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ABSTRACT. We discuss the results of fitting a 6-variable structural VAR in which we allow
for certain types of parameter variation over time. Allowing structural equation variances
to change over time is extremely important in improving fit. Allowing the coefficients that
define the model’s dynamics to change is less important to improving fit, though models
with changing parameters are consistent with the data. We pay special attention to a version
of the model that allows the monetary policy rule, but not other parts of the model, to show
changing coefficients. Results from this model fit some aspects of conventional wisdom
about changes in monetary policy over time, but imply that the changes in policy have
been more subtle than dramatic. We construct counterfactual histories for the early 1980’s,
suppressing the “Volcker regime” in monetary policy. We find a steadier decline in inflation
and a smaller recession earlier in the period, but slower growth later, than actually occurred.

1. INTRODUCTION

This paper aims to contribute to a recently active line of research that analyzes the evo-
lution of monetary policy behavior and its potential effects on the economy. Some writers
(Cogley and Sargen2003; Clarida, Gali, and Gertle200Q e.g.), and this may reflect a
majority view, believe that the systematic component of US monetary policy has changed
substantially since 1950, and that it is this change that explains the rise and subsequent
decline in US inflation over the last 4 decades. However much of the most careful statis-
tical analysis in this aredHansoin 200J; Leeper and Zhe20014 Sims 11999 has found
little clear evidence of changed policy. lHanson(200]) andLeeper and Zh20013 it
has been found to be important to use a multiple-equation framework in studying these
issues. There is some evidence of shift between interest-smoothing and short-run monetary
aggregate targeting, at least during the early 1980’s, and single-equation “reaction func-
tion” studies, even those that use instrumental variables, cannot allow for the simultaneity
with money demand that arises in this case. On the other [&nd; (1999 argues that
time-varying residual variances are the most important instability in the US interest rate
time series, to the extent that inference that ignores heteroskedasticity is likely to be quite
misleading. Previous research with multiple equation methods has not allowed for time
varying variances.
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There is of course a reason that previous research has not combined time varying vari-
ances with structural multiple-equation modeling. The resulting models are complex, and
push the limits of what our computers and analytical capacity can handle. The results we re-
port in this draft of the paper are still incomplete in some respects, because of the extended
computing times required by some of our analysis. Additional work on the programs can
probably speed them up substantially.

Our model allows the economy to switch among a finite number of states. In a version
of the model that fits reasonably well, the variances of all equation disturbances change
between states, but the coefficients change only in the monetary policy reaction function.
We find that 3 states do a good job of picking up the time variation in policy. One of the
states occurs mainly during 1980-82, a period when the stated policy of the Federal Reserve
system, under Paul Volcker’s chairmanship, was to focus on controlling reserves, not on
smoothing interest rates. The estimates suggest that this was indeed a period in which
policy targeted monetary aggregates, not interest rates. However this regime is estimated
to be almost entirely confined to the 80-82 period. It does not represent a permanent shift
to a new type of behavior. A second regime is estimated to prevail during most of the
rest of the period we study, but is more completely dominant in the post-1982 sub-period.
However, estimated differences among regimes are modest. None of the policy regimes are
unstable, in the sense of moving interest rates less than 1-for-1 with inflation in the long
run.

2. THE MODEL

Our model is described by nonlinear stochastic dynamic simultaneous equations of the
general form:

YiPo(s) = %A (s) +&,t=1,....T, (1)
Prs =i|s-1=k) = pik,i,k=1,....h, (2)

wheresis an unobserved statgjs ann x 1 vector of endogenous variablesis anmx 1

vector of exogenous and lagged endogenous variadydgs,ann x n matrix of parameters,

A is anmx n matrix of parametersl is a sample size, artuis the total number of states.

The transition matri¥ = [pi] is assumed to be irreducible and ergodic. This class of non-
linear models was introduced by Hamiltd889 what is new here is our application to a
simultaneous equation framework. We treat as given the initial lagged values of endoge-
nous variable¥p = {y1_o,...,Yo} where/ is the lag length inX) and we do not introduce
additional notation for these variables in the following analysis.tkFed, ..., T, denote

Yo ={y1,..- "t}
Structural disturbances are assumed to have the distribution:

£t|YthN(Ov | )a
nxn

whereN(a, b) refers to the normal distribution with mearand covariance matril.
The reduced-form parameter matrix, denotedbs), is:

B(st) = Ar(3)Ay (s)- (3)
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Because botiy(s) andA, (s) vary with states, the reduced form di) (has both time-
varying parameters and heteroscedastic disturbances.

