5. The posterior estimates of theM coefficient
for state 1 andR coefficient for state 2 are outside the .90 probability intervals, reflecting
thin, curved ridges of the joint posterior distribution and possibly our normalization rule
for labeling the states (Waggoner and Zha2000and2001). Table5 shows that the signs of
all coefficients except that ofR in state 3 are estimated as “significant” — that is, as having
determinate sign with high probability.

The long run policy responses ofR to all other five variables, along with .90 probabil-
ity intervals, are reported in Table6. These long run responses are calculated simply as
∑αk/∑γk, whereαk is the coefficient on thek’th lag of the “right-hand-side” variable in
the policy reaction function andγk is the coefficient on thek’th lag of R in the policy equa-
tion. Note that because of (4), the sum of current and lagged coefficients onR moves in
proportion toλ j(st), as does the sum of coefficients on laggedU, for example. Because the
sums of coefficients on lagged values ofPcom, P, M2 andy are nearly zero, it makes more
sense with these variables to give the responses to the differenced variables, calculated as

∑k = 0` ∑k
i=0αk

∑`
k=0γ j

.

The differences in all other log variables, such asPcom andM, are annualized to match
the annual rate ofR. Because of the relation and the identifying restrictions imposed on the
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policy equation ofA0(st), it can be easily seen that long run responses to∆Pcom, ∆y, ∆P,
andU are the same across all states, represented by blank spaces in Table6.3 Differences
across states show up in the policy response to∆M2. The posterior estimate of the policy
response to output growth (∆y) has a “wrong” sign but is very imprecise according to the
.90 probability interval. The policy responses to inflation (∆P) and the unemployment
rate (U) have correct signs but they are imprecisely estimated as well by the .90 intervals.
The interest rate response to changes in commodity prices (∆Pcom) is positive and sharply
estimated.

The interest rate response to money growth (∆M) in state 1 is greater than 1, something
like the Taylor rule. But the distribution of this response has a long fat tail towards infinity
and the probability band is very large. In contrast, the same response in state 3 is more
sharply estimated and the response in state 3 at the peak of the distribution is at least four
times larger than in state 1. In state 2, the Federal Reserve responds more weakly to money
growth. The response is insignificant by the .90 probability interval. By the .68 probability
interval (not reported in Table6, the response is positive but less than 1. This does not
mean that state 2 is likely to represent an unstable regime, however, because stability is
determined by the sum of long run responses on all nominal variables in the system, and
this is above one as a point estimate, albeit apparently with uncertainty extending from
negative values to far above one.4

We report impulse responses in different states, along with .68 probability bands, in
Figure2-4. The responses to monetary policy shocks accord well with the findings in the
recent literature, confirming the validity of our identification.

4. COUNTERFACTUAL HISTORY

It is difficult from looking at coefficients, impulse responses, and long run responses
to form a clear idea of the quantitative significance of the differences between estimated
regimes. One way to make this clearer is to rerun economic history, replacing the 1979-82
Volcker reserve-targeting regime (state 3) with the state 1 regime, the one that immedi-
ately preceded the reserve-targeting regime and that has prevailed through most of the 90’s.
Would this change in policy have greatly affected outcomes? Would inflation have taken
much longer to end?

We examine the historical period 1979:10-1987:7. The counterfactual exercise can be
done in our model as follows. Given the dataYT , we draw(θ ,ST) jointly. For each draw,
we back out a sequence of unit-variance structural shocks(ε̃1, . . . , ε̃T). Conditional on
the data up to September 1979 and the model parameters in state 1, we generate a one-
step forecast with the structural shock set toε̃1979:10and then a two-step forecast with the
structural shock set tõε1979:11. We continue this iteration until 1987:7 is reached. This
counterfactual path represents one that would have taken place when the regime had been

3Our model is composed of multiple equations. Thus, long runreduced-formresponses of the interest rate
to other variables will be different across states.

