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Abstract

This paper demonstrates that an asset pricing model with least-squares
learning can lead to bubbles and crashes as endogenous responses to the fun-
damentals driving asset prices. When agents are risk-averse they generate fore-
casts of the conditional variance of a stock’s return. Recursive updating of
the conditional variance and expected return implies two mechanisms through
which learning impacts stock prices: occasional shocks may lead agents to lower
their risk estimate and increase their expected return, thereby triggering a bub-
ble; along a bubble path recursive estimates of risk will increase and crash the
bubble.
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Thus, this vast increase in the market value of asset claims is in part the

indirect result of investors accepting lower compensation for risk. Such an in-

crease in market value is too often viewed by market participants as structural

and permanent . . . Any onset of increased investor caution elevates risk premi-

ums and, as a consequence, lowers asset values and promotes the liquidation of

the debt that supported higher asset prices. This is the reason that history has

not dealt kindly with the aftermath of protracted periods of low risk premiums.

Alan Greenspan (2005).
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1 Introduction

In his classic study of financial crises, Kindleberger (1977) provides an accounting of
historical episodes of manias and panics. Kindleberger’s conjecture for why bubbles
– and, their subsequent crashes – arise places primary emphasis on abrupt and unan-
ticipated changes in expectations, in part a response to a sudden economic event.
This explanation is in line with the view of many financial market observers that
during the mid to late 1990’s U.S. stock prices were excessively high – a “bubble”.
The existence and detection of bubbles in asset prices has long been of interest to
economists and, recently, monetary policymakers (Bernanke (2002)). Early empirical
evidence in favor of stock market bubbles were provided by Shiller (1981) and LeRoy
and Porter (1981).

Despite popular agreement that asset prices are susceptible to large run-ups in
prices above the value warranted by observed fundamentals, in the economics liter-
ature there is no such consensus. Blanchard and Watson (1982) propose a theory
of rational bubbles in which agents’ (rational) expectations are influenced in part
by extrinsic random variables whose properties accord to historical bubble episodes.
West (1987), Froot and Obstfeld (1991) and Evans (1991) construct rational bub-
bles that periodically explode and collapse.1 Other recent approaches include Hong,
Scheinkman, and Xiong (2005,2006), Santos and Woodford (1997), and Allen, Morris,
and Postelwaite (1993). A controversial issue for rational bubbles is that the trigger
for the bubble collapse is modeled by an exogenous sunspot process. Moreover, Evans
and Honkapohja (2001) show that rational bubbles would not be attainable if rational
expectations were replaced with private-sector least-squares learning.

In this paper, we reconsider the issue of recurrent bubbles and crashes and demon-
strate that a model, based on econometric learning, can generate bubbles and crashes
as endogenous responses to fundamental shocks. We follow Evans and Honkapohja
(2001) and replace rational expectations (RE) in a simple linear asset pricing model
with a perceived law of motion that has a reduced form consistent with RE and the
parameters of which are updated using recursive least squares. We extend the con-
ventional model to include a motive for agents to estimate risk – measured as the
conditional variance of net stock returns. We show that the dynamic properties of
the economy are altered in a surprising and interesting way once agents must account
for, and adaptively learn, the riskiness of stocks.

Figure 1 previews our results by plotting stock prices generated from our sim-
ple asset pricing model in which rational expectations are replaced by a (constant
gain) econometric forecasting rule. In a fundamentals based rational expectations
equilibrium the mean stock price is parameterized to be about 8.7, and along an

1Diba and Grossman (1988) show that, under rational expectations, bubbles can never restart
if they collapse to zero. Thus periodically collapsing rational bubbles are constructed so that they
always remain positive.

2



equilibrium path price is simply a constant plus white noise. With constant-gain
learning, however, the dynamics may undergo an abrupt change leading to recurrent
bubbles and crashes. The purpose of this paper is to demonstrate that a simple asset
pricing model, under adaptive learning, generates the recurrent dynamics illustrated
in Figure 1.

Figure 1: Simulated stock price dynamics.
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The analysis in this paper identifies two channels through which risk and return
estimates affect stock prices. First, occasional shocks to fundamentals may lead agents
to suddenly lower their estimate of risk and increase their expected return; combined
these two forces cause stock prices to quickly increase above their fundamental values.
Second, real-time estimates of risk are also useful in explaining how bubbles crash
suddenly. As stock price follows a bubble path, estimates of risk will increase until
the perceived riskiness of the asset is too high, at which point demand collapses and
price crashes. The primary result of this paper is to demonstrate that a simple model
that incorporates adaptive learning can generate recurrent bubbles and crashes.

The onset of bubbles and crashes, as illustrated in Figure 1, is reminiscent of the
escape dynamics identified by Sargent (1999), Cho, Williams, and Sargent (2002), and
Williams (2004). We assume agents form expectations of stock prices via a simple
autoregression – whose form nests the fundamentals and bubbles based REE – with
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parameters updated adaptively via discounted least squares. Following Sargent, we
show that adaptive beliefs introduce serial correlation that would not otherwise exist,
and that for some sequences of shocks, agents’ forecasting rule begins to track this
serial correlation via a random walk forecasting model. Importantly, this “escape”
from a serially uncorrelated process to a serially correlated time-series, well approxi-
mated by a random walk, arises endogenously. It is this sudden shift in beliefs that
leads to recurrent bubbles and crashes.

This paper is closely related to other recent approaches that employ adaptive
learning as a mechanism for generating sudden changes in an economy’s dynami-
cal behavior. Most relevant are papers by Marcet and Nicolini (2003) and Sargent,
Williams, and Zha (2006b) who show that a model with constant gain, or perpet-
ual, learning can be useful in explaining recurrent hyperinflations. In these models a
hyperinflation is similar to a bubble in the sense that hyperinflationary paths are un-
stable under least-squares learning. The key to our results is that agents also estimate
the riskiness of the asset by updating in real-time their forecast of the conditional
variance of stock returns.

We believe that recurrent bubbles and crashes are a feature of the data. Figure 2
plots the monthly S&P 500 price index from 1973-2006. In order to map them into
our analytical framework, the data (in logs) have been detrended using the Hodrick-
Prescott filter.2 De-trended log of monthly stock prices are marked by repeated
large run-ups above trend and sudden crashes. The goal of this paper is to derive a
model where such recurrent bubbles and crashes, i.e. changes in price not explained
by fundamentals, arise as an endogenous response to the fundamental shocks of the
economy.

Although the model presented here is too simple to be taken directly to data, we
argue that it has features consistent with empirical regularities. It is well-known that
in U.S. stock data explosive rational bubbles are not detected using unit root and
cointegration tests. However, Wu and Xiao (2002) derive an alternative Recursive
Estimate Statistic (RES) test meant to capture the temporary expansionary phases
that occur when stocks are subject to recurrent bubbles and crashes. Thus, one
implication of our model is that we would expect, for data generated by our model
under learning dynamics, that bubbles would not be detectable using unit root tests,
but that they would be detectable using RES tests. We confirm this intuition through
Monte Carlo simulations.

Our channel for deriving bubbles and crashes as responses to fundamentals is
constant-gain least-squares learning. There has been an explosion of research apply-
ing constant-gain learning in monetary models, e.g. Sargent (1999), Cho, Williams,
and Sargent (2002), Sargent, Williams, and Zha (2006a,b), Orphanides and Williams

2This figure should be taken as only illustrative. The non-detrended time-series of prices show
similar periods of rapid increases and crashes.
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Figure 2: Monthly Real S&P 500 price index (in logs) from 1973.1-2006. Data have
been detrended using the Hodrick-Prescott Filter

(2005b), McGough (2006). With constant-gain least-squares, agents adopt a linear
forecasting rule that is consistent in reduced-form with a rational expectations equi-
librium and update their parameter estimates as the economy evolves. Since the
model is self-referential it is not obvious whether the dynamics will settle down. The
articles cited above demonstrate that it is possible for the learning dynamics to gen-
erate persistent escapes from their equilibrium values while eventually returning to
a neighborhood of the equilibrium. Along these escape paths (see Williams (2004))
the qualitative nature of the dynamics may be very different from RE or a decreasing
gain least-squares learning framework.

We consider a simple asset pricing model in which the stock price today depends
on expected cum dividend price next period and negatively on share supply, meant to
proxy asset float as discussed in Cochrane (2005). Share supply and dividends both
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follow exogenous iid processes. We assume agents are risk-averse so that they seek to
forecast both the expected net return tomorrow as well as the conditional variance
of stock returns. It turns out that by requiring agents to also estimate conditional
variance, the global dynamics of the model under adaptive learning are dramatically
different and indeed can lead to recurrent bubbles and crashes.

