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Abstract

We estimate the effect of shifts in monetary policy using the term structure of interest rates.

In our no-arbitrage model, the short rate follows a version of the Taylor (1993) rule where the

coefficients on inflation and output can vary over time. We find that monetary policy loadings

on inflation, but not output, changed substantially over the last 50 years. Agents tend to assign a

risk discount to monetary policy shifts and are willing to pay to be exposed to activist monetary

policy. Over 1952-2006, if agents had assigned no value to active monetary policy, the slope

of the yield curve would have been approximately 50 basis points higher, and up to twice as

volatile, than what actually occurred in data.



1 Introduction

A large body of narrative and empirical evidence suggests that the conduct of monetary policy

in the U.S. has changed in substantial ways over the last 50 years. The Volcker disinflation in

the early 1980’s is a well-known example of a drastic change in the way monetary policy is set

in response to economic developments. The possibility of shifts in monetary policy has spurred

a large body of empirical research attempting to document and quantify the importance of these

changes.1 One important reason to be interested in these changes in monetary policy is that

they can serve as “monetary policy experiments” that could help us better identify and measure

the effect of systematic monetary policy on the economy. So far, the focus in the literature has

been mainly on the impact of monetary policy on real activity and inflation. In particular, a

lot of attention has recently been devoted to determining the role played by monetary policy in

explaining the “Great Moderation,” referring to the fact that the volatility of real activity and

inflation, and other macro series, has decreased since the mid-1980’s.2

One aspect that has received little attention so far is the implications of these monetary

policy changes for financial markets, in particular for the term structure of interest rates.3 A

growing number of studies that have employed macro factors in term structure models have

found that macroeconomic fluctuations are an important source of uncertainty affecting bond

risk premia (see, among others, Ang and Piazzesi, 2003; Ang, Bekaert and Wei, 2007). An

unanswered question is what are the effects of the Fed’s changing monetary policy stances

vis-à-vis output or inflation on the term structure. Monetary policy changes affect the entire

term structure because the actions of the Fed at the short end of the yield curve influence the

dynamics of the long end of the yield curve through no-arbitrage restrictions. Consequently, the

term structure of yields also provides valuable information in estimating monetary policy shifts.

It is unclear how changing monetary policy affects long-term yields and the slope of the

yield curve. If monetary policy is entirely neutral, then agents would assign the same risk

premia to long-term bonds in a world where monetary policy changed over time and in a world

where monetary policy was constant. The slope of the yield curve would be the same in both

1 See, among others, Clarida, Galı́ and Gertler (2000), Orphanides (2001), Cogley and Sargent (2001, 2005),

Sims and Zha (2006), and Boivin (2006).
2 See, for instance, Stock and Watson (2003), Boivin and Giannoni (2006), Sims and Zha (2006), and Justiniano

and Primiceri (2006).
3 One exception is Bikbov (2006), who examines the effect of discrete regime shifts in monetary policy rules on

the term structure. Our monetary policy shifts are continuous and we also estimate the price of risk of monetary

policy changes, which Bikbov does not do.
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worlds. If monetary policy risk is priced and agents dislike the uncertainty of policy changes,

then part of the risk premium for holding long-term bonds is needed to compensate investors

for their risk aversion to monetary policy shifts. On the other hand, if monetary policy is valued

by investors and active monetary policy is priced at a risk discount, then the slope of the yield

curve in the real world would be lower than the slope of the yield curve in an economy where

investors assigned no value to Fed policy changes. Similarly, it is not clear whether changes in

monetary policy increase or decrease long-term yields and how these yield changes may differ

across different parts of the yield curve.

The goal of this paper is to determine the influence of monetary policy on the term structure

of interest rates. The existence of historical shifts in monetary policy, or different monetary

policy “experiments,” provides an opportunity to statistically estimate the effects of changes in

the policy rule on the term structure. To do so we estimate a quadratic term structure model,

where the dynamics of the short rate follow a version of Taylor’s (1993) rule. Our no-arbitrage

model allows for the Fed response to inflation and output to potentially vary over time. In

contrast to most existing empirical models, we do not impose that the time variation in the

policy parameters is exogenous. For instance, we entertain the possibility that a high response

to inflation today might be due to the fact that inflation was high in the recent past.

An additional advantage of estimating the Taylor rule with policy shifts jointly with a term

structure model is that by including more information, it can potentially yield sharper estimates

of the changes in the policy rule. This is potentially important since conflicting evidence has

been reported in the literature on the importance of monetary policy shifts, and the evidence

based on the estimation of single equation have been subject to considerable statistical uncer-

tainty. Exploiting term structure information in this context could thus lead to more conclusive

evidence on how monetary has evolved.

Using the estimated model, we perform a series of exercises. We first document the im-

portance of the historical changes in monetary policy. We then investigate the effect of these

changes on the term structure of interest rates by computing the impulse responses of yields at

various maturities to shocks to the monetary policy stance. Our key findings can be summarized

as follows. First, our estimates suggest that monetary policy changed substantially over the last

50 years. The Fed’s sensitivity to inflation has changed markedly over time and our estimates

are largely consistent with the evidence reported in Clarida, Galı́ and Gertler (2000), Cogley

and Sargent (2005) and Boivin (2006). The use of term structure information in the estimation

of the policy rule leads to sharper parameter estimates, which statistically allow us to reject the
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hypothesis that the Taylor principle was satisfied throughout the 1970’s. More recently, the co-

efficient on inflation was below one during the early 2000’s. We also find that the Fed’s inflation

response is more aggressive and flexible, on average, compared to estimates from random-walk

coefficient models similar to Cogley and Sargent (2001), Cogley (2005), Boivin (2006), and

Justiano and Primiceri (2006).

Second, we find that shifts of monetary policy stances with regards to output shocks exhibit

very small variation. Our model estimates imply that most of the discretion in monetary policy

has resulted from changing the response of the Fed to inflation shocks rather than to output

shocks. The finding of very small variation in the output loadings is the opposite conclusion

to estimates from models using random walks to capture the time variation of monetary policy

coefficients. In these models estimated without yield curve information, the policy loadings on

output shocks exhibit large time variation.

Third, changes in monetary policy have a quantitatively important influence on the shape of

the term structure. A shock to the Fed response to inflation fluctuations, ceteris paribus, raises

short term rates and shrinks the term spread. We find that in the real world, past monetary

policy stances have little effect on future output and inflation. However, under the dynamics of

the risk-neutral measure implied by bond prices, tighter monetary policy measured by a higher

inflation coefficient has a perceived ability to lower future inflation. These real world versus

risk neutral differences suggest that the actions of the Fed are valued by investors.

Finally, we find that Fed policy shifts are priced at a risk discount. Investors are generally

willing to pay, rather than requiring to be paid, to become exposed to monetary policy changes,

especially if the Fed responses to output and inflation shocks are sufficiently large. We find that

if agents do not value activist monetary policy, the slope of the yield curve would have been,

on average, 50 basis points higher than what occurred over the 1952-2006 sample and up to

two times as volatile. Thus, monetary policy partly helps to determine the low risk premia on

long-term bonds.

The rest of the paper is organized as follows. Section 2 describes the modelling framework.

It first describes the short rate equation, specified as a time-varying policy reaction function, and

then derives bond prices based on a quadratic, arbitrage-free, term structure model. Section 3

discusses the empirical results and describes the estimated time series of the policy coefficients,

how policy changes affect the yield curve, and how policy risk is priced. Section 4 concludes.

The details of the bond pricing derivations and the Bayesian estimation technique can be found

in the Appendix.

3



2 Model

We assume the dynamics of the short end of the yield curve (the one-quarter short rate) follows

a version of Taylor’s (1993) rule where the monetary authority sets the short rate as a function

of inflation and the output gap. Unlike a standard Taylor rule, we let the policy responses on

output and inflation vary over time:

rt = δ0 + (ā + at)gt + (b̄ + bt)πt, (1)

wherert is the 1-quarter yield,gt is the output gap, andπt is inflation. In estimating equation

(1) in our model, we also include a small orthogonal error term. The coefficient on the output

gap,(ā + at), measures how much the monetary authority adjusts the short rate to output gap

shocks and consists of a base level,ā, and a zero-mean time-varying component,at. Similarly,

the policy response to inflation consists of an average response,b̄, and a zero-mean deviation

around this mean level,bt. If there has been no change to the Fed’s policy reaction function,

thenat = bt = 0, otherwise time variation inat andbt represent policy shifts in the relative

importance of output gap or inflation shocks in setting short-term interest rates.

We collect the macro and policy variables in the state vectorXt = [gt πt at bt]
>, which

follows the stationary VAR:

Xt = µ + ΦXt−1 + Σεt, (2)

whereεt ∼ IID N(0, I). We order the macro variables first in the VAR. We setΣ to be the

Cholesky decomposition ofΣΣ> and so allow all factor shocks to be correlated. We parame-

terizeΦ as

Φ =




Φgg Φgπ Φga 0

Φπg Φππ 0 Φπb

Φag 0 Φaa 0

0 Φbπ 0 Φbb




. (3)

Without the time-varying policy coefficientsat andbt, the upper2×2 matrix ofΦ represents

a regular VAR of output and inflation. The coefficientsΦga andΦπb allow the policy coefficients

to influence the future path of output and inflation. A negative coefficientΦga means that a

more aggressive response to the output gap would reduce the output gap next period. Similarly,

if Φπb < 0, then future inflation reduces as the Fed tightens monetary policy.4

4 We do not allow the Fed’s response to inflation to influence the future output gap or the Fed’s output gap

sensitivity to influence future inflation (Φgb = Φπa = 0). Estimates with non-zeroΦgb andΦπa are hard to

identify and resulted in VAR estimates that were non-stationary.
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We treat the policy variablesat andbt as latent factors and are especially interested in their

variation through the sample. In systems with latent factors, the same reduced-form model may

often be produced by arbitrarily scaling or shifting the coefficients governing the dynamics of

at andbt in Φ or Σ. To identifyat andbt, we allow their shocks to be correlated inΣ, but do not

allow any feedback betweenat andbt in Φ. We allow the macro variables to potentially influ-

ence future policy stances. IfΦag or Φπb are positive, then the Fed responds to an environment

with an increasing output gap or inflation by raising the policy responses to the output gap or

inflation. Similarly, we also allow the policy variables to potentially influence the future path of

output and inflation by specifyingΦga andΦπb to be non-zero.