4The fact that our apparently flexible specification actually constrains the policy rule long run responses
to change only for∆M2 is restrictive, and may limit the persuasiveness of our claim that policy changes have
not been large. We intend to look at other specifications that relax this constraint.
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FIGURE 2. Impulse responses, state 1

−0.0466

0

0.0575
Infor

P
co

m

 

 

 
MP

 

 

 
MD

 

 

 
y

 

 

 
P

 

 

 
U

−0.0414

0
0.0143

M
2

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

−4.9167

0

4.8693
x 10

−3

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−0.0148

0

0.0105

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−0.0182

0

0.0124

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 24 36
−2.2981

0

2.807
x 10

−3

U

12 24 36
 

 

 

12 24 36
 

 

 

12 24 36
 

 

 

12 24 36
 

 

 

12 24 36
 

 

 

FIGURE 3. Impulse responses, state 2
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FIGURE 4. Impulse responses, state 3

in state 1. For thousands of draws, we compute the mean path as well as .68 probability
bands. The results are reported in Figures5-9 where the time label 1979.1 means 1979:10
and so on.

Clearly, the counterfactual funds rate path is much smoother than actual data: the funds
rate would have been lower from late 1979 to the end of 1981 but higher after the mid 1982,
coupled with a higher growth rate of money initially but lower growth later (Figures5 and
6). Consequently, the counterfactual inflation path would have come down as steadily as
actual data (Figure9). But the tradeoff would have been equally severe except the timing
would have been postponed: from the end of 1984 on, the error bands imply that we would
have had a much lower growth rate of GDP or even recessions (Figure7) and a much higher
level of the unemployment rate (Figure9).

5. MODEL FIT

Table 7 provides measures of fit for the model used so far by comparing it to other
models. The “4 states” line refers to the extension of our Monetary-policy-only model to
four states. The upper panel of the table shows nearly-conventional fit criteria — likelihood,
the Schwarz criterion, and the Akaike criterion. The only unconventional aspect here is
that they are evaluated at the peak of the posterior pdf, not at the likelihood peak. To the
extent that the likelihood dominates the prior, they can be interpreted like usual SC and
AC statistics. With as many free parameters as are present here, the Akaike criterion is
probably unreliable. The Schwarz criterion favors the Variances-only model, but not by a



MACROECONOMIC SWITCHING 9

1979.1 1980.1 1981.1 1982.1 1983.1 1984.1 1985.1 1986.1

−4

−2

0

2

4

6

8

10

12

14

P
er

ce
nt

Actual
Mean

FIGURE 5. Counterfactual paths conditional on state 1: M2
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FIGURE 6. Counterfactual paths conditional on state 1: FFR



MACROECONOMIC SWITCHING 10

1979.1 1980.1 1981.1 1982.1 1983.1 1984.1 1985.1 1986.1

−2

0

2

4

6

8

P
er

ce
nt

Actual
Mean

FIGURE 7. Counterfactual paths conditional on state 1: y
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FIGURE 8. Counterfactual paths conditional on state 1: P
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FIGURE 9. Counterfactual paths conditional on state 1: U

great margin over the 4-states model. The Monetary-policy model to which we have paid
the most attention comes in third.

In the second panel, we add to the likelihood values the log prior pdf values, to arrive
at posterior pdf values. Here the usual argument for the Schwarz criterion’s asymptotic
validity still applies. The only change in the ranking of the models by the SC is that here
“Everything” comes out even worse than “Nothing”. The last column of this table is in
principle the most reliable measure of fit. It measures the integrated posterior pdf over each
model’s parameter space, from which Bayes factors can be constructed. The results by this
criterion are drastically different, with the Everything model coming out on top. However,
we are still uncertain that the calculations underlying this column have converged, so its
implications should not at this point be taken too seriously.

6. CONCLUSION

We have found more evidence in favor of stable dynamics with unstable disturbance
variances than of clear changes in model dynamics. Nonetheless, our methods have found
weak evidence of policy shifts that match intuition — targeting of monetary aggregates and
abandonment of interest rate smoothing during 1979-82. The story that policy has changed
drastically between the 60-78 period and the 83-2000 period does not seem to be borne out.