Our central insight is that an aversion to risk and adaptive learning can lead to
both bubbles and crashes. We show that an aversion to risk is critical for igniting, as
well as popping, a bubble. Agents’ risk-aversion implies that they are concerned with
the variance of stock returns, not just the mean. However, we also assume agents do
not know the precise equilibrium values of these moments and are forced to estimate
them in real-time. Because stock prices are self-referential, risk estimates feed back
onto price, and this in turn affects forecasts of expected returns. A critical insight
of this paper is that under econometric learning, the forecasts of risk and expected
return are jointly determined through the self-referential nature of the asset pricing
model. Agents that engage in constant-gain learning place greater emphasis on recent
forecast errors. Occasional shocks to dividends and share supply can lead traders to
revise their risk estimates. Through the subsequent effect on stock price, agents revise
their estimate of mean stock returns in such a way that it places the economy onto a
bubble-like path. Importantly, risk also plays a central role in the collapse of bubbles.
As the stock price follows a bubble path, the risk-estimate grows to excessively high
levels. As a result, demand for the risky asset eventually collapses, leading to a stock-
price crash. Thus, our simple model of adaptive learning creates a coherent story of
recurrent bubbles and crashes as endogenous responses to fundamental shocks.

There is an extensive literature that models the existence of bubbles in settings
with heterogeneous expectations. Usually these models segment the market partic-
ipants into insiders and outsiders (see Kindleberger (1977) and Hong, Scheinkman,
and Xiong (2005)). Hong, et al. also assume mean-variance preferences and asset
float (increases in publicly tradeable shares) and short-sales constraints. In their
setting, bubbles arise because insiders holding I.P.O. shares before a lock-up have
superior information over outsiders who are overconfident in their beliefs about the
asset’s value. Thus, a bubble arises as outsiders bid up the value of the stock and it
crashes once the lock-up expires since insiders know the asset is overvalued. While
we acknowledge the importance of asymmetric information and heterogeneous agents,
our principal insight is that a simple model of econometric learning with homogenous
agents can generate escape-like behavior that triggers recurrent bubbles and crashes.
In the present setting, asset float are iid shocks that can occasionally precipitate large
swings in agents’ econometric estimates of risk and expected returns.

Our paper is also closely related to a recent paper on learning and asset pricing by
Adam, Marcet, and Nicolini (2006). They adopt a consumption-based asset pricing
model and replace rational expectations with least squares learning. They find that
the model does a better job at matching several quantitative features of stock price
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time series data. Our paper differs from their model in the channel through which
learning generates bubbles and crashes. In Adam et al. the channel is through the
non-linearity in which beliefs enter the law of motion. Our paper emphasizes the
escape-like behavior that can arise in a model where agents estimate risk in addition
to expected return.

This paper proceeds as follows. Section 2 presents the model. Section 3 states
the basic stability results and Section 4 studies global dynamics. Section 5 presents
the numerical results illustrating the recurrent bubbles and crashes. Finally, Section
6 concludes.

2 Model

We employ a simple linear asset pricing model. There is one risky asset that yields
a dividend stream {yt} and trades at the price pt, net of dividends. There is also a
risk-free asset that pays the rate of return R = β−1, where β is the discount factor.
In this environment, the risky asset price is assumed to follow

pt = βÊt (pt+1 + yt+1) − βaσ2zst (1)

where Ê are (possibly) non-rational expectations. For a = 0, (1) can be derived
from the Lucas asset pricing model with risk-neutrality. The Lucas model is an
endowment economy in which consumers choose sequences of consumption, equity and
bond holdings, to maximize the expected present value of lifetime utility. Provided
agents are risk-neutral and financial markets are complete βR = 1, where β is the
discount rate.3

The second term in (1) captures two key features to our analysis: the outside
supply of shares of the risky asset follows a stochastic process zst; the presence of
risk-averse agents (a > 0) implies that asset price also depends on agents’ percep-
tions of the conditional variance of excess returns σ2 = V art (pt+1 + yt+1 − Rpt). A
stochastic process for share supply is meant to proxy for asset float and I.P.O. lock-up
expiration. In the presence of short sales constraints variations in the outside share
supply can affect stock price, an issue of increasing empirical importance in the fi-
nancial economics literature (see Ofek and Richardson (2003), Cochrane (2005), and
Branch and Evans (2006)). Here we motivate the presence of asset share supply by
appealing to this literature and emphasizing that incompleteness in markets can give
rise to an important role to supply variation in asset pricing. However, (1) makes
it clear that with risk-neutral agents share supply does not have an effect on price.
This is in line with DeLong, Schleifer, Summers, and Waldmann (1990) who note that

3Of course, below we motivate the model as not being a complete markets model and so we might
expect βR 6= 1. Our analysis does not hinge on this restriction.
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risk-averse traders may not take aggressive short positions in a risky-asset, thereby
preventing full arbitrage of profitable trading opportunities.

When a > 0, equation (1) can be derived from an overlapping generations ver-
sion of the consumption CAPM model with mean-variance preferences (Bohm and
Chiarella (2005)). This assumption gives rise to a mean-variance maximizing setting
in which agents optimize their portfolio by maximizing risk-adjusted expected wealth.
Mean-variance preferences are a frequently employed approach to tractably modeling
limited risk tolerance (downward sloping asset demand). See, for example, DeLong,
et al (1990) and Lewellen and Shanken (2002). The novelty of our approach is that
we assume agents estimate the value of this risk. Risk-aversion implies that agents’
welfare declines with the variance of returns, σ2. It is agents’ concern with risk that
makes σ2 an equilibrium object of the model and this is a key ingredient to our find-
ing of recurrent bubbles and crashes. In the learning section below, time-varying
estimates of σ2 will arrest explosive bubbles and can lead to crashes.

We assume the exogenous process for dividends is as follows

yt − y0 = ρ (yt−1 − y0) + ut

We assume that share supply follows a multiplicative process of the form

zst = {min(s0, Φpt)} · Vt

where ut, Vt are uncorrelated white noise shocks, EVt = 1, y0, s0 > 0, 0 ≤ ρ < 1 and
we set

Φ =
10s0

p̄

where p̄ is the mean stock price in a fundamentals based REE. In this formulation,
share supply is exogenous except at very low prices (i.e. when price falls to 10%
of its fundamentals value). The endogeneity of share supply at low prices is meant
to capture that asset float will dry up in financial markets that perform poorly. In
the real-time learning simulations, the endogeneity of share supply will ensure that
price remains non-negative. In the analysis below, we assume for simplicity that
ρ = 0. This has the advantage that all of the asset price dynamics are reflective of
the learning process.

It is well-known that in asset pricing models of this form there are (broadly)
two classes of rational expectations solutions: the “fundamentals” solution and a
“bubbles” class of solutions. A rational expectations equilibrium (REE) is a stochastic
process {pt} that solves (1) with Ê = E. The fundamentals-based REE can be found
by iterating (1) forward

pt =
∞

∑

j=1

βjEtyt+j −
∞

∑

j=0

βjaσ2Etzst+j
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There is additionally a class of bubbles REE of the form

pt =
∞

∑

j=1

βjEtyt+j −
∞

∑

j=0

βjaσ2Etzst+j + β−tηt

where ηt is a martingale, i.e. Etηt+1 = ηt. Notice that for 0 < β < 1 the bubbles REE
is explosive. To generate empirically meaningful time-series it is often assumed that
ηt follows a Markov process that periodically collapses the bubble (Blanchard (1979),
Blanchard and Watson (1982), Evans (1991)).

There is a wide literature that catalogs theoretical objections to bubbles. For
instance, explosive bubbles may violate the consumers’ transversality condition un-
less ηt is constructed in a very specific manner. Under complete financial markets,
an explosive bubble that does not violate the transversality constraint would induce
short-sellers to crash the bubble, making the presence of bubbles theoretically impos-
sible. Additionally, Diba and Grossman (1988) show that, since free disposal implies
price can never be negative, a collapsing bubble implies price goes to zero and from
there a bubble can never again arise.

Our aim in this paper is to provide a model that yields the periodic bursts and
collapses of bubbles as was the goal in Blanchard and Watson (1982). However, we
avoid some of these theoretical issues by taking a boundedly-rational viewpoint. We
assume that agents attempt to learn, in real-time, about the underlying stochastic
process followed by the stock price, in particular about the reduced-form parameters of
the model and about the conditional variance of the rate of return. Because the model
is self-referential it is conceivable that agents’ learning will produce, as endogenous
reactions to the intrinsic fundamental shocks, periodic bubbles and crashes.

3 Stability under Learning

In this section we turn to an examination of the stability of the fundamentals and
bubbles REE under adaptive learning. First, we follow the section above and take
σ2 as given and study the stability under learning of the parameters in the agents’
forecasting model. We then show how σ2 is pinned down in equilibrium and specify
a recursive algorithm for estimating the conditional variance in real-time. Finally, we
study the stability properties of the REE with endogenous σ2.

3.1 Expectational Stability

As explained above we now set ρ = 0. We begin by noting that the bubbles solution
has an alternative representation of the form,

pt = −y0 + β−1pt−1 + aσ2zst−1 + ξt
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where ξt is an arbitrary martingale difference sequence, i.e. Etξt+1 = 0.