If we did not allow simultaneity (i.e Ao(s) is assumed to be recursive) and let all pa-
rameters vary across states, estimation of the model would be relatively straightforward,
becaus&yy andA; in each given state can be estimated independent of the parameters in
other states. But with such an unrestricted form for the time variation, if the system of
equations is large or the lag length is long, the number of free parameters in the model
becomes impractically large. For a typical monthly model with 13 lags on 6 endogenous
variables, for example, the number of parameter&.ifs) is of order 468. But given the
post-war macroeconomic data, it is not uncommon to have some states lasting for only a
few years and thus the number of associated observations is far less than 468. It is therefore
essential to simplify the model by postulating restricted forms for the time variation in its

parameters.
Our approach is to begin by rewritirlg, as
Ai(s) =D(s)+ S Ao(s). (4)
mxn mxn nxn
where
I
ra nxn
S: O
(m—n)xn

Then by specifying a prior and model B that makes its mean zero, we keep this prior
centered on the same random walk model for the reduced form that has worked well as a
prior mean in previous Bayesian VAR models. The approach of specifying a prior in terms
of this Ap and D matches the approach of Sims and Z#98a Note also that, as can

be seen from3) and @), this form of prior tends to imply that greater persistence (in the
sense of tighter concentration of the prior on the random walk) is associated with smaller
disturbance variances. This is reasonable, as it is consistent with the idea that beliefs about
the unconditional variance of the data apghighly correlated with beliefs about the degree

of persistence in the data.

The class of models we consider includes three typeaesifictedtime variations for
bothA(s) andD(s). Each column of these matrices (i.e., the coefficients of each equation
in the system) can be either constant, changing by a scale factor over time, or changing
freely over time. When the change over time is “free”, in fact some individual coefficients
may be constrained to be zero. More specifically, in this paper we consider these three
cases: B

Agj,Dj Case |
Aoj(s),Dt = ¢ AojAj(s),DjAj(s) Casell, (5)
Ao j(s),DjAj(s) Case
where the subscriptdenotes thg™ column (equation) of the corresponding matrix.
The specific models we discuss are

Nothing: Case | for all equations;
Variances only: Case Il for all equations;



MACROECONOMIC SWITCHING 4

Monetary policy: Case Il for all equations, except Case Il for the monetary policy
reaction function; and
Everything: Case Il for all equations.

We use monthly US data from 1959:1-2001:6. The model has 13 lags and includes con-
stant terms and 6 commonly-used endogenous variables: a commodity priceRnoie, (
M2 (M), the federal funds rateR], interpolated monthly real GDR), the consumer price
index ), and the unemployment ratg); All variables are expressed in natural logs ex-
cept for the federal funds rate and the unemployment rate which are expressed in percent.
The identification of monetary policy, followingeeper and Zh&20011), is described in
Tablel.

The X's in Tablelindicate the unrestricted parameteré\yis ) and the blank spaces in-
dicate the parameters that are restricted to be zero. The “Fed” column inIli@pesents
the Federal Reserve contemporaneous behavior; the “Inf” column describes the informa-
tion sector (the commodity market); the “MD” represents the money demand equation;
and the block consisting of the last three columns represents the production sector, whose
variables are arbitrarily ordered in an upper triangular férm.

There are two major factors that make the estimation and inference of our model a diffi-
cult task. One factor is possible simultaneous relationships in the structural Wg(isix
The other factor is the types of restricted time variations specifies) ilAppendix sections
detail a Bayesian estimation method used for our structural model.

3. RESULTS

Our most detailed discussion concerns estimates of the “Monetary policy” model, which
is the one in which all equations other than the monetary policy reaction function have
constant coefficients and time-varying disturbance variances, while for the monetary policy
equation both a scale factdronD; and all the coefficients iAg; are allowed to vary over
time.

Tables2-4 show the variation irAg across states in this model. The changes between
states for the monetary policy equation are nontrivial. If the policy equation were normal-
ized on the interest rafe as is conventionally done, the standard deviation of the residual
would be 28 times bigger in state 3 than in state 1 and 9 times bigger in state 3 than state
1. But this is not a simple rescaling of the equation; asRlteefficient goes down, thigl
coefficient goes up, consistent with short-run reserves targeting, which is what the Fed said
it was doing during 1979 — 1982.

Figurel displays the probabilities of the states for our model, plotted against a back-
ground showing the time path of the Federal Funds rate. Clearly state 3 shows up in
rare circumstances, mainly in the 1979-82 reserve-targeting period, but also during a high-
interest-rate period in the early 70's. State 2 differs from state 1 in having lower precision
(higher disturbance variance) in the interest rate. It was more common before 1987 than

1our software can handle other combinations of the cases as well.