There are obvious caveats to these results. We need to finish the calculations of the
marginal posterior model probabilities, and examine their sensitivity to choices of priors.
We need to examine a specification that would allow long run responses of policy to vary
over time.
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There are also clear opportunities to extend the results. For example, if we used a dis-
cretized version of an AR specification to parameterizeP, the state transition matrix, we
might be able to handle many more states and perhaps get a better fit. This approach has
advantages over that ofCogley and Sargent(2001), who assume a continuously distributed
state, because it could allow for occasional discontinuous shifts in regime as well as more
frequent incremental changes.
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TABLE 1. Identifying restrictions onA0(st)

Variable (below) Sector (right) Inf Fed MD Prod Prod Prod
Pcom X

M X X X
R X X X
y X X X X X
P X X X X
U X X

TABLE 2. Contemporaneous coefficient matrices,A0(1)

Financial M Policy M demand Private y Private P Private U
Pcom 70.72 0.00 0.00 0.00 0.00 0.00
M2 27.97 −545.82 −359.16 0.00 0.00 0.00
R −36.05 238.83 −643.94 0.00 0.00 0.00
y −6.45 0.00 35.07 303.68 −23.06 60.05
P −41.52 0.00 50.36 0.00 −623.98 10.96
U 60.61 0.00 0.00 0.00 0.00 721.96

TABLE 3. Contemporaneous coefficient matrices,A0(2)

Financial M Policy M demand Private y Private P Private U
Pcom 44.53 0.00 0.00 0.00 0.00 0.00
M2 17.61 −314.34 −141.47 0.00 0.00 0.00
R −22.70 74.63 −253.64 0.00 0.00 0.00
y −4.06 0.00 13.81 217.70 −20.29 51.31
P −26.14 0.00 19.84 0.00 −549.10 9.37
U 38.16 0.00 0.00 0.00 0.00 616.86

TABLE 4. Contemporaneous coefficient matrices,A0(3)

Financial M Policy M demand Private y Private P Private U
Pcom 39.36 0.00 0.00 0.00 0.00 0.00
M2 15.57 −509.75 −38.60 0.00 0.00 0.00
R −20.06 −8.36 −69.21 0.00 0.00 0.00
y −3.59 0.00 3.77 199.20 −11.20 37.77
P −23.11 0.00 5.41 0.00 −303.05 6.90
U 33.73 0.00 0.00 0.00 0.00 454.15
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TABLE 5. .90 probability bands of the short run policy coefficients

state
1 2 3

M2 (−416.4,−51.7) (−317.4,−83.74) (−510.1,−356.3)
R (214.4,548.5) (102.5,307.3) (−18.6,46.8)

TABLE 6. Long run policy responses ofR to

state
1 2 3

∆ Pcom 0.09
.90 prob interval (0.06,0.69)
∆ M2 1.50 0.82 4.60
.90 prob interval (0.50,115.49) (−0.53,1.90) (1.43,8.37)
∆ y −1.07
.90 prob interval (−1.41,1.26)
∆ P 0.39
.90 prob interval (−1.50,0.97)
U −0.55
.90 prob interval (−2.06,0.94)

TABLE 7. Measures of Fit

Based on likelihood alone
log f (YT |θ̂) DF Akaike Schwarz

Nothing 12852 12852 12852
Variances only 13244 12 13232 13207
M policy 13248 16 13232 13198
Everything 13250 48 13202 13100
4 states M policy 13279 24 13255 13204

Based on posterior density
log( f (YT |θ̂) ·π(θ̂)) π(θ̂) DF Akaike Schwarz π(YT)

Nothing 12852 -1915.5 10937 10937
Variances only 13244 -2095.5 12 11137 11111 12423
M policy 13248 -2109.3 16 11123 11089 12419
Everything 13250 -2264.7 48 10937 10836 12469
4 states M policy 13279 -2254.2 24 11001 10950 12464
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APPENDIX A. PRIOR RESTRICTIONS

We consider two classes of additional prior restrictions commonly used in the literature.
One class pertains to reference prior distributions for eliminating over-fitting problems;
the other class pertains to non-stochastic linear restrictions onA0(st) andD(st), such as
commonly used exclusion restrictions, for achieving identification.