To address expectational stability we follow Evans and Honkapohja (2001) and
study a perceived law of motion (PLM) that allows for both the fundamentals and
bubbles REE:

pt = k + cpt−1 + εt. (2)

With this perceived law of motion, subjective conditional expectations are4

Etpt+1 = k(1 + c) + c2pt−1

To ensure stock prices remain non-negative, we also impose that k(1 + c) ≥ −y0.
Letting Vt = 1 + vt, where vt is an iid mean-zero disturbance, and plugging these
beliefs into (1) yields the actual law(s) of motion (ALM)

pt = β(y0 + k(1 + c) − aσ2s0) + βc2pt−1 − βaσ2vt, if s0 ≤ Φpt (3)

=
β (k(1 + c) + y0)

1 + βaσ2Φ(1 + vt)
+

βc2

1 + βaσ2Φ(1 + vt)
pt−1, if s0 > Φpt (4)

Notice that if beliefs are sufficiently close to a rational expectations equilibrium, asset
share supply will be exogenous and the actual law of motion can be re-written in terms
of a T-map:

pt = T (k, c)(1, pt−1)
′ − βaσ2vt

The T-map
T (k, c) =

(

y0 + k(1 + c) − aσ2s0, βc2
)

defines a map from the PLM to the ALM. A fixed point to the T-map is an REE.
Notice that there are two fixed points (β(y0−aσ2s0)/(1−β), 0) and (aσ2s0−y0, β

−1).
Therefore, the fixed points of the T-map correspond to the fundamentals and bubbles
REE. When analyzing the global dynamics below we consider the case where beliefs
are sufficiently far away from the REE so that supply is endogenous.

We follow Evans and Honkapohja (2001) and examine the stability of the funda-
mentals and bubbles REE under a natural learning rule. The E-stability principle
states that locally stable rest points of the ordinary differential equation

d(k, c)′

dτ
= (T (k, c) − (k, c))′

will be obtainable under reasonable learning algorithms such as least squares. The
conditions for E-stability are that the eigenvalues of the Jacobian of (T (k, c)− (k, c))
have negative real parts. It has been established by Evans and Honkapohja (2001) in
a closely related model that

4For convenience we adopt the timing assumption that no contemporaneous variables, including
zst, are observable at t. The instability of the bubbles solutions under learning does not hinge on
this assumption.
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1. The fundamentals REE (β(y0−aσ2s0)/(1−β), 0) is E-stable provided 0 < β < 1.

2. The bubbles REE (aσ2s0 − y0, β
−1) is not E-stable.

That the bubbles REE is not E-stable has been another cited objection to rational
bubbles. Since a slight deviation from the bubbles path would lead to instability,
observing such equilibria seems unlikely. In particular, for initial conditions for c
that are greater than β−1 many learning rules will imply that pt → ∞. Below we
show that with learning about σ2 it is possible to trigger “escape” like paths from
neighborhoods of the fundamentals REE: interestingly, these escape dynamics do not
venture off toward the bubbles REE but instead to a time-series well approximated
by a random walk.

3.2 Stability of the REE with Risk

Above, we argued that σ2 is actually an equilibrium object. Taking this into ac-
count we now define an REE as a fixed point (k, c, σ2) of the T-map for k, c and
the corresponding map for perceived conditional variance σ2. Recalling that σ2 =
V art(pt+1 + yt+1 − β−1pt), it follows that

σ2 = Et (pt+1 − Etpt+1 + yt+1 − Etyt+1)
2

In the case of the fundamentals REE,

σ2 = Et

(

−aβσ2vt+1 + ut+1

)2
(5)

This is analogous to the T-map for the other parameters: given a perceived value of
σ2, (5) gives the implied actual value of σ2. Thus, a fixed point delivers the REE
value for the fundamentals REE:

σ2 =
1 ±

√

1 − 4a2β2σ2
vσ

2
u

2a2β2σ2
v

Below, we will see that the smaller root will be stable under a recursive learning
algorithm. For the bubbles REE straightforward calculations show that σ2 = σ2

u +σ2
ξ .

We turn now to a specification of the learning algorithm. Agents are assumed to
use recursive least squares to form parameter estimates of k, c, and to use a similar
stochastic recursive algorithm, given below, to estimate σ2. Define θt = (kt, ct)

′ to
be the time t estimates of (k, c) and let σ2

t be the time t estimate of σ2 using data
through time t. Assuming that at time t agents use parameters estimated using data
through time t − 1 and they condition on variables dated t − 1 or earlier, real-time
expectations are given by

Etpt+1 = kt−1(1 + ct−1) + c2
t−1pt−1.
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Under learning the price process follows (3)-(4) with k, c, σ2 replaced with kt−1, ct−1, σ
2
t−1.

Let Xt = (1, pt)
′. The real-time learning algorithm is thus assumed to be

θt = θt−1 + γ1,tR
−1
t Xt−1

(

pt − θ′t−1Xt−1

)

(6)

Rt = Rt−1 + γ1,t

(

Xt−1X
′

t−1 − Rt−1

)

(7)

σ2
t = σ2

t−1 + γ2,t

(

(

pt − θ′t−1Xt−1 + ut

)2 − σ2
t−1

)

(8)

The first two equations in (6)-(8) are recursive least squares. For the stability analysis
we will assume the gains γ1,t = γ2,t = t−1. Below in the numerical simulations we
will instead assume constant gains and allow γ1,t = γ1 6= γ2 = γ2,t. With a constant
gain, referred to as constant-gain learning, the recursive algorithm becomes a form of
discounted least squares.

The issue of stability of the REE is whether θt, σ
2
t converge to the fundamentals

and/or the bubbles REE. We have already seen that with fixed σ2 the fundamentals
REE will be stable. Evans and Honkapohja (2001) provide conditions that ensure
convergence of the recursive system above. These conditions draw on convergence
theorems for stochastic recursive algorithms (SRA). For now, we assume initial beliefs
lie in the region in which share supply is exogenous. Below we illustrate how the weak
convergence results are impacted by (possibly) endogenous supply. To draw on these
results requires some re-defining of variables. Let St = Rt−1, γ1,t = γ2,t = t−1 and
define zt =

(

pt − θ′t−1Xt−1 + ut

)

= (T (θt−1) − θt−1) Xt−1−aβσ2
t−1vt+ut. Then (6)-(8),

for the case of exogenous supply, can be re-written as

θt = θt−1 + t−1S−1
t−1Xt−1

(

X ′

t−1(T (θt−1) − θt−1)
′ − aβσ2

t−1vt

)

(9)

St = St−1 + t−1

(

t

t + 1

(

Xt−1X
′

t−1 − St−1

)

)

(10)

σ2
t = σ2

t−1 + t−1
(

ztz
′

t − σ2
t−1

)

(11)

An important difference from the standard parameter learning set-up is that in the
first line the stochastic element is the product of the estimated σ2

t−1 and the iid shock
vt. For the case of decreasing gain, the “mean dynamics” will, as Cho, Williams,
and Sargent (2002) demonstrated, be independent of the iid term. In the numerical
simulations below, however, this will provide an important interaction between the
learning of θt and σ2

t that will make it possible for there to be recurrent bubbles and
crashes. Defining φt = (θt, vec(St), σ

2
t )

′, and then using the framework of Evans and
Honkapohja (2001), it is straightforward to verify that the ODE (ordinary differential
equation) associated with the asymptotic behavior of the SRA is defined as

dφ

dτ
= h(φ) (12)

and that local stability of this differential equation governs the local stability of the
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REE under (9)-(11).5 where the components of h are

hθ = S−1M(θ, σ2)(T (θ) − θ)′ (13)

hS = M(θ, σ2) − S (14)

hσ2 =
(

(T (θ) − θ)M(θ, σ2)(T (θ) − θ)′ + σ2
u + (aβσ2)2σ2

v − σ2
)

, (15)

and where M = EXt−1(θ, σ
2)Xt−1(θ, σ

2)′. That is, the SRA will locally converge
(with probability approaching one) to a stable rest point of the ODE. The Jacobian
of this ODE, evaluated at the REE, provides the relevant stability conditions:























β(1 + c) − 1 βk 0 0 0 0 0
0 2βc − 1 0 0 0 0 0
0 0 −1 0 0 0 0

∂M(1,2)
∂k

∂M(1,2)
∂c

0 −1 0 0 0
∂M(1,2)

∂k
∂M(1,2)

∂c
0 0 −1 0 0

∂M(2,2)
∂k

∂M(2,2)
∂c

0 0 0 −1 0
0 0 0 0 0 0 2aβσ2

vσ
2 − 1























The Jacobian has eigenvalues −1 + 2cβ,−1 + β + cβ,−1 + 2aβσ2
vσ

2, and repeated
values of −1.

We have the following result.

Proposition 1 For the model (1) with the adaptive learning algorithm (6)-(8) and
gains γ1,t = γ2,t = t−1:

1. The fundamentals REE is locally stable under learning if 0 < β < 1 and 0 <
σ2 < 1

2aβσ2
v

.