The time-varying policy rule in equation (1) can be written in the form of a standard time-

invariant Taylor (1993) rule with a “policy shock,”ηt, that depends explicitly on the level of

the output gap and inflation, combined with a time-varying policy stance. For ease of exposi-

tion, we ignore the orthogonal error term that is included in estimating equation (1) and write

equation (1) as:5

rt = δ0 + āgt + b̄πt + (atgt + btπt)

= δ0 + āgt + b̄πt + ηt, (4)

whereηt = (atgt + btπt). In the special case thatat andbt are uncorrelated with the output

gap and inflation (orΦga = Φπb = Φag = Φbπ = 0 in equation (3)), then the average policy

responses̄a and b̄ in equation (4) can be consistently estimated by OLS. However, ifat or bt

are correlated with the output gap or inflation, then conventional estimates of a linear policy

rule like equation (4) will produce biased estimates of the policy responses to macro variable

shocks.

If policy shifts do occur over time in the form of equation (1), then we can interpret the tra-

ditional policy shock,ηt, in the linear Taylor setting (4) as comprising two components: policy

reaction componentsat andbt, and macro variable components,gt andπt. The residualηt would

5 We also investigated an alternative policy shift model, where the short rate took the form:

r̂t = δ0 + (ā + at)gt + (b̄ + bt)πt + ft,

whereft was an additional IID latent factor. This latent factor differs the measurement erroru1
t put on the short

rate in the estimation because the observation errors are yield specific, whereas the latent factorft is also priced

by all other yields. This model resulted in extremely small estimates offt with almost zero improvement in model

fit (observation error standard deviations). A Bayes factor test also makes this model extremely unlikely compared

to the benchmark quadratic model.
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also exhibit conditional heteroskedasticity. We can decompose a traditional linear policy shock

into policy shifts by the Fed (at andbt terms) and separate shocks to output gap and inflation

components (atgt andbtπt, respectively). Previous research in affine models have found that a

linear latent factor,ηt, is related to movements in macro variables and can represent a monetary

policy shock (see, among others, Ang, Dong and Piazzesi, 2006; Bikbov and Chernov, 2006).

In our set up, we can quantify the variation in short rates directly emanating from policy shifts

versus shocks to macro variables.

We assume that the time variation in the policy coefficients is a covariance stationary pro-

cess, that is all the eigenvalues ofΦ lie inside the unit circle. This is in contrast to previous

approaches which model time variation in policy parameters using random walks (see, among

others, Cooley and Prescott, 1976; Cogley and Sargent, 2001, 2005; Cogley, 2005; Boivin,

2006; Justiniano and Primiceri, 2006). While the random walk is a convenient framework to

account for permanent changes in coefficients, inferring how the term structure reacts to pol-

icy shifts is better done with a stationary process for several reasons. First, since yields are

intertemporal marginal rates of substitution, they should be stationary in well-defined exchange

models with representative agents having utility over consumption. Second, random walk mod-

els cannot be used to attribute the variance of long-term yields to policy shift components and

shocks to macro factors, as the unconditional variance is infinite in a random walk process.

Similarly, since there is no well-defined long-run mean in a random walk system, it is hard to

define the long-run effects of policy shifts on yields or macro factors.

The time-varying Taylor rule (1) is an example of a regression model with stochastically

varying coefficients. Using only macro data and short rates, the system is asymptotically iden-

tified (see Pagan, 1980). However, it is hard to use only one observable variable, short rates,

to identify two latent processes in small samples. Fortunately, it is not only the short rate that

responds to policy shifts – we identify the variation inat andbt by using information from the

entire yield curve. A further advantage of using the entire term structure is that we can identify

the prices of risk that agents assign to the policy authority’s time-varying policy rules. Thus,

we can infer the effect on long-term yields of a policy shift by the Fed on its inflation stance,

as well as the traditional analysis of tracing through the effect of an inflation shock on the term

structure. In contrast, the previous literature on macro-finance term structure models assumes

that the policy coefficients are time invariant.
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2.1 Bond Prices

To derive bond prices from the policy shift model of equation (1), we write the short rate as a

quadratic function of the factorsXt = [gt πt at bt]
>:

r̂t = δ0 + δ>1 Xt + X>
t ΩXt (5)

whereδ0 is a scalar andδ1 = [ā b̄ 0 0]>. We use the carrot notation for yields which are direct

functions of the model to distinguish the model-implied short rate,r̂t, from the short rate in

data,rt. In the quadratic termX>
t ΩXt in equation (5),Ω is specified as

Ω =




0 0 1
2

0

0 0 0 1
2

1
2

0 0 0

0 1
2

0 0




. (6)

The short rate is linear in the observable macro variables and the quadratic form results from

the interaction of the stochastic policy coefficients with the macro factors. If there are no policy

shifts, thenΩ = 0, and the model simplifies to a standard affine term structure model.

To price long-term bonds, we specify the pricing kernel to take the standard form:

mt+1 = exp

(
−r̂t − 1

2
λ>t λt − λ>t εt+1

)
, (7)

with the time-varying prices of risk:

λt = λ0 + λ1Xt, (8)

for the 4 × 1 vectorλ0 and the4 × 4 matrix λ1. The prices of risk control the response of

long-term yields to macro and policy shocks, and cause the expected holding period returns of

long-term bonds to vary over time (see Dai and Singleton, 2002). Of particular interest are the

risk premia parameters on the policy shift variablesat andbt. These have not been examined

before because the prices of risk in equation (8) have almost exclusively been employed in

traditional affine macro-term structure models where the policy coefficients are constant (see,

for example, Ang and Piazzesi, 2003).

The pricing kernel prices zero-coupon bonds from the recursive relation:

P̂ n
t = Et[mt+1P̂

n−1
t+1 ],
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whereP̂ n
t is the price of a zero-coupon bond of maturityn quarters at timet. Equivalently, we

can solve the price of a zero-coupon bond as:

P̂ n
t = EQt

[
exp

(
−

n−1∑
i=0

r̂t+i

)]
, (9)

whereEQt denotes the expectation under the risk-neutral probability measureQ, under which

the dynamics of the state vectorXt are characterized by the risk-neutral constant and autocor-

relation matrix:

µQ = µ− Σλ0

ΦQ = Φ− Σλ1, (10)

whereXt follows the process

Xt = µQ + ΦQXt−1 + Σεt

underQ. In our estimation, we imposeΦQ to take the same restrictions as the companion form

under the real measure,Φ, given in equation (3).

The relevant dynamics for bond prices are given by the risk-neutral parametersµQ andΦQ.

The actual dynamics of macro variables and policy risk factors in the real world may differ

from the dynamics of the factors under the risk-neutral measure. These differences precisely

highlight how macro and monetary policy changes are priced by agents. For example, agents

may have different perceptions of how monetary policy changes impact the economy than what

actually happens in reality. Similarly, the yield curve may reflect beliefs on how past economic

growth and inflation influence future monetary policy actions that is different to how the Fed

actually conducts policy in the real world. We will explicitly contrast the different implied

dynamics of monetary policy factors under the risk-neutral and real measures.

The quadratic short rate (1) or (5), combined with the linear VAR in equation (2), and the

pricing kernel (7) gives rise to a quadratic term structure model. We can write the bond price

for maturityn implied by the model as:

P̂ n
t = exp(An + B>

n Xt + X>
t CnXt), (11)

where the termsAn, Bn, andCn are given in Appendix A. Hence, if we denote the yield on a

zero-coupon bond with maturityn quarters aŝyn
t = −1/n log P̂ n

t , yields are quadratic functions

of Xt:

ŷn
t = an + b>n Xt + X>

t cnXt, (12)
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wherean = −An/n, bn = −Bn/n, and cn = −Cn/n. This analytical form enables the

estimation of the model and allows us to investigate how the entire term structure responds to

policy changes and macro shocks.

Since the yields are quadratic functions of the state variables, the model belongs to the

class of quadratic term structure models developed by Longstaff (1989), Beaglehole and Ten-

ney (1992), Constantinides (1992), Leippold and Wu (2002, 2003), and Ahn, Dittmar and Gal-

lant (2002).6 None of these authors incorporate observable macro factors or investigate policy

shifts. Ahn, Dittmar and Gallant (2002) and Brandt and Chapman (2003) demonstrate that

quadratic models have several advantages over the affine class in adding more flexibility to bet-

ter match yield dynamics, particularly conditional moments. The non-linearity of yields also

aids in identifying prices of risk because there is an additional source of identification, through

the non-linear mapping of state variables to yields, that is absent in an affine setting.

To estimate the model, we assume that all yields, including the short rate, are measured with

error. Specifically, we assume:

yn
t = ŷn

t + un
t , (13)

whereŷn
t is the model-implied yield in equation (12),yn

t is the yield observed in data, andun
t

IID ∼ N(0, σ2
n), are additive measurement errors for all yieldsn. The quadratic form of the

yields implies that there is not a one-to-one correspondence between certain yields assumed

to be observed without error and latent state variables. Thus, standard filtering techniques for

estimating affine models cannot be used to estimate our quadratic term structure model. We

employ a Bayesian filtering algorithm that requires no approximation to estimate the model,

which we detail in Appendix B.

3 Empirical Results

In Section 3.1, we describe the construction of the output gap and inflation and how the model

matches macro variables and yields in data. Section 3.2 discusses the parameter estimates.

Section 3.3 documents how the Fed reaction to output gap and inflation shocks have changed

6 These quadratic models are members of the broader affine class of term structure models of Duffie and

Kan (1996) as they have linear representations of yields involving factorsXt and second moments of factors,

vech(XtX
′
t). The quadratic term itself follows an affine process, as shown by Filipovic and Teichmann (2002) and

Gourieroux and Sufana (2003). Buraschi, Cieslak and Trojani (2007) show that the quadratic short rate process

can be supported in a Cox, Ingersoll and Ross (1985) production economy with a representative agent.
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over time. In Section 3.4, we discuss how the yield curve reacts to changes in the Fed’s policy

parameters. Section 3.5 explores the price of risk of Fed policy shifts.