For j = 1, . . . ,n andk = 1, . . . ,h, let a0, j(k) be the j th column ofA0(st) for st = k and
d j(k) beD j(st) for st = k or D j for all k. Prior distributions take the Gaussian form:

a0, j(k)∼N(0,H0 j), k = 1, . . . ,h, j = 1, . . . ,n; (6)

d j(k)∼N(0,H+ j), k = 1, . . . ,h, j = 1, . . . ,n. (7)

In addition, we follow Sims and Zha1998ato incorporate into the model the two com-
ponents of “dummy observations” prior components that express beliefs in unit roots and
cointegration in macroeconomic series.5. In our application, we setH0 j andH+ j the same
way as in Sims and Zha1998abut scale them by the number of states (h) so that the Case
I model in (5) coincides with the Bayesian VAR with constant parameters.

As shown in Waggoner and Zha2000, linear restrictions imposed onA0(st) andD(st)
imply the following relationships:

a j
nh×1

= U j
nh×o j

b j
o j×1

, j = 1, . . . ,n; (8)

d j
mh×1

= Vj
mh×r j

g j
r j×1

, j = 1, . . . ,n; (9)

whereb j and g j are the free parameters “squeezed” out ofa j and d j by the linear re-
strictions,o j andr j are the numbers of corresponding free parameters, columns ofU j are
orthonormal vectors in the Euclidean spaceRn, columns ofVj are orthonormal vectors in
Rm, and

a j =




a0, j(1)
...

a0, j(h)


 , d j =




d j(1)
...

d j(h)


 .

Combining (6) with (8) and (7) with (9) leads to the prior distributions for the free param-
etersb j andg j :

b j ∼N(0,H0 j), (10)

g j ∼N(0,H+ j), (11)

where

H0 j =
(
U ′

j(I ⊗H−1
0 j )U j

)−1
,

H+ j =
(
V ′

j (I ⊗H−1
+ j )Vj

)−1
.

5For detailed description of these dummy observations, see Sims and Zha1998a
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The prior distribution forλ j(k) is taken asλ 2
j (k) ∼ Γ(αλ ,βλ ) in the Variances Only

model, andλ j(k) ∼ N(0,σ2
λ ) in the other models whereλ appears.Γ(·) denotes the stan-

dard gamma distribution, withβλ a scale factor (not an inverse scale factor as in the nota-
tion of many textbooks). The parametersβλ andσλ are set at values so large that the prior
distribution is essentially diffuse and has little influence on the posterior outcome.6

The prior ofP takes a Dirichlet form as suggested by Chib1996. For thekth column of
P, pk, the prior density is

π(p1k, . . . , phk) = D(α1k, . . . ,αhk) ∝ pα1k−1
1k · · · pαhk−1

hk , αik > 1for i = 1, . . . ,h. (12)

Althoughαik > 0 is all one needs to have a proper Dirichlet, the conditionαik > 1 in (12)
guarantees that the distribution of eachpik has a well-defined unique mode. There are two
steps in setting up a prior forpk. First, the prior mode ofpik is chosen to beυik such that
∑h

i=1υik = 1. Let the maximum of the prior mode vectorυk correspond to theτ th element.
In the second step, set a prior variance onυτk. Onceυk and Var(υτk) are given, we can
solve forατk through a third order polynomial. Givenατk andυk, we can solve for all other
elements of the vectorαk through a system ofh−1 linear equations. In our analysis,υik is
chosen to be evenly distributed acrossi for givenk. The prior standard deviation ofpik is
chosen to be 0.235 for alli andk. The resulting prior distribution ofP is very flat and has
no influence on the posterior outcome.

APPENDIX B. L IKELIHOOD FUNCTION

Denote

b =
{

b j , j = 1, . . . ,n
}

;

λ =
{

λ j(k), k = 1, . . . ,h, j = 1, . . . ,n
}

;

g =
{

g j , j = 1, . . . ,n
}

;

p = {pk, k = 1, . . . ,h} ;

δ = {λ ,g, p} ;

θ = {b,δ} .