2. The bubbles REE is unstable under learning.

There are various interpretations in this setting for the phrase “locally stable un-
der learning,” as discussed at length in Evans and Honkapohja (1998). For example,
Marcet and Sargent (1989) point out that probability one convergence obtains pro-
vided the stochastic recursive algorithm is augmented with a “projection facility”
that restricts parameter estimates to a suitable compact set around the equilibrium
of interest. The use of projection facilities has been criticized by Grandmont (1998)
and clearly its use rules out some potentially interesting global dynamics.6 As we will

5There is also a connection between the global behavior of the O.D.E. and of the learning algo-
rithm. See the discussion below.

6Without the use of a projection facility it is possible to establish local convergence with prob-
ability close to one for gain sequences with sufficiently slow adaption rates. In contrast, unstable
under learning implies convergence with probability zero.
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now see, with constant-gain learning, bubble-like global dynamics periodically emerge
as temporary escapes from the fundamentals REE. Furthermore the increases in per-
ceived risk along these bubble paths eventually acts like an endogenous projection
facility to return the price process to a neighborhood of the fundamentals REE.

We now turn to the analysis of the global learning dynamics in our model.

4 Global Properties

The results above demonstrate that the fundamentals REE is locally stable under
learning, while the bubbles REE are not. This result obtains both with and without
learning of the conditional variance of stock returns. Thus, the onset of recurring
bubbles and crashes will arise from the global dynamic properties of the model under
learning.

Figure 3 illustrates the central intuition of the local and global stability results.
Figure 3 plots the Tc = βc2 component of T (θ) holding k and σ2 fixed. There are
clearly two REE, the fundamentals at c = 0 and the bubbles at 1/β. The arrows
in the figure show the direction of adaptation under the ODE hθ. For initial values
c > 1/β the ensuing estimated values of c will explode without limit. For initial
c < 1/β there is convergence to the fundamentals REE. Below we consider a setting
where agents estimate θ with a constant-gain least squares algorithm.

Although all trajectories originating in the basin [0, 1/β) will eventually settle
down at the fundamentals REE, the global dynamics along a convergent path could
still be interesting. This point was made forcefully by Sargent (1999), Cho, Williams,
and Sargent (2002), and Williams (2004). In particular, at c = 0, in a fundamentals
REE, the stock price is equal to a constant plus noise. Away from this REE, even
as the dynamics are on a convergent path, estimates for ct > 0 introduce serial
correlation into the model. This serial correlation may be self-reinforcing leading
agents to (temporarily) believe price is serially correlated.

These insights can be seen by studying the mean dynamics of the recursive learning
algorithms. We first present results for the case of exogenous share supply and leave
the details of the case where share supply may become endogenous to an Appendix.

We now replace t−1 updating with a constant gain so that agents’ beliefs are
updated according to

θt = θt−1 + γ1S
−1
t−1Xt−1

(

X ′

t−1(T (θt−1) − θt−1)
′ − aβσ2

t−1vt

)

(16)

St = St−1 + γ1

((

Xt−1X
′

t−1 − St−1

))

(17)

σ2
t = σ2

t−1 + γ2

(

ztz
′

t − σ2
t−1

)

(18)

where γ1, γ2 are the constant gains and here we allow γ1 6= γ2. The main motivation for
believing that private agents would use constant gains is that they would be concerned
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Figure 3: T-map (Tc component).
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with the possibility of structural change. Constant gain least squares places greater
weight on current relative to older data, and so is better able to track the form of
the stochastic process generating the data when there is structural change taking an
unknown form. Implications of using constant-gain learning have been explored in
the literature cited in the Introduction. Empirical support for constant-gain learning
can be found, for example, in Orphanides and Williams (2005a), Branch and Evans
(2006), Sargent, Williams, and Zha (2007), and Milani (2007).

The idea behind mean dynamics are that solutions to the ODE in (12) provide
a good approximation to the expected dynamics as γ1, γ2 → 0. In Proposition 1 we
provided conditions under which the REE is locally stable or unstable. That (12)
governs local stability was established in Evans and Honkapohja (2001). However,
the mean dynamics also can shed light on the global stability of the REE as well, in
the sense that for small gains the sample paths from the SRA weakly converge to the
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path defined by the ODE.

Below, we further develop the intuition for the origin of bubbles and crashes,
by numerically solving the ODE for the mean dynamics. First, we formalize the
notion that the mean dynamics approximate the constant-gain learning dynamics for
small gain parameters. We proceed by first noting that it is possible to re-write the
constant-gain learning algorithms (16)-(18) in the form7

φγ
t = φγ

t−1 + γH(φγ
t−1, X̄t)

where X̄ ′

t = (Xt, Xt−1, ut)
′, and the components of H are given by (16)-(18). The

parameter estimates φγ have been re-written to emphasize their dependence on the
gain γ. In order to make a comparison between the solutions to the continuous time
ODE and the discrete time recursive algorithm, we need to define a corresponding
continuous time sequence for φγ

t , which we denote as φγ(t).8

When γ is replaced by γt, a sequence of gains that decreases over time, Proposition
1 shows that the fundamentals REE is stable. With a constant gain, the learning
dynamics do not settle down over time but may converge to a stationary distribution.
In general, mean dynamics provide a good approximation to the mean path under
constant-gain learning. The following proposition formally establishes this result for
the case of exogenous share supply in a neighborhood of the fundamentals REE.

Proposition 2 Assume zst = s0Vt. Define, for any φ0 sufficiently close to the fun-
damentals REE, φ̃(t, φ0) as the solution to the ODE dφ/dt = h(φ), with initial con-
dition φ0, where h is defined in (12)-(15). Consider the random variable, indexed by

the constant gain γ, Uγ(t) = γ−1/2
(

φγ(t) − φ̃(t, φ0)
)

. As γ → 0, Uγ(t), 0 ≤ t ≤ T ,

converges weakly to a zero mean random variable.

The proof is contained in an Appendix. We remark that the “neighborhood” of
validity of this proposition need not be small and, as shown in the Appendix, can
include a wide range of values for φ. This result establishes that, over finite periods
of time, the constant-gain learning dynamics will converge weakly to the solution of
the ODE; these “mean dynamics” then provide a good approximation to the actual
real-time learning dynamics with a small constant gain. It is important to emphasize
that this convergence result is across sequences of φt, for alternative gains γ → 0, and
not along a particular realization.9 It is worth remarking that in the case where share
supply may become endogenous a similar result can be expected to hold since the

7To capture γ = γ1 6= γ2, the σ2 component must be divided by γ1, implying the mean dynamics
(15) will depend on the relative gain γ2/γ1.

8It is straightforward to construct a continuous time process for φγ : denote s as real-time and
let tγs = sγ; define φγ(t) = φγ

s if tγs ≤ t < tγs+1.
9See Williams (2004) and McGough (2006) for further discussion.

16



weak convergence theorems presented in Evans and Honkapohja (2001) do not depend
on the conditional linearity of the price process that is exploited in the proof to this
proposition. However, verification of the technical conditions in this case are difficult
and beyond the scope of the present paper. Instead, we turn to an approximation
and then present numerical results.

4.1 Mean Dynamics

The result in Proposition 2 shows that for sufficiently small constant gain parame-
ters, the mean dynamics provide a good approximation to the constant-gain learning
dynamics. Furthermore, Proposition 1 establishes that the fundamentals REE is a
rest point of the mean dynamics. One way to think of the mean dynamics is that
it gives the mean path followed by the learning dynamics if there is a shock to the
parameter estimates. Under constant-gain learning, agents place greater weight on
recent observations and may cause agents’ beliefs to respond to shocks and trigger
these mean dynamics. How responsive agents’ beliefs are to these shocks depends
on the constant-gain parameters. For sufficiently small gains the economy will, with
high probability, remain in a neighborhood of the REE, as indicated by Proposition
2. However, for larger gains interesting global dynamics may arise.

The key to this intuition is that estimates for (k, c) are likely to shift in a systematic
manner in response to shocks, since with a constant gain agents place some weight
on the possibility that the fundamentals REE is not the true model. The size of the
constant gain influences the space of models that agents cannot statistically reject.
To illustrate this reasoning Figure 4 plots the 90% and 50% confidence ellipses for
the fundamentals REE assuming a constant gain γ1 = .05. To compute this figure
we follow Evans and Honkapohja (2001, Chp.7) who show that, under constant-gain
learning, the parameter estimates are distributed asymptotically normal around the
REE value, with the variance increasing in the gain.10 This figure was generated by
assuming the following baseline parameterization: β = 0.95, a = 0.75, σ2

u = 0.9.σ2
ν =

0.5, y0 = 1.5, s0 = 1. These parameter values were chosen so that the fundamentals
REE is locally stable according to the condition in Proposition 1. Figure 4 illustrates
that the confidence ellipses have a decreasing principal axis, indicating that one can
expect many trajectories moving in the direction of this axis. Notice that the ellipses
are pointed in the direction of a random walk without drift, with c increasing and
k decreasing along the principal axis. The relative size of these ellipses depend on
the size of the constant gain. From this figure, we conclude that under constant-gain
learning, agents will remain alert to possible misspecification in their forecasting rule
– thereby, raising the possibility that they may come to believe price is a random
walk.