3.1 Data

All our data is at a quarterly frequency and the sample period is from June 1952 to December

2006. The output gap is constructed following Rudebusch and Svensson (2002) and is given by

gt =
1

4

Qt −Q∗
t

Q∗
t

, (14)

whereQt is real GDP andQ∗
t is potential GDP. We obtain real GDP from the Bureau of Eco-

nomic Analysis (BEA), which is produced using chained 2000 dollars. We use the measure of

potential output published by the Congressional Budget Office (CBO) in the Budget and Eco-

nomic Outlook using chained 1996 dollars. To make the BEA series comparable to the CBO

series, we translate real GDP to 1996 dollars. Finally, we demean the output gap and divide the

output gap by four to correspond to quarterly units. Since we will be using per quarter short

rates, this allows us to read the coefficient on the output gap as an annualized number. Our series

for inflation is the year-on-year GDP deflator expressed as a continuously compounded growth

rate. This is also divided by four to be in per quarter units. In addition to the one-quarter short

rate, our term structure of interest rates comprises take zero-coupon bond yields from CRSP of

maturities 4, 8, 12, 16, and 20 quarters. These are all expressed as continuously compounded

yields per quarter.

Figure 1 plots the output gap, inflation, and the short rate over our sample in annualized

terms. The output gap decreases during all the NBER recessions and reaches a low of -7.1%

during the 1981:Q3 to 1983:Q4 recession. The output gap strongly trends upwards during

the expansions of the 1960’s, the mid-1980’s, and the 1990’s. Inflation is slightly negatively

correlated with the output gap at -0.245. Inflation rises to near 10% during the mid-1970’s and

early 1980’s, but otherwise remains below 5%. In the data, the correlation between the output

gap and the short rate is -0.155 and the correlation between inflation and the short rate is 0.698.

These correlations are matched closely by the model, with implied correlations ofgt andπt with

the short rate of -0.128 and 0.741, respectively.

As a benchmark, we report OLS estimates of simple Taylor (1993) rules where the short

rate is a linear combination of macro factors and lagged inflation:

rt = 0.001 + 0.020gt + 0.904πt + εt,

(0.001) (0.060) (0.064)
(15)
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where standard errors are reported in parentheses. Adding lagged short rates we obtain:

rt = 0.001 + 0.071gt + 0.141πt + 0.873rt−1 + εt,

(0.001) (0.028) (0.041) (0.031)
(16)

which can be written in partial adjustment format as:

rt = 0.001 + 0.873 rt−1 + (1− 0.873)(0.560 gt + 1.105 πt) + εt.

These estimates are very similar to those reported in the literature. In our model, the coefficients

on gt andπt from these simple OLS estimates do not correspond to the policy coefficients by

the monetary authority on the output gap and inflation. While the short rate equation (4) also

specifies the short rate as a linear combination ofgt andπt, the OLS shockεt is not orthogonal

to the macro factors.

In Table 1, we report summary statistics of the factors in data and implied by the estimated

model. The factors and yields are expressed in percentage terms at a quarterly frequency. The

model provides an excellent match to the data, with model-implied unconditional means and

standard deviations very close to the moments in data. In Panel A, the unconditional moments

of the output gap and inflation implied by the model are well within 95% confidence bounds of

the data estimates. Panel B of Table 1 compares the yields in data with the model-implied yields.

All yields are expressed in percentage terms per quarter. We construct the posterior moments of

the model-implied yields by using the generated latent factors in each iteration from the Gibbs

sampler estimation. The tight posterior standard deviations indicate that the draws of the latent

at andbt factors in the estimation result in yields that very closely lie around the data yields.

All of the model-implied estimates are almost identical to the data. Note that because we match

the short rate exactly in the estimation, the mean of the short rate aligns exactly with the data

mean by construction.

3.2 Parameter Estimates

We report the estimates of the model parameters in Table 2. We report posterior means, with

posterior standard deviations in parentheses, of the model parameters. The first panel of Table

2 reports the long-run responses of the Fed to the output gap and inflation. Unconditionally,

the long-run response to the output gap is small, at 0.223, with a posterior standard deviation of

0.045. The posterior mean of the long-run response to inflation is well above one, at 1.442, with

a posterior standard deviation of 0.100. These are larger than the simple Taylor rule estimates of

11



0.020 and 0.904 in equation (15) suggesting that the time variation ofat andbt play an important

role in determining the short rate and OLS estimates contain some bias.

In the conditional volatility matrix, the conditional shocks of all factors are lowly correlated

with each other. The Fed sensitivity to output gap shocks has small variation, with the condi-

tional volatility of at only 0.005× 10−3, whereas the Fed’s response to inflation exhibits much

larger variation, with the conditional volatility ofbt 38.65× 10−3. The posterior standard devi-

ations ofat andbt across all sample paths in the estimation are 0.008 and 0.587, respectively,

so the Fed’s stance to output gap shocks is very stable whilebt has changed substantially over

time. Below, we further investigate the time-series variation ofat andbt.

Not surprisingly, Table 2 shows that in the companion formΦ, all the factors are highly

autocorrelated, with the coefficients ofΦ lying very near one along the diagonal. High inflation

Granger-causes low economic activity next quarter (Φgπ = −0.098), but this effect is statis-

tically weak with a posterior standard deviation of 0.058. On the other hand, high economic

growth today suggests that next-period inflation will accelerate (Φπg = 0.064) and this effect is

statistically stronger with a posterior standard deviation of 0.011. These effects have been noted

before in standard VAR macro models like Christiano, Eichenbaum and Evans (1996, 1999).

Table 2 shows that the feedback coefficients between(gt πt) and(at bt) are estimated with

considerable error and 95% confidence intervals of the posterior estimates encompass zero. The

parameterΦga = −0.008 is negative indicating that changes in the Fed’s response to output gap

shocks induce a small, but insignificant, influence over the path of next-period future economic

activity. The coefficientΦbπ is also estimated to be effectively zero. The effect of past output

gaps onat is small withΦag = 0.004, whereas past high inflation Granger-causes monetary pol-

icy to tighten and become more sensitive to inflation shocks withΦbπ = 1.183. However, while

this coefficient is large in magnitude, it is estimated with considerable error with a posterior

standard deviation of 2.518.

The lack of evidence that past macro factors influence future monetary policy movements

and vice versa implies that the specification used by previous studies estimating drifting policy

coefficients, such as Cogley (2005) and Boivin (2006), among others, may be econometrically

sufficient. These studies use independent random walk specifications which are not affected by

past macro shocks to model changing monetary policy. However, these studies did not consider

the pricing of changing monetary policy risk by the yield curve, which our model captures by

the price of risk parametersλ0 andλ1.7

7 The zero entry in theλ1 matrix results from the companion formΦ taking the form of equation (3) under both
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Table 2 also reports the risk-neutral companion formΦQ which differs fromΦ in two im-

portant ways. Under the risk-neutral measure, macro shocks are noticeably less persistent than

their real measure counterparts (ΦQ
gg = 0.637 < Φgg = 0.913 andΦQ

ππ = 0.838 < Φππ = 0.988

while the persistence ofat andbt is largely unchanged. Thus monetary policy changes have

more persistent effects on bond prices than macro factors. Second, there is significant evidence

that the yield curve prices in Granger-causality of past macro variables affecting monetary pol-

icy stances and that monetary policy endogenously responds to pastgt andπt levels.

UnderQ, the market perceives the Fed to significantly affect the future path of the econ-

omy, with ΦQ
ga = −0.594 andΦQ

πb = −0.001. This implies that the market prices such that a

higher output sensitivity decreases future output and a more aggressive stance towards inflation

decreases future inflation. The negative coefficientΦQ
ag = −0.007 indicates that the yield curve

prices in a counter-cyclical response to output gap shocks. Whengt is high during expansions,

at is small and the short rate response to output gap shocks is small. Whengt is negative during

recessions,at is large and the Fed moves to reduce the short rate aggressively to bad output

shocks more than if the same shocks occur during expansions whengt is high. These feedback

effects are much stronger inΦQ than what actually occur inΦ.

Of all the parameters inΦQ, only ΦQ
bπ = −0.099 has a posterior 95% confidence bound that

includes zero. Interestingly, this coefficient has the opposite sign toΦbπ, but bothΦQ
bπ andΦbπ

are insignificantly different from zero. Thus, also under the risk-neutral measure, there is little

evidence that the Fed’s monetary policy stance with respect to inflation responds significantly

to past inflation shocks.

3.3 Policy Shifts in Output and Inflation Responses

Figure 2 displays the policy parameters,ā+at andb̄+bt, over the sample. We plot the mean pos-

terior estimates at each point in time of the Fed’s response to output and inflation produced by

the Gibbs sampler, along with two posterior standard deviations. These estimates lend support

to the conjecture that the changes in monetary policy during this period were substantial.

The Fed’s response to output gap shocks is centered aroundā = 0.223 and is generally

above 0.20 through the sample. From this low, the loading on the output gap reaches a low of

0.199 in 1981:Q3. The output gap loading rose in the early post-Volcker era back to around 0.22

and has has been fairly stable, with the exception of the most recent 2001 recession, which saw

the risk neutral and the real measure. The risk prices are inferred from equation (8). See the Appendix for further

details.
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a decrease in the output gap sensitivity. The most notable feature of the output gap response is

that its range is relatively narrow, with a minimum of 0.199 and a maximum of 0.234. Thus, the

Fed has exhibited little change in its responsiveness to economic growth.

The bottom plot of Figure 2 graphs the Fed’s response to inflation. In contrast to the severe

smoothness of the Fed’s sensitivity to output gap shocks, the Fed’s response to inflation has

changed markedly over time. The Fed’s loading on inflation takes on a minimum of 0.297 in

2003:Q3 and a maximum of 2.981 in 2008:Q1. Overall, the time-series pattern of the inflation

coefficient is roughly consistent with the evidence reported in Clarida, Galı̀ and Gertler (2000),

Cogley and Sargent (2005), and Boivin (2006).

The response to inflation during the 1950’s was below one sharply increasing to well above

one during the late 1950’s. In 1959:Q3b̄+bt reached a temporary high of 2.595. From this high,

the Fed’s inflation coefficient started to decrease during the 1960’s but generally remained above

one during this time. The response to inflation was generally below one throughout the 1970’s.