The overall likelihood functionf (YT | θ) can be obtained by integrating the conditional
likelihood at each time t overst and recursively multiplying these conditional likelihood
functions forward (Kim and Nelson1999). Specifically,

f (YT | θ) =
T

∏
t=1

{
h

∑
st=1

[ f (Yt |Yt−1,st ,θ)Pr(st |Yt−1,θ)]

}
, (13)

6This is true for inference within each model, but as is well known nearly flat priors are not irrelevant
to calculating odds ratios across models. We plan to do more analysis of the the sensitivity to priors of our
results on comparing model fit.
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where

f (Yt |Yt−1,st ,θ) = (2π)−
n
2 |A0(st)|exp

{
−1

2

n

∑
j=1

[
A′0, j(st)yty

′
t A0, j

−2A′+, j(st)xty
′
t A0, j +A′+, j(st)xtx

′
t A+, j

]
}

,

Pr(st |Yt−1,θ) =
h

∑
st−1=1

[Pr(st | st−1)Pr(st−1 |Yt−1,θ)] .

The probability Pr(st−1 | Yt−1,θ) can be updated recursively. We begin by setting Pr(s0 |
Y0,θ) to be the ergodic distribution of the Markov-switching chain. Fort = 1, . . . ,T, the
updating procedure involves the following computation:

Pr(st |Yt ,θ) =
f (Yt |Yt−1,st ,θ)Pr(st |Yt−1,θ)

∑h
st=1 [ f (Yt |Yt−1,st ,θ)Pr(st |Yt−1,θ)]

. (14)

Multiplying the likelihood function (13) by the prior specified in SectionA gives the
posterior functionπ(θ | YT). When the number of model parameters is small, one could
obtain the posterior estimate ofθ by simply finding the value ofθ that maximizesπ(θ |
YT) as in Sims2001b. But for a fair-size system of simultaneous equations, there can be
easily over hundreds of structural parameters and there is no straight maximization routine
that can reliably handle such a case. We suggest to use the expectation-maximizing (EM)
algorithm proposed by Chib1996. To keep the number of parameters small and manageable
at each maximization step in this EM algorithm, we adopt a Gibbs sampling idea to sample
from conditional posterior distributions in addition to sampling unobserved states across
time.

APPENDIX C. CONDITIONAL POSTERIORDISTRIBUTIONS

Obtaining the posterior results directly fromπ(θ |YT) proves impossible. One can, how-
ever, use a Gibbs sampler to obtain the joint distributionπ(θ ,ST |YT) whereSt = {s1, . . . ,st}
for t = 1, . . . ,T. Denote

St = {st , . . . ,sT} ;

Yt = {yt , . . . ,yT} .

The Gibbs sampler we propose here involves sampling alternatively from the following
conditional posterior distributions:

π(ST |YT ,λ ,g,b, p),
π(λ |YT ,ST ,g,b, p),
π(g |YT ,ST ,λ ,b, p),
π(b |YT ,ST ,λ ,g, p),
π(p |YT ,ST ,λ ,g,b).
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Paths ofST can be simulated recursively backward from the first conditional posterior
distributionπ(ST |YT ,λ ,g,b, p) or π(ST |YT ,θ). To see how this recursion can be done,
note that

Pr(ST |YT ,θ) = Pr(sT |YT ,θ) · · ·Pr(st |YT ,St+1,θ) · · ·Pr(s1 |YT ,S2,θ); (15)

and

Pr(st |YT ,St+1,θ) ∝ Pr(st |Yt ,θ)Pr(Yt+1,St+1 |Yt ,st ,θ)

∝ Pr(st |Yt ,θ)Pr(st+1 | st ,θ)Pr(Yt+1,St+2 |Yt ,st ,st+1,θ)
∝ Pr(st |Yt ,θ)Pr(st+1 | st ,θ), (16)

because Pr(Yt+1,St+2 |Yt ,st ,st+1,θ) is independent ofst whenst+1 is given. Relationship
(16) implies that

Pr(st |YT ,St+1,θ) =
Pr(st |Yt ,θ)Pr(st+1 | st ,θ)

∑h
st=1 [Pr(st |Yt ,θ)Pr(st+1 | st ,θ)]

. (17)

Backward recursion begins by drawingsT from Pr(sT |YT ,θ) according to (14) and drawing
st recursively given the pathSt+1 according to (17). According to (15), the draws ofST this
way come from Pr(ST |YT ,θ).