2While we provide no discussion here of why delays in reaction of the private sector to financial variables
might be plausible, explanations of inertia, and examination of its effects, are common in the recent literature
(Christiano, Eichenbaum, and Evag@®07; Edge 2000 Sims 200141998 e.q.).
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Figure 1 Federal Funds Rate and Probabilities of States 1 and 3
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FIGURE 1. Probabilities of states

it has been since, though it seems to be coming back in the last few months of the sample
(early 2001). One might argue that this is a “regime shift”, but the changes between these
two states seem modest, and the shift does not seem to have been permanent.

The .90 probability intervals for short run (contemporaneous) coefficients of the mone-
tary policy equation are reported in Tale The posterior estimates of tihé coefficient
for state 1 andR coefficient for state 2 are outside the .90 probability intervals, reflecting
thin, curved ridges of the joint posterior distribution and possibly our normalization rule
for labeling the states (Waggoner and Z2@00and2007]). Table5 shows that the signs of
all coefficients except that &f in state 3 are estimated as “significant” — that is, as having
determinate sign with high probability.

The long run policy responses Bfto all other five variables, along with .90 probabil-
ity intervals, are reported in Tab® These long run responses are calculated simply as
S ox/ S ¥, whereay is the coefficient on th&'th lag of the “right-hand-side” variable in
the policy reaction function ang is the coefficient on thi&'th lag of Rin the policy equa-
tion. Note that because of, the sum of current and lagged coefficientsRomoves in
proportion toAj(s ), as does the sum of coefficients on laggjedor example. Because the
sums of coefficients on lagged valuesfabm, P, M2 andy are nearly zero, it makes more
sense with these variables to give the responses to the differenced variables, calculated as

Sk=03 00

‘
2k=0Yi
The differences in all other log variables, suctPasm andM, are annualized to match
the annual rate dR. Because of the relation and the identifying restrictions imposed on the
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policy equation ofAy(), it can be easily seen that long run responsesPtioom, Ay, AP,
andU are the same across all states, represented by blank spaces i6.Ydbiféerences
across states show up in the policy respons&M2. The posterior estimate of the policy
response to output growtly) has a “wrong” sign but is very imprecise according to the
.90 probability interval. The policy responses to inflatid&xP) and the unemployment
rate (U) have correct signs but they are imprecisely estimated as well by the .90 intervals.
The interest rate response to changes in commodity pd&s(n) is positive and sharply
estimated.

The interest rate response to money growlthl) in state 1 is greater than 1, something
like the Taylor rule. But the distribution of this response has a long fat tail towards infinity
and the probability band is very large. In contrast, the same response in state 3 is more
sharply estimated and the response in state 3 at the peak of the distribution is at least four
times larger than in state 1. In state 2, the Federal Reserve responds more weakly to money
growth. The response is insignificant by the .90 probability interval. By the .68 probability
interval (not reported in Tabl, the response is positive but less than 1. This does not
mean that state 2 is likely to represent an unstable regime, however, because stability is
determined by the sum of long run responses on all nominal variables in the system, and
this is above one as a point estimate, albeit apparently with uncertainty extending from
negative values to far above ofie.

We report impulse responses in different states, along with .68 probability bands, in
Figure2-4. The responses to monetary policy shocks accord well with the findings in the
recent literature, confirming the validity of our identification.

4. COUNTERFACTUAL HISTORY

It is difficult from looking at coefficients, impulse responses, and long run responses
to form a clear idea of the quantitative significance of the differences between estimated
regimes. One way to make this clearer is to rerun economic history, replacing the 1979-82
\olcker reserve-targeting regime (state 3) with the state 1 regime, the one that immedi-
ately preceded the reserve-targeting regime and that has prevailed through most of the 90's.
Would this change in policy have greatly affected outcomes? Would inflation have taken
much longer to end?

We examine the historical period 1979:10-1987:7. The counterfactual exercise can be
done in our model as follows. Given the datg we draw(8,Sr) jointly. For each draw,
we back out a sequence of unit-variance structural sh¢gks..,&r). Conditional on
the data up to September 1979 and the model parameters in state 1, we generate a one-
step forecast with the structural shock seE{r9.10and then a two-step forecast with the
structural shock set t6,979:12. We continue this iteration until 1987:7 is reached. This
counterfactual path represents one that would have taken place when the regime had been

3our model is composed of multiple equations. Thus, longeduced-fornresponses of the interest rate
to other variables will be different across states.