10See the Appendix for further details.
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Figure 4: Confidence ellipses around fundamentals REE for constant gain learning
version of the model.
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One can think of points on the principal axes of these ellipses as providing the
triggers for escapes. In the current setting, the confidence ellipsoid consists of the
(k, c) ellipse in Figure 4 and a confidence region for the risk aversion parameter σ2

that is a small interval around the fundamentals REE value. The numerical examples
below illustrate that increases in c ( and decreases in k) combined with small changes
in risk aversion can trigger escape-like dynamics, and that gain parameters γ2 > γ1

make escapes more likely. The trigger for escapes then are some combination of
increases in expected return and changing risk estimates.

In this subsection, we numerically solve the mean dynamics to illustrate the global
stability properties of the model. These dynamics provide the intuition for the real
time dynamics in the next Section. We choose various starting values for the belief
parameters θ, σ2, R, chosen from the 90% confidence ellipsoid, and solve the non-linear
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differential equation (12). The Appendix contains further details on computing the
ODE approximation in the case that share supply is endogenous. We show that the
fundamentals REE is a stable rest point of the mean dynamics for all initial values
c ∈ [0, 1/β).

The global stability properties of the mean dynamics have interesting implications
for the constant-gain learning dynamics (16)-(18). The mean dynamics represent the
expected path of beliefs (for small gain) given an initial condition. With a constant-
gain recursive algorithm, agents’ beliefs react more strongly to recent than past data.
It is possible for a large shock to induce agents to revise upwards their beliefs of the
slope parameter c, placing the economy along a bubble-like path. The global stability
of the fundamentals REE suggests that a large run-up of price will be possible, but
will then collapse as the mean dynamics take over.

One novelty to the approach here is the importance of risk in these dynamics.
Estimates of σ2 play two roles: first, a constant-gain algorithm for σ2 will introduce
drift into the model and make ‘escapes’ more likely; second, along an explosive bubble
path estimates of risk will increase, and as σ2 increases sufficiently the bubble will
collapse.

To illustrate these points we turn to a numerical investigation of the mean dy-
namics. We parameterize the model as above (reproduced here for convenience):
β = 0.95, a = 0.75, σ2

u = 0.9.σ2
ν = 0.5, y0 = 1.5, s0 = 1. We randomly draw from

values along the ellipse. One can think of constant-gain learning dynamics as re-
initializing the mean dynamics.

Figure 5 illustrates the mean dynamics for various initial values of c, k lying in
the fundamentals region, and along the confidence ellipse, and for initial σ2 below its
stable REE value. For this figure the gains are chosen so that the gain on parameter
updating, i.e. for c, k, is twice the gain on σ2. Setting σ2 below and c above their REE
values corresponds to a decrease in perceived risk and to a perceived serial correlation
in price. The figure plots (moving clockwise and starting in the northwest) the belief
parameters k, c, the constant in price expectations k(1 + c), the state covariance
matrix estimates Rt (with the (1,2), (2,2) elements shown), and the perceived risk
estimate σ2). Figure 5 demonstrates that the fundamentals REE is a stable rest point
for the mean dynamics, as indicated by Proposition 1.

Figure 6 plots the mean dynamics for the same parameter values, with initial
values drawn from the confidence ellipse, but now with the relative gains γ2/γ1 = 2,
so that beliefs are relatively more alert to changes in risk than expected return.
Notice again that the fundamentals REE is a stable rest point of the mean dynamics.
However, the transition path for the mean dynamics, in particular the behavior of the
autoregressive parameter c, are now very interesting. At first the estimates of c move
toward the fundamentals REE, but then they reverse course and increase to a value
of c = 1, where it remains for a short time before converging to c = 0. Importantly,
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Figure 5: Mean Dynamics, various initial values for slope parameter c, k and perceived
risk σ2, drawn from the confidence ellipsoid. Small gain on perceived risk (γ2).
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note that k → 0 as c → 1. Thus the the mean dynamics predict that agents will
come to believe stock prices follow a random walk. Eventually, the risk estimate will
increase, leading agents to again forecast price as a serially uncorrelated process.

It is worth briefly remarking on the manner in which the gain parameters γ1, γ2

affect these dynamics. Essentially, the gain affects the relative size of the 90% confi-
dence ellipsoid: larger gains imply greater alertness to possible model misspecification.
Through numerical explorations, we found that greater sensitivity in updating esti-
mates of σ2 were more likely to trigger escape paths in the mean dynamics. For this
reason, in the real time dynamics below, we choose values of γ2 > γ1.

That agents might forecast price to follow a random walk is intuitive and has
implications for the dynamics under constant-gain learning. The mean dynamics in
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Figure 6: Mean Dynamics, various initial values for slope parameter c, k and perceived
risk σ2, drawn from the confidence ellipsoid. Large gain on perceived risk (γ2).
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Figure 6 show that if agents detect some serial correlation in the data, and their risk
perception changes precipitously, this can lead agents to believe that recent changes
in price are permanent shifts and not mean-reverting fluctuations. In a perceived low-
risk environment traders will act on these beliefs and further drive up price – inducing
a bubble-like path. Eventually, however, agents will revise their risk estimates and
crash the bubble.

Figure 6 illustrates that shifts in estimates of σ2 are important for generating
escapes. If the gain γ2 is sufficiently small (e.g. Figure 5), even as γ1 increases, mean
dynamics do not exhibit random-walk beliefs. Thus, the drift induced by σ2 is critical
for generating bubbles and crashes.

In this model, bubbles and crashes arise under private-sector learning because
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agents come to believe that prices follow a random walk: shocks to stock prices are
perceived to have permanent effects. These dynamics arise through a complicated
interaction between expected-return parameters (k, c) and expected risk perceptions
σ2. Figure 6 shows how it is possible with constant-gain learning for the complicated
interaction of these learning features to lead to an escape episode. In the next Section
we show that when beliefs escape in this manner, recurrent bubbles and crashes can
arise. The second role played by risk is to crash bubbles: along an explosive price
path, risk estimates will increase and eventually cause price to collapse. The relative
gain γ2/γ1 is important for ensuring that bubbles will crash. Larger values of γ2/γ1

imply that risk estimates, along a bubbles path, will increase faster than expected
return. This insight is illustrated in Figure 7, which plots mean dynamics when k, c
are initialized in the explosive bubbles REE region (i.e. c > 1/β). Notice again that
beliefs are temporarily drawn to a random walk before converging to the fundamentals
REE.

Figure 7: Mean dynamics, initial k, c drawn from explosive region.
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4.2 Discussion

The onset of random walk approximations for stock prices was anticipated in a very
different setting by Sargent (1999, Chp. 6). Sargent assumed a simple model in which
the state is driven by expectations and a serially uncorrelated shock. Under rational
expectations, the economy is white noise deviations from a mean. Sargent demon-
strates that under adaptive expectations (in the Cagan sense) the dynamics will be
quite different. Adapting an insight from Muth (1960) that adaptive expectations
are an optimal predictor for a stochastic process that is MA(1) in first differences,
he shows that if agents hold random walk beliefs then the resulting temporary equi-
librium stochastic process can be self-fulfilling in the sense that the deviation from
rational expectations, of the random walk approximation, may not be detectable. The
basic idea is that a random walk model approximates well a model with time-varying
means.

The mean dynamics of this Section extend this reasoning to a model with multiple
REE and learning about the conditional variance. Sudden decreases in the perceived
risk, and adaptive learning via the constant-gain RLS, can lead to self-fulfilling serial
correlation that is approximated well by a random walk specification for stock price.
The previous subsection shows that random walk beliefs might arise along a path
that converges to the REE. This subsection further elaborates on these dynamics, by
demonstrating that Sargent’s intuition applies in the present setting.

Suppose that agents hold random walk beliefs based on a perceived law of motion
of the form

pt = pt−1 + εt

This arises under the PLM (2) provided c = 1, k = 0. Plugging these beliefs into the
expectational equation for stock price (1) leads to the actual law of motion (under
random walk beliefs):

pt = β(y0 − aσ2s0) + βLpt − βaσ2vt (19)

where L is the lag operator. Following Sargent, one could re-write the PLM and ALM
as MA(∞) processes. The PLM can be written11

pt =
1

1 − L
εt ≡ g(L)εt (20)

and the ALM takes the form
pt = µ + f(L)vt (21)

where µ = (y0 − aσ2s0)β/(1 − β) and f(L) = βaσ2/(1 − βL).