An appealing feature of these estimates is that, consistent with the narrative evidence (see, for

example, Meltzer, 2005), it clearly shows that the response to inflation started to increase in

1979. Interestingly, and as in Boivin (2006), the sharpest increase in the inflation response was

not in late 1979, as is often assumed because of the appointment of Volcker in July 1979, but

after 1981. The rapid increase inb̄+ bt over the early 1980’s reached a temporary high of 2.800

in 1984:Q2.

The estimated increase inbt from the 1970’s to the 1980’s is sizeable. The inflation loading

starts from a level less than one in the 1970’s, where the Taylor principle is not satisfied. That

means that during most of the 1970’s a unit increase in inflation translated into a less than unit

increase in the nominal policy rate, which represents a decline in the real rate, and hence implies

an easing of monetary policy. Whenever the Taylor principle is not satisfied it is possible for

inflation expectations, and thus economic fluctuations, to be driven by non-fundamental sunspot

shocks. A failure to rule out the presense of such shocks could thus have been responsible for the

greater economic volatlity of the 1970’s (see the discussion by Taylor, 1999; and Clarida, Galı́

and Gertler, 2000). The importance and the direction of these shifts are overall consistent with

the view that the conduct of monetary policy was not stable during the 1970’s and has evolved

under Volcker toward a more stabilizing conduct. Moreover, the timing of these changes are

broadly consistent with the general decline in the volatility of the US economy, suggesting that

monetary policy could have been in part responsible for the Great Moderation post-1985 (see

comments by Stock and Watson, 2003).
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Recently, the response to inflation dipped well below one during the 2001 recession and

the aftermath of the September 2001 terrorism acts, where the short rate declined from 4.25%

in 2001:Q1 to 0.90% in 2003:Q5. The Fed’s response to inflation shocks sank below one in

2001:Q3 to 0.686 reaching a low of 0.297 in 2003:Q3. From this low to the end of our sample

in 2006, the Fed response to inflation increases sharply, rising above one in 2005:Q2 and ending

at 1.613 in 2006:Q4. Thus, we find that the last few years of monetary policy under Greenspan

also did not satisfy the Taylor principle.

It is an interesting question to see what the yield curve would have looked like had the

Fed not changed its inflation loading over the post-2001 period. Inflation during this time was

low, possibly even below an implicit target (see Figure 1), so interest rates may have declined

over this period even with unchanged policy coefficients. In Figure 3 we report the results of a

counter-factual experiment where we hold the Fed weight on inflation at the average weight of

b̄ + bt over 2000 and trace the effects on the yields post-2001. We allow the other factors to be

take their sample values. Figure 3 plots the path of the short rate and term spread if the Fed had

maintained the same inflation stance as in 2000 in the dashed lines and overlays the actual short

rate and term spread in the solid lines.

The top panel of Figure 3 shows that had the Fed maintained the same inflation stance in

2000, short rates would indeed have been considerably higher post-2001 than in data. With

the same inflation tolerance in 2000, the short rate in 2003:Q4 would have been well over

4% compared to 0.92% in data. In the bottom panel of Figure 3 we plot the term spread.

Interestingly, we find that there is little difference in the slope of the yield curve over 2001-

2004 comparing actual data and the counter-factual exercise where the Fed did not take a more

dovish stance.

3.3.1 Comparisons with Estimations Using No Term Structure Information

Our model uses the entire term structure to identify the time series of output and inflation

policy responses. We now demonstrate that this leads to sharper estimates of the Taylor rule

coefficients than models that omit term structure information. Intuitively this is because no-

arbitrage restrictions, through the bond prices in equation (11), link policy actions on the short

rate together with movements in long-term bonds. The omission of term structure information

not only increases, sometimes substantially, the estimation error of the policy responses – it also

results in estimates of policy paths that are different from the full model which incorporates

long-term bond information.
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The top panel of Figure 4 plots the output gap coefficient from our full estimation and is

the same figure as the top panel of Figure 2, except on a different scale. Clearly, the output gap

coefficient does not vary much aroundā = 0.223 and is precisely estimated. We compare these

estimates with the output gap response from two other models in the two lower panels of Figure

4.8 In the middle panel, we draw the latent factorsat andbt from the same model as equation

(2) except only information ongt, πt, andrt is used, that is no term structure information is

employed. In this exercise, we hold all the parameters of the VAR constant at their posterior

mean estimates in Table 2 to isolate the effect of the term structure information on the latent

factor distributions. This is a conservative exercise because the additional sampling error from

the VAR and price of risk parameters increases the posterior distributions ofat andbt in the

benchmark estimation relative to the model in the middle panel of Figure 4.

Comparing the middle panel of Figure 4 to the first panel, we observe that the standard

error bands ofat with the term structure information are an order of magnitude smaller than

the standard error bands ofat omitting the information from the yield curve. While the path

of at in the full model (top panel) exhibits small variation, it does trend downwards to reach

a low in 1981:Q3 and then rises gradually towards the end of the sample. In comparison, the

best estimates ofat without the yield curve information (middle panel) stay very evenly around

0.223, indicating that the yield curve does provide auxiliary information to the short rate alone.

In the last panel of Figure 4, we estimate a model close to the models in the literature where

at andbt follow a random walk and are orthogonal to the macro variables. In this case, we

change the companion form,Φ, and the square-root of the conditional covariance matrix,Σ, to:

Φ =




Φgg Φgπ 0 0

Φπg Φππ 0 0

0 0 1 0

0 0 0 1




and Σ =




Σgg 0 0 0

Σπg Σππ 0 0

0 0 Σaa 0

0 0 Σab Σbb




. (17)

To be comparable to the literature, we estimate all the parameters of this model using only the

time series ofrt, gt, andπt.

The bottom graph of Figure 4 shows that the posterior standard deviation bands ofat are also

very large for the random walk model compared to the benchmark model in the top panel. The

unit root estimates ofat also exhibit much larger time variation. In the benchmark model, the

8 Technically, these models can be estimated using a methodology similar to the full model described in the Ap-

pendix, except that no accept/reject draw for the latent factorsat andbt is required. There are also no accept/reject

draws needed for the term structure likelihood for the VAR or short rate parameters.
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best estimates ofat have a standard deviation of 0.008. In comparison, the standard deviation of

the posterior mean ofat from the unit-root model is 0.204. The unit-root model’s estimates of

at are lowly correlated, at 0.207, with the benchmark model’s estimates. Thus, the inference of

the Fed’s sensitivity to output growth is very much affected by whether a unit-root specification

for the policy coefficients and long-term bond information are used.

In Figure 5, we plot the inflation policy responses from the full model (top panel), the

full model estimated without yield curve information (middle panel), and the unit root model

(bottom panel). (The top panel repeats the same curve as the bottom graph of Figure 2 except

on a different scale.) Not surprisingly, the posterior standard error bands increase moving from

the benchmark model in the top panel to the middle panel that omits term structure information.

In the bottom panel, the standard error bands of the unit-root model are similar in magnitude to

the the benchmark model estimates without the yield curve in the middle panel.

In contrast to the output gap responses, the time series ofb̄ + bt from the full model and

the unit-root model are highly correlated at 0.829. The unit-root specification also allows us

to reject the hypothesis that monetary policy satisfied the Taylor principle in the 1970’s and

was also substantially less than one in the early 2000’s. While the general comovement of the

inflation response is similar across the full and unit-root models, there are important differences.

First, the general level of the Fed’s inflation sensitivity coefficient is generally lower for the unit-

root model estimated without term structure information. In the full model, the unconditional

inflation responsēb = 1.442 compared tōb = 0.857 in the unit root model. Second, the range of

the inflation responses is higher in the benchmark specification. The lowest (highest) inflation

response is 0.304 (2.9794 ) in the benchmark model compared to -0.988 (2.082) in the last panel.

This implies that using term structure information, the estimate of the inflation response is more

aggressive, on average, and that the Fed exhibits a more flexible, active response compared to a

unit-root estimate of inflation policy that ignores the yield curve.

3.3.2 Factor Impulse Responses

Figure 6 reports the impulse responses of the factors on each other. In the first two rows, we

consider standard VAR responses of a 1% shock fromgt or πt on each other. These results are

consistent with many other studies. A 1% shock to output causes future inflation to increase

reaching approximately 40 basis points after 15 quarters. The effect of an inflation shock to

output is stronger, with a 1% shock to inflation causing future output to contract approximately

70 basis points after 12 quarters.
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In the bottom two rows of Figure 6, we plot the impulse responses ofbt from shocks to

macro factors and the effect of shocks tob − t to the macro factors. We denote the responses

in the real measure by the red solid line and we overlay the responses in the real measure in

dashed green lines. In the third row, we consider the effect of a 1% shock togt andπt on bt. In

the last row, we shockbt by 1.00 and trace the effects ongt andπt. We focus on the effect ofbt

because there is little variation in the response of the Fed to output fluctuations.

The third line of Figure 6 shows that in the real world, a 1% shock togt andπt causes the

Fed to tighten monetary policy. The effect is quantitatively small, with a 1% shock togt causing

an increase inbt of less than 0.05 and a 1% shock toπt raisingbt by less than 0.1. Under the

risk-neutral measure, the responses implied by the market prices of bonds show thatbt are even

more unresponsive withbt barely budging togt or πt shocks. While the actual policy responses

suggest that the Fed modestly tightens monetary policy in economic expansions (whengt and

πt shocks are positive), economic participants price bonds believing that there is little automatic

endogenous response of monetary policy to past macro shocks and agents believe that monetary

policy is more discretionary.

In the last row of Figure 6, we plot the effect of a unit move inbt on the macro factorsgt

andπt. The responses of the macro variables under the real measure reveal little reaction ofgt

andπt to changes in the Fed response to inflation. In contrast, underQ, agents believe that the

macro environment does respond modestly to Fed policy changes. In particular, raisingbt by

one unit produces an increase ingt of 20 basis points and a decrease inπt of 50 basis points

after 10 quarters. This response of inflation under the risk-neutral measure is economically large

because the variation inbt has exhibited wide range over the sample. (For example, Figure 2

shows that the change inbt from the mid-1970’s to the early 1980’s is around 3.5.) Hence, the

yield curve prices in a belief that the Fed can engineer successful disinflation by increasing the

policy loading on inflation shocks. However, there is little evidence this actually occurs in the

real world.

3.4 How Policy Shifts Affect the Yield Curve

3.4.1 Short Rate Components

In our model, short rates move due to movements in the output gap component,(ā + at)gt, and

the inflation component,(b̄ + bt)πt. Figure 7 highlights these two components of the short rate.