“The fact that our apparently flexible specification actually constrains the policy rule long run responses
to change only foAM?2 is restrictive, and may limit the persuasiveness of our claim that policy changes have
not been large. We intend to look at other specifications that relax this constraint.
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in state 1. For thousands of draws, we compute the mean path as well as .68 probability
bands. The results are reported in FigiBéwhere the time label 1979.1 means 1979:10
and so on.

Clearly, the counterfactual funds rate path is much smoother than actual data: the funds
rate would have been lower from late 1979 to the end of 1981 but higher after the mid 1982,
coupled with a higher growth rate of money initially but lower growth later (Figbrasd
6). Consequently, the counterfactual inflation path would have come down as steadily as
actual data (Figur®). But the tradeoff would have been equally severe except the timing
would have been postponed: from the end of 1984 on, the error bands imply that we would
have had a much lower growth rate of GDP or even recessions (Hpanrel a much higher
level of the unemployment rate (Figu@

5. MODEL FIT

Table7 provides measures of fit for the model used so far by comparing it to other
models. The “4 states” line refers to the extension of our Monetary-policy-only model to
four states. The upper panel of the table shows nearly-conventional fit criteria— likelihood,
the Schwarz criterion, and the Akaike criterion. The only unconventional aspect here is
that they are evaluated at the peak of the posterior pdf, not at the likelihood peak. To the
extent that the likelihood dominates the prior, they can be interpreted like usual SC and
AC statistics. With as many free parameters as are present here, the Akaike criterion is
probably unreliable. The Schwarz criterion favors the Variances-only model, but not by a
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great margin over the 4-states model. The Monetary-policy model to which we have paid
the most attention comes in third.

In the second panel, we add to the likelihood values the log prior pdf values, to arrive
at posterior pdf values. Here the usual argument for the Schwarz criterion’s asymptotic
validity still applies. The only change in the ranking of the models by the SC is that here
“Everything” comes out even worse than “Nothing”. The last column of this table is in
principle the most reliable measure of fit. It measures the integrated posterior pdf over each
model’s parameter space, from which Bayes factors can be constructed. The results by this
criterion are drastically different, with the Everything model coming out on top. However,
we are still uncertain that the calculations underlying this column have converged, so its
implications should not at this point be taken too seriously.

6. CONCLUSION

We have found more evidence in favor of stable dynamics with unstable disturbance
variances than of clear changes in model dynamics. Nonetheless, our methods have found
weak evidence of policy shifts that match intuition — targeting of monetary aggregates and
abandonment of interest rate smoothing during 1979-82. The story that policy has changed
drastically between the 60-78 period and the 83-2000 period does not seem to be borne out.

There are obvious caveats to these results. We need to finish the calculations of the
marginal posterior model probabilities, and examine their sensitivity to choices of priors.
We need to examine a specification that would allow long run responses of policy to vary
over time.
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There are also clear opportunities to extend the results. For example, if we used a dis-
cretized version of an AR specification to parameteRzéhe state transition matrix, we
might be able to handle many more states and perhaps get a better fit. This approach has
advantages over that @ogley and Sargeif2001), who assume a continuously distributed
state, because it could allow for occasional discontinuous shifts in regime as well as more
frequent incremental changes.
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TABLE 1. Identifying restrictions o\o(s)

Variable (below) | Sector (right) | Inf | Fed| MD | Prod| Prod| Prod
Pcom X
M X | X X
R X | X X
y X X X X X
P X X X X
U X X

TABLE 2. Contemporaneous coefficient matricAg(1)

Financial M Policy Mdemand Privatey Private P Private U

Pcom  70.72 000 000 000 000 000
M2 2797 54582  —-35916 000 000 000
R —36.05 23883  —64394 000 000 000
y —6.45 000 3507 30368 —2306 6005
P —41.52 000 5036 000 —62398 1096
U 60.61 000 000 000 000 72196

TABLE 3. Contemporaneous coefficient matricAg(2)

Financial M Policy Mdemand Privatey Private P Private U

Pcom 4453 000 000 000 000 000
M2 1761 —31434 14147 000 000 000
R —22.70 7463  —25364 000 000 000
y —4.06 000 1381 21770 -20.29 5131
P —26.14 000 1984 000 —54910 937
U 38.16 000 000 000 000 61686

TABLE 4. Contemporaneous coefficient matricag(3)