To derive other conditional posterior distributions, we introduce the following notation:

Yk
Tk×n

=




y′t1
...

y′tq
...

y′tTk




, Xk
Tk×m

=




x′t1
...

x′tq
...

x′tTk




, for k = 1, . . . ,h,

whereTk is the total number of observations in statek andstq = k for q = 1, . . . ,Tk. Note
that∑h

k=1 Tk = T. Let

∆̃−1
0

nh×nh
= diag

[{
Y′kYk−2S

′
X′kYk +S

′
X′kXkS

}h

k=1

]
,

∆̃+0 j
mh×nh

= diag
[{

λ j(k)
(
X′kYk−X′kXkS

)}h
k=1

]
, ∆̃0+ j = ∆̃′+0 j ,

˜̃∆
−1

0 j
nh×nh

= diag

[{
ζ j(k)

(
Y′kYk−2S

′
X′kYk +S

′
X′kXkS

)}h

k=1

]
,

˜̃∆+0 j
mh×nh

= diag
[{

ζ j(k)
(
X′kYk−X′kXkS

)}h
k=1

]
,

˜̃∆0+ j = ˜̃∆
′
+0 j ,

˜̃∆
−1

+ j
mh×mh

= diag
[{

ζ j(k)X′kXk
}h

k=1

]
,

where diag[·] represents a diagonal matrix.



MACROECONOMIC SWITCHING 19

For the variances-only model, we have

π
(
ζ j(k) |YT ,ST ,g,b, p

)
= Gamma

(
Tk/2+αζ ,1/

(
ζ ∗j (k)/2+1/βζ

))
, (18)

π
(
g j |YT ,ST ,λ ,b, p

)
= N

(
˜̃g j ,

(
V ′

j
˜̃∆
−1

+ jVj +H
−1
+ j

)−1
)

, (19)

π (b |YT ,ST ,λ ,g, p) ∝

(
h

∏
k=1

|A0(k)|Tk

)
exp

{
−1

2

n

∑
i=1

[
b′i

(
U ′

i
˜̃∆
−1

0i Ui +H
−1
0i

)
bi

−2g′i

(
V ′

i
˜̃∆+0iUi

)
bi

]}
,

(20)

π (pk |YT ,ST ,λ ,g,b) = π(pk | ST) = D(α1k +n1k, . . . ,αhk+nhk), (21)

wherenik is the total number of one-step transitions from statek to statei for i,k = 1, . . . ,h
in the sequence of statesST drawn fromπ(ST |YT ,θ), and

ζ ∗j (k) = a0, j(k)′
[
Y′kYk−2S

′
X′kXk +S

′
X′kXkS

]
a0, j(k)

−2d j(k)′
[
X′kYk−X′kXkS

]
a0, j(k)+d j(k)′X′kXkd j(k),

˜̃g j =
(

V ′
j
˜̃∆
−1

+ jVj +H
−1
+ j

)−1(
V ′

j
˜̃∆+0 jU j

)
b j ,

T =
h

∑
i=1

h

∑
k=1

nik.

When theλt time varying scale factors apply only toD, the conditional posterior density
for P is exactly the same as (21) and the conditional posterior densities forg andb are the

same as (19) and (20) except that̃̃∆
−1

0 j and ˜̃∆+0 j be replaced bỹ∆−1
0 and∆̃+0 j . As for λ ,

we have
π

(
λ j(k) |YT ,ST ,g,b, p

)
= N

(
λ̃ j(k), σ̃2

λ , j(k)
)

, (22)

where

λ̃ j(k) =
(
d j(k)′

(
X′kYk−X′kXkS

)
a0, j(k)

)
σ̃2

λ , j(k),

σ̃2
λ , j(k) = 1/

(
d j(k)′X′kXkd j(k)+1/σ2

λ
)
.