The policy factors are evaluated at the best estimates ofat andbt through the sample, together
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with the short rate in per quarter units. The correlation between the actual short rate and the

fitted components is 0.985, indicating that movements in the macro variables and policy rule

account for almost all of the variation in the short rate. The bottom panel of Figure 7 shows that

most of the variation in the short rate comes from inflation components. Although the variation

in the output gap and inflation are similar (see Table 1), the small policy response on output

shocks and the relatively large response on inflation cause the inflation component to dominate

in the short rate variance.

3.4.2 Impulse Responses of the Term Structure

In Figure 8 we plot the response of the yield curve to macro shocks and inflation policy shifts.

Since the yields are non-linear functions of macro and policy variables, we compute the impulse

responses numerically, which we detail in Appendix C. We graph in columns the response of

a 1% shock togt, a 1% shock toπt, and a 1.00 shock tobt on the short rate,rt, the 20-quarter

long rate,y20
t , and the yield spread,y20

t − rt, which are presented in rows.

The first column of Figure 8 shows that positive output shocks increase short rates and

decrease spreads. A 1% shock togt increases the short rate by 65 basis points after 15 quarters.

The same shock causes the long rate to also increase, initially to 10 basis points, reaching a

peak of 15 basis points around 10 quarters. Thus, the lower left-hand graph shows that after a

1% shock togt the term spread initially shrinks by approximately 15 basis points reaching -50

basis points by around 15 quarters. The second column of Figure 8 shows similar patterns for

a 1% shock toπt. Initially, the short rate increases by 1.4% and the yield spread shrinks by

approximately 1%. The impulse response of the yield spread falls below 25 basis points after

20 quarters. These results are similar to those reported by Ang and Piazzesi (2003), among

many others, who show that the macro shocks influence mostly the short end of the yield curve,

which responds more to macro shocks than the long end of the yield curve.

In the third column we plot the response of a 1.00 change inbt. We focus onbt because

the movements inat over the sample have been quantitatively very small. A 1.00 change in

bt causes the short rate to initially increase by 80 basis points, which slowly dies down to fall

below 25 basis points after 15 quarters. The 1.00 shock tobt causes the long rate to barely move

and the response byy20
t remains below 10 basis points over all horizons. Thus, the term spread

initially decreases by 75 basis points whenbt increases by 1.00. Thus, changing monetary

policy stances also mostly impact the short end of the yield curve.

In the two lower figures in the third column, we overlay the responses of the long rate and
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term spread under the risk-neutral measure. These risk-neutral responses are the responses of

yields under the Expectations Hypothesis (EH) and are produced by setting the time-varying

prices of riskλ1 = 0.9 Clearly, there are differences in the response of yields under risk

neutrality compared to the case with risk premia. Under the EH, long rates would move much

more than under the real measure, with an initial response of 40 basis points to a 1.00 move

in bt, compared to the actual initial response of less than 10 basis points. Thus, under the EH,

the yield spread only initially falls by 40 basis points compared to 75 basis points in the full

model. That is, shifting monetary policy risk is priced so that long rates are more stable and

move less whenbt moves. In our model, this is due to agents’ beliefs underQ that Fed actions

are stabilizing, which causes the yield curve not to amplify the effects ofbt shocks as much as

the case where policy risk is not priced.

3.5 The Fed Policy Risk Premium

The different response of the yield curve in Figure 8 under the case where all factor risk is priced

compared to the case under the EH indicate that investors value the role of active monetary

policy. In this section, we characterize the risk premium assigned by investors to the risk of

policy shifts by the Fed in several ways.

3.5.1 Interpreting Price of Risk Parameters

To directly interpret theλ0 andλ1 price of risk coefficients, consider first a standard CRRA

representative agent economy with the pricing kernel

mt+1 =

(
Ct+1

Ct

)−γ

= exp(−γ(µc + σcε
c
t+1)),

whereCt is aggregate consumption,γ is the representative agent’s risk aversion,µc andσc are

the mean and volatility of log consumption growth, respectively, andεc
t+1 ∼ N(0, 1) is the

shock to consumption growth. In this economy, the price of a security with the same payoff as

the unit consumption shock is given by:

Pt = Et[mt+1ε
c
t+1] = Et[e

−γ(µc+σcεc
t+1)εc

t+1]

= −e−rtγ, (18)

9 In an affine model the term spread would not move under the EH, except for some small Jensen’s inequality

terms.
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where the risk-free ratert = γµc − 1
2
γ2σ2

c . Equation (18) shows that if the agent is risk averse,

γ > 0, then the price of the consumption shock is less than the risk-neutral price of zero,Pt < 0.

Thus, risk-averse agents must be paid to bear consumption risk and the price of a unit risk is

equal to aggregate risk aversion multiplied by a bond.

In the term structure model there is no direct correspondence to representative risk aversion

because there are multiple shocks, the prices of risk vary over time, and the prices of risk ofat

andbt also depend on the correlated movements ofgt andπt as well as each other. Nevertheless,

we can use the difference between the actual price and risk-neutral price of claims to the factor

shocks to provide economic intuition for the policy shift risk priced by the yield curve. The

prices of unit shock payoffs are given by:

Et[mt+1εt+1] = Et

[
exp

(
−rt − 1

2
λ>t λt − λ>t εt+1

)
εt+1

]

= e−rtλt = e−rt(λ0 + λ1Xt) (19)

where we use the definition of the pricing kernel in equation (7) and the short ratert = δ0 +

δ>1 Xt + X>
t ΩXt is also a function ofXt.

In Panel A of Figure 9, we plot the price of a unit shock toat andbt as a function of the

monetary policy coefficient loadings(ā+at) and(b̄+ bt), respectively. We denote with vertical

lines the steady-state values ofā = 0.223 and b̄ = 1.442. The figure shows that for values of

(ā + at) < 0.226 the price of a unitat shock is negative. For these values monetary policy risk

commands a risk premium. When(ā + at) > 0.226 the price of the claim on a unitat shock is

positive – in this case agents are willing to pay for activist monetary policy. That is, when the

Fed is very responsive to output gap shocks, agents value monetary policy shifts and monetary

policy has a risk discount.

We now turn to the price of a unit shock onbt. The second graph in Panel A of Figure

9 shows that the price of this claim is negative for values of(b̄ + bt) < 1.62. Thus, when

monetary policy is loose and unresponsive to inflation shocks, agents demand a monetary policy

risk premium. When monetary policy responds sufficiently aggressively to inflation shocks,

(b̄ + bt) > 1.62, agents assign a risk discount to activist monetary policy and are willing to pay

to be subject to this risk. Note that for both the long-run values of the monetary policy responses

ā andb̄, monetary policy has a very slight risk premium, but it is close to zero.
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3.5.2 The Price of Policy Shifts Under Full Risk and Risk-Neutral Specifications

An alternative way to characterize monetary policy risk is to compare the price of a security

in the full model, whereat andbt are priced, to the price of a security with the same payoff

in a model whereat andbt carry zero risk premia. Consider the price of a security paying off

(1 + Xt+1):

Pt = Et[mt+1(1 + Xt+1)] = EQ
t [e−rt(1 + Xt+1)]

= e−rt(1 + µQ + ΦQXt) (20)

The risk-neutral parametersµQ andΦQ include risk prices arising from both macro factors as

well as policy risk. To isolate the effects of the risk prices onat andbt, we consider risk-neutral

parametersµQ∗ andΦQ∗ where all parameters corresponding to the rows and columns ofat and

bt in µQ∗ andΦQ∗ are set equal to their corresponding values inµ andΦ. Thus, inµQ∗ andΦQ∗

there is no risk forat andbt, but we allow for macro risk.

Panel B of Figure 9 considers a security paying off(1 + bt+1), which is the Fed’s response

to inflation. The first plot graphs the price of this security under the benchmark with full risk

and under the specification whereat andbt risk is zero (which we compute usingµQ∗ andΦQ∗).

We refer to this restricted risk-neutral price as the “Risk-Neutralat andbt Price,” which denotes

that only the risk with respect toat andbt has been turned off. The first plot of Panel B graphs

the full-risk price and the risk-neutralat andbt price. The difference between the two is graphed

in the second plot. We plot values of the policy coefficient(b̄ + bt) on thex-axis.

Panel B shows that the actual price with full risk is always above the risk-neutralat and

bt price. Normally if a factor carries a risk premium, actual prices are lower than risk-neutral

prices. The fact that the risk-neutralat andbt price lies below the actual price means that activist

monetary policy is valued by investors, who assign a risk discount to policy shift risk. The

perceived value by investors to monetary policy shifts increases as monetary policy becomes

increasing aggressive in combating inflation shocks.

The final graph in Panel B shows the gross returns of holding the security paying off(1 +

bt+1) under the two scenarios for values of(b̄ + bt) greater than 1.50. In the full risk case the

gross return is negative, so investors are willing to pay to be exposed to Fed policy changes.

When there is noat andbt risk and only macro risk is priced, the expected gross return of the

security paying off(1 + bt+1) is approximately 1.02.
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3.5.3 Policy Risk and the Yield Curve

Evaluating the effect of policy risk on the yield curve is more difficult because the posterior

distribution of the policy latent factors, and hence the posterior distribution of implied yields,

depend on the risk parameters. Computing yields requires both the best estimates of the latent

factors as well as the prices of risk. In comparison, the previous exercises of Figure 9 required

no estimates of the latent factors. Because of this, we compute the yield curve through the

sample under several different risk scenarios and report the results in Table 3.

The first row of Table 3 reports the means and standard deviations of short rates and term

spreads in the data (Case 0). The benchmark model estimates reported in Case 1 are almost

identical. In Case 2, we compute yields under a model where all risk toat andbt is turned off

but we use the same sample path of the best estimates ofat andbt as the benchmark case. In

Case 2, we set the price of risk forat andbt to zero by specifying that all parameters inµQ

andΦQ involving at or bt are set to their real-measure counterparts inµ andΦ. The estimates

of the short rates under Case 2 are identical to Case 1 by construction, but the different risk

prices affect the term spreads. With noat or bt risk, implied term spreads through the sample

are 0.0099, slightly higher than the sample mean of 0.0091. The term spreads in Case 2 are

significantly more volatile at 0.0197, compared to 0.0101 in data. Thus, if monetary policy

were not priced by agents, term spreads would have been almost twice as volatile.