Financial M Policy Mdemand Privatey Private P Private U

Pcom  39.36 000 000 000 000 000
M2 1557 —-50975 —38.60 000 000 000
R —20.06 —8.36 —69.21 000 000 000
y —3.59 000 377 19920 —-11.20 3777
P —2311 000 241 000 —30305 690
U 3373 000 000 000 000 45415
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TABLE 5. .90 probability bands of the short run policy coefficients

State

1

M2  (—4164,-517)
R (214.4,5485)

2 3

(—317.4,-83.74)
(1025,307.3)

(—5101, —3563)
(—18.6,46.8)

TABLE 6. Long run policy responses &fto

State

A Pcom

.90 prob interval
A M2

.90 prob interval
Ay

.90 prob interval
AP

.90 prob interval
U

.90 prob interval

Nothing
Variances only
M policy
Everything

4 states M policy

1 2 3

0.09
(0.06,0.69)
1.50 082 4,60
(0.50,11549) (—0.53,1.90) (1.43,8.37)
—1.07
(—1.41,1.26)
0.39
(—1.50,0.97)
~0.55
(—2.06,0.94)

TABLE 7. Measures of Fit

Based on likelihood alone

logf (Y1 |6) DF Akaike Schwarz
12852 12852 12852
13244 12 13232 13207
13248 16 13232 13198
13250 48 13202 13100
13279 24 13255 13204

Nothing
Variances only
M policy
Everything

4 states M policy

log(f (Yr()-1(6))

Based on posterior density

(@) DF Akaike Schwarz mi(Yr)
12852 -1915.5 10937 10937

13244 -2095.5 12 11137 11111 12423
13248 -2109.3 16 11123 11089 12419
13250 -2264.7 48 10937 10836 12469
13279 -2254.2 24 11001 10950 12464
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APPENDIXA. PRIOR RESTRICTIONS

We consider two classes of additional prior restrictions commonly used in the literature.
One class pertains to reference prior distributions for eliminating over-fitting problems;
the other class pertains to non-stochastic linear restrictioms(s) andD(s), such as
commonly used exclusion restrictions, for achieving identification.

Forj=1...,nandk=1,....h, letag j(k) be thej" column ofAy(s) for § =k and
dj(k) beDj(s) for s = k or Dj for all k. Prior distributions take the Gaussian form:

aO,J(k)NN(O7H0])7k:177haj:177n1 (6)
dj(k) ~N(O,H4j), k=1,....h, j=1,...,n. (7)

In addition, we follow Sims and Zh&998ato incorporate into the model the two com-
ponents of “dummy observations” prior components that express beliefs in unit roots and
cointegration in macroeconomic seriedn our application, we sdtlp; andH, j the same
way as in Sims and ZhB998abut scale them by the number of statesgo that the Case
| model in &) coincides with the Bayesian VAR with constant parameters.

As shown in Waggoner and ZI2D0Q linear restrictions imposed ofy(s) andD(s)
imply the following relationships:

a = U bj,j=1...,n (8)
nhx1l nhxojo0jx1
d =V g.,j=1....n (9)

mhx 1 mhxrjr,-xl

whereb; andgj are the free parameters “squeezed” ouapfandd; by the linear re-
strictions,oj andr; are the numbers of corresponding free parameters, columngsarke
orthonormal vectors in the Euclidean sp@%¥ columns ofV; are orthonormal vectors in
R™ and
a0,j(1) d;(2)

o, di=
ao,j (h) d;(h)
Combining 6) with (8) and (7) with (9) leads to the prior distributions for the free param-
etersb; andg;:

aj =

bj ~ N(0,Hoj), (10)

where

SFor detailed description of these dummy observations, see Sims ait®g8a
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The prior distribution forAj(k) is taken as}\jz(k) ~ I'(ay,B,) in the Variances Only

model, andAj(k) ~ N(0,0?) in the other models wherk appearsT (-) denotes the stan-
dard gamma distribution, witf, a scale factor (not an inverse scale factor as in the nota-
tion of many textbooks). The paramet@sandao, are set at values so large that the prior
distribution is essentially diffuse and has little influence on the posterior out€ome.

The prior of P takes a Dirichlet form as suggested by Ch@i®& For thek™ column of
P, p«, the prior density is

1(Pak; - - -, Prk) = D(d1k;, - - ., Ohk) O p‘l"li"_l- . pﬁ{g"_l, ay > 1fori=1,....h. (12)

Although ajx > O is all one needs to have a proper Dirichlet, the conditigrt> 1 in (12)
guarantees that the distribution of egghhas a well-defined unique mode. There are two
steps in setting up a prior fqu. First, the prior mode opj is chosen to b&;, such that
s, U = 1. Let the maximum of the prior mode vectog correspond to the!" element.