11The MA(∞) for the random walk can be derived by taking the limit c → 1.
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Sargent (1999) emphasizes two features of misspecified adaptive beliefs that are
evident in (20) and (21). First, random walk beliefs introduce serial correlation into a
model that is not serially correlated under rational expectations. The moving average
processes (20),(21) demonstrate that the perceived serial correlation becomes almost
self-fulfilling. Second, random walk beliefs can track constants well. In (20) there is
no constant but in (21) there is. Thus, the random walk uses higher-order moments
to track low frequency movements (i.e. the mean) in the price process. It is these
features that Sargent (1999) mentions as properties of optimally misspecified adaptive
beliefs.

It is possible to demonstrate, for the simple asset-pricing model of this paper, that
when an escape to random walk beliefs happen, the misspecified forecasting model is
optimally tracking these low frequency movements in price. To demonstrate this, we
follow Sargent (1999) in plotting the spectral density for the random walk perceived
model and the spectral density for the actual law of motion given these random
walk beliefs. Figure 8 illustrates the results for the baseline parameterization. The
random walk model matches the ALM well except at very low frequencies. This
figure is very similar to Figure 7.2 in Sargent (1999), though the model at hand has
considerably more serial correlation at all frequencies. Sargent attributes the good
match between spectral densities as evidence that a unit root can approximate first
moment properties of a stochastic process.

We, therefore, conclude that escapes to a random walk specification for beliefs
are likely to happen in a simple asset pricing model with learning about expected
return and risk. Moreover, these beliefs are optimally misspecified so that agents
will not be likely to detect their misspecification for realistic sample sizes. These
findings motivate the next Section which presents real-time simulations of the learning
dynamics.

5 Recurrent Bubbles and Crashes: Real-time Learn-

ing

The results in the previous section demonstrate that the fundamentals REE is lo-
cally stable under real-time learning and that under a suitable recursive algorithm it
may be globally stable as well. The mean dynamics results showed that estimates of
risk sufficiently away from the fundamentals equilibrium value can induce an escape
sending beliefs into a random-walk region. In the mean dynamics, the bubble will
eventually collapse, inducing a crash in price, and an eventual return to the funda-
mental rational expectations equilibrium. Under constant-gain learning we anticipate
seeing this process of bubbles arising and then crashing repeatedly. There are two
central elements to generating recurrent bubbles and crashes: constant-gain parame-
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Figure 8: Spectral densities (in logs) for random walk beliefs and the associated actual
law of motion.
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ter updating so that large shocks induce agents to revise upward their beliefs; second,
along a bubble path risk estimates will increase sufficiently and eventually crash the
bubble. The key player in these channels is the risk estimate σ2: it generates the drift
necessary for an escape; and it acts like an endogenous projection facility to arrest
explosive paths. This section turns to a real-time constant-gain learning analysis to
illustrate these properties.

Figures 9-13 present the numerical results. We choose the same parameter values
as above and consider the effects of different constant gains. The dynamical system,
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reproduced here for convenience, is

pt = β (y0 + kt−1(1 + ct−1)) + βc2
t−1pt−1 − βaσ2

t−1zst

θt = θt−1 + γ1R
−1
t Xt−1

(

pt − θ′t−1Xt−1

)

Rt = Rt−1 + γ1

(

Xt−1X
′

t−1 − Rt−1

)

σ2
t = σ2

t−1 + γ2

(

(

pt − θ′t−1Xt−1 + ut

)2 − σ2
t−1

)

In each figure we report the results from a typical simulation of length 10,000, which
follows a 5,000 length transient period.12

Figure 9: Constant gain learning with γ1 = .01, γ2 = .001.
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As mentioned above, with constant-gain learning some realizations of the exoge-
nous shocks lead to dynamics that leave the basin of attraction for the fundamentals

12We also augment the model with a projection facility requiring k(1 + c) ≥ −y0. This restriction
on beliefs rules out negative stock prices.
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Figure 10: Constant gain learning with γ1 = γ2 = .01.
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REE and escape to a random walk specification for beliefs. The mean dynamics,
though, indicate that eventually the dynamics will return to a neighborhood of the
fundamentals solution. For sufficiently small gains we would expect the dynamics to
remain close to the fundamentals REE. Figure 9 confirms this intuition by plotting
the results from a simulation with γ1 = .01, γ2 = .001. The top panel plots the stock
price, while the bottom panels plot the estimated slope parameter ct and risk σ2

t ,
respectively. Notice that the belief parameters stay near their fundamentals REE
value. As a result price is just a white noise process around its mean value.

Recall from the discussion in Section 4.2 that it is the drifting beliefs that can
create self-fulfilling serial correlation. Figure 10 considers the effects on the price
dynamics from an increase in the risk gain γ2. With a much larger gain (γ2 = .01)
the estimated value of σ2

t displays much more volatility, though still not enough in
response to the shocks to trigger an escape. The additional drift in beliefs induces
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Figure 11: Constant gain learning with γ1 = .01, γ2 = .02.
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some serial correlation in the price process, but the model still does not exhibit
bubbles or crashes.

As mentioned above σ2 plays an essential role in the existence of bubbles and
crashes. In Figure 10, there is not enough drift in the model – since the only shocks
to pt are the supply shocks vt – to induce beliefs into the bubble region. With more
volatility in the estimated risk parameter escapes become possible. Figure 11 begins
to show the onset of bubbles and crashes. Figure 11 keeps the same gain for γ1 = .01
and considers a slightly greater value for γ2 = .02. Figure 11 demonstrates that for
the first two thousand periods the dynamics look as they did in the previous figures.
But then beginning about period 2200 there is a sudden qualitative change in the
dynamics with three crashes and a bubble. Between the crashes and bubbles, the
dynamics converge back to a neighborhood of the fundamentals REE. Notice how the
beliefs for c, σ2 track the mean dynamics.
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Figures 9-11 suggest that it is joint learning about expected returns and σ2 that
is critical for bubbles and crashes. The remaining figures display simulation results
for the gains γ1 = 0.01, γ2 = .04. These gain and parameter values were chosen for
pedagogical reasons. Figure 12 demonstrates the remarkably different dynamics with
these parameter values. For the first 1500 periods or so the dynamics look as they did
in the first three figures, but then around period 1600 there is a dramatic qualitative
and quantitative change in the nature of the price and belief dynamics. At about
period 1500 there is a dramatic jump in both the RLS estimate ct and the conditional
variance estimate σ2

t . Notice, in particular, as predicted by the mean dynamics, that
beliefs hover near a random walk. This induces a sudden crash in the stock price,
which is then followed by a series of bubbles and crashes in the sense of sustained
deviations from the fundamentals price. Notice also that the price dynamics follow a
path somewhat reminiscent of the detrended log S&P 500 index shown in Figure 2.

Figure 12: Constant gain learning with γ1 = .01, γ2 = .04.
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Figure 13: Constant gain learning with γ1 = .01, γ2 = .04.
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The bottom two panels of Figure 12 illustrate how beliefs generate these recurrent
bubbles and crashes. After the qualitative change in the dynamics around period 1500
there are frequent and sudden jumps in both σ2 and c. This illustrates our central
insight. Estimates of risk can propel a bubble: if agents suddenly expect lower risk
then they are more willing to follow along a bubble path. However, the bubble path
cannot persist forever: agents adapt their real-time estimates of risk; above a certain
threshold the continued risk of staying on the bubble path is too high and this leads
to a sudden crash of the stock price.13 Figure 13 presents another simulation with
the same parameter values that clearly illustrates this logic. In Figure 13, between
periods 5000-6000 beliefs stay close to their fundamentals REE value, but there is

13In a sense, real-time estimation of risk σ2 is acting like a projection facility in that it prevents
estimates of c and k, and hence prices, from exploding. However, unlike a projection facility, the
stabilizing role of σ2 arises endogenously and has a natural economic interpretation.
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then a sudden jump in c and σ2 that leads to a crash and then a period of recurrent
bubbles and crashes.

Interestingly, Figure 13 also demonstrates that the expected price path is strongly
influenced by the mean dynamics. During periods 5000-6000 the dynamics stabilize
and the belief parameters begin to drift back to their fundamentals REE levels, but
again a sudden escape leads to recurrent bubbles and crashes.

One might wonder why beliefs do not appear to return to a neighborhood of the
REE more often. Inspection of the eigenvalues of the Jacobian for the mean dynamics
indicate that, for the specified parameter values, the speed of convergence is slow. In
particular, there is an eigenvalue greater than −.5, which as Sargent (1999) notes,
indicates convergence slower than the rate t1/2.

Another issue that warrants briefly mentioning is the time scale and the frequency
of bubbles. The current parameterization would suggest that bubbles occur about
every 100 years or so, which is clearly not empirically realistic. By choosing values
of β closer to 1, and selecting alternative gain parameters, it is possible to generate
bubbles at a much higher frequency. However, the simulated stock prices become
very noisy. Our parameter values β = .95, γ1 = .01 and γ2 = .04 were chosen because
they generated figures that most clearly illustrate the mechanics of the model. A
more carefully calibrated version of the model would require altering several modeling
features as discussed below in Section 5.2.