Case 2 suffers from the shortcoming that the best estimates forat andbt are jointly deter-

mined with the specification of the prices of risk. In Case 3, we redraw the posterior distribu-

tions ofat andbt so that they are consistently estimated with the no-riskat andbt specification in

Case 2. Under Case 3 means and standard deviations of short rates are also near-identical to the

data. But, the mean term spread is 0.0139, which is almost 50 basis points higher than the data.

Term spreads are also more volatile, at 0.0131, than the data estimate of 0.0101. This implies

that if agents did not value monetary policy, term spreads would have been higher and more

volatile than what actually occurred. Stated differently, part of the reason why term spreads are

low in our sample is due to the risk discount assigned by the market to monetary policy shifts.

Finally, Case 4 in the last row of Table 3 reports a case where there were no monetary policy

shifts,at = bt = 0, and short rates are set according to the Taylor rulert = āgt + b̄πt. The mean

and standard deviation of the short rate are close to the data estimates, which has been noted

by many authors investigating the fitted short rates implied by Taylor rules (see, for example,

Taylor, 1993). These studies usually have not focused on the implied fit at the long end of the

yield curve. With no discretionary policy shifts, term spreads would have been approximately
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10 basis points higher than the data, but almost twice as volatile (0.0232 compared to 0.0101 in

the data). Thus, activist monetary policy has contributed to a less volatile long-term yield.

4 Conclusion

Existing results suggest that monetary policy has changed in substantial ways over the last 50

years. While the implications of these changes for the business cycles dynamics has received

considerable attention, little is known about the implications of these changes for financial

markets, in particular for the term structure of interest rates.

In this paper we propose a quadratic term structure model where the coefficients of the short

rate equation – which describe the behavior of monetary policy – can change over time. By

exploiting term structure information, we are able to obtain sharper estimates of the changes

in monetary policy compared to previous studies that do not use term structure information.

Contrary to what is typically assumed, our empirical model does not impose that the shifts

in monetary policy are exogenous. We find that the endogenous response of inflation to past

changes in inflation loadings is an important component of how bond prices reflect monetary

policy risk under the risk-neutral measure. An appealing feature is that our framework provides

an estimate of the price of risk that financial market participants attribute to policy shifts.

Our empirical results show that monetary policy has changed in important ways and the

shifts we estimate line up largely with narrative accounts of monetary policy and with some

existing empirical estimates. We find that monetary policy shifts in inflation loadings show that

monetary policy is more aggressive and flexible, on average, than estimations without long-term

bonds employing unit-root changing coefficient models. In contrast, we find that policy shifts in

output gap loadings exhibit little time series variation, so almost all changes in monetary policy

stances have been done with respect to inflation.

A central contribution of the paper is to show that monetary policy shifts are priced by

investors. We find that market participants assign an important value to activist monetary policy

and agents are generally willing to pay to become exposed to monetary policy changes. If

investors assigned no value to monetary policy shifts, then the slope of the yield curve would

have been, on average, up to 50 basis points higher than the data. The term spread would have

also been significantly more volatile without activist monetary policy that is priced by investors.

This valuable contribution of monetary policy discretion is due to the risk discount assigned by

investors for monetary policy shifts.
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Appendix

A Bond Pricing
The price of a one-period zero-coupon bond is given by:

P̂ 1
t = exp(−r̂t) = exp(−δ0 − δ>1 Xt −X>

t ΩXt)

= exp(A1 + B>
1 Xt + X>

t C1Xt), (A-1)

whereA1 = −δ0, B1 = −δ1 = −[ā b̄ 0 0]>, andC1 = −Ω, with Ω given in equation (6).
Under measureQ, the price of an-period zero-coupon bond,̂Pn

t , is:

P̂n
t = EQt (exp(−r̂t)Pn−1

t+1 )

= EQt (exp
(−r̂t + An−1 + B>

n−1Xt+1 + X>
t+1Cn−1Xt+1)

)

= exp
(−r̂t + An−1 + B>

n−1(µ
Q + ΦQXt) + (µQ + ΦQXt)>Cn−1(µQ + ΦQXt)

)
(A-2)

× EQt (exp
(
(B>

n−1Σ + 2(µQ + ΦQXt)>Cn−1Σ)εt+1 + ε>t+1Σ
>Cn−1Σεt+1)

)
.

To take the expectation, note that the expectation of the exponential of a quadratic Gaussian variable is given by:

E[exp(A>ε + ε>Γε)] = exp
(
−1

2
ln det (I − 2ΨΓ) +

1
2
A>(Ψ−1 − 2Γ)−1A

)

for ε ∼ N(0, Ψ). This can be derived by general properties of Gaussian quadratic forms (see Mathai and Provost,
1992; Searle, 1997).

After taking the expectation and equating the terms with

P̂n
t = exp(An + B>

n Xt + X>
t CnXt),

the coefficientsAn, Bn, andCn are given by the recursions:

An = −δ0 + An−1 + B>
n−1µ

Q + µQ>Cn−1µ
Q − 1

2
ln det(I − 2Σ>Cn−1Σ)

+
1
2
(Σ>Bn−1 + 2Σ>Cn−1µ

Q)>(I − 2Σ>Cn−1Σ)−1(Σ>Bn−1 + 2Σ>Cn−1µ
Q)

B>
n = −δ>1 + B>

n−1Φ
Q + 2µQ>Cn−1ΦQ + 2(Σ>Bn−1 + 2Σ>Cn−1µ

Q)>(I − 2Σ>Cn−1Σ)−1Σ>Cn−1ΦQ

Cn = −Ω + ΦQ>Cn−1ΦQ + 2(Σ>Cn−1ΦQ)>(I − 2Σ>Cn−1Σ)−1(Σ>Cn−1ΦQ) (A-3)

If the model were specified in continuous time, then the recursions in equation (A-3) are versions of the ordinary
differential equations derived by Ahn, Dittmar and Gallant (2002) on the bond pricing coefficients.

B Estimating the Model
The model is estimated using a Bayesian Gibbs sampling algorithm. While there are several examples of these
types of estimations for affine models (see, among others, Lamoureux and Witte, 2002; Johannes and Polson,
2005; Ang, Dong and Piazzesi, 2006; Dong, 2006), these cannot be directly employed to estimate the quadratic
model because in an affine setting, drawing the latent factors requires a Kalman filter. The Kalman filter assumes
that yields are linear functions of state variables, whereas they are non-linear functions in the quadratic model. In
this appendix, we develop an acceptance-rejection algorithm to draw the latent factors without approximation.

For ease of notation, we group the macro variables asMt = [gt πt]> and the latent factors asLt = [at bt]>

and rewrite the dynamics ofXt =
[
M>

t L>t
]>

in equation (2) as:
(

Mt

Lt

)
=

(
µ1

µ2

)
+

(
Φ11 Φ12

Φ21 Φ22

)(
Mt−1

Lt−1

)
+

(
Σ11 0
Σ21 Σ22

)(
εM,t

εL,t

)
, (B-1)
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whereεt = (ε>M,t ε>L,t)
> ∼ IID N(0, I) andΣ11 andΣ22 are lower triangular.

The parameters of the model areΘ = (µ, Φ, Σ, δ0, δ1, Ω, µQ, ΦQ, σu), whereµQ andΦQ are parameters
governing the state variable process under the risk neutral probability measure, andσu denotes the vector of
observation error volatilities{σn}. We drawµQ andΦQ, but invert the prices of riskλ0 andλ1 using the relations:

λ0 = Σ−1(µ− µQ)

λ1 = Σ−1(Φ− ΦQ). (B-2)

The latent factorsLt = {at bt} are generated in each iteration of the Gibbs sampler. Note thatΩ is not a parameter,
but is fixed from equation (6). We also do not drawδ0, but setδ0 in each iteration to match the sample mean of the
short rate.

We now detail the procedure for drawing each of these variables. We denote the factorsX = {Xt} and the
set of yields for all maturities in data asY = {yn

t }. Note that the model-implied yieldŝY = {ŷn
t } differ from the

yields in data,Y , by observation error. By definition,Y = Ŷ + u, whereu = {un
t } is the set of all observation

errors for all yields. This notation also implies that the short rate in data,rt, is the same asy1
t .

B.1 Drawing the Latent Factors
We use a single-move algorithm based on Jacquier, Polson and Rossi (1994, 2004) adapted to our model. We
derive a draw from the distributionP (Lt|Y,L−t,M), whereLt is thet-th observation of the latent factors,L−t

denotes all the latent factors except thet-th observation, andY andM are the complete time-series of yields and
macro variables, respectively. We use the notationYt andMt to denote thet-th observation of the set of yields and
macro variables. We draw the latent factorsLt conditional on the macro factors, yields, and other parameters.

From the Markov structure of the model, we can write:

P (Lt|L−t, Y, M, Θ) ∝ P (Lt|Lt−1,M, Θ)P (Yt|Lt,M, Θ)P (Lt+1|Lt,M, Θ). (B-3)

To keep the notation to a minimum, we write this as:

P (Lt|L−t) ∝ P (Lt|Lt−1)P (Yt|Lt)P (Lt+1|Lt).

SinceM andΘ are treated as known, we can write the dynamics forLt in equation (B-1) as:

Lt = µ2 + Σ12εM,t + Φ21Mt−1 + Φ22Lt−1 + Σ22εL,t

= µL,t + ΦLLt−1 + ΣLεL,t, (B-4)

whereµL,t = µ2 + Σ12εM,t, ΦL = Φ22, andΣL = Σ22. SinceM is observable and we holdΘ as fixed,µL,t is
known at timet.