In the second step, set a prior variancewgp. Onceuvy and Vafuk) are given, we can
solve forak through a third order polynomial. Giveny anduy, we can solve for all other
elements of the vectar, through a system dif — 1 linear equations. In our analysigy is
chosen to be evenly distributed acroger givenk. The prior standard deviation @i is
chosen to be 0.235 for allandk. The resulting prior distribution d? is very flat and has
no influence on the posterior outcome.

APPENDIXB. LIKELIHOOD FUNCTION
Denote

b={bj,j=1,...,n};
A={Ajk),k=1,....,h j=1,....n};
g={9j,i=1,...,n};
p={pw, k=1,...,h};
5=1{A,9,p};
0 ={b,Jd}.
The overall likelihood functionf (Yr | 6) can be obtained by integrating the conditional

likelihood at each time t oves and recursively multiplying these conditional likelihood
functions forward (Kim and Nelsoh999. Specifically,

T h
f(¥r | 6) :ﬂ{ S [F(% | %-1,%.6)Pris rvt_l,e)]}, (13)

s=1

SThis is true for inference within each model, but as is well known nearly flat priors are not irrelevant
to calculating odds ratios across models. We plan to do more analysis of the the sensitivity to priors of our
results on comparing model fit.



MACROECONOMIC SWITCHING 17

where

f(% | Ye1.5.0) = (2 [Ao(s rexp{——z S) Yyl Ao,

=2, j(s)% Yt Aoj + AL j(s) XAy ] }

h

Pr(s | Yi-1,0) = 5 [Pr(st|s-1)Pr(s—1]¥%-1,6)].
§-1=1

The probability Pfs_1 | Y;—1,0) can be updated recursively. We begin by settingsr
Yo, 0) to be the ergodic distribution of the Markov-switching chain. Ferl,...,T, the
updating procedure involves the following computation:

f(Y | Yi-1,%,60)Pr(st | Y—1,0)
22:1 [f (Yf ’ Yi-1, S, 6) PI’(St | Yi-1, 9)]

Multiplying the likelihood function 13) by the prior specified in SectioAl gives the
posterior functionrt(6 | Yr). When the number of model parameters is small, one could
obtain the posterior estimate 6fby simply finding the value 08 that maximizest(9 |
Yr) as in Sims2001b But for a fair-size system of simultaneous equations, there can be
easily over hundreds of structural parameters and there is no straight maximization routine
that can reliably handle such a case. We suggest to use the expectation-maximizing (EM)
algorithm proposed by Chib996 To keep the number of parameters small and manageable
at each maximization step in this EM algorithm, we adopt a Gibbs sampling idea to sample
from conditional posterior distributions in addition to sampling unobserved states across
time.

Prs [ %,0) = (14)

APPENDIXC. CONDITIONAL POSTERIORDISTRIBUTIONS

Obtaining the posterior results directly fromiO|Yr) proves impossible. One can, how-
ever, use a Gibbs sampler to obtain the joint distributiof, St | Y1) where§ = {s1,...,s}
fort=1,...,T. Denote

S ={s,...,s1};
Yt:{ytw"vyT}'

The Gibbs sampler we propose here involves sampling alternatively from the following
conditional posterior distributions:

n(Sr | Yr,A,9,b,p),
(A | Yr,Sr.0,b,p),
(g | Yr,Sr,A.b,p).
p)

b).

3

(b |Yr,Sr,A,9,p
m(p|Yr,Sr,A,0,

Y
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Paths ofSr can be simulated recursively backward from the first conditional posterior
distributiont(Sr | Y1,A,9,b, p) or (St | Y, 0). To see how this recursion can be done,
note that

Pr(Sr | Yr,8) = Pr(st | Y7,8)---Pr(s | Yr,ST1.0)---Pr(s; | Y7, $%,0);  (15)
and
Pr(s | Yr,S%1,68) OPr(s | ¥, 0)Pr(Y'™L S71 Y 5,0)

OPr(st| Y, 0)Pr(stia | &, 0)PrY ™, S72| Y, 5, 511,0)

OPr(s | %, 0)Pr(s11] %, 6), (16)
because R’}Yt“,S‘*Z IV, &,S+1,0) is independent o whens . is given. Relationship
(16) implies that

Pr(st [ %, 0)Pr(st+1]%,6)
22:1 [Pr(st | ¥, 0)Pr(sts1| . 60)]

Backward recursion begins by drawisgfrom Pr(sr|Yr, 8) according tol14) and drawing
s recursively given the patf*1 according to[17). According to (5), the draws o this
way come from RiSr Y7, 0).