Except for (20), one can simulate draws from all other conditional posterior densities. As
for the conditional posterior density ofb, we use the Gibbs sampling idea of Waggoner and
Zha2000to sampleb j one at a time conditional onbi for i 6= j and other parameters. Unlike
constant-parameter simultaneous equation models dealt with by Waggoner and Zha2000,
the posterior density ofb j conditional on all other parameters in our case is nonstandard.
We thus use the Metropolis algorithm with the following proposal density for the transition
from b j to b′j :

J
(
b′j | b j ,YT ,ST ,λ ,g, p,b1, . . . ,b j−1,b j+1, . . . ,bn

)
= N(0,Ξ j), (23)

whereb′j is a proposal draw.
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To obtain accurate error bands of functions of structural parameters (like the impulse
responses and historical decompositions), we need to normalize both the signs of structural
parameters and the labels of states. Given state k (k = 1, . . . ,h), we normalizeA0 and
A+ according to Waggoner and Zha2001. To normalize the labels of states, we look at
reduced-form residuals of the interest rate and label the states from the smallest residual to
the largest residual.

APPENDIX D. POSTERIORESTIMATES

Finding the estimate ofθ at the peak of the posterior distribution is a difficult task in
our simultaneous equation model. As mentioned in SectionB, we use the Gibbs sampling
idea to implement the EM algorithm. First, we want to find the estimate ofb at the peak of
π(b|YT) through the following Monte Carlo integration (E-step):

E
(

b,bold
)

=
1
Q

Q

∑
q=1

logπ
(

b j |YT ,S(q)
T ,λ (q),g(q), p(q)

)
,

wherebold is the last iterated value ofb, S(q)
T , λ (q), g(q), and p(q) are simulated from

π
(
ST ,λ ,g, p |YT ,bold

)
with the four conditional densities:

π(ST |YT ,bold,λ ,g, p),

π(λ |YT ,bold,ST ,g, p),

π(g |YT ,bold,ST ,λ , p),

π(p |YT ,bold,ST ,λ ,g).

The posterior estimate ofb can be obtained with the following iterations. Given a starting
value forbold, we find the value ofb that maximizesE

(
b,bold

)
(M-step). Then we use the

maximum value ofb as the next value ofbold. Continue the iteration untilb converges to a
fixed point. Denote this posterior estimate byb̂.

Next, we find the estimate ofλ at the peak ofπ(λ |YT , b̂), denoted bŷλ , by iterating the
process of obtaining the value ofλ maximizing the following function:

E
(

λ ,λ old
)

=
1
Q

Q

∑
q=1

logπ
(

b j |YT ,S(q)
T , b̂,g(q), p(q)

)
,

whereS(q)
T , g(q), andp(q) are simulated fromπ

(
ST ,g, p |YT , b̂,λ old

)
with the three condi-

tional densities:

π(ST |YT , b̂,λ old,g, p),

π(g |YT , b̂,λ old,ST , p),

π(p |YT , b̂,λ old,ST ,g).
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Finally, we find the estimate of{g, p} at the peak ofπ(g, p|YT , b̂, λ̂ ), denoted by{ĝ, p̂},
by iterating the process of maximizing the following function over{g, p}:

E
(
{g, p},{gold, pold}

)
=

1
Q

Q

∑
q=1

logπ
(
{g, p} |YT , b̂, λ̂ ,S(q)

T

)
,

whereS(q)
T are simulated fromπ

(
ST |YT , b̂, λ̂ ,gold, pold

)
. We denote the posterior estimate

of θ by

θ̂ = {b̂, λ̂ , ĝ, p̂}.