Each conditional distribution of the RHS of equation (B-3) is known. From equation (B-4) we have

P (Lt|Lt−1) ∝ exp
(
−1

2
(Lt − µL − ΦLLt−1)>(ΣLΣ>L )−1(Lt − µL − ΦLLt−1)

)
. (B-5)

Similarly, from the VAR in equation (B-4) we can write:

P (Lt+1|Lt) ∝ exp
(
−1

2
(Lt+1 − µL − ΦLLt)>(ΣLΣ>L )−1(Lt+1 − µL − ΦLLt)

)
. (B-6)

Finally, the likelihood of bond yields,P (Yt|Lt), is given by:

P (Yt|Lt) ∝ exp

(
−1

2

∑
n

[
(yn

t − (an + b>n Xt + X>
t cnXt))2

σ2
n

])
, (B-7)

whereXt = [L>t M>
t ]>] and the summation is taken over yield maturitiesn, which includes the short rate with

n = 1. In the likelihood, the model-implied yield,̂yn
t = an + b>n Xt + X>

t cnXt, is given in equation (12), andσ2
n

is the observation error variance of the yield of maturityn.
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We can combine equations (B-5)-(B-7) and complete the square to obtain:

P (Lt|L−t) ∝ P (Yt|Lt) exp
(
− 1

2

[
L>t (Φ′>L (ΣLΣ>L )−1ΦL + (ΣLΣ>L )−1)Lt (B-8)

−2(L>t+1(ΣLΣ>L )−1ΦL + L>t−1ΦL(ΣLΣ>L )−1 − µL(ΣLΣ>L )−1ΦL + µL(ΣLΣ>L )−1)Lt

])

∝ P (Yt|Lt) exp
(
−1

2
(Lt − µ∗t )

>(Σ∗t )
−1(Lt − µ∗t )

)

where

Σ∗t =
(
Φ′>L (ΣLΣ>L )−1ΦL + (ΣLΣ>L )−1

)−1

µ∗t = Σ∗t (L
>
t+1(ΣLΣ>L )−1ΦL + L>t−1ΦL(ΣLΣ>L )−1 − µL(ΣLΣ>L )−1ΦL + µL(ΣLΣ>L )−1)>.

Since this distribution is not recognizable, we use a Metropolis draw. We draw a proposal from the distribution
N(µ∗t ,Σ

∗
t ) and then the acceptance probability is based on the likelihood ofP (Yt|Lt). Since we specify the mean

of L to be zero for identification, we set each generated draw ofL to have a mean of zero.
To generate initial values for the very first draw, we use the Carter and Kohn (1994) forward-backward al-

gorithm to first run a Kalman filter forward and then sampleLt backwards. The Kalman filter is constructed
linearizing the yields atLt|t−1. Note that this Kalman filter is only used to produce initial values for the draw; the
steady-state distribution ofLt relies on the single-step accept/reject algorithm given above.

B.2 Drawing µ and Φ
We follow Johannes and Polson (2005) and explicitly differentiate between{µ, Φ} under the real measure and
{µQ,ΦQ} under the risk-neutral measure. AsXt follows a VAR in equation (2), we follow standard Gibbs sam-
pling and use conjugate normal priors and posteriors for the draw ofµ andΦ. We note that the posterior ofµ and
Φ conditional onX, Y and the other parameters is:

P (µ, Φ|Θ−, X, Y ) ∝ P (Y |Θ, X)P (X|µ, Φ, Σ)P (µ, Φ) (B-9)

∝ P (Y |Σ, δ0, δ1, µ
Q, ΦQ, ση, X)P (X|µ,Φ,Σ)P (µ, Φ)

∝ P (X|µ,Φ,Σ)P (µ, Φ), (B-10)

whereΘ− denotes the set of all parameters exceptµ andΦ, andP (X|µ, Φ,Σ) is the likelihood function of the
VAR, which is normally distributed from the assumption of normality for the errors in the VAR. The validity of
going from the first line to the second line is ensured by the bond recursion in equation (A-3): givenµQ and
ΦQ, the bond price is independent ofµ andΦ. We specify the priorP (µ, Φ) to beN(0, 1000), which effectively
represents an uninformative prior. We drawµ andΦ separately for each equation in the VAR system (2).

B.3 Drawing ΣΣ>

To drawΣΣ>, we note that the posterior ofΣΣ> conditional onX, Y and the other parameters is:

P (ΣΣ>|Θ−, X, Y ) ∝ P (Y |Θ, X)P (X|µ,Φ,Σ)P (ΣΣ>), (B-11)

whereΘ− denotes the set of all parameters exceptΣ. This posterior suggests an Independence Metropolis draw.
We drawΣΣ> from the proposal density

q(ΣΣ>) = P (X | µ,Φ,Σ)P (ΣΣ>),

which is an Inverse Wishart (IW ) distribution if we specify the priorP (ΣΣ>) to beIW , so thatq(ΣΣ>) is an
IW natural conjugate. The proposal draw(ΣΣ>)m+1 for the(m + 1)th draw is then accepted with probabilityα,
where

α = min
{

P ((ΣΣ>)m+1 | Θ−, X, Y )
P ((ΣΣ>)m | Θ−, X, Y )

q((ΣΣ>)m)
q((ΣΣ>)m+1)

, 1
}

= min
{

P (Y | (ΣΣ>)m+1, Θ−, X)
P (Y | (ΣΣ>)m, Θ−, X)

, 1
}

, (B-12)
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whereP (Y |µ, Φ, Θ−, X) is the likelihood function of all yields, including the short rate, which is normally dis-
tributed from the assumption of normality for the observation errors. From equation (B-12),α is just the ratio of
the likelihoods of the new draw ofΣΣ> relative to the old draw.

B.4 Drawing ā and b̄

We drawā and b̄ jointly with a Random Walk Metropolis algorithm. We assume a flat prior. The accept/reject
probability for the draws of̄a andb̄ is the ratio of the likelihood of bond yields based on candidate and last draw
of ā andb̄:

α = min
{

P ((ā, b̄)m+1 | Θ−, X, Y )
P ((ā, b̄)m | Θ−, X, Y )

q((ā, b̄)m)
q((ā, b̄)m+1)

, 1
}

= min
{

P (Y | (ā, b̄)m+1, Θ−, X)
P (Y | (ā, b̄)m, Θ−, X)

, 1
}

. (B-13)

B.5 Drawing µQ and ΦQ

We drawµQ andΦQ with a Random Walk Metropolis algorithm assuming a flat prior. We draw each parameter
separately inµQ, and each row inΦQ. The accept/reject probability for the draws ofµQ andΦQ is the ratio of the
likelihood of bond yields based on candidate and last draw ofµQ andΦQ:

α = min
{

P ((µQ, ΦQ)m+1 | Θ−, X, Y )
P ((µQ, ΦQ)m | Θ−, X, Y )

q((µQ, ΦQ)m)
q((µQ, ΦQ)m+1)

, 1
}

= min
{

P (Y | (µQ,ΦQ)m+1, Θ−, X)
P (Y | (µQ, ΦQ)m, Θ−, X)

, 1
}

, (B-14)

In each iteration, we invertλ0 andλ1 and report the estimates of the prices of risk instead ofµQ andΦQ. We
discard non-stationary draws ofΦQ.

B.6 Drawing σu

Drawing the variance of the observation errors,σ2
u, is straightforward, because we can view the observation errors

η as regression residuals from equation (13). We draw the observation variance(σn
η )2 separately from each yield.

We specify a conjugate priorIG(0, 0.00001), so that the posterior distribution ofσ2
η is a natural conjugate Inverse

Gamma distribution. The prior information roughly translates into a 30bp bid-ask spread in Treasury securities,
which is consistent with studies on the liquidity of spot Treasury market yields (see, for example, Fleming, 2000).

C Impulse Responses
Since the yields are non-linear, we follow Gallant, Rossi and Tauchen (1993) and Potter (2000), among others,
and compute the impulse response functions using simulation. We start with the sample series of data (gt andπt)
and the posterior means of the latent factors (at andbt) at each observationt. We term these pointsX∗

t . From the
VAR in equation (2), we construct an orthogonalized error termνt by taking the Cholesky ofΣΣ>. To construct
the impulse response for thejth variable ofXt, we first draw a shockvt that represents a shock only to variable
j from the error term distributionνt. From the pointsX∗

t , we construct a new series where each observation has
been shocked byvt, which we denote asXv

t = X∗
t + vt.

The impulse response functions are taken as the difference between the averaged response of the yields to the
evolution ofX∗

t without shocks to the evolution of the shockedXv
t series:

E(yn
t+k|Xv

t )− E(yn
t+k|X∗

t ).

Using the VAR in equation (2), we simulate out the value ofXv
t+k from Xv

t and the value ofX∗
t+k from X∗

t . This
is done at each observationt. Then, we construct the yields,yn

t+k, from equation (12) corresponding to the state
vectorsXv

t+k andX∗
t+k. We take values ofk = 1 . . . 60 quarters.
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The impulse responses are computed at each observation by taking the average of the sample paths ofyn
t+k

computed usingXv
t+k minus the average of the sample paths ofyn

t+k computed usingX∗
t+k. We report the average

of the impulse responses across all observationst. This procedure results in impulse responses that are identical to
impulse responses computed for traditional VAR systems for large numbers of observations.
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Table 1: Summary Statistics

Panel A: Moments of Macro Factors

Means (%) Standard Deviations (%) Autocorrelations

Data Model Data Model Data Model

g 0.000 -0.018 0.589 0.626 0.930 0.929
(0.082) (0.134) (0.057) (0.167) (0.034) (0.024)

π 0.856 0.830 0.554 0.592 0.982 0.983
(0.082) (0.382) (0.066) (0.221) (0.026) (0.007)

Panel B: Moments of Yields

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

Means (%)
Data 1.275 1.363 1.411 1.452 1.482 1.501

(0.103) (0.102) (0.101) (0.098) (0.098) (0.103)
Model 1.275 1.351 1.413 1.453 1.481 1.502

– (0.005) (0.003) (0.002) (0.002) (0.002)

Standard Deviations (%)
Data 0.710 0.701 0.691 0.674 0.667 0.657

(0.087) (0.077) (0.076) (0.074) (0.074) (0.075)
Model 0.716 0.697 0.686 0.677 0.667 0.654

(0.011) (0.005) (0.002) (0.001) (0.001) (0.002)

Autocorrelations
Data 0.936 0.944 0.952 0.958 0.961 0.964

(0.030) (0.029) (0.027) (0.026) (0.026) (0.024)
Model 0.942 0.953 0.961 0.965 0.966 0.967

(0.004) (0.003) (0.002) (0.001) (0.000) (0.001)