To derive other conditional posterior distributions, we introduce the following notation:

oh oA

Pr(s | Yr,S71,0) = (17)

Yo = [V |, X =|%|, fork=1....h,

Vi, | X
whereTy is the total number of observations in statands,, = k forg=1,...,Tx. Note
thatsh_; Te=T. Let

Ayt = diag {{Yk’Yk — 25XV +§X,2Xk§} E_J :

nhxnh
Bo) =diag[{A)(K) (% XXS) Fy] - Borj =By
~-1 : ' s/ dyv/iyv & h
nAhgjn - diag [{z,-(k) (kak— 25 XY+ éxkxks> }k_l] ,
A o) = diag {400 (X% XXS) fy - Borj =B,

~-1 . , h
A :dlag[{ZJ(k)kak}kzl}’

mhxmh

where diaf| represents a diagonal matrix.
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For the variances-only model, we have
m(¢j(k) | Yr,Sr,9,b, p) = Gamma(T/2+ g, 1/ ({7 (K)/2+1/B;)) . (18)

. ~-1 AN\ !
n(gj |YT,ST,)\,b,p):N<QJ,<VJ-/AHV]+H+}) >, (29)

~-1
m(b|Yr,Sr,A,9,p) <|_| Ao (K) ) exp{ ; Zl [bi/ (Ui/AOi Ui "‘ﬁ(ﬁl) by
—29; (\/ilz+0iui) bi },

(P« | Yr,Sr,A,0,0) = mi(px | Sr) = D(A1k + Niks - - - Ak + Nhk) (21)
wherenjy is the total number of one-step transitions from skatie state fori,k=1,....h
in the sequence of stat&s drawn frommn(Sr | Yr,0), and

&5 (k) = a0 (K)' WYk 2§x4xk+§><¢xké} 20, (K)

— 2d;( ) [xkvk xkxﬂ 20 j (K) -+ dj (k) XXdj (K),

When theA; time varying scale factors apply only &y the conditional posterior density

for P is exactly the same a21) and the conditional posterior densities pandb are the
-1

same asl9) and 20) except thaﬂoJ andAJroj be replaced b)&o andAJroJ As for A,
we have

(20)

7(A(K) | ¥r,Sr.9,b,p) =N (3K, 87 (K)) (22)
where
Ai(K) = (dj (K)' (XY — XXS) a0, (K) ) 65 ;(K),
65 (k) = 1/ (dj (K) XX (k) + 1/ 05)

Except for 20), one can simulate draws from all other conditional posterior densities. As
for the conditional posterior density bf we use the Gibbs sampling idea of Waggoner and
Zha2000to samplebj one at a time conditional dm for i # j and other parameters. Unlike
constant-parameter simultaneous equation models dealt with by Waggoner a2d(tha
the posterior density dfj conditional on all other parameters in our case is nonstandard.

We thus use the Metropolis algorithm with the following proposal density for the transition
from bj to b]:

J (b/j | b] 7YTJST7A797 p, b17 ceey bj—lv bj+17 ceey bn) - N(O, EJ), (23)
whereb’j is a proposal draw.
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To obtain accurate error bands of functions of structural parameters (like the impulse
responses and historical decompositions), we need to normalize both the signs of structural
parameters and the labels of states. Given state=k 1,...,h), we normalizeA; and
A according to Waggoner and Z2801. To normalize the labels of states, we look at
reduced-form residuals of the interest rate and label the states from the smallest residual to
the largest residual.

APPENDIXD. POSTERIORESTIMATES

Finding the estimate of at the peak of the posterior distribution is a difficult task in
our simultaneous equation model. As mentioned in Se@ione use the Gibbs sampling
idea to implement the EM algorithm. First, we want to find the estimateadtthe peak of
i(b|Yr) through the following Monte Carlo integration (E-step):

Q
& (b,6°) = éqzlbgH(bj Yr. 87,2 @, g9, p@),

whereb®'d is the last iterated value df, S¥, A(@, g@, and p@ are simulated from
11(Sr, A, 9, p| Yr,0b°'9) with the four conditional densities:
n(Sr | Yr.b”%A,9,p),
A | Yr,0%% Sr, g, p),
(g Yr,b%%,Sr,A, p),
n(p| Yr,b%". Sr A, ).