5.1 Detecting Bubbles

Building on the insight that a bubbles REE can be decomposed into a fundamentals
portion (e.g. dividends) plus a bubbles component, an extensive literature exists that
tests for explosive asset price bubbles by testing for non-stationarity in the residuals
from a regression of stock price on dividends. Diba and Grossman (1988) apply unit
root tests to the residuals and reject the null hypothesis of bubbles in U.S. stock
prices. Evans (1991), however, argues that, for a class of bubbles REE where the
bubble periodically collapses, unit root tests, such as the Augmented Dickey Fuller
(ADF) test, will fail to detect rational bubbles processes unless the frequency of
collapse is very low. This is because periodically collapsing bubbles exhibit pseudo-
stationarity, i.e. they mimic some key features of stationary data in finite samples.
Similar results for a related class of rational bubbles have been found in Charemza and
Deadman (1995). Building on this insight, Wu and Xiao (2002) propose an alternative
Recursive Estimates Statistic (RES) which is better able to detect collapsible bubbles
than conventional unit root tests. Their RES test indicates the presence of bubbles in
Hong Kong stock market data and also provides some, but weaker, evidence of bubbles
in U.S. stock prices. In order to illustrate the potential importance of our theoretical
findings, we use Monte Carlo simulations of our simple model of bubbles to show
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that, similar to these results, the RES, but not standard unit root tests, would detect
the existence of bubbles. We find these results highly suggestive as they indicate that
our model generates stochastic processes for asset prices that are consistent with key
empirical features of the data.

The RES test is based on the residuals from a regression of the form

pt = a + byt + ut,

which in our model is a constant plus noise. A test for the presence of bubbles is a
test for non-stationarity in ut. The RES constructs the following recursive statistic,

max
k=1,...,n

k√
n
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∣

∣

∣
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k

k
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(22)

where ût is the estimated residual process and n is the length of the data sample.
Wu and Xiao (2002) calculate the relevant critical values. Under an explosive bubble
(22) will diverge to infinity, which gives the intuition for a simple test of the bubble.

To illustrate the potential empirical importance of our model we conducted the
following experiment: we simulate the model for 15000 periods, storing the simulated
price process. We next estimate the residuals by regressing price on a constant. We
then conduct an ADF test of a unit root in the residuals14 and an RES test for the
presence of bubbles. The simulation was repeated 1000 times. For the ADF test, the
alternative hypothesis is stationarity, so that bubbles are conventionally associated
with a failure to reject the null. (As noted above, the Evans (1991) critique is that
periodically collapsing bubbles will exhibit pseudo-stationarity). For the RES test,
rejections are associated with bubbles. Table 1 presents the fraction of simulations
in which the test detects bubbles based on 5% significance levels. Table 1 presents
results for different values of the gain parameters as well as different sample sizes for
the test (1000 or 100 periods).

Simulation Length:
1000 100

Gain Parameters RES ADF RES ADF
γ1 = .001, γ2 = .001 0.024 0.000 0.0000 0.000
γ1 = .01, γ2 = .01 0.8760 0.0040 0.0220 0.000
γ1 = .01, γ2 = .04 0.980 0.0210 0.8340 .0640

Table 1. Bubbles Test Results for Simulated Data. For ADF, each cell
entry reports the percentage of simulations consistent with a bubble (i.e.

14In the ADF test the lag length for each simulation is chosen using F-tests to ensure inclusion of
all lags significant at the 5% level.
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that fail to reject the null hypothesis of a bubble). For RES, each cell
entry reports the percentage of simulations consistent with a bubble (i.e.
that rejects the null hypothesis of no bubble). RES refers to the Recursive
Estimates Statistic of Wu and Xiao (2002), ADF is an Augmented Dickey-
Fuller test.

For very small gains both tests reject the presence of bubbles, as expected, since
the simulated data remain close to the fundamentals rational expectations equilib-
rium. For gains that generate bubbles in our model, i.e. γ1 = .01, γ2 = .04, the results
are also in line with our expectations: the RES test can detect bubbles even though
the ADF test rejects a unit root in the residuals in favor of stationarity. The results
for γ1 = .01, γ2 = .04 are consistent with the findings for Hong Kong and U.S. data
in Wu and Xiao (2002) and Asian data in Chan and Woo (2007). In summary, our
simulated test results combined with the above mentioned evidence suggest that an
appropriately calibrated model could yield empirically plausible bubbles and crashes.

5.2 Further Discussion

We have developed a simple linear asset-pricing model capable of generating bubbles
and crashes provided that agents use constant-gain learning to forecast expected
returns and the conditional variance of stock returns. Risk aversion and uncertainty
regarding the riskiness of the asset is a distinct and critical characteristic of our
model. Risk generates the kind of drift and abrupt changes in beliefs – in response
to fundamental shocks – that places the stock market onto a bubble path. Risk also
bursts the bubble along an explosive price path when agents’ risk estimates eventually
increase. We believe this is a very reasonable and intuitive description of bubbles and
crashes.

Our approach is closely related to others. Clearly, Sargent (1999, Chp. 6), in a
different framework, anticipates some of the mechanisms that drive our asset pricing
results. The learning dynamics are similar to the hyperinflation analysis of Marcet
and Nicolini (2003) and Sargent, Williams, and Zha (2007) in that occasional shocks
can trigger escapes in the learning dynamics. Timmermann (1994, 1996) examines
learning in a present value model of asset pricing model and Carceles-Poveda and
Giannitsarou (2006) study asset pricing with constant-gain learning in an RBC-type
model, but these papers do not examine the implications of learning about asset
price volatility. A distinguishing feature of our model is that risk plays a central
role, both helping to trigger bubbles but also to reinforce the global stability of the
fundamentals-based rational expectations equilibrium. Similar to our paper, Hong,
Scheinkman, and Xiong (2005) assume that traders have mean-variance preferences
and that there is asset float. In their paper, bubbles arise because insiders (those
“floating” asset shares) and outsiders have different information about the underlying
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asset. Outsiders overestimate the value, bidding up the price, and then when the lock-
ups expire insiders sell their shares and prices crash. In our paper, asset float is a
necessary component for the environment to provide agents an incentive to estimate
the variance of returns. Again, however, real-time estimation of risk by private agents
is the driving factor of our model.

An issue that should be addressed in future research is the choice of the time
interval. There are three separate questions: the length of private agents’ planning
horizon; the frequency with which they update their recursive models; and, the fre-
quency with which they update their information sets. In the present paper, for
theoretical convenience these are all chosen to be the same unit. In work in progress,
we construct a model with planning horizons that are longer than the estimation and
information gathering horizons. This introduces additional complexity to the model
that nonetheless would be important for a serious empirical exercise.

6 Conclusion

This paper generates bubbles and crashes in a simple linear asset pricing model with
adaptive learning. The existence of recurrent bubbles in a model with adaptive learn-
ing has been an open question in macroeconomics. Our central insight is that in an
environment in which traders are risk averse and boundedly rational, in the sense
that they know the reduced form of the actual law of motion governing prices but
not the parameters, then they must forecast both the conditional mean and the con-
ditional variance of stock returns. We show that, when agents adopt constant-gain
econometric learning, the qualitative nature of the dynamics can generate frequent
deviations from the fundamentals solution taking the form of bubbles and crashes.

We identify two roles for real-time learning of risk. First, occasional shocks can
lead agents to revise their estimates of risk in dramatic fashion. A sudden decrease in
the estimated risk of a stock can propel the system away from the efficient-markets
fundamentals equilibrium and into a bubble. Second, along a bubble path, risk esti-
mates will increase until eventually the perceived risk is so high that asset demand
will collapse and stock prices will crash. Thus, risk in an adaptive learning setting
plays a central role in triggering and collapsing asset price bubbles. These results are
intuitive and provide insights into the role adaptive learning and bounded rationality
play in large swings in asset prices.
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Appendix

Proof of Proposition 2

We sketch the proof to this proposition by making use of Proposition 7.8 of Evans
and Honkapohja, itself a re-statement of Benveniste, Metivier, and Priouret (1990,
Theorem 7, Chp. 4.4.3, Part II). The proposition in the text is based on the proposi-
tion stated below. Let D be an open set containing the fundamentals REE parameters
θ∗, S∗, σ2∗. In the case of exogenous share supply, the actual law of motion followed
by price is

pt = T (kt−1, ct−1)Xt−1 − βaσ2
t−1vt.

It is clearly the case that the state dynamics are conditionally linear and can be
written as

X̄t ≡









Xt

Xt−1

ut

vt









=









A(φt−1) 0 0 0
I 0 0 0
0 0 0 0
0 0 0 0









X̄t−1 +













B(φt−1) 0 0
0 0 0
0 0 0
0 1 0
0 0 1













Wt

where I, 0 are conformable matrices, and

Xt = A(φt−1)Xt−1 + B(φt−1)Wt

with X ′

t = (1, pt)
′,W ′

t = (1, ut, vt)
′. The validity of the proposition depends on the

following properties as established in Evans and Honkapohja (2001).