The table lists various moments of the factors in data and implied by the model. All the factors and yields
are expressed at a quarterly frequency in percentage terms. All standard errors are reported in parentheses.
Panel A lists moments of the output gap and inflation. For the model, we construct the posterior distribution
of unconditional moments by computing the unconditional moments implied from the parameters in each
iteration of the Gibbs sampler. Panel B reports data and model unconditional moments ofn-quarter maturity
yields. We compute the posterior distribution of the model-implied yields using the generated latent factors
in each iteration of the Gibbs sampler. In Panels A and B, the data standard errors are computed using GMM
with robust standard errors. The sample period is June 1952 to December 2006.
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Table 2: Parameter Estimates

Short Rate Parameters

δ0 ā b̄

0.001 0.223 1.442
(0.001) (0.045) (0.100)

VAR Parameters

Φ Volatility ×1000/Correlation Matrix

µ× 1000 g π a b g π a b

g 0.805 0.913 -0.098 -0.008 0 0.005 0.009 -0.065 0.112
(0.344) (0.028) (0.058) (0.028) – (0.001) (0.076) (0.075) (0.067)

π 0.107 0.064 0.988 0 -0.000 0.009 0.001 -0.227 -0.186
(0.089) (0.011) (0.007) – (0.000) (0.076) (0.000) (0.072) (0.095)

a -0.035 0.004 0 0.957 0 -0.065 -0.227 0.005 -0.117
(0.157) (0.034) – (0.022) – (0.075) (0.072) (0.002) (0.245)

b -7.137 0 1.183 0 0.942 0.112 -0.186 -0.117 38.65
(25.60) – (2.518) – (0.024) (0.067) (0.095) (0.245) (13.31)

Risk Premia Parameters

λ1 ΦQ

λ0 g π a b g π a b

g 2.330 130.7 36.82 277.4 0 0.637 -0.175 -0.594 0
(0.505) (23.16) (26.50) (40.17) – (0.036) (0.042) (0.065) –

π -2.941 22.24 164.1 -3.672 1.055 0.042 0.838 0 -0.001
(0.422) (15.03) (11.50) (21.08) (0.119) (0.001) (0.002) – (0.000)

a -0.394 18.46 41.03 12.35 0.250 -0.007 0 0.970 0
(0.325) (19.82) (13.78) (24.62) (0.087) (0.005) – (0.010) –

b -1.156 -9.947 43.76 -34.97 0.080 0 -0.099 0 0.974
(0.553) (11.00) (27.12) (20.77) (0.172) – (0.065) – (0.010)

Observation Error Standard Deviation

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

σn
u 0.132 0.054 0.031 0.020 0.020 0.026

(0.010) (0.010) (0.005) (0.002) (0.001) (0.002)

The table lists parameter values for the model in equations (2)-(8) and observation error standard deviations
in equation (13) for yields of maturityn quarters. Any parameters set to zero without standard errors are not
estimated. We also report the risk-neutral companion formΦQ given by equation (10). We estimate the model
by Gibbs sampling using 50,000 simulations after a burn-in sample of 10,000. We report the posterior mean
and posterior standard deviation (in parentheses) of each parameter. In the Volatility/Correlation matrix, we
report standard deviations of each factor along the diagonal multiplied by 1000 and correlations between
the factors on the off-diagonal elements. The sample period is June 1952 to December 2006 and the data
frequency is quarterly.
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Table 3: Yield Curve Under Different Risk Assumptions

Short Ratesrt Spreadsy20
t − rt

Mean Stdev Mean Stdev

0) Data 0.0510 0.0286 0.0091 0.0101

1) Full Risk Model 0.0510 0.0286 0.0091 0.0107

2) Noat, bt Risk and 0.0510 0.0286 0.0099 0.0197
Monetary Policy is the Same as (1)

3) Noat, bt Risk 0.0510 0.0286 0.0139 0.0131

4) Full Risk Model withat = bt = 0 0.0547 0.0311 0.0102 0.0232

The table reports the annualized mean and standard deviation of short ratesrt and term spreadsy20
t −rt in the

data (Case 0) and under different risk cases. Case 1 corresponds to the benchmark model and evaluates the
short rates and spreads through the sample using the best-estimate posterior means ofat andbt. In Case 2,
all parameters in the rows and columns ofµQ andΦQ corresponding toat andbt are set to their real-measure
estimatesµ andΦ and the best estimates of the policy factorsat andbt are the same as Case 1. Case 3 has
the same parameter structure as Case 2 exceptat andbt are redrawn optimally and the short rates and spreads
are evaluated at these new optimal best estimates. In Case 4, we evaluate the short rates and spreads with
at = bt = 0 using the parameter values in Case 1. The sample period is June 1952 to December 2006 and
the data frequency is quarterly.
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Figure 1: Output Gap, Inflation, and the Short Rate
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We plot the output gap, inflation, and the short rate. The output gap is defined as the proportional difference
between actual and potential real GDP. Inflation is the year-on-year GDP deflator. The short rate is the 3-
month T-bill yield. We overlay the NBER recession periods in shaded bars. The sample period is from June
1952 to December 2006 and the data frequency is quarterly. All data is annualized.
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Figure 2: Time-Varying Policy Coefficients
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We plot the posterior mean of the time-varying coefficientā + at andb̄ + bt in the thick lines together with
two posterior standard deviation bands in thin lines. We overlay the NBER recession periods in shaded bars.
The sample period is from June 1952 to December 2006 and the data frequency is quarterly.
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Figure 3: Counter-Factual Experiment
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The figure plots the short rate (top panel) and the 5-year term spread (bottom panel), which is the 5-year
yield minus the 3-month T-bill, from the results of a counter-factual experiment. We hold the Fed weight on
inflation constant at its average level over 2000 and allow all other factors to take their sample values. We
assume the posterior mean values forat. The figure plots the effect on the yield curve post-2001 in the dashed
lines along with the actual paths of the yield curve in the solid lines. Units on they-axis are annualized.
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Figure 4: Output Gap Coefficients from Various Models

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0.18

0.2

0.22

0.24

Full Model

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0.18

0.2

0.22

0.24

Model with No Term Structure

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
−1

−0.5

0

0.5

1
Unit Root Model

The figure plots the posterior mean of the time-varying output gap policy coefficientā + at implied by the
full model (top panel), the model estimated without any yield curve information (middle panel), and a model
where the policy coefficients follow random walks (bottom panel). In the middle panel, we use the full model
holding the VAR coefficients constant at their posterior means in Table 2. In the bottom panel, we estimate
the model whereat andbt follow random walks following equation (17). Two posterior standard deviation
bands are also drawn in thin lines. We overlay the NBER recession periods in shaded bars. The sample period
is from June 1952 to December 2006 and the data frequency is quarterly.
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Figure 5: Inflation Coefficients from Various Models
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The figure plots the posterior mean of the time-varying output gap policy coefficientb̄ + bt implied by the
full model (top panel), the model estimated without any yield curve information (middle panel), and a model
where the policy coefficients follow random walks (bottom panel). In the middle panel, we use the full model
holding the VAR coefficients constant at their posterior means in Table 2. In the bottom panel, we estimate
the model whereat andbt follow random walks following equation (17). Two posterior standard deviation
bands are also drawn in thin lines. We overlay the NBER recession periods in shaded bars. The sample period
is from June 1952 to December 2006 and the data frequency is quarterly.
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Figure 6: Impulse Responses of Factors
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We plot selected impulse responses of the factors to each other. In the top two rows, we plot the impulse
response ofgt and πt to a 1% shock togt and the impulse response ofgt and πt to a 1% shock toπt,
respectively. In the bottom two rows we graph the effect of shocks to macro factors onbt and the effect of
shocks tobt to the macro factors. In the bottom two rows, the responses in the real measure are denoted by
the red solid line and we overlay the responses under the risk-neutral measure in dashed green lines. In the
third row, we consider the effect of a 1% shock togt andπt on bt. In the last row, we shockbt by 1.00 and
trace the effects ongt andπt. Thex-axis units are quarters.
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Figure 7: Components of the Short Rate
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The top panel plots the short rate together with the fitted components(ā + at)gt + (b̄ + bt)πt, where the
policy factorsat andbt are evaluated at their posterior means at each observation from the Gibbs sampler.
All variables are in per quarter units. The bottom panel plots each short rate component separately. The
sample period is from June 1952 to December 2006 and the data frequency is quarterly.
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Figure 8: Yield Curve Impulse Responses to Factor Shocks
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We plot the impulse responses of the short rate,rt, the 20-quarter yield,y20
t , and the yield spread,y20

t − rt,
to a 1% shock in the output gap and inflation (g andπ respectively) in the first two columns and to a 1.00
shock tobt in the last column. For the impulse responses toy20

t andy20
t − r, we also overlay the risk-neutral

impulse responses in dashed lines. We compute impulse responses following the method in Appendix C.
Units on thex-axis are in quarters and the responses of yields on they-axis are annualized.
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Figure 9: The Price of Risk of Monetary Policy Shifts
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Panel B: Price of a Security Paying(1 + bt+1) at time t
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Note to Figure 9
Panel A plots the price of a unit shock toat andbt as a function of the monetary policy coefficients(ā + at)
and(b̄ + bt), respectively given in equation (19). For the top figure we holdgt, πt, andbt at their population
means and alter onlyat. Similarly, for the bottom figure, we holdgt, πt, andat at their population means
and alter onlybt. We denote with vertical lines the steady-state value ofā = 0.223 andb̄ = 1.442.
In Panel B, we consider a security paying off(1 + bt+1), which is the Fed’s response to inflation. The first
plot graphs the price of this security under the full model, where all risk is priced, and under the specification
whereat andbt risk is zero. We refer to this as the “Risk-Neutralat andbt Price,” which is produced using
risk-neutral parametersµQ∗ andΦQ∗, where all rows and columns corresponding toat andbt are set equal
to their real measure counterparts inµ andΦ and the other parameters are set equal to their counterparts
in µQ and ΦQ. We graph the difference between the full-risk price and the risk-neutralat and bt price
in the second plot. In the last graph, we plot the gross expected return of the security,Et(1 + bt+1)/Pt,
wherePt is the full risk pricePt = e−rt(1 + e>4 (µQ + ΦQXt)) or the risk-neutralat andbt price Pt =
e−rt(1 + e>4 (µQ∗ + ΦQ∗Xt)) with e4 = (0 0 0 1)>. On each of the three figures in Panel B, we plot(b̄ + bt)
on thex-axis. The vertical lines denote the steady-state value ofb̄ = 1.442.
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