The posterior estimate &fcan be obtained with the following iterations. Given a starting
value forb°!d, we find the value ob that maximizess (b,b°'¢) (M-step). Then we use the
maximum value ob as the next value di°'?. Continue the iteration unti converges to a
fixed point. Denote this posterior estimate&)y A

Next, we find the estimate df at the peak oft(A |Yr, f)), denoted by, by iterating the
process of obtaining the value dfmaximizing the following function:

5’(}\ )\O'd> QZIogn(b,|YT,§r .b,g @, pa )>,

whereS\?, g@, andp@ are simulated frommt (Sr, g, p | Yr,b,A°'9) with the three condi-
tional densities:

(St | Yr,b,A%% g, p),
(g | Yr,b,A° Sr . p),
n(p|YT767AOId7S1-7g)'
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Finally, we find the estimate dfg, p} at the peak of1(g, p|Yr, b, /\A), denoted by{g, p},
by iterating the process of maximizing the following function oygrp}:

# (1o p) 107 07 ) = 2 3. z lognt({g.p} | ¥r.b.A,5).

Where§rq) are simulated fromlr(Sr 1'Yr,b,A, g%, po'd) . We denote the posterior estimate
of 6 by

6={b.A,4,p}.
APPENDIXE. MARGINAL LIKELIHOOD

To select a model that best fits to the data, we need to estimate the marginal likelihood
n(Yr) for each model and then select the one that give the highest valmérpf. The
methods proposed by Chil®95and Chib and Jeliazkc2001 make it feasible for us to
compute the marginal likelihood. Note that

m(Yr) = / £(Yr | 6)71(6)d6
f (Y1 |6) () (24)

wherert(8]Yr) can be computed through the following conditional densities:
(8 |Yr) = lﬂln(ﬁi Yr.Bu. . Bia)
1= (25)
m(d|Yr,b) n(ﬁ |YT,B,0T> n(f) | YT,6,0T,5\> .
The method of Chib and Jeliazk@@01enables us to estimate the posterior ordinate
m(bi | Yr,by,...,0i1),
which requires simulatingb;, b 1,...,by,d, A, p} with the conditional densities:
m(bi | Yr,by,...,0i_1,bi11,...,bn,Sr,d,A, p),
1t (bit1 | Yr,ba,...,0i_1,bi,bis2,. .., b, Sr,d,A, p),

7(bn | Yr,be,...,Bi_1,bi,...,bn_1,Sr,d,A, p),
(Sr|Yr,by,...,Bi_1,bi,...,bn,d, A, p),
(d| Yr,by,...,bi_1,bi,...,bn,Sr, A, p),
(A | Yr,by,...,Bi_1,bi,...,bn,Sr,d, p),
m(p|Yr,b,...,0-1,bi,...,bn,Sr,A,d),

n



MACROECONOMIC SWITCHING 22
and simulating b1, ...,bny,d, A, p} with the conditional densities:

(b1 | Yr,by,...,00,bis2,...,bn, Sr,d,A, p),
7T(bi+2 ‘ YT,E)l,...,E)i,bi+1,bi+3,...,bn,ST,d,A, p),

1 (bn | Yr,b1,...,01,bit1,...,bn-1,Sr,d,A, p),
(St | Yr,by,...,B,bit1,...,bn,d,A, p),
(d| Yr,by,...,0i,bis1,...,bn,Sr, A, p),
(A | Yr,by,...,Bi,bis1,...,bn, Sr,d, p),
m(p|Yr,by,....bi,bi1,...,bn,Sr,A,d).

For other posterior ordinates i2%), we use the method proposed by Ch894 Estima-
tion of r(d | Yr,b) involves simulatingd, A, p,Sr} from rt(d, A, p, St | Yr,b); estimation

of (A | Yr,b,d) involves simulatind A, p, St} from rt(A, p, Sr | b,d); andr(p | Yr,b,d, A
(A ¥r,b.d) gA.p.Sr} from (A, p,Sr | b,d); andn(p | )

is estimated by simulating, Sy from n(p, Sr | 6, &,5\) . All these simulations can be com-

pleted with additional reduced Gibbs runs. A

The numerator ind4) can be easily computed. The prior ordinatg9) is readily avail-
able by direct calculation. It is also straightforward to compute the likelihood ordinate
f (YT | 6) by (13).

Chib and Jeliazko2001 also recommend a method to approximate Monte Carlo stan-
dard error of the marginal likelihood estimate. The essence of this approximation involves
computing the sample variance of a vector of above-mentioned Monte Carlo integrations
required to estimate the denominal@g) (Newey and Wes1987).
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