P1 Wt is iid with finite absolute moments.

P2 For any compact Q ⊂ D, supφ∈Q |B(φ)| ≤ M and supφ∈Q |A(φ)| ≤ ρ < 1, and
| · | is an appropriately defined matrix norm.

P3 For any compact Q ⊂ D, ∃C, q s.t. ∀φ ∈ Q and for all t |H(φ, x)| ≤ C(1+ |x|q).

P4 For any compact Q ⊂ D, H(φ, x) is twice continuously differentiable with
bounded second derivatives.

P5 h(φ) has continuous first and second derivatives on D.

The conditional linearity simplifies verification of these conditions. In particular,
Proposition 7.5 of Evans and Honkapohja (2001) show that conditions M1-M5 of their
Proposition 7.8 are implied by P1-P2. For their assumption A3′ we also make use of
the remark on p. 155, which shows that P4 is sufficient.

For given φ let pt(φ) = T (k, c)Xt−1 − βaσ2vt and let Xt(φ)′ = (1, pt(φ))′. Then
Xt(φ) is stationary for φ sufficiently close to the fundamentals REE. Therefore, fix D
to be an open set around (θ∗, S∗, σ2∗) such that ∀(θ, S, σ2) ∈ D
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1. (θ∗, S∗, σ2∗) are such that σ2∗ is the unique solution in D to the quadratic
σ2

u + (aβσ2)2 − σ2 = 0, θ∗ is the unique fixed point of T (θ) on D with σ2 = σ2∗,
S∗ = EXt−1(φ

∗)Xt−1(φ
∗)′,

2. for some ε̃ > 0, det(S) ≥ ε̃ > 0,

3. and k(1 + c) ≥ y0 and −1 < c < c̄ < β−1/2.

Write X̄t = Ā(φt−1)X̄t−1 + B̄(φt−1)Wt, where the expressions for Ā, B̄ are given
above. Clearly the eigenvalues of Ā consist of zero and the eigenvalues of A. The
set D is defined so that the roots of A(φ) are inside the unit circle implying Ā(φ)
will also have roots with modulus less than one. It is straightforward to verify that
assumptions P1-P5 hold.

We employ the following result from Evans and Honkapohja (2001):

Proposition 3 (EH(2001), Proposition 7.8) Assume P1-P5. Consider the nor-

malized random variables Uγ(t) = γ−1/2
[

φγ(t) − φ̃(t, φ0)
]

. As γ → 0, the process

Uγ(t), 0 ≤ t ≤ T , converges weakly to the solution U(t) of the stochastic differential
equation

dU(t) = Dφh(φ̃(t, φ0))U(t)dt + R1/2(φ̃(t, φ0))dW (t)

with initial condition U(0) = 0, where W (t) is a standard vector Wiener process, and
R is a covariance matrix whose i, jth elements are

Rij(φ) =
∞

∑

k=−∞

Cov
[

Hi(φ, X̄φ
k ),Hj(φ, X̄φ

0 )
]

Finally Proposition 2 can be established by noting that the solution to the stochas-
tic differential equation U(t) has the following properties

EU(t) = 0

dV ar(U(t))

dt
= Dφh(φ̃(t, φ0))Vu(t) + VuDφh(φ̃(t, φ0))

′ + R(φ̃(t, φ0)),

where Vu = V ar(U(t)).

Details on Approximating the Mean Dynamics With Endogenous Share
Supply. The recursive algorithm (16)-(18) is for the case of exogenous share supply.
When share supply may become endogenous requires additional care in constructing
the mean dynamics. The condition for exogenous supply, s0 ≤ Φpt, is satisfied if and
only if

s0 ≤ Φ
β (k(1 + c) + y0)

1 + βaσ2Φ(1 + vt)
+ Φ

βc2

1 + βaσ2Φ(1 + vt)
pt−1, or
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s0Φ
−1 + s0βaσ2(1 + vt) ≤ β (k(1 + c) + y0) + βc2pt−1. (23)

Given θ = (k, c.σ2), equations (3), (4) and (23) specify pt = F (pt−1, vt; θ). For
computing mean dynamics the complication is that whether (23) is satisfied, and
thus whether (3) or (4) applies, depends on vt.

Mean dynamics are computed by fixing θ and R and computing the ODE, where
the expectation is taken over vt and pt(θ), the pt process for fixed θ. In general this
must be done using the process given by (3), (4) and (23), and for any given θ one
must take account of the possibility that either regime will occur, depending on vt.
However, at least for “small” vt, a reasonable approximation would be to split the θ
space into two regions: in one region the probability is high that (for the given θ) the
pt(θ) process will be given by (3), and in the other region the probability is high that
the pt(θ) process will be given by (4).

For the (3) region pt(θ) converges to a stationary AR(1) with mean

Ept(θ) =
β (k(1 + c) + y0 − aσ2s0)

1 − βc2
≡ p̄H ,

provided βc2 < 1. If βc2 > 1 the condition s0 ≤ Φpt is satisfied (for limt→∞ Ept(θ)).
For βc2 < 1 the condition is satisfied, using the above expression for Ept(θ) provided

s0Φ
−1 + s0βaσ2 ≤ β (k(1 + c) + y0) + βc2p̄H .

Here we have set vt = 0, and replaced pt−1 by its mean under (3). The condition can
be rewritten as

σ2 ≤ σ̄2
H(c, k), where

σ̄2
H(c, k) = (s0βa)−1

{

β (k(1 + c) + y0) − s0Φ
−1 + βc2p̄H

}

.

For the (4) region the linear approximation of the pt(θ) process is of the form

pt =
β (k(1 + c) + y0)

1 + βaσ2Φ
+

βc2

1 + βaσ2Φ
pt−1 − δvt, (24)

which has mean

Ept = p̄L ≡ β (k(1 + c) + y0)

1 − βc2 + βaσ2Φ
.

Here

δ =
β2aσ2Φ (k(1 + c) + y0 + βc2p̄L)

(1 + βaσ2Φ)2

Based on this mean, the condition s0 > Φpt for (4) (with approximation (24)) will be
satisfied when

σ2 > σ̄2
L(c, k), where

σ̄2
L(c, k) = (s0βa)−1

{

β (k(1 + c) + y0) − s0Φ
−1 + βc2p̄L

}

,
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where we again set vt = 0 and where we set pt−1 at its mean under (24). Since
p̄L < p̄H we have σ̄2

L(c, k) < σ̄2
H(c, k). Thus when σ2 > σ̄2

H(c, k) and the distribution
of vt has small enough support, it is very likely that the (approximate) dynamics (24)
will be followed.

In the main text we present numerical results for the mean dynamics based on
the above approximation. Thus, for σ2 ≤ σ̄2

H(c, k), we assume the mean dynamics
are based on exogenous supply. For σ2 > σ̄2

H(c, k) the mean dynamics are instead
assumed to be given by the alternative mean dynamics based on (24). Note for (24)
the corresponding mapping from PLM to ALM has k, c components

(k, c) →
(

β (k(1 + c) + y0)

1 + βaσ2Φ
,

βc2

1 + βaσ2Φ

)

.

and there is a corresponding expression for σ2 component of the ODE:

hσ2 = (T (θ) − θ) M(θ, S, σ2) (T (θ) − θ)′ + σ2
u + δ2σ2

v

It is worth remarking that this procedure ignores the chance that the process
will have endogenous supply when σ2 ≤ σ̄2

H(c, k) and it ignores the chance that
it will have exogenous supply when σ2 > σ̄2

H(c, k). Within and near the region
σ̄2

L(c, k) < σ2 < σ̄2
H(c, k) the approximation will be at its worst, since both regimes

will have a significant chance of arising. But in order to provide intuition for the real
time learning results, this approximation suffices.

Procedure for Computing the Confidence Ellipses

Here we outline how we computed the confidence ellipsoids. Details on the general
procedure are given in Evans and Honkapohja (2001, Chp. 14, p. 348-356). The
confidence ellipsoids assume that the parameter estimates kt, ct will be distributed
asymptotically normal. Under similar assumptions to those for Proposition 2 this
property can be established formally.

In Evans and Honkapohja (2001) it is shown that θt ∼ N(θ∗, γV ) for small γ and
large t, where θ′ = (k, c)′ and V solves the matrix Riccati equation

Dθh(φ̄)V + V (Dθh(φ̄))′ = −Rθ(φ̄)

where R = EH(φ)H(φ)′ is as given in the proof to Proposition 2. Notice that the
way this Riccati equation is expressed omits the DSh(φ̄) and Dσ2h(φ̄) terms. This is
because R is a block diagonal matrix:

R = EH(φ̄)H(φ̄)′ =





(aβ)2(σ̄2)2σ2
vM

−1 0 0
0 EvecHRvecH′

R 0
0 0 σ2

u + (aβ)2(σ̄2)2σ2
v − σ̄2





where M = EXt−1X
′

t−1. The text solves V numerically, sets γ = .05, and plots the
50% and 90% concentration ellipses.
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