APPENDIX E. MARGINAL L IKELIHOOD

To select a model that best fits to the data, we need to estimate the marginal likelihood
π(YT) for each model and then select the one that give the highest value ofπ(YT). The
methods proposed by Chib1995and Chib and Jeliazkov2001make it feasible for us to
compute the marginal likelihood. Note that

π(YT) =
∫

f (YT | θ)π(θ)dθ

=
f
(
YT | θ̂

)
π

(
θ̂
)

π
(
θ̂ |YT

) ,
(24)

whereπ
(
θ̂ |YT

)
can be computed through the following conditional densities:

π
(
θ̂ |YT

)
=

n

∏
i=1

π
(
b̂i |YT , b̂1, . . . , b̂i−1

)

π
(
d̂ |YT , b̂

)
π

(
λ̂ |YT , b̂, d̂

)
π

(
p̂ |YT , b̂, d̂, λ̂

)
.

(25)

The method of Chib and Jeliazkov2001enables us to estimate the posterior ordinate

π
(
b̂i |YT , b̂1, . . . , b̂i−1

)
,

which requires simulating{bi ,bi+1, . . . ,bn,d,λ , p} with the conditional densities:

π
(
bi |YT , b̂1, . . . , b̂i−1,bi+1, . . . ,bn,ST ,d,λ , p

)
,

π
(
bi+1 |YT , b̂1, . . . , b̂i−1,bi ,bi+2, . . . ,bn,ST ,d,λ , p

)
,

...

π
(
bn |YT , b̂1, . . . , b̂i−1,bi , . . . ,bn−1,ST ,d,λ , p

)
,

π
(
ST |YT , b̂1, . . . , b̂i−1,bi , . . . ,bn,d,λ , p

)
,

π
(
d |YT , b̂1, . . . , b̂i−1,bi , . . . ,bn,ST ,λ , p

)
,

π
(
λ |YT , b̂1, . . . , b̂i−1,bi , . . . ,bn,ST ,d, p

)
,

π
(
p |YT , b̂1, . . . , b̂i−1,bi , . . . ,bn,ST ,λ ,d

)
,
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and simulating{bi+1, . . . ,bn,d,λ , p} with the conditional densities:

π
(
bi+1 |YT , b̂1, . . . , b̂i ,bi+2, . . . ,bn,ST ,d,λ , p

)
,

π
(
bi+2 |YT , b̂1, . . . , b̂i ,bi+1,bi+3, . . . ,bn,ST ,d,λ , p

)
,

...

π
(
bn |YT , b̂1, . . . , b̂i ,bi+1, . . . ,bn−1,ST ,d,λ , p

)
,

π
(
ST |YT , b̂1, . . . , b̂i ,bi+1, . . . ,bn,d,λ , p

)
,

π
(
d |YT , b̂1, . . . , b̂i ,bi+1, . . . ,bn,ST ,λ , p

)
,

π
(
λ |YT , b̂1, . . . , b̂i ,bi+1, . . . ,bn,ST ,d, p

)
,

π
(
p |YT , b̂1, . . . , b̂i ,bi+1, . . . ,bn,ST ,λ ,d

)
.

For other posterior ordinates in (25), we use the method proposed by Chib1995. Estima-
tion of π

(
d̂ |YT , b̂

)
involves simulating{d,λ , p,ST} from π

(
d,λ , p,ST |YT , b̂

)
; estimation

of π
(

λ̂ |YT , b̂, d̂
)

involves simulating{λ , p,ST} from π
(
λ , p,ST | b̂, d̂

)
; andπ

(
p̂ |YT , b̂, d̂, λ̂

)

is estimated by simulatingλ ,ST from π
(

p,ST | b̂, d̂, λ̂
)

. All these simulations can be com-

pleted with additional reduced Gibbs runs.
The numerator in (24) can be easily computed. The prior ordinateπ

(
θ̂
)

is readily avail-
able by direct calculation. It is also straightforward to compute the likelihood ordinate
f
(
YT | θ̂

)
by (13).

Chib and Jeliazkov2001also recommend a method to approximate Monte Carlo stan-
dard error of the marginal likelihood estimate. The essence of this approximation involves
computing the sample variance of a vector of above-mentioned Monte Carlo integrations
required to estimate the denominator (25) (Newey and West1987